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Abstract. We propose a new methodology for rational secret sharing
leading to various instantiations (in both the two-party and multi-party
settings) that are simple and efficient in terms of computation, share size,
and round complexity. Our protocols do not require physical assumptions
or simultaneous channels, and can even be run over asynchronous, point-
to-point networks.

We also propose new equilibrium notions (namely, computational ver-
sions of strict Nash equilibrium and stability with respect to trembles) and
prove that our protocols satisfy them. These notions guarantee, roughly
speaking, that at each point in the protocol there is a unique legal mes-
sage a party can send. This, in turn, ensures that protocol messages
cannot be used as subliminal channels, something achieved in prior work
only by making strong assumptions on the communication network.

1 Introduction

The classical problem of t-out-of-n secret sharing [28, 5] involves a dealer D who
distributes shares of a secret s to players P1, . . . , Pn so that (1) any t or more
players can reconstruct the secret without further involvement of the dealer, yet
(2) any group of fewer than t players gets no information about s. For example,
in Shamir’s scheme [28] the secret s lies in a finite field F, with |F| > n. The
dealer chooses a random polynomial f(x) of degree at most t− 1 with f(0) = s,
and gives each player Pi the “share” f(i). To reconstruct, t players broadcast
their shares and interpolate the polynomial. Any set of fewer than t players has
no information about s given their shares.

The implicit assumption in the original formulation of the problem is that
each party is either honest or corrupt, and honest parties are all willing to
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cooperate when reconstruction of the secret is desired. Beginning with the work
of Halpern and Teague [13], protocols for secret sharing and other cryptographic
tasks have begun to be re-evaluated in a game-theoretic light (see [7, 16] for an
overview of work in this direction). In this setting, parties are neither honest
nor corrupt but are instead viewed as rational and are assumed (only) to act in
their own self-interest.

Under natural assumptions regarding the utilities of the parties, standard
secret-sharing schemes completely fail. For example, assume as in [13] that all
players want to learn the secret above all else, but otherwise prefer that no other
players learn the secret. (Later, we will treat the utilities of the players more
precisely.) For t parties to reconstruct the secret in Shamir’s scheme, each party
is supposed to broadcast their share simultaneously. It is easy to see, however,
that each player does no worse (and potentially does better) by withholding
their share no matter what the other players do. Consider P1: If fewer than t−1
players reveal their shares, P1 does not learn the secret regardless of whether
P1 reveals his share or not. If more than t− 1 other players reveal their shares,
then everyone learns the secret and P1’s actions again have no effect. On the
other hand, if exactly t− 1 other players reveal their shares, then P1 learns the
secret (using his share) but prevents other players from learning the secret by
not revealing his own share. The result is that if all players are rational then no
one will broadcast their share and the secret will not be reconstructed.

Several works [13, 11, 24, 1, 18, 19, 27, 26, 4] have focused on designing rational
secret-sharing protocols immune to the above problem. Protocols for rational
secret sharing also follow from the more general results of Lepinski et al. [20, 21,
15, 14]. Each of these works has some or all of the following disadvantages:
On-line dealer or trusted/honest parties. Halpern and Teague [13] intro-
duced a general approach to solving the problem that has been followed in most
subsequent work. Their solution, however, requires the continual involvement of
the dealer, even after the initial shares have been distributed. (The Halpern-
Teague solution also applies only when t, n ≥ 3.) Ong et al. [27] assume that
sufficiently many parties behave honestly during the reconstruction phase.
Computational inefficiency. To eliminate the on-line dealer, several schemes
rely on multiple invocations of protocols for generic secure multi-party com-
putation [11, 24, 1, 18, 4]. It is unclear whether computationally efficient pro-
tocols with suitable functionality can be designed. The solutions of [20, 21, 15,
14], though following a different high-level approach, also rely on generic secure
multi-party computation.
Strong communication models. All prior schemes for n > 2 assume broad-
cast. The solutions in [13, 11, 24, 1] assume simultaneous broadcast which means
that parties must decide on what value (if any) to broadcast in a given round
before observing the values broadcast by other parties. The solutions of [20, 21,
15, 14] rely on physical assumptions such as secure envelopes and ballot boxes.

Kol and Naor [18] show how to avoid simultaneous broadcast, at the cost of
increasing the round complexity by a (multiplicative) factor linear in the size of
the domain from which the secret is chosen; this approach cannot (efficiently)



handle secrets of super-logarithmic length. Subsequent work by Kol and Naor [19]
(see also [4]) shows how to avoid the assumption of simultaneous broadcast at
the expense of increasing the round complexity by a (multiplicative) factor of t.
We provide a detailed comparison of our results to those of [19] in Section 1.3.

1.1 Our Results

We show protocols for both 2-out-of-2 and t-out-of-n secret sharing (resilient
to coalitions of size t− 1) that do not suffer from any of the drawbacks men-
tioned above. We do not assume an on-line dealer or any trusted/honest parties,
nor do we resort to generic secure multi-party computation. Our protocols are
(arguably) simpler than previous solutions; they are also extremely efficient in
terms of round complexity, share size, and required computation.

