Concise Mercurial Vector Commitments and
Independent Zero-Knowledge Sets with Short
Proofs

Benoit Libert! * and Moti Yung?

L Université catholique de Louvain, Crypto Group (Belgium)
2 Google Inc. and Columbia University (USA)

Abstract. Introduced by Micali, Rabin and Kilian (MRK), the basic
primitive of zero-knowledge sets (ZKS) allows a prover to commit to
a secret set S so as to be able to prove statements such as x € S or
x ¢ S. Chase et al. showed that ZKS protocols are underlain by a crypto-
graphic primitive termed mercurial commitment. A (trapdoor) mercurial
commitment has two commitment procedures. At committing time, the
committer can choose not to commit to a specific message and rather
generate a dummy value which it will be able to softly open to any mes-
sage without being able to completely open it. Hard commitments, on the
other hand, can be hardly or softly opened to only one specific message.
At Eurocrypt 2008, Catalano, Fiore and Messina (CFM) introduced an
extension called trapdoor g-mercurial commitment (qTMC), which al-
lows committing to a vector of ¢ messages. These qTMC schemes are
interesting since their openings w.r.t. specific vector positions can be
short (ideally, the opening length should not depend on ¢), which pro-
vides zero-knowledge sets with much shorter proofs when such a commit-
ment is combined with a Merkle tree of arity q. The CFM construction
notably features short proofs of non-membership as it makes use of a
qTMC scheme with short soft openings. A problem left open is that
hard openings still have size O(gq), which prevents proofs of membership
from being as compact as those of non-membership. In this paper, we
solve this open problem and describe a new qTMC scheme where hard
and short position-wise openings, both, have constant size. We then show
how our scheme is amenable to constructing independent zero-knowledge
sets (i.e., ZKS’s that prevent adversaries from correlating their set to the
sets of honest provers, as defined by Gennaro and Micali). Our solution
retains the short proof property for this important primitive as well.

Keywords. Zero-knowledge databases, mercurial commitments, effi-
ciency, independence.

1 Introduction
Introduced by Micali, Rabin and Kilian [21], zero-knowledge sets (ZKS) are fun-
damental secure data structures which allow a prover P to commit to a finite set

* This author acknowledges the Belgian National Fund for Scientific Research (F.R.S.-
F.N.R.S.) for their support and the BCRYPT Interuniversity Attraction Pole.

S in such a way that, later on, he will be able to efficiently (and non-interactively)
prove statements of the form z € S or x ¢ S without revealing anything else
on S, not even its size. Of course, the prover should not be able to cheat and
prove different statements about an element x. The more general notion of zero-
knowledge elementary databases (ZK-EDB) generalizes zero-knowledge sets in
that each element x has an associated value D(x) in the committed database.

In [21], Micali et al. described a beautiful construction of ZK-EDB based on
the discrete logarithm assumption. The MRK scheme relies on the shared ran-
dom string model (where a random string chosen by some trusted entity is made
available to all parties) and suitably uses an extension of Pedersen’s trapdoor
commitment [23]. In 2005, Chase et al. [10] gave general constructions of zero-
knowledge databases and formalized a primitive named mercurial commitment
which they proved to give rise to ZK-EDB protocols. The MRK construction
turned out to be a particular instance of a general design combining mercurial
commitments with a Merkle tree [20], where each internal node contains a mer-
curial commitment to its two children.

Informally speaking, mercurial commitments are commitments where the
binding property is slightly relaxed in that the committer is allowed to softly
open a commitment and say “if the commitment can be opened at all, then it
opens to that message”. Upon committing, the sender has to decide whether the
commitment will be a hard commitment, that can be hard/soft-opened to only
one message, or a soft one that can be soft-opened to any arbitrary message
without committing the sender to a specific one. Unlike soft commitments that
cannot be hard-opened, hard commitments can be opened either in the soft or
the hard manner but soft openings can never contradict hard ones. In addition,
hard and soft commitments should be computationally indistinguishable.

RELATED WORK. Promptly after the work of Micali, Rabin and Kilian, Ostro-
vsky, Rackoff and Smith [22] described protocols for generalized queries (beyond
membership/non-membership) for committed databases and also show how to
add privacy to their schemes. Liskov [18] also extended the construction of Chase
et al. [10] to obtain updatable zero-knowledge databases in the random oracle
model. Subsequently, Catalano, Dodis and Visconti [8] gave simplified security
definitions for (trapdoor) mercurial commitments and notably showed how to
construct them out of one-way functions in the shared random string model.

In order to extend the properties of non-malleable commitments to zero-
knowledge databases, Gennaro and Micali [15] formalized the notion of inde-
pendent ZK-EDBs. Informally, this notion prevents adversaries from correlating
their committed databases to those produced by honest provers.

More recently, Prabhakaran and Xue [24] defined the related notion of sta-
tistically hiding sets that requires the hiding property of zero-knowledge sets
to be preserved against unbounded verifiers. At the same time, their notion of
zero-knowledge was relaxed to permit unbounded simulators.

At Eurocrypt 2008, Catalano, Fiore and Messina [9] addressed the problem
of compressing proofs in ZK-EDB schemes and gave significant improvements.

OUR CONTRIBUTION. The original construction of zero-knowledge database [21,
10] considers a binary Merkle tree of height O(\), where A is the security pa-
rameter (in such a way that the upper bound on the database size is exponential
in A and leaks no information on its actual size). Each internal node contains
a mercurial commitment to (a hash value of) its two children whereas each leaf
node is a mercurial commitment to a database entry. The crucial idea is that
internal childless nodes contain soft commitments, which keeps the commitment
generation phase efficient (i.e., polynomial in). A proof of membership for the
entry x consists of a sequence of hard openings for commitments appearing in
nodes on the path from leaf x to the root. Proofs of non-membership proceed
similarly but rather use soft openings along the path.

As noted in [9], the above approach often results in long proofs, which may
be problematic in applications, like mobile Internet connections, where users
are charged depending on the number of blocks that they send/receive. To ad-
dress this issue, Catalano, Fiore and Messina (CFM) suggested to increase the
branching factor g of the tree and to use a primitive called trapdoor g-mercurial
commitment (TMC). The latter is like an ordinary mercurial commitment with
the difference that it allows committing to a vector of ¢ messages at once. With
regular mercurial commitments, increasing the arity of the tree is not appropri-
ate as generating proofs entails to reveal ¢ values (instead of 2) at each level
of the tree. However, it becomes interesting with qTMC schemes that can be
opened with respect to specific vector positions without having to disclose each
one of the ¢ committed messages. The CFM construction makes use of an ele-
gant ¢TMC scheme where soft commitment openings consist of a single group
element, which yields dramatically shorter proofs of non-membership. On the
other hand, hard openings unfortunately comprise O(q) elements in the gTMC
scheme described in [9]. For this reason, proofs of membership remain signifi-
cantly longer than proofs of non-membership.

