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Abstract. We study rationality in protocol design for the full-information
model, a model characterized by computationally unbounded adversaries,
no private communication, and no simultaneity within rounds. Assuming
that players derive some utility from the outcomes of an interaction, we
wish to design protocols that are faithful: following the protocol should
be an optimal strategy for every player, for various definitions of “opti-
mal” and under various assumptions about the behavior of others and
the presence, size, and incentives of coalitions. We first focus on leader
election for players who only care about whether or not they are elected.
We seek protocols that are both faithful and resilient, and for some no-
tions of faithfulness we provide protocols, whereas for others we prove
impossibility results. We then proceed to random sampling, in which the
aim is for the players to jointly sample from a set of m items with a
distribution that is a function of players’ preferences over them. We con-
struct protocols for m ≥ 3 that are faithful and resilient when players
are single-minded. We also show that there are no such protocols for 2
items or for complex preferences.

1 Introduction

The full-information model of Ben-Or and Linial [8] is one of the classically-
studied settings for protocol design. In this model there are no computational
limits on the adversary, there is no private communication, and there is no
guarantee of simultaneity within rounds of a protocol. Three famous problems
are collective coin-flipping, leader election, and random sampling. In the first,
players jointly flip a coin; in the second, they jointly select a random player; and
in the third, they jointly select a random element from some universe of m items.
In general, the goal is to design protocols that are resilient: the outcome should
be random even in the presence of an adversary who corrupts and coordinates
the behavior of a fraction of the players.

In this paper we explore the role of preferences in the design of such protocols.
While preferences are not explicitly considered in the well-studied formulations
of the problems, they are implicitly present. For example, leader election has a
fairness criterion, which requires each player to be elected with roughly equal
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probability (presumably because everybody wants to be the leader). A leader
election protocol is resilient if an adversary can not force the elected leader to be
a member of his coalition (or at least will fail to do so with constant probability).
Again, the adversary wants a coalition-member to be elected. For collective coin-
flipping and random sampling, resilience is also measured as a bound on the
probability that an adversary succeeds at something. It is implicitly assumed
that the adversary wants to do this, and that the honest (non-adversarial) players
do not wish him to achieve his goal.

The study of preferences in the design of protocols is primarily the domain
of mechanism design. In mechanism design a planner wishes to implement some
function of players’ private information. His goal is to design a mechanism and
provide incentives for the players so that their optimal strategy is to truthfully
reveal their private information, and more generally to adhere to the mechanism.
The optimality of players’ strategies is measured via some solution concept:
following the mechanism should be in some equilibrium, most commonly Nash,
ex post Nash, or dominant strategy. In this paper we take a similar approach –
we define new solution concepts appropriate for the full-information model, and
seek protocols that are faithful : following them is optimal for players with respect
to these solution concepts (in addition to the usual resilience guarantees).

For any problem of protocol design, making the structure of preferences ex-
plicit has two potential benefits, both of which we achieve in this paper. First,
it can result in better protocols – protocols are arguably of little use if players
have no incentives to follow them. If one can obtain faithful protocols without
harming the original guarantees of the protocol, then one has only gained. Sec-
ond, it may be possible to sidestep some impossibility results of the original
problem, since often these impossibility results are based on arbitrary play by
the adversary. If players do not play arbitrarily but rather obey some preference
structure, then many of these results no longer hold.

The model In the full-information model all communication is by broadcast. In
each round, some of the players send a message, which may depend on messages
sent in previous rounds. The main difficulty is that adversarial players are allowed
to “rush” – to wait until all messages have been sent within a round, and only
then to send their own messages.

This paper We are largely motivated by recent work in rational cryptography, in
which the aim is to design cryptographic protocols that participants want to fol-
low. Two of the main difficulties encountered when attempting a game theoretic
analysis of cryptographic protocols are computational limits and potentially ad-
versarial timing. In this paper we focus solely on the latter issue by considering
a model in which (adversarial) players may be computationally unbounded, and
the guaranteed security (i.e. resilience) is information-theoretic. We highlight
the various challenges and subtleties caused by a combination of rational and
adversarial players, particularly in the presence of adversarial timing. We also
draw a possibility-impossibility border for various problems and requirements in



this setting. Finally, we believe that this paper is an illuminating stepping-stone
towards a game theoretic analysis of more general cryptographic protocols.