The primary advantage of our protocols, however, is that they do not require
broadcast or simultaneous communication but can instead rely on synchronous
(but non-simultaneous) point-to-point channels. Recall that all prior schemes
for n > 2 assume broadcast; furthermore, the obvious approach of simulating
broadcast by running a broadcast protocol over a point-to-point network will
not, in general, work in the rational setting. Going further, we show that our
protocol can be adapted for asynchronous point-to-point networks (with respect
to a natural extension of the model for rational secret sharing), thus answering
a question that had been open since the work of Halpern and Teague [13].

We also introduce two new equilibrium notions and prove that our protocols
satisfy them. (A discussion of game-theoretic equilibrium notions used in this
and prior work is given in Section 2.2.) The first notion we introduce is a com-
putational version of strict Nash equilibrium. A similar notion was put forth by
Kol and Naor [19], but they used an information-theoretic version of strict Nash
and showed some inherent limitations of doing so. As in all of cryptography,
we believe computational relaxations are meaningful and should be considered;
doing so allows us to circumvent the limitations that hold in the information-
theoretic case. We also formalize a notion of stability with respect to trembles,
motivated by [16]; a different formalization of this notion, with somewhat differ-
ent motivation, is given in [27].

Our definitions effectively rule out “signalling” via subliminal channels in the
protocol. In fact, our protocols ensure that, at every point, there is a unique legal
message each party can send. This prevents a party from outwardly appearing
to follow the protocol while subliminally communicating (or trying to organize
collusion) with other parties. Preventing subliminal communication is an explicit
goal of some prior work (e.g., [15, 21, 3, 2]), which achieved it only by relying on
physical assumptions [15, 21] or non-standard network models [3, 2].

1.2 Overview of Our Approach

We follow the same high-level approach as in [13, 11, 24, 1, 18, 19, 4]. Our recon-
struction protocol proceeds in a sequence of “fake” iterations followed by a single
“real” iteration. Roughly speaking:



– In the real iteration, everyone learns the secret (assuming everyone follows
the protocol).

– In a fake iteration, no information about the secret is revealed.
– No party can tell, in advance, whether the next iteration will be real or fake.

The iteration number i∗ of the real iteration is chosen according to a geometric
distribution with parameter β ∈ (0, 1) (where β depends on the players’ utilities).
To reconstruct the secret, parties run a sequence of iterations until the real
iteration is identified, at which point all parties output the secret. If some party
fails to follow the protocol, all parties abort. Intuitively, it is rational for Pi to
follow the protocol as long as the expected gain of deviating, which is positive
only if Pi aborts exactly in iteration i∗, is outweighed by the expected loss if Pi

aborts before iteration i∗.
In most prior work [11, 24, 1, 18], a secure multi-party computation is per-

formed in each iteration to determine whether the given iteration should be
real or fake. Instead we use the following approach, described in the 2-out-of-2
case (we omit some technical details in order to focus on the main idea): The
dealer D chooses i∗ from the appropriate distribution in advance, at the time
of sharing. The dealer then generates two key-pairs (vk1, sk1), (vk2, sk2) for a
verifiable random function (VRF) [25], where vk represents a verification key
and sk represents a secret key, and we denote by VRFsk(x) the evaluation of the
VRF on input x using secret key sk. (See Appendix A for definitions of VRFs.)
The dealer gives the verification keys to both parties, gives sk1 to P1, and gives
sk2 to P2. It also gives s1 = s⊕VRFsk2(i

∗) to P1, and s2 = s⊕VRFsk1(i
∗) to P2.

Each iteration consists of one message from each party: in iteration i, party P1

sends VRFsk1(i) while P2 sends VRFsk2(i). Observe that a fake iteration reveals
nothing about the secret, in a computational sense. Furthermore, neither party
can identify the real iteration in advance. (The description above relies on VRFs.
We show that, in fact, trapdoor permutations suffice.)

To complete the protocol, we need to provide a way for parties to identify
the real iteration. Previous work [11, 24, 1, 18] allows parties to identify the real
iteration as soon as it occurs. We could use this approach for our protocol as
well if we assumed simultaneous channels, since then each party must decide on
its current-iteration message before it learns whether the current iteration is real
or fake. When simultaneous channels are not available, however, this approach
is vulnerable to an obvious rushing strategy.

Motivated by recent work on fairness (in the malicious setting) [10, 12], we
suggest the following, new approach: delay the signal indicating whether a given
iteration is real or fake until the following iteration. As before, a party cannot
risk aborting until it is sure that the real iteration has occurred; the difference is
that now, once a party learns that the real iteration occurred, the real iteration
is over and all parties can reconstruct the secret. This eliminates the need for
simultaneous channels, while adding only a single round. This approach can be
adapted for t-out-of-n secret sharing and can be shown to work even when parties
communicate over asynchronous, point-to-point channels.

Our protocol assumes parties have no auxiliary information about the se-
cret s. (If simultaneous channels are assumed, then our protocol does tolerate



auxiliary information about s.) We believe there are settings where this assump-
tion is valid, and that understanding this case sheds light on the general question
of rational computation. Prior work in the non-simultaneous model [18, 19] also
fails in the presence of auxiliary information, and in fact this is inherent [4].