In this paper, we solve a problem left open in [9] and consider a primitive
called concise mercurial vector commitment, which is a ¢TMC scheme allow-
ing to commit to a g-vector in such a way that (1) hard and soft position-wise
openings both have constant (i.e., independent of ¢) size; (2) the committer can
hard-open the commitment at position ¢ € {1, ..., ¢} without revealing anything
on messages at other positions in the vector. We describe a simple and natural
example of such scheme. Like the CFM g-mercurial commitment, our realization
relies on a specific number theoretic assumption in bilinear groups. Implementing
the CFM flat-tree system with our scheme immediately yields very short proofs
of membership and while retaining short proofs of non-membership. Assuming
that 2* is a theoretical bound on the database size, we obtain proofs compris-
ing O(\/log(q)) group elements for membership and non-membership. In the
CFM system, proofs of membership grow as O(A-¢/log(q)), which prevents one
from compressing proofs of non-membership without incurring a blow-up in the
length of proofs of membership. Using our commitment scheme, both kinds of
proof can be shortened by increasing ¢ as long as the common reference string
(which has size O(q) as in [9]) is not too large. With ¢ = 128 for instance, proofs

do not exceed 2 kB in instantiations using suitable parameters.

In addition, we also show that our qTMC scheme easily lends itself to the
construction of independent zero-knowledge databases. To construct such proto-
cols satisfying a strong definition of independence, Gennaro and Micali [15] used
multi-trapdoor mercurial commitments that can be seen as families of mercurial
commitments (in the same way as multi-trapdoor commitments [14] are fam-
ilies of trapdoor commitments). Modulo appropriate slight modifications, our
scheme can be turned into a concise multi-trapdoor qTMC scheme. It thus gives
rise to the first ZK-EDB realization that simultaneously provides independence
and short proofs.

ORGANIZATION. Section 2 recalls the definitions of TMC schemes and zero-
knowledge databases. We describe the new g-mercurial commitment scheme and
discuss its efficiency impact in sections 3 and 4. Section 5 finally explains how
the resulting ZK-EDB scheme can be made independent.

2 Background

2.1 Complexity Assumptions

We use groups (G,Gr) of prime order p with an efficiently computable map
e : G x G — Gr such that e(g?, h®) = e(g, h)® for any (g,h) € G x G, a,b € Z
and e(g,h) # lg, whenever g, h # 1g. In this mathematical setting, we rely on
a computational assumption previously used in [5, 6].

Definition 1 ([5]). Let G be a group of prime order p and g € G. The g-
Diffie-Hellman Exponent (q-DHE) problem is, given a tuple of elements

(gagla' -+39q59q+25 - "792(1) such that gi = g(al)) fOT 1= 17" 54,9+ 27" a2q
1
and where o & Ly, to compute the missing group element gq1 = g("‘q+).

As noted in [6], this problem is not easier than the one used in [5], which is to
compute e(g, h)(o‘ﬁl) on input of the same values and the additional element
h € G. The generic hardness of ¢-DHE is thus implied by the generic security of

the family of assumptions described in [4].

2.2 Trapdoor g-Mercurial Commitments

A trapdoor g-mercurial commitment (qTMC) consists of a set of efficient algo-
rithms (qKeygen, qHCom, gHOpen, gHVer, gSCom, gSOpen, qSVer, gFake, gHEquiv,
qSEquiv) with the following specifications.

gKeygen(\, ¢q): takes as input a security parameter A and the number ¢ of mes-
sages that can be committed to in a single commitment. The output is a
pair of public/private keys (pk, tk).

qHCom,,;.(m1, ..., m,): takes as input an ordered tuple of messages. It outputs
a hard commitment C to (m1,...,mq) under the public key pk and some
auxiliary state information aux.

qHOpen,;.(m,4,aux): is a hard opening algorithm. Given a pair (C,aux) =
qHCom, ;. (m1,...,my), it outputs a hard de-commitment 7 of C' w.r.t. posi-
tion 4 if m = m;. If m # m,, it returns L.

qHVer,;.(m,i,C, m): is the hard verification algorithm. It outputs 1 if 7 gives
evidence that C' is a commitment to a sequence (mi,...,mq) such that
m; = m. Otherwise, it outputs 0.

qSCom,,;;(): is a probabilistic algorithm that generates a soft commitment and
some auxiliary information aux. Such a commitment is not associated with
a specific sequence of messages.

qSOpen,,; (m, i, flag, aux): generates a soft de-commitment (a.k.a. “tease”) 7
of C to the message m at position ¢. The variable flag € {H,S} indi-
cates whether the state information aux corresponds to a hard commitment
(C,aux) = gHCom,(my1,...,m,) or a soft one (C,aux) = qSCom,; (). If
flag = H and m # m;, the algorithm returns the error message L.

qSVer,, (m,i,C,7): returns 1 if 7 is a valid soft de-commitment of C' to m at
position i and 0 otherwise. If 7 is valid and C' is a hard commitment, its
hard opening must be to m at index i.

qFake,, 1,(): is a randomized algorithm that takes as input the trapdoor tk
and generates a g-fake commitment C' and some auxiliary information aux.
The commitment C' is not bound to any sequence of messages. The g-fake
commitment C' is similar to a soft de-commitment with the difference that
it can be hard-opened using the trapdoor tk.

qHEquiv,;, 4, (ma, . .., my, 3, aux): is a non-adaptive hard equivocation algorithm.
Namely, given (C,aux) = qFake,;, (), it generates a hard de-commitment
7 for C at the i*® position of the sequence (my,...,m,). The algorithm is
non-adaptive in that the sequence of messages has to be determined once-
and-for-all before the execution of qHEquiv.

aSEquiv, 41 (m,i,aux): is a soft equivocation algorithm. Given the auxiliary
information aux returned by (C,aux) = qFake, ,;(), it creates a soft de-
commitment 7 to m at position 1.

Standard trapdoor mercurial commitments can be seen as a special case of ¢TMC
schemes where ¢ = 1.

CORRECTNESS. The correctness requirements are similar to those of standard
mercurial commitments. For any sequence (myq, ... ,mq), these statements must
hold with overwhelming probability.

- Given a hard commitment (C,aux) = qHCom, ;. (m1,...,m,), for all indices
i €{1,...,q}, it must hold that qHVer,; (m;, i, C,qHOpen,; (m;,i,aux)) = 1
and qSVer,,; (m;, 1, C,qSOpen, ;. (m;, i, H, aux)) = 1.

- If (C,aux) = qSCom, (), then qSVer,, (m;, i, C,qSOpen,;(m;,i,S, aux)) = 1
fori=1,...,q.

- Given a fake commitment (C,aux) = qFake,; ;. (), for each i € {1,...,q},
we must have qHVer, (m;, i, C,qHEquiv,,, 4 (m1,...,mg,4,aux)) = 1 and
aSVer,,,(mi, i, C, qSEquiv,,y, 41 (mi, i, aux)) = 1.

SECURITY. The security properties of a trapdoor g-mercurial commitment are
stated as follows:

- ¢-Mercurial binding: given the public key pk, it should be computation-
ally infeasible to output a commitment C, an index ¢ € {1,..., ¢} and pairs
(m,7), (m/,7") that satisfy either of these two conditions which are respec-
tively termed “hard collision” and “soft collision”:

e gHVer,,(m,i,C,m) = 1, qHVer,, (m',i,C,7') = 1 and m # m/.
e qHVer,, (m,i,C,m) = 1, qSVer,, (m’,i,C, ') = 1 and m # m'.

- g-Mercurial hiding: on input of pk, no PPT adversary can find a tuple
(mi,...,mq) and an index ¢ € {1,...,q} for which it is able to distin-
guish (C,qSOpen,,; (m;, i, H, aux)) from (C’,qSOpen, ;. (m;,i,S,aux’)), where
(C,aux) = qHCom, ;. (m1, ..., my), (C',aux’) = qSCom,,; ().

- Equivocations: given the public key pk and the trapdoor tk, no PPT ad-
versary A should be able to win the following games with non-negligible
probability. In these games, A aims to distinguish the “real” world from the
corresponding “ideal” one. The kind of world that A is faced with depends on
a random b <~ {0, 1} flipped by the challenger. If b = 0, the challenger plays
the “real” game and provides A with a real commitment/de-commitment
tuple. If b = 1, the adversary A rather receives a fake commitment and
equivocations. More precisely, A is required to guess the bit b € {0, 1} with
no better advantage than 1/2 in the following games:

¢ ¢-HHEquivocation: when A chooses a message sequence (my, ..., my),

the challenger computes (C,aux) = qHCom, ;. (m1,...,my) if b = 0 and
(C,aux) = qFake,;, ;;.() if b = 1. In either case, A receives C. When A

chooses i € {1,...,q}, the challenger returns 7 = qHOpen,,;.(m;, %, aux)
if b= 0 and m = qHEquiv,, 4, (m1, ..., my,%,aux) if b= 1.
e ¢-HSEquivocation: when A chooses a message sequence (myq, ..., mg),

the challenger computes (C,aux) = qHCom,; (m1,...,mg) if b = 0 and
(C,aux) = qFake,, ;.() if b = 1. In either case, C' is given to A who
then chooses i € {1,...,q}. If b = 0, the challenger replies with 7 =
qSOpen,;. (m;, 4, H, aux). If b = 1, A receives 7 = qSEquiv,, ;1 (1,4, aux).

e ¢-SSEquivocation: if b = 0, the challenger creates a soft commitment
(C,aux) = qSCom,,; () and hands C' to A. If b = 1, A rather obtains a
fake commitment C, which is obtained as (C,aux) = qFake,, ;. (). Then,
A chooses m € M and i € {1,...,q} and gets 7 = qSOpen,,;.(m, i, S, aux)
if b = 0 and 7 = qSEquiv,, 1 (m, i,aux) if b = 1.

As pointed out in [8] in the case of ordinary trapdoor mercurial commitments,
any qTMC scheme satisfying the ¢-HSEquivocation and ¢g-SSEquivocation prop-
erties also satisfies the g-mercurial hiding requirement.

In the following, we say that a TMC scheme is a concise mercurial vector
commitment if the output sizes of qHOpen and qSOpen do not depend on ¢
and if, when invoked on the index i € {1,...,q}, qHOpen does not reveal any
information on messages m; with j # 1.

2.3 Zero-Knowledge Sets and Databases

An elementary database D (EDB) is a set of pairs (x,y) C {0,1}* x {0,1}",
where x is called key and y is termed wvalue. The support [D] of D is the set
of x € {0,1}* for which there exists y € {0,1}* such that (z,y) € D. When
x ¢ [D], one usually writes D(z) = L. When x € [D], the associated value
y = D(x) must be unique: if (x,y) € D and (x,y’) € D, then y = y'. A zero-
knowledge EDB allows a prover to commit to such a database D while being
able to non-interactively prove statements of the form “z € [D] and y = D(z) is
the associated value” or “z ¢ [D]” without revealing any further information on
D (not even the cardinality of [D]). Zero-knowledge sets are specific ZK-EDBs
where each key is assigned the value 1.

The prover and the verifier both take as input a string ¢ that can be a random
string (in which case, the protocol stands in the common random string model) or
have a specific structure (in which case we are in the trusted parameters model).
An EDB scheme is formally defined by a tuple (CRS-Gen, P1, P2, V) such that:

- CRS-Gen generates a common reference string o on input of a security pa-
rameter \.

- P1 is the commitment algorithm that takes as input the database D and o.
It outputs commitment and de-commitment strings (Com, Dec).

- P2 is the proving algorithm that, given o, the commitment/de-commitment
pair (Com, Dec) and a key x € {0,1}*, outputs a proof 7.

- V is the verification algorithm that, on input of o, Com, z and m,, outputs
either y (which must be L if x ¢ [D]) if it is convinced that D(x) = y or bad
if it believes that the prover is cheating.

The security requirements are formally defined in appendix A. In a nutshell,
they are as follows. Correctness mandates that honestly generated proofs always
satisfy the verification test. Soundness requires that provers be unable to come
up with a key = and convincing proofs 7, 7, such that y = V(o, Com, z, 7,) #
V(o,Com,z,7,) = y'. Finally, zero-knowledge means that each proof 7, only
reveals the value D(z) and nothing else: for any computable database D, there
must exist a simulator that outputs a simulated reference string ¢’ and a sim-
ulated commitment Com’ that does not depend on D. For any key = € {0,1}*
and with oracle access to D, the simulator should be able to simulate proofs m,
that are indistinguishable from real proofs.