1.3 Comparison to the Kol-Naor Scheme

The only prior rational secret-sharing scheme that assumes no honest parties, is
computationally efficient, and does not require simultaneous broadcast or phys-
ical assumptions is that of Kol and Naor [19] (an extension of this protocol is
given in [4]). They also use the strict Nash solution concept and so their work
provides an especially good point of comparison. Our protocols have the follow-
ing advantages with respect to theirs:

Share size. In the Kol-Naor scheme, the shares of the parties have unbounded
length. While not a significant problem in its own right, this is problematic
when rational secret sharing is used as a sub-routine for rational computation of
general functions. (See [18].) Moreover, the expected length of the parties’ shares
in their 2-out-of-2 scheme is O(β−1 · (|s|+ k)) (where k is a security parameter),
whereas shares in our scheme have size |s|+ O(k).

Round complexity. The version of the Kol-Naor scheme that does not rely on
simultaneous broadcast [19, Section 6] has expected round complexity O(β−1 ·t),
whereas our protocol has expected round complexity O(β−1). (The value of β is
roughly the same in both cases.)

Resistance to coalitions. For the case of t-out-of-n secret sharing, the Kol-
Naor scheme is susceptible to coalitions of two or more players. We show t-out-
of-n secret-sharing protocols resilient to coalitions of up to (t − 1) parties; see
Section 4 for further details.

Avoiding broadcast. The Kol-Naor scheme for n > 2 assumes synchronous
broadcast, whereas our protocols work even if parties communicate over an asyn-
chronous, point-to-point network.

2 Model and Definitions

We denote the security parameter by k. A function ε : N→ R is negligible if for
all c > 0 there is a kc > 0 such that ε(k) < 1/kc for all k > kc; let negl denote
a generic negligible function. We say ε is noticeable if there exist c, kc such that
ε(k) > 1/kc for all k > kc.

We define our model and then describe the game-theoretic concepts used.
Even readers familiar with prior work in this area should skim the next few
sections, since we formalize certain aspects of the problem slightly differently
from prior work, and define new equilibrium notions.



2.1 Secret Sharing and Players’ Utilities

A t-out-of-n secret-sharing scheme for domain S (with |S| > 1) is a two-phase
protocol carried out by a dealer D and a set of n parties P1, . . . , Pn. In the first
phase (the sharing phase), the dealer chooses a secret s ∈ S. Based on this secret
and a security parameter 1k, the dealer generates shares s1, . . . , sn and gives si

to player Pi. In the second phase (the reconstruction phase), some set I of t∗ ≥ t
active parties jointly reconstruct s. We impose the following requirements:
Secrecy. The shares of any t−1 parties reveal nothing about s, in an information-
theoretic sense.
Correctness. For any set I of t∗ ≥ t parties who run the reconstruction phase
honestly, the correct secret s will be reconstructed, except possibly with proba-
bility negligible in k.

The above views parties as either malicious or honest. To model rationality,
we consider players’ utilities. Given a set I of t∗ ≥ t parties active during the
reconstruction phase, let the outcome o of the reconstruction phase be a vector
of length t∗ with oi = 1 iff the output of Pi is equal to the initial secret s (i.e.,
Pi “learned the secret”). We consider a party to have learned the secret s if and
only if it outputs s, and do not care whether that party “really knows” the secret
or not. In particular, a party who outputs a random value in S without running
the reconstruction phase at all “learns” the secret with probability 1/|S|. We
model the problem this way for two reasons:

1. Our formulation lets us model a player learning partial information about
the secret, something not reflected in prior work. In particular, partial infor-
mation that increases the probability with which a party outputs the correct
secret increases that party’s expected utility.

2. It is difficult, in general, to formally model what it means for a party to
“really” learn the secret, especially when considering arbitrary protocols
and behaviors. Our notion is also better suited for a computational setting,
where a party might “know” the secret from an information-theoretic point
of view yet be unable to output it.

Let µi(o) be the utility of player Pi for the outcome o. Following [13] and
most subsequent work (an exception is [4]), we make the following assumptions
about the utility functions of the players:

– If oi > o′i, then µi(o) > µi(o′).
– If oi = o′i and

∑
i oi <

∑
i o′i, then µi(o) > µi(o′).

That is, player Pi first prefers outcomes in which he learns the secret; otherwise,
Pi prefers strategies in which the fewest number of other players learn the secret.
For simplicity, in our analysis we distinguish three cases for the outcome o,
described from the point of view of Pi (we could also work with utilities satisfying
the more general constraints above, as long as utilities are known):

1. If Pi learns the secret and no other player does, then µi(o)
def= U+.



2. If Pi learns the secret and at least one other player does also, then µi(o)
def= U .

3. If Pi does not learn the secret, then µi(o)
def= U−.

Our conditions impose U+ > U > U−. Define

Urandom
def=

1
|S| · U

+ +
(

1− 1
|S|

)
· U− ; (1)

this is the expected utility of a party who outputs a random guess for the secret
(assuming other parties abort without any output, or with the wrong output).
We will also assume that U > Urandom; otherwise, players have (almost) no
incentive to run the reconstruction phase at all.

In contrast to [4], we make no distinction between outputting the wrong
secret and outputting a special “don’t know” symbol; both are considered a
failure to output the correct secret. By adapting techniques from their work,
however, we can incorporate this distinction as well (as long as the relevant
utilities are known). See Remark 2 in Section 3.