3 A Construction of Concise qTMC Scheme

Our idea is to build on the accumulator of Camenisch, Kohlweiss and Soriente
[6], which is itself inspired by the Boneh-Gentry-Waters broadcast encryption
system [5]. In the former, the public key comprises a sequence of group elements
(9,915 -,9g> 9g+25 - - -, §24), Where g is the maximal number of accumulated val-
ues and g; = g(@") for each 4. Elements of V C {1, ..., ¢} are accumulated by com-
puting V =[] jev Ya+1—; and the witness for the accumulation of ¢ € V consists

of W; = Hjev\{i} Gq+1—j+i, which always satisfies e(g;, V') = e(g, Ws) - e(g1, gq)-

To obtain a commitment scheme, we modify this construction in order to ac-
cumulate messages m; € Z,, in a position-sensitive manner and we also add some
randomness vy € Z, to have a hiding commitment. More precisely, we commit to
(ma,...,mq) by computing V = g7 - (31‘:1 ggflfj and obtain a kind of general-
ized Pedersen commitment [23]. Thanks to the specific choice of base elements
however, W; = g; - H?Zl)j# o1 j4q can serve as evidence that m; was the i*™
committed message as it satisfies the relation e(g;, V) = e(g,W;) - e(g1,94)™-
Moreover, the opening W, at position 7 does not reveal anything about other
components of the committed vector, which is a property that can be useful in
other applications. This commitment can be proved binding under the ¢-DHE
assumption, which would be broken if the adversary was able to produce two
distinct openings of V' at position 7. It is also a trapdoor commitment since any-
one holding gq4+1 = g(o‘ﬁl) can trapdoor open a commitment as he likes.

The scheme can be made mercurial by observing that its binding property
disappears if the verification equation becomes e(g;, V') = e(g1, W5) - e(g1, 9¢4)™
The key idea is then to use commitments of the form (C,V) where C = ¢%,
for some 6 € Z,, in hard commitments and C = g¢{ in soft commitments. The
verification equation thus becomes e(g;, V) = e(C, W;) - e(g1, g4)™.

DESCRIPTION. We assume that committed messages are elements of Zj. In
practice, arbitrary messages can be committed to by first applying a collision-
resistant hash function with range Z.
gKeygen()\, ¢): chooses bilinear groups (G,Gr) of prime order p > 2* and
R . R *
g < G. It picks a < Z; and computes gi,...,9q,gg+2;---,g2q, Where
gi = g fori = 1,...,¢q,¢+ 2,...,2¢q. The public key is defined tﬁ be
Pk =1{9,91,-+9g:9g+2; - - - , g24} and the trapdoor is tk = g,11 = g@*).
gHCom,, (m1,...,my): to hard-commit to a sequence (mi,...,mq) € (Zy)9,
this algorithm chooses ~,6 < Z, and computes the commitment as the pair

q
C=g V=g o ;=9 9o
j=1
The output is (C, V') and the auxiliary information is aux = (ma, ..., mgq, 7, 8).
qHOpenpk(mi, i,aux): parses aux as (mi,...,my,",0) and calculates
a , 1/6
Wi = (gz7 ’ H gﬁl-m) . (1)
j=1.#i

The hard opening of (C, V') consists of 7 = (6, W;) € Z, x G.
qHVer,; (m;,i,(C,V),): parses 7 as (6, W;) € Z, xG and returns 1if C,V € G
and it holds that

e(gi,V) = e(C, W) - e(g1,94)™ and C =g’ (2)

Otherwise, it returns 0.

qSCom,,;.(): chooses 6,7 <~ Z, and computes C' = gy, V = g]. The output is
(C,V) and the auxiliary information is aux = (6, 7).

qSOpen,,; (m, i, flag, aux): if flag = H, aux is parsed as (mi,...,mg,7,0). The
algorithm returns L if m # m;. Otherwise, it computes the soft opening as

W; = (g;Y . H?Zld#i g;ﬁl_ﬂi) VO flag = S, the algorithm parses aux as
)

(6,7) and soft-de-commits to m using W; = (g; - g, ™
the algorithm returns = = W; € G.
qSVer,,;.(m,i,(C,V),7): parses 7 as W; € G and returns 1 if and only if it holds
that C,V € G and the first verification equation of (2) is satisfied.
qFake, ;. (): the fake commitment algorithm chooses 6,y & 7, and returns
(C,V) = (g% g7). The auxiliary information is aux = (6, 7).
qHEquiv,,; ;. (m1, ..., my,i,aux): parses aux as (0,7) € (Zp)?. Using the trap-

door tk = gq+1 € G, it computes W; = (g? . gq_ﬁi)l/e
consists of m = (6, W;).
,m)1 /0

qSEquiv,,;, ;. (m, i,aux): parse aux as (0,7) and returns W; = (g; - g,

0 .
. In either case,

. The de-commitment

CORRECTNESS. In hard commitments, we can check that properly generated
hard de-commitments always satisfy the verification test (2) since

—— . — €

e(9i V) _ (@i a+Ti, m(attih) 0 @)+, L, mi(atT I /6
S(CIV) (9. g)/e(d’, g ’)

,Y(ai)+z‘?:1 m],(th+1—j+z'))/e(g7 gV(ai)"'Z?:l,j;ﬁi my (aTT1=itiy

)

=e(g,9
. +1 .
e(g,9)™ ") = e(g1, g)™.

As for soft commitments, soft de-commitments always satisfy the first relation
of (2) since

e(C,Wi) - e(g1,99)™ = e(g1. (g7 - 9, ™)) - (g1, 99)™
= e(glug? ' g;ml) : e(glugq)mi = e(g?/agi) = e(gi7 V)

We finally observe that, in any fake commitment (C,V) = (g%, ¢"), the hard
de-commitment (6, W;) successfully passes the verification test as

e(C, W) - e(g1,99)™ = e(g”, (g7 - 9, 01)"?) - e(g1, 9™
=e(9,9] -9,41") -elg1,99)™ = elgi,g7) = e(gi, V).

SECURITY. To prove the security of the scheme, we first notice that it is a
“proper” ¢TMC [8] since, in hard commitments, the soft de-commitment is a
proper subset of the hard de-commitment.

Theorem 1. The above scheme is a secure concise qTMC if the ¢-DHE as-
sumption holds in G.