Strategies in our context refer to probabilistic polynomial-time interactive
Turing machines. Given a vector of strategies σ for t∗ parties active in the
reconstruction phase, let ui(σ) denote the expected utility of Pi. (The expected
utility is a function of the security parameter k.) This expectation is taken
over the initial choice of s (which we will always assume to be uniform), the
dealer’s randomness, and the randomness of the players’ strategies. Following the
standard game-theoretic notation, we define σ−i

def= (σ1, . . . , σi−1, σi+1, . . . , σt∗)
and (σ′i,σ−i)

def= (σ1, . . . , σi−1, σ
′
i, σi+1, . . . , σt∗); that is, (σ′i,σ−i) denotes the

strategy vector σ with Pi’s strategy changed to σ′i.

2.2 Notions of Game-Theoretic Equilibria: A Discussion

The starting point for any discussion of game-theoretic equilibria is the Nash
equilibrium. Roughly speaking, a protocol induces a Nash equilibrium if no party
gains any advantage by deviating from the protocol, as long as all other parties
follow the protocol. (In a computational Nash equilibrium, no efficient deviation
confers any advantage.) As observed by Halpern and Teague [13], however, the
Nash equilibrium concept is too weak for rational secret sharing. Halpern and
Teague suggest, instead, to design protocols that induce a Nash equilibrium
surviving iterated deletion of weakly dominated strategies; this notion was used
in subsequent work of [11, 24, 1].

The notion of surviving iterated deletion, though, is also problematic in sev-
eral respects. Kol and Naor [19] show a secret-sharing protocol that is “intuitively
bad” yet technically satisfies the definition because no strategy weakly dominates
any other. Also, a notion of surviving iterated deletion taking computational is-
sues into account has not yet been defined (and doing so appears difficult). See
[16, 17] for other arguments against this notion.

Motivated by these drawbacks (and more), researchers have proposed other
strengthenings of the Nash equilibrium concept [16, 18, 19]. Kol and Naor define



resistance to backward induction [18], everlasting equilibrium, and strict Nash
equilibrium [19]. The latter two notions are defined information-theoretically,
and are overly conservative in that they rule out some “natural” protocols using
cryptography. Nevertheless, the notion of strict Nash equilibrium is appealing. A
protocol is in Nash equilibrium if no deviations are advantageous; it is in strict
Nash equilibrium if all deviations are disadvantageous. Put differently, in the
case of a Nash equilibrium there is no incentive to deviate whereas for a strict
Nash equilibrium there is an incentive not to deviate.

Another advantage of strict Nash is that protocols satisfying this notion deter
subliminal communication: since any (detectable) deviation from the protocol
results in lower utility (when other parties follow the protocol), a party who tries
to use protocol messages as a covert channel risks losing utility if there is any
reasonable probability that other players are following the protocol.

We propose here a computational version of strict Nash equilibrium. Our
definition retains the intuitive appeal of strict Nash, while meaningfully tak-
ing computational limitations into account. Moreover, our protocols satisfy the
following, stronger condition: at every point in the protocol, there is a unique
legal message that each party can send. Our protocols thus rule out subliminal
communication in a strong sense, an explicit goal in prior work [20, 22, 21, 3].

We also define a computational notion of stability with respect to trembles.
Intuitively, stability with respect to trembles models players’ uncertainty about
other parties’ behavior, and guarantees that even if a party Pi believes that
other parties might play some arbitrary strategy with small probability δ (but
follow the protocol with probability 1− δ), there is still no better strategy for Pi

than to follow the protocol. Our formulation of this notion follows the general
suggestion of Katz [16], but we flesh out the (non-trivial) technical details. An-
other formulation (trembling-hand perfect equilibrium), with somewhat different
motivation, is discussed in [27].

As should be clear, determining the “right” game-theoretic notions for ratio-
nal secret sharing is the subject of ongoing research. We do not suggest that the
definitions proposed here are the only ones to consider, but we do believe they
contribute to our understanding of the problem.

2.3 Definitions of Game-Theoretic Equilibria

We focus on the two-party case; the multi-party case is treated in the full version
of this work [9]. Here, Π is a 2-out-of-2 secret-sharing scheme and σi is the
prescribed action of Pi in the reconstruction phase.

Definition 1. Π induces a computational Nash equilibrium if for any ppt strat-
egy σ′1 of P1 we have u1(σ′1, σ2) ≤ u1(σ1, σ2) + negl(k), and similarly for P2.

Our definitions of strict Nash and resistance to trembles require us to first
define what it means to “follow a protocol”. This is non-trivial since a different
Turing machine ρ1 might be “functionally identical” to the prescribed strategy
σ1 as far as the protocol is concerned: for example, ρ1 may be the same as σ1



except that it first performs some useless computation; the strategies may be
identical except that ρ1 uses pseudorandom coins instead of random coins; or,
the two strategies may differ in the message(s) they send after the protocol ends.
In any of these cases we would like to say that ρ1 is essentially “the same” as σ1.
This motivates the following definition, stated for the case of a deviating P1

(with an analogous definition for a deviating P2):

Definition 2. Define the random variable viewΠ
2 as follows:

P1 and P2 interact, following σ1 and σ2, respectively. Let trans denote
the messages sent by P1 but not including any messages sent by P1 af-
ter it writes to its (write-once) output tape. Then viewΠ

2 includes the
information given by the dealer to P2, the random coins of P2, and the
(partial) transcript trans.

Fix a strategy ρ1 and an algorithm T . Define the random variable viewT,ρ1
2

as follows:
P1 and P2 interact, following ρ1 and σ2, respectively. Let trans denote the
messages sent by P1. Algorithm T , given the entire view of P1, outputs
an arbitrary truncation trans′ of trans. (That is, it defines a cut-off point
and deletes any messages sent after that point.) Then viewT,ρ1

2 includes
the information given by the dealer to P2, the random coins of P2, and
the (partial) transcript trans′.

Strategy ρ1 yields equivalent play with respect to Π, denoted ρ1 ≈ Π, if there
exists a ppt algorithm T such that for all ppt distinguishers D

∣∣∣Pr[D(1k, viewT,ρ1
2 ) = 1]− Pr[D(1k, viewΠ

2 ) = 1]
∣∣∣ ≤ negl(k).

We write ρ1 6≈ Π if ρ1 does not yield equivalent play with respect to Π. Note
that ρ1 can yield equivalent play with respect to Π even if (1) it differs from the
prescribed strategy when interacting with some other strategy σ′2 (we only care
about the behavior of ρ1 when the other party runs Π); (2) it differs from the
prescribed strategy in its local computation or output; and (3) it differs from
the prescribed strategy after P1 computes its output. This last point models the
fact that we cannot force P1 to send “correct” messages once, as far as P1 is
concerned, the protocol is finished.

We now define the notion that detectable deviations from the protocol de-
crease a player’s utility.

Definition 3. Π induces a computational strict Nash equilibrium if

1. Π induces a computational Nash equilibrium;
2. For any ppt strategy σ′1 with σ′1 6≈ Π, there is a c > 0 such that u1(σ1, σ2) ≥

u1(σ′1, σ2) + 1/kc for infinitely many values of k (with an analogous require-
ment for a deviating P2).

We next turn to defining stability with respect to trembles. We say that ρi

is δ-close to σi if ρi takes the following form: with probability 1 − δ party Pi



plays σi, while with probability δ it follows an arbitrary ppt strategy σ′i. (In this
case, we refer to σ′i as the residual strategy of ρi.) The notion of δ-closeness is
meant to model a situation in which Pi plays σi “most of the time,” but with
some (small) probability plays some other arbitrary strategy.

Intuitively, a pair of strategies (σ1, σ2) is stable with respect to trembles if σ1

(resp., σ2) remains a best response even if the other party plays a strategy other
than σ2 (resp., σ1) with some small (but noticeable) probability δ. As in the case
of strict Nash equilibrium, this notion is difficult to define formally because of the
possibility that one party can do better (in case the other deviates) by performing
some (undetectable) local computation.1 Our definition essentially requires that
this is the only way for either party to do better and so, in particular, each party
will (at least outwardly) continue to follow the protocol until the other deviates.
The fact that the prescribed strategies are in Nash equilibrium ensures that any
(polynomial-time) local computation performed by either party is of no benefit
as long as the other party follows the protocol.

Definition 4. Π induces a computational Nash equilibrium that is stable with
respect to trembles if

1. Π induces a computational Nash equilibrium;
2. There is a noticeable function δ such that for any ppt strategy ρ2 that is

δ-close to σ2, and any ppt strategy ρ1, there exists a ppt strategy σ′1 ≈ Π
such that u1(ρ1, ρ2) ≤ u1(σ′1, ρ2) + negl(k) (with an analogous requirement
for the case of deviations by P2).

Stated differently, even if a party Pi believes that the other party might play
a different strategy with some small probability δ, there is still no better strategy
for Pi than to outwardly follow the protocol2 (while possibly performing some
additional local computation).

3 Rational Secret Sharing: The 2-out-of-2 Case

Let S = {0, 1}` be the domain of the secret. Let (Gen, Eval, Prove, Vrfy) be
a VRF with range {0, 1}`, and let (Gen′, Eval′, Prove′, Vrfy′) be a VRF with
range {0, 1}k. Protocol Π is defined as follows:
Sharing phase. Let s denote the secret. The dealer chooses an integer i∗ ∈ N
according to a geometric distribution with parameter β, where β is a constant
that depends on the players’ utilities but is independent of the security parame-
ter; we discuss how to set β below. We assume i∗ < 2k−1 since this occurs with
all but negligible probability. (Technically, if i∗ ≥ 2k−1 the dealer can just send
a special error message to each party.)

The dealer first computes the keys (pk1, sk1), (pk2, sk2) ← Gen(1k) as well as
(pk′1, sk

′
1), (pk′2, sk

′
2) ← Gen′(1k). Then the dealer computes:

1 As a trivial example, consider the case where with probability δ one party just sends
its share to the other.

2 Specifically, for any strategy ρi that does not yield equivalent play w.r.t. Π, there is
a strategy σ′i that does yield equivalent play w.r.t. Π and performs about as well.



– share1 := Evalsk2(i
∗)⊕ s and share2 := Evalsk1(i

∗)⊕ s;
– signal1 := Eval′sk′2

(i∗ + 1) and signal2 := Eval′sk′1
(i∗ + 1).

Finally, the dealer gives to P1 the values (sk1, sk
′
1, pk2, pk′2, share1, signal1), and

gives to P2 the values (sk2, sk
′
2, pk1, pk′1, share2, signal2).

As written, the share given to each party only hides s in a computational
sense. Nevertheless, information-theoretic secrecy is easy to achieve; see Re-
mark 1 at the end of this section.