Proof. We first show the ¢g-mercurial binding property. Let us assume that, given
the public key, an adversary A is able to generate soft collisions (since the scheme

is “proper”, the case of hard collisions immediately follows). That is, A comes
up with a commitment (C,V) € G?, an index i € {1,...,q}, a valid hard de-
commitment 7 = (6, W;) € Z, x G to m; at position 7 and a valid soft de-
commitment 7 = W/ € G to m/ such that m; # m}. We must have

’

e(giu V) = e(geu Wl) : e(ghgq)mi e(giu V) = e(geﬂ Wz/) . e(glugq)mia

so that e(ge, Wl/Wl’) =e(q, qq)m;’mi and e(g, (Wi/Wi’)e/(m;’mi)) = e(g1,9q)-
Since m; # ml, the latter relation implies that g, = (W;/W/)?/(mi=mi) jg
revealed by the soft collision, which contradicts the ¢-DHE assumption.

We now turn to the ¢-HHE, ¢-HSE and ¢-SSE equivocation properties (which
imply g-mercurial hiding). A fake commitment has the form (C,V) = (¢, g")
and its hard equivocation to (my,) is the pair (6, W; = (g; - gq_ﬁi)l/e). For any

sequence of messages (mu, ..., m,) € (Z5)9, there exists 7' € Z;, such that
q
! mai
V=g H 9gt1-j (3)
j=1

Then, the corresponding hard opening of (C, V) w.r.t. m; at position ¢ should
be obtained as W/ = (g; - H‘;:l’#i g;?jjlij“)l/g. Since V' also equals g7, if we
raise both members of (3) to the power o, we find that

q
’
Y 5 mj
g =9l 1o s
j=1

—m;

Therefore, the element W; = (g - g,)1/ returned by the hard equivocation

algorithm can also be written W; = (gg/ . H?ZL#Z— g;ﬁl_ﬁi)l/‘g. It comes that
fake commitments and hard equivocations have exactly the same distribution as
hard commitments and their hard openings.

The ¢-HSEquivocation property follows from the above arguments (since the
scheme is “proper”). To prove the indistinguishability in the g-SSEquivocation
game, we note that fake commitments (C,V) = (g%, ¢”) have the same distri-

bution as soft ones as they can be written (C,V) = (¢¢,4]) where § = 0/a
A

and 7 = v/a. Their soft equivocation W; = (g - g,/)1/¢ can be written

(gio‘ﬁ -g;ﬁi)l/(aé) = (gj -gq_mi)l/é and has the distribution of a soft opening. O

INSTANTIATION WITH ASYMMETRIC PAIRINGS. It is simple? to describe the con-
struction in terms of asymmetric pairings e : G x G — Gr, where G £ G and
an isomorphism 1 : G—Gis efficiently computable. The public key comprises
generators § € G and §; fori = 1,...,¢,q + 2,...,2q. Then, hard (resp. soft)
commitments (C, V) € GxG are pairs of group elements obtained as C' = §? and

3 The security then relies on the hardness of computing w(g)(“q“) on input of

(8,015 -+ Gas Gat2s - - -+ G2q) € G2, where §; = §(*") for each i.

10

V =9(g)" - TIj=, ¥(Gg+1-5)™ (resp. C = 3y and V = v(g1)7). Hard openings

are pairs (6, W;) € Z3 x G, where Wi = (3:)"/% - TT%_, ;i (g 11—j+4)™/% and
they are verified by checking that C' = ¢ and e(V, §;) = e(W;, C)-e(1(91), §q)™ -
-6

Using the trapdoor §4+1, fake commitments (C,V) = (%, ¢(§)") can be equiv-
ocated by outputting § and W; = 1(§;)?/? - 1(ggs1)"™/?.

4 Implications on the Efficiency of ZK-EDBs

The construction [9] of ZK-EDB from ¢TMC schemes goes as follows. Each key
x is assigned to a leaf of a g-ary tree of height h (and can be seen as the label
of the leaf, expressed in g-ary encoding), so that ¢" is the theoretical bound on
the size of the EDB.

The committing phase is made efficient by pruning subtrees where all leaves
correspond to keys that are not in the database. Only the roots (called “frontier
nodes” and at least one sibling of which is an ancestor of a leaf in the EDB) of
these subtrees are kept in the tree and contain soft g-commitments. For each key
x such that D(z) # L, the corresponding leaf contains a standard hard mercu-
rial commitment to a hash value of D(z). As for remaining nodes, each internal
one contains a hard g-commitment to messages obtained by hashing its children.
The g-commitment at the root then serves as a commitment to the entire EDB.

To convince a verifier that D(z) = v # L for some key z, the prover gen-
erates a proof of membership consisting of hard openings for commitments in
nodes on the path connecting leaf x to the root. At each level of the tree, the
g-commitment is hard-opened with respect to the position determined by the
g-ary encoding of x at that level.

To provide evidence that some key 2 does not belong to the database (in
other words, D(x) = 1), the prover first generates the missing portion of the
subtree where x lies. Then, it reveals soft openings for all (hard or soft) com-
mitments contained in nodes appearing in the path from z to the root.

As in the original zero-knowledge EDB construction [21], only storing com-
mitments in subtrees containing leaves x for which D(x) # L (and soft com-
mitments at nodes that have no descendants) is what allows committing with
complexity O(h - |D|) instead of O(g").

The advantage of using qTMC schemes and g-ary (with ¢ > 2) trees lies
in that proofs can be made much shorter if, at each level, commitments can
be opened w.r.t. the required position i € {1,...,q} without having to reveal
q values. The qTMC scheme of [9] features soft openings consisting of a single
group element and, for an appropriate branching factor ¢, allows reducing proofs
of non-membership by 73% in comparison with [21]. On the other hand, hard
openings still have length O(gq) and proofs of membership thus remain signifi-
cantly longer than proofs of non-membership. If h denotes the height of the tree,
the former consist of h(q + 4) + 5 elements of G (in an implementation with
asymmetric pairings) while the latter only demand 4h + 4 such elements.

If we plug our qTMC scheme into the above construction, proofs of mem-
bership become essentially as short as proofs of non-membership. At each in-

11

ternal node, each hard opening only requires to reveal (C,V) € G x G and

(0,W;) € Z,, x G. At the same time, proofs of non-membership remain as short

as in [9] since, at each internal node, the prover only discloses (C, V) and W;.
To concretely assess proof sizes, we assume (as in [9]) that elements of G

g | h | Membership | Non-Membership |Membership in [9]
8 | 43 220 176 521

16 | 32 165 132 643

32 | 26 135 108 941

64 | 22 115 92 1501

128 19 100 80 2513

Fig. 1. Required number of group elements per proof

count as two elements of G (since their representation is usually twice as large
using suitable parameters and optimizations such as those of [2]), each one of
which costs |p| bits to represent. Then, we find that proofs of membership and
non-membership eventually amount to 5h + 5 and 4h 4 4 elements of G, respec-
tively. These short hard openings allow us to increase the branching factor of the
tree as long as the length of the common reference string is deemed acceptable.