Reconstruction phase

At the outset, P1 chooses s
(0)
1 uniformly from S = {0, 1}` and P2 chooses s

(0)
2

the same way. Then in each iteration i = 1, . . ., the parties do the following:

(P2 sends message to P1:) P2 computes

– y
(i)
2 := Evalsk2(i), π

(i)
2 := Provesk2(i)

– z
(i)
2 := Eval′sk′2

(i), π̄
(i)
2 := Prove′sk′2

(i).

It then sends (y
(i)
2 , π

(i)
2 , z

(i)
2 , π̄

(i)
2 ) to P1.

(P1 receives message from P2:) P1 receives (y
(i)
2 , π

(i)
2 , z

(i)
2 , π̄

(i)
2 ) from

P2. If P2 does not send anything, or if Vrfypk2
(i, y

(i)
2 , π

(i)
2 ) = 0 or

Vrfy′pk′2
(i, z

(i)
2 , π̄

(i)
2 ) = 0, then P1 outputs s

(i−1)
1 and halts.

If signal1
?
= z

(i)
2 then P1 outputs s

(i−1)
1 , sends its iteration-i message to P2

(see below), and halts. Otherwise, it sets s
(i)
1 := share1 ⊕ y

(i)
2 and continues.

(P1 sends message to P2:) P1 computes

– y
(i)
1 := Evalsk1(i), π

(i)
1 := Provesk1(i)

– z
(i)
1 := Eval′sk′1

(i), π̄
(i)
1 := Prove′sk′1

(i).

It then sends (y
(i)
1 , π

(i)
1 , z

(i)
1 , π̄

(i)
1 ) to P2.

(P2 receives message from P1:) P2 receives (y
(i)
1 , π

(i)
1 , z

(i)
1 , π̄

(i)
1 ) from

P1. If P1 does not send anything, or if Vrfypk1
(i, y

(i)
1 , π

(i)
1 ) = 0 or

Vrfy′pk′1
(i, z

(i)
1 , π̄

(i)
1 ) = 0, then P2 outputs s

(i−1)
2 and halts.

If signal2
?
= z

(i)
1 then P2 outputs s

(i−1)
2 and halts. Otherwise, it sets s

(i)
2 :=

share2 ⊕ y
(i)
1 and continues.

Fig. 1. The reconstruction phase of secret-sharing protocol Π.

Reconstruction phase. A high-level overview of the protocol was given in
Section 1.1, and we give the formal specification in Figure 1. The reconstruc-
tion phase proceeds in a series of iterations, where each iteration consists of one
message sent by each party. Although these messages could be sent at the same
time (since they do not depend on each other), we do not want to assume simul-
taneous communication and therefore simply require P2 to communicate first in



each iteration. (If one were willing to assume simultaneous channels then the
protocol could be simplified by having P2 send Eval′sk′2

(i + 1) at the same time
as Evalsk2(i), and similarly for P1.)

We give some intuition as to why the reconstruction phase of Π is a com-
putational Nash equilibrium for an appropriate choice of β. Assume P2 follows
the protocol, and consider possible deviations by P1. (Deviations by P2 are even
easier to analyze since P2 goes first in every iteration.) P1 can abort in iteration
i = i∗ + 1 (i.e., as soon as it receives z

(i)
2 = signal1), or it can abort in some

iteration i < i∗ + 1. In the first case P1 “knows” that it learned the dealer’s se-
cret in the preceding iteration (that is, in iteration i∗) and can thus output the
correct secret; however, P2 will output s

(i∗)
2 = s and so learns the secret as well.

So P1 does not increase its utility beyond what it would achieve by following the
protocol. In the second case, when P1 aborts in some iteration i < i∗ + 1, the
best strategy P1 can adopt is to output s

(i)
1 and hope that i = i∗. The expected

utility that P1 obtains by following this strategy can be calculated as follows:

– P1 aborts exactly in iteration i = i∗ with probability β. Then P1 gets utility
at most U+.

– When i < i∗, player P1 has “no information” about s and so the best it can
do is guess. The expected utility of P1 in this case is thus at most Urandom

(cf. Equation (1)).

Putting everything together, the expected utility of P1 following this strategy
is at most β × U+ + (1 − β) × Urandom. Since Urandom < U by assumption, it
is possible to set β so that the expected utility of this strategy is strictly less
than U , in which case P1 has no incentive to deviate.

That Π induces a strict computational Nash equilibrium (which is also stable
with respect to trembles) follows since there is always a unique valid message
a party can send; anything else is treated as an abort. A proof of the following
theorem appears in the full version of this work [9].

Theorem 1. If β > 0 and U > β · U+ + (1 − β) · Urandom, then Π induces a
computational strict Nash equilibrium that is stable with respect to trembles.

Remark 1. The sharing phase, as described, guarantees computational secrecy
only. A generic transformation from any such protocol (with bounded-size shares)
to one that achieves information-theoretic secrecy follows: After D generates
shares s1, s2 in the computationally secure scheme, it chooses random r1, r2 and
random keys k1, k2, and gives to Pi the share (si ⊕ ri, ki, r3−i, MACk3−i(r3−i)),
where MAC denotes an information-theoretically secure MAC. The reconstruc-
tion phase begins by having the parties exchange r1 and r2 along with the
associated MAC tags, verifying the tags (and aborting if they are incorrect),
and then recovering s1, s2. They then run the original protocol. It is easy to see
that this maintains all the game-theoretic properties of the original protocol.