The table of figure 1 summarizes the proof lengths (expressed in numbers of G
elements and in comparison with [9]) for various branching factors and assuming
that ¢" ~ 2!2® theoretically bounds the EDB’s size. In the MRK construction,
membership (resp. non-membership) can be proved using 773 (resp. 644) group
elements. The best tradeoff achieved in [9] was for ¢ = 8, where proofs of non-
membership could be reduced to 176 elements but proofs of membership still
took 521 elements. With ¢ = 8, we have equally short proofs of non-membership
and only need 220 elements to prove membership, which improves CFM [9] by
about 57% and MRK [21] by 71%.

Moreover, we can shorten both kinds of proof by increasing ¢: with ¢ = 128
for instance, no more than 100 group elements (or 13% of the original length
achieved in [21]) are needed to prove membership whereas 2513 elements are
necessary in [9]. Instantiating our scheme with curves of [2] yields proofs of less
than 2 kB when ¢ = 128. For such relatively small values of g, Cheon’s attack
[12] does not require to increase the security parameter A and it is reasonable to
use groups (G, (@) where elements of G have a 161-bit representation.

5 Achieving Strong Independence

In [15], Gennaro and Micali formalized the notion of independent zero-knowledge
EDBs which requires that adversaries be unable to correlate their database to
those created by honest provers.

The strongest flavor of independence considers two-stage adversaries A =

12

(A1, Ag). First, A; observes ¢ honest provers’ commitments (Comy,...,Comy)
and queries proofs for keys of her choice in underlying databases Dy, ..., Dy be-
fore outputting her own commitment Com. Then, two copies of A5 are executed:
in the first one, A, is given oracle access to provers that “open” Com; w.r.t D;
whereas, in the second run, As; has access to provers for different* databases
D} that agree with D; for the set @; of queries made by .A;. Eventually, both
executions of As end with As outputting a key x, which is identical in both runs,
and a proof 7. The resulting database value D(z) is required to be the same in
the two copies, meaning that it was fixed at the end of the committing stage.

In the strongest definition of [15], A; is allowed to copy one of the honest
provers’ commitment (say Com;) as long as the key x returned by Ay is never
queried to Simq(St;, Com;) by A; or As: in other words, As’s answer must be
fixed on all values = that were not queried to the i*" prover.

Definition 2. [15] A ZK-EDB protocol is strongly independent if, for any poly-
nomial ¢, any PPT adversary A = (A1, A2) and any databases Di,..., Dy,
1, ..., Dy, the following probability is negligible.

Pr [(a, Sto) < Simg(A); (Com,, St;) <« Simy(Sto) Vi=1,...,¢;

imPi()))
(Com,w) «— A?ImQ (Stl,Coml)(

o,Comyq,...,Comy);

Simfi(‘)(sti,COmi) , SimféAQiDi(')
(x,mg) — A, (o,w); (z,m,) — A5 W)

(bad # V(o,Com, x,7,) # V(o,Com, x,7,) # bad) A ((Vz : Com # Com;)
V (3i: (Com = Com;) A (z € Q; U Q;)))},

where Q; (resp. Q) stands for the list of queries made by Ay (resp. Agz) to

Simfi(')(Sti,Comi) (resp. SimQDi(')(S’ti,Comi) and SimfﬁQiDi(')(Sti,Comi))
and D} Hg, D; denotes a database that agrees with D} on all keys but those in
Q; where it agrees with D;.

(St;,Com;) (0_

An efficient construction of independent ZK-EDB was proved in [15] to satisfy the
above definition under the strong RSA assumption. It was obtained by extending
Gennaro’s multi-trapdoor commitment scheme [14] and making it mercurial.
We show how to turn our qTMC scheme into a multi-trapdoor g-mercurial
commitment scheme that yields strongly independent EDBs with short proofs.

MULTI-TRAPDOOR Q-MERCURIAL COMMITMENTS. A multi-trapdoor qTMC
can be seen as extending qTMC schemes in the same way as multi-trapdoor
commitments generalize ordinary trapdoor commitments. It can be defined as a
family of trapdoor g-mercurial commitments, each member of which is identified
by a string tag and has its own trapdoor tk;.4. The latter is generated from tag
using a master trapdoor T'K that matches the master public key PK.

4 For this reason, commitments (Coma, ..., Comy) are produced using the ZK-EDB
simulator, whose definition is recalled in appendix A, as the two executions of A
proceed as if underlying databases were different.

13

gKeygen(\, ¢): has the same specification as in section 2.2 but, in addition to
the master key pair (PK,TK), it outputs the description of a tag space 7.

qHCompy (ma, ..., mg,tag): given an ordered tuple (m1,...,mq) and tag € 7T,
this algorithm outputs a hard commitment C under (PK,tag) and some
auxiliary state information aux.

qHOpen p (m, i, tag, aux): given a pair (C,aux) = qHCompy (ma, ..., mq, tag),
this algorithm outputs a hard de-commitment 7© of C' w.r.t. position 7 if
m = my. If m # m;, it returns L.

qHVerp g (m, i, C,tag, m): outputs 1 if and only if 7 gives evidence that, under
the tag tag, C is bound to a sequence (mq, ..., mq) such that m; = m.

qSComp - (): generates a soft commitment and some auxiliary information aux.
Such a commitment is not associated with any specific messages or tag.

qSOpenp i (m, i, flag, tag, aux): generates a soft de-commitment 7 of C to m at
position ¢ and w.r.t. tag. The variable flag € {H,S} indicates whether 7
pertains to a hard commitment (C,aux) = qHCompg(mi,...,mq,tag) or
a soft commitment (C,aux) = qSCompy (). If flag = H and m # m;, the
algorithm returns L.

qSVerpy (m,i,C, 7, tag) returns 1 if, under tag € 7, 7 is deemed as a valid soft
de-commitment of C' to m at position ¢ and 0 otherwise.

qTrapGenPK’TK(tag): given a string tag € 7, this algorithm generates a tag-
specific trapdoor tk:q4 using the master trapdoor T'K.

qFakep Kﬂfkmg(): outputs a g-fake commitment C and some auxiliary state in-
formation aux.

qHEquivp 41, (ma,...,mgq,1,tag,aux): given (C,aux) = qFakepk 1k, (), this
algorithm generates a hard de-commitment 7 for C' and tag € 7 at the i*®
position of the sequence (mq,...,m,). The sequence of messages has to be
determined once-and-for-all before the execution of qHEquiv.

aSEquivpk 4., (m, i, tag, aux): using the trapdoor tkiqq and the state informa-
tion aux returned by (C,aux) = qFakep 4, (), this algorithm creates a soft
de-commitment 7 to m at position ¢ and w.r.t. tag € 7.

Again, we call such a scheme concise if it satisfies the same conditions as those
mentioned at the end of section 2.2.

The security properties are expressed by naturally requiring the g-mercurial
hiding and equivocation properties to hold for each tag € 7. In equivocation
games, the adversary should be unable to distinguish the two games even know-
ing the master trapdoor T'K. As for the g-mercurial binding property, it states
that no PPT adversary A should have non-negligible advantage in this game:

g-Mercurial binding game: A chooses strings tagi,...,tage € T. Then, the
challenger generates a master key pair (T K, PK) < qKeygen(}, ¢) and gives
PK to A who starts invoking a trapdoor oracle 7G: the latter receives
tag € {tagy,...,tage} and returns tki,y < qTrapGenpp i (tag). Eventually,
A chooses a family tag* € T\{tagu,...,tage} for which she aims to generate
a collision: she wins if she outputs C, an index i € {1,..., ¢} and pairs (m,),
(m/,7") (resp. (m,) and (m/, 7)) such that qHVerpg(m, i, C,tag*,7) = 1

14

and gHVerp - (m/, i, C tag*, ') = 1 (resp. gHVerp g (m, i, C,tag*, 7) = 1 and
qSVerpg (m/,i,C,tag*, 7) = 1) but m # m/’.

As in [14], the latter definition captures security in a non-adaptive sense in that
the adversary chooses tags, . . . , tags before seeing the public key PK . As noted in
[13,19] in the case of ordinary multi-trapdoor commitments, some applications
might require to consider a notion of adaptive security where, much in the fashion
of identity-based trapdoor commitments [1,7], the adversary can query 7G in
an adaptive fashion. In the present context, non-adaptive security suffices.

A CONSTRUCTION OF MULTI-TRAPDOOR QTMC. The construction combines
the qTMC scheme of section 3 with a programmable hash function Hg : 7 — G
and techniques that were introduced in [3]. Programmable hash functions, as
formalized by Hofheinz and Kiltz [17], are designed in such a way that a trapdoor
information makes it possible to relate the output Hg (M), which lies in a group
G, to computable values a, by € Z, satisfying Hg (M) = g - h®¥ _ Informally
(see [17] for a formal definition), a (m,n)-programmable hash function is such
that, for any My, ..., My, My,..., M, such that M; # M, there is a non-
negligible probability that by, = 0 and bM]/, #0fori=1,...,mandj=1,...,n.
The number theoretic hash function used in [11, 25] is an example of such a (1, £)-
programmable hash function, for some polynomial £.

gKeygen()\, ¢): is as in section 3 but the algorithm also chooses a tag space
T ={0,1}F and a (1, ¢)-programmable hash function Hg : 7 — G for some
polynomials ¢, L. The public key is PK = {7, g,91,.--,9q¢, 9q+2, - - - s 92¢. Hg }

q+l)

and the master trapdoor is TK = gg4+1 = gle
qHComyp (M, ..., my, tag): to hard-commit to a sequence (my, ..., m,) € (Z3)?,
this algorithm chooses v, 0 <~ Z,, and computes (C, V) = (¢°, g"Y-H‘;-:1 ggflfj).
The output is (C, V') and the auxiliary information is aux = (mq, ..., mgq, 7, 6)
qHOpeny . (m;,4,tag, aux): parses aux as (mi,...,my,7,0), chooses r <~ Zy
and computes

Wi 2:) = ((o7 T o Heltagr) g7, (4)

J=1,j#1i
The hard opening of (C, V) with respect to tag € 7 consists of the triple
™= (G,WZ,Zl) S Zp x G2,
qHVerp . (mi, i, (C, V), tag, 7): parses m as (6, W;, Z;) € Z;, x G* and returns 1
if C,V € G and relations (5) are both satisfied. Otherwise, it returns 0.
e(gi, V) = e(C, Wi) - e(g1,9¢)™ - e(Hg(tag), Z;) C=4g" (5

qSComp (): chooses 6,y <~ Z, and computes C = ¢g¢, V = g]. The output is
(C,V) and the auxiliary information is aux = (6,~).

qSOpenp ;. (m, i, flag, tag, aux): if flag = H, aux is parsed as (mq,...,mq,7,6).
The algorithm returns L if m # m;. Otherwise, the soft opening 7 = (W;, Z;)

15

is generated as per (4). If flag = S, the algorithm parses aux as (6,v) and
soft-decommits to m using

(W3, Z;) = ((g? cgg™ H@(tag)r)l/97gfr)a (6)

where 7 <~ 7. In either case, the algorithm returns 7 = (W, Z;) € G*.
qSVer . (m, i, (C,V), 7, tag): parses T as (W;, Z;) € G and returns 1 if and only
if C,V € G and the first verification equation of (5) is satisfied.
qTrapGenp . i (tag): given TK = g,11, a trapdoor for tag € 7 is computed
thtag = (ttag1s ttag2) = (9g+1 - He(tag)®,g—*) for a random s <~ Zy,.
qFakep . (): outputs a pair (C,V) = (9°,97), where 0, < Z%, and retains
the state information aux = (0,7).
qHEquivpy iy, (M1, ..., Mg, i, tag,aux): parses aux as (0,7) € (Z3)? and the
trapdoor tkiag as (tiag,1,tag,2) € G2. It randomly picks r & Z;; and com-

s /0 i

putes (Wi, Z:) = (o]t - Ho(tag)") " i -

is 7w = (0, Wi, Z5) = (0, (670,05 - Ha(tag)”) /" ,g™"), where r' = —smy+7.

qSEquivPK’tkmg (m,i,tag,aux): parse aux as (#,7) and computes (W;, Z;) as in
qHEqUIVPK,tktag'

’”) . The de-commitment

Theorem 2. The scheme is a concise multi-trapdoor qTMC if the q-DHE as-
sumption holds.