Remark 2. In the reconstruction phase, as described, one party can cause the
other to output an incorrect secret (by aborting early). If the utilities of doing



so are known, the protocol can be modified to rule out this behavior (in a game-
theoretic sense) using the same techniques as in [4, Section 5.2]. Specifically, the
dealer can — for each party — designate certain rounds as “completely fake”, so
that the party will know to output ⊥ instead of an incorrect secret in case the
other party aborts in that round. Using VRFs, this still can be achieved with
bounded-size shares. Details will appear in the full version.

3.1 Using Trapdoor Permutations Instead of VRFs

The protocol from the previous section can be adapted easily to use trapdoor
permutations instead of VRFs. The key observation is that the VRFs in the
previous protocol are used only in a very specific way: they applied sequentially to
values 1, 2, . . .. One can therefore use a trapdoor permutation f with associated
hardcore bit h to instantiate the VRF in our scheme in the following way: The
public key is a description of f along with a random element y in the domain
of f ; the secret key is the trapdoor enabling inversion of f . In iteration i, the
“evaluation” of the VRF on input i is the `-bit sequence

h
(
f−(i−1)`−1(y)

)
, h

(
f−(i−1)`−2(y)

)
, . . . , h

(
f−(i−1)`−`(y)

)
,

and the “proof” is πi = f−(i−1)`−`(y). Verification can be done using the original
point y, and can also be done in time independent of i by using πi−1 (namely,
by checking that f `(πi) = πi−1), assuming πi−1 has already been verified.

The essential properties we need still hold: verifiability and uniqueness of
proofs are easy to see, and pseudorandomness still holds with respect to a mod-
ified game where the adversary queries Evalsk(1), . . . , Evalsk(i) and then has to
guess whether it is given Evalsk(i+1) or a random string. We omit further details.

4 Rational Secret Sharing: The t-out-of-n Case

In this section we describe extensions of our protocol to the t-out-of-n case, where
we consider deviations by coalitions of up to t− 1 parties. Formal definitions of
game-theoretic notions in the multi-player setting, both for the case of single-
player deviations as well as coalitions, are fairly straightforward adaptations of
the definitions from Section 2.3 and are given in the full version of this work [9].

In describing our protocols we use VRFs for notational simplicity, but all
the protocols given here can be instantiated using trapdoor permutations as
described in Section 3.1.

A protocol for “exactly t-out-of-n” secret sharing. We begin by describing
a protocol Πt,n for t-out-of-n secret sharing that is resilient to coalitions of up
to t − 1 parties under the assumption that exactly t parties are active during
the reconstruction phase. (We also require that the coalition be a subset of the
active parties.) For now, we assume communication over a synchronous (but not
simultaneous) point-to-point network.



Sharing Phase

To share a secret s ∈ {0, 1}`, the dealer does the following:

– Choose r∗ ∈ N according to a geometric distribution with parameter β.
– Generatea VRF keys (pk1, sk1), . . . , (pkn, skn) ← Gen(1k) followed by

(pk′1, sk
′
1), . . . , (pk′n, sk′n) ← Gen′(1k).

– Choose random (t − 1)-degree polynomials G ∈ F2` [x] and H ∈ F2k [x]
such that G(0) = s and H(0) = 0.

– Send ski, sk
′
i to player Pi, and send to all parties the following values:

1. {(pkj , pk′j)}1≤j≤n

2. {gj := G(j)⊕ Evalskj (r
∗)}1≤j≤n

3. {hj := H(j)⊕ Eval′sk′j
(r∗ + 1)}1≤j≤n

Reconstruction Phase

Let I be the indices of the t active players. Each party Pi (for i ∈ I) chooses

s
(0)
i uniformly from {0, 1}`. In each iteration r = 1, . . ., the parties do:

– For all i ∈ I (in ascending order), Pi sends the following to all players:

(
y
(r)
i := Evalski(r), z

(r)
i := Eval′sk′i

(r), Proveski(r), Prove′sk′i
(r)

)
.

– If a party Pi receives an incorrect proof (or nothing) from any other

party Pj , then Pi terminates and outputs s
(r−1)
i . Otherwise:

• Pi sets h
(r)
j := hj ⊕ z

(r)
j for all j ∈ I, and interpolates a degree-

(t−1) polynomial H(r) through the t points {h(r)
j }j∈I . If H(r)(0)

?
= 0

then Pi outputs s
(r−1)
i immediately, and terminates after sending its

current-iteration message.
• Otherwise, Pi computes s

(r)
i as follows: set g

(r)
j := gj ⊕ y

(r)
j for all

j ∈ I. Interpolate a degree-(t−1) polynomial G(r) through the points

{g(r)
j }j∈I , and set s

(r)
i := G(r)(0).

a Gen outputs VRF keys with range {0, 1}`, and Gen′ outputs VRF keys with
range {0, 1}k.

Fig. 2. Protocol Πt,n for “exactly t-out-of-n” secret sharing.

As in the 2-out-of-2 case, every party is associated with two keys for a VRF.
The dealer chooses an iteration r∗ according to a geometric distribution, and
also chooses two random (t−1)-degree polynomials G,H (over some finite field)
such that G(0) = s and H(0) = 0. Each party receives blinded versions of all n
points {G(j), H(j)}n

j=1: each G(j) is blinded by the value of Pj ’s VRF on the
input r∗, and each H(j) is blinded by the value of Pj ’s VRF on the input r∗+1.
In each iteration r, each party is supposed to send to all other parties the value
of their VRFs evaluated on the current iteration number r; once this is done,
every party can interpolate a polynomial to obtain candidate values for G(0)
and H(0). When H(0) = 0 parties know the protocol is over, and output the
G(0) value reconstructed in the previous iteration. See Figure 2 for details.