Proof. Given in the full version of the paper. a

STRONGLY INDEPENDENT ZK-EDBS FROM MULTI-TRAPDOOR QTMC. Fol-
lowing [15], a multi-trapdoor ¢TMC can be combined with a digital signature
and a collision-resistant hash function H : {0,1}* — 7 to give a strongly in-
dependent ZK-EDB. To commit to a database D, the prover first generates a
key pair (SK, VK) for an existentially unforgeable (in the sense of [16]) signature
scheme X' = (G, S, V) [16]. The commitment string is (Com, VK), where all com-
mitments are produced using the ¢TMC family (with ¢ = 1 at the leaves and
g > 1 at internal nodes) indexed by the tag H(VK). To generate a proof for some
key x, the prover generates a proof 7, (by opening the appropriate commitments
using Dec) and outputs 7, and sig, = S(SK, (Com, z)). Verification entails to
check 7, and that V(sig,, VK, (Com, z)) = 1. The security proof of this scheme
(detailed in the full version of the paper) is similar to that of theorem 3 in [15].

References

1. G. Ateniese, B. de Medeiros. Identity-Based Chameleon Hash and Applications.
In Financial Cryptography’04, LNCS 3110, pp. 164-180, 2004.

2. P. Barreto, M. Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. In
SAC’05, LNCS 3897, pp. 319-331, 2005.

3. D. Boneh, X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption With-
out Random Oracles. In Eurocrypt’04, LNCS 3027, pp. 223-238, 2004.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D. Boneh, X. Boyen, E.-J. Goh. Hierarchical Identity-Based encryption with Con-
stant Size Ciphertext. In Eurocrypt’05, LNCS 3494, pp. 440-456, 2005.

D. Boneh, C. Gentry, B. Waters. Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In Crypto’05, LNCS 3621, pp. 258-275, 2005.
J. Camenisch, M. Kohlweiss, C. Soriente. An Accumulator Based on Bilinear Maps
and Efficient Revocation for Anonymous Credentials. In PKC’09, LNCS 5443, pp.
481-500, 2009.

R. Canetti, Y. Dodis, R. Pass, S. Walfish. Universally Composable Security with
Global Setup. In TCC’07, LNCS 4392, pp. 61-85, 2007.

D. Catalano, Y. Dodis, I. Visconti. Mercurial Commitments: Minimal Assumptions
and Efficient Constructions. In TCC’06, LNCS 3876, pp. 120144, 2006.

D. Catalano, D. Fiore, M. Messina. Zero-Knowledge Sets with Short Proofs. In
FEurocrypt’08, LNCS 4965, pp. 433-450, 2008.

M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, L. Reyzin. Mercurial Commit-
ments with Applications to Zero-Knowledge Sets. In Furocrypt’05, LNCS 3494,
pp- 422-439, 2005.

D. Chaum, J.-H. Evertse, J. van de Graaf. An Improved Protocol for Demonstrat-
ing Possession of Discrete Logarithms and Some Generalizations. In Eurocrypt’87,
LNCS 304, pp. 127-141, 1987.

J. H. Cheon. Security Analysis of the Strong Diffie-Hellman Problem. In Euro-
crypt’06, LNCS 4004, pp. 1-11, 2006.

M. Di Raimondo, R. Gennaro. New Approaches for Deniable Authentication. In
ACM-CCS’05, pp. 112-121, 2005.

R. Gennaro. Multi-trapdoor Commitments and Their Applications to Proofs of
Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. In Crypto’04,
LNCS 3152, pp. 220-236, 2004.

R. Gennaro, S. Micali. Independent Zero-Knowledge Sets. In ICALP’06, LNCS
4052, pp. 34-45, 2006.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen message attacks. STAM J. of Computing, 17(2):281-308, 1988.
D. Hofheinz, E. Kiltz. Programmable Hash Functions and Their Applications. In
Crypto’08, LNCS 5157, pages 21-38. Springer, 2008.

M. Liskov. Updatable Zero-Knowledge Databases. In Asiacrypt’05, LNCS 3788,
pp. 174-198, 2005.

P. MacKenzie, K. Yang. On Simulation-Sound Trapdoor Commitments. In Euro-
crypt’04, LNCS 3027, pp. 382-400, 2004.

R. Merkle. A Digital Signature Based on a Conventional Encryption Function. In
Crypto’88, LNCS 403, pp. 369-378, 1988.

S. Micali, M.-O. Rabin, J. Kilian. Zero-Knowledge Sets. In FOCS’03, pp. 80-91,
2003.

R. Ostrovsky, C. Rackoff, A. Smith. Efficient Consistency Proofs for Generalized
Queries on a Committed Database. In ICALP’04, LNCS 3142, pp. 1041-1053,
2004.

T. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In Crypto’91, LNCS 576, pp. 129-140, 1991.

M. Prabhakaran, R. Xue. Statistically Hiding Sets. In CT-RSA’09, LNCS 5473,
pp. 100-116, 2009.

B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
Eurocrypt’05, LNCS 3494, pp. 114-127, 2005.

17

A Security Properties of Zero-Knowledge Databases

The completeness, soundness and zero-knowledge properties of ZK-EDBs are
formally stated as follows.

Completeness: For all databases D and for all keys x, it must hold that

Pr[o « CRS-Gen()); (Com, Dec) — P1(a, D);
7y — P2(o, D,Com, Dec,x) : V(o,Com,x,m,) = D(zx)] =1-v.

for some negligible function v.
Soundness: For all keys z and for any probabilistic poly-time algorithm P’, the
following probability is negligible:

Pr[o « CRS-Gen()\); (Com, x, 7, m,) «— P'(0,D);

x

V(o,Com,z,7,) =y # bad AV (o,Com,z, 7)) =y' # bad A (y # ') }

Zero-knowledge: for any PPT adversary A and any efficiently computable
database D, there must exist an efficient simulator (Simg, Simy, Sim%’) such
that the outputs of the following experiments are indistinguishable:

Real experiment:
1. Set o « CRS-Gen(A), (Com, Dec) « P1(o, D) and sg =&, mg = €.
2. For i =1,...,n, A outputs (x;,s;) «— A(o,Com,mo,...,Ti-1,8i-1)
and obtains a real proof m; = P2(o, D, Com, Dec, x;).
The output is (o, 21,71, ..., Tn, Tn)-

Ideal experiment:
1. Set (o', Stg) « Simg(A), (Com’, St1) <« Sim1(Sty) as well as so = ¢,
) = €.
2. Fori=1,...,n, Aoutputs (x;,s;) «— A(c’,Com/, 7}, ..., T_1,8i-1)
and gets a simulated proof 7, — Sim% (¢/, St1, z;).
The output of the experiment is (¢, z1, 7], ..., Tn, 7).

In the above, Simg is an oracle that is permitted to invoke a database oracle
D(.) and obtain values D(z) for the keys x chosen by A.

18