Theorem 2. If β > 0 and U > β · U+ + (1− β) · Urandom, then Πt,n induces a
(t−1)-resilient computational strict Nash equilibrium that is stable with respect to
trembles, as long as exactly t parties are active during the reconstruction phase.

A proof is exactly analogous to the proof of Theorem 1.

Handling the general case. The prior solution assumes exactly t parties are
active during reconstruction. If t∗ > t parties are active, the “natural” imple-
mentation of the protocol — where the lowest-indexed t parties run Πt,n and
all other parties remain silent — is not a (t − 1)-resilient computational Nash
equilibrium. To see why, let the active parties be I = {1, . . . t + 1} and let
C = {3, . . . , t + 1} be a coalition of t− 1 parties. In each iteration r, as soon as
P1 and P2 send their values the parties in C can compute t + 1 points {g(r)

j }j∈I .
Because of the way these points are constructed, they are guaranteed to lie on a
(t−1)-degree polynomial when r = r∗, but are unlikely to lie on a (t−1)-degree
polynomial when r < r∗. This gives the parties in C a way to determine r∗ as
soon as that iteration is reached, at which point they can abort and output the
secret while preventing P1 and P2 from doing the same.

Fortunately, a simple modification works: simply have the dealer run inde-
pendent instances Πt,n,Πt+1,n, . . . , Πn,n; in the reconstruction phase, the parties
run Πt∗,n where t∗ denotes the number of active players. It follows as an easy
corollary of Theorem 2 that this induces a (t− 1)-resilient computational strict
Nash equilibrium (that is also stable with respect to trembles) regardless of how
many parties are active during the reconstruction phase. (As in previous work,
we only consider coalitions that are subsets of the parties who are active during
reconstruction. The protocol is no longer a computational Nash equilibrium if
this is not the case.3)

Asynchronous networks. Our protocol Πt,n can be adapted to work even
when the parties communicate over an asynchronous point-to-point network.
(In our model of asynchronous networks, messages can be delayed arbitrarily
and delivered out of order, but any message that is sent is eventually delivered.)
In this case parties cannot distinguish an abort from a delayed message and so
we modify the protocol as follows: each party proceeds to the next iteration as
soon as it receives t − 1 valid messages from the previous iteration, and only
halts if it receives an invalid message from someone. More formal treatment of
the asynchronous case, including a discussion of definitions in this setting and a
proof for the preceding protocol, is given in the full version of this work [9].

As before, we can handle the general case by having the dealer run the
“exactly t∗-out-of-n” protocol just described for all values of t∗ ∈ {t, . . . , n}.

3 This case can be addressed, however, by having the dealer run independent instances
of Πt,n for all

(
n
t

)
subsets of size t; to reconstruct, the t lowest-indexed active players

run the instance corresponding to their subset while the remaining active players are
silent. This is only efficient when t (or n− t) is small.
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A Verifiable Random Functions (VRFs)

A VRF is a keyed function whose output is “random-looking” but can still
be verified as correct, given an associated proof. The notion was introduced by
Micali, Rabin, and Vadhan [25], and various constructions in the standard model
are known [25, 6, 23, 8]. The definition we use is stronger than the “standard”
one in that it includes a uniqueness requirement on the proof as well, but the
constructions of [6, 8] achieve it. (Also, we use VRFs only as a stepping stone to
our construction based on trapdoor permutations; see Section 3.1.)

Definition 5. A verifiable random function (VRF) with range R = {Rk} is a
tuple of probabilistic polynomial-time algorithms (Gen, Eval, Prove, Vrfy) such
that the following hold:



Correctness: For all k, any (pk, sk) output by Gen(1k), the algorithm Evalsk

maps k-bit inputs to the set Rk. Furthermore, for any x ∈ {0, 1}k we have
Vrfypk (x, Evalsk(x), Provesk(x)) = 1.

Verifiability: For all (pk, sk) output by Gen(1k), there does not exist a tuple
(x, y, y′, π, π′) with y 6= y′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y′, π′).

Unique proofs: For all (pk, sk) output by Gen(1k), there does not exist a tuple
(x, y, π, π′) with π 6= π′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y, π′).

Pseudorandomness: Consider the following experiment involving an adver-
sary A:
1. Generate (pk, sk) ← Gen(1k) and give pk to A. Then A adaptively

queries a sequence of strings x1, . . . , x` ∈ {0, 1}k and is given yi =
Evalsk(xi) and πi = Provesk(xi) in response to each such query xi.

2. A outputs a string x ∈ {0, 1}k subject to the restriction x 6∈ {x1, . . . , x`}.
3. A random bit b ← {0, 1} is chosen. If b = 0 then A is given y = Evalsk(x);

if b = 1 then A is given a random y ← Rk.
4. A makes more queries as in step 2, as long as none of these queries is

equal to x.
5. At the end of the experiment, A outputs a bit b′ and succeeds if b′ = b.

We require that the success probability of any ppt adversary A is 1
2 +negl(k).