1.1 Our Results and Organization

Definitions (Section 2) The initial difficulty encountered when considering pref-
erences in the full-information model is to precisely formulate a notion of equi-
librium. The first notion to consider is Nash equilibrium (NE), in which each
player’s strategy must be expected utility maximizing assuming others also fol-
low their Nash strategies. If the protocol is such that only one player sends a
message in each round, then this suffices. One such protocol is Baton Passing
[32], a protocol that is resilient and in fact satisfies our weaker solution concept1.
However, state-of-the-art protocols are often round-efficient, and allow multiple
players to broadcast within a round. Because of the lack of synchrony within
rounds, however, NE does not suffice. In the Lightest Bin protocol [14], for ex-
ample, a player may increase his chance of winning from 1/n (where n is the
number of players) to a constant by deviating. To deal with asynchrony, we will
require that for any ordering of the players within each round, the protocol is in
a NE. In Section 2 we formalize this and other notions of what it means to be
faithful and faithful in the presence of adversarial players.

Impossibility with complex preferences (Section 3) In Section 3 we encounter our
first impossibility result. Theorem 1 states that no random selection protocol can
satisfy even our weakest solution concept if players have a full preference order
over the outcomes of the protocol. One implication of this impossibility result is
that collective coin-flipping is impossible with players who have some preference
about the outcome. For leader election and random sampling, this result forces
us to concentrate on more restricted preferences for players. For the former, we
assume that players care only about whether or not they are elected, and are
indifferent otherwise. For the latter, we assume players are single-minded: each
prefers one of the items, and is indifferent about the others.

Faithfulness with resilience (Section 4.2) The standard aim of selection protocols
in the full-information model is resilience: if an adversary corrupts and coordi-
nates the actions of a fraction of the players, he still fails to force his desired
outcome with non-negligible probability. In Section 4.2 we construct optimal pro-
tocols that both satisfy a notion of equilibrium and are resilient. Players wish to
faithfully adhere to the protocol if the others also do, and there is a resilience
guarantee in the presence of an adversary.

Faithfulness in the face of an adversary (Section 4.3) In Section 4.3 we consider
the problem of constructing leader election protocols that are in equilibrium
even when not all others follow the protocol. We show that it is impossible to

1 More specifically, it is in a full-information ex post NE – see Definition 5. It is not,
however, in a full-information dominant strategy equilibrium (Definition 3).



construct such protocols in the presence of a malicious adversary, even if the
adversary has his own objective of maximizing the probability that a coalition-
member wins. However, if the adversary maximizes this probability, but also only
deviates from the protocol if he strictly gains from doing so (i.e. if deviating is
costly), then we do design a resilient protocol.

Resilience to rational coalitions (Section 4.4) A different form of resilience
against adversarial play is when there is no controlling adversary, but instead
players may form “rational coalitions” to benefit all members. In Section 4.4 we
give an impossibility result for one notion of a “rational coalition”, but for a
weaker notion provide a protocol that is resilient against all such coalitions of
size at most n− 2.2

Random sampling (Section 5) Our final set of results concerns random sampling.
Each player has some preferences over a universe of m items, and the goal is to
design a protocol in which an item is sampled with a probability distribution that
is a function of those preferences. We design protocols that are simultaneously
in a full-information ex post Nash equilibrium (in which truthful revelation of
one’s preferences is optimal) and resilient against adversarial coalitions.

1.2 Related Work

This paper draws from three different literatures – protocol design in cryptogra-
phy and distributed computing, and algorithmic mechanism design. The exten-
sive literature on collective coin-flipping, random sampling, and leader election in
the full-information model includes [32, 16, 27, 3, 11, 12, 17, 31, 14, 13, 33, 6]. The
paper most closely related to ours is that of Antonakopoulos [6], who also con-
siders 1-round protocols in which individual players have no incentive to deviate.
However, his protocols all attain either faithfulness or resilience, but never both.
Similarly, Ben-Or and Linial [8] have a 2-round protocol that is faithful but not
resilient to larger coalitions. The paper most closely related to ours from the
mechanism design literature is that of Altman and Tennenholtz [5], who con-
struct 1-round protocols that are faithful (but also not resilient). Their goal is
to attain arbitrary distributions over the players. Also related is the literature
on ranking games [10], in which players have preferences about their rankings in
some game.

While we believe that we are the first to study notions of rationality tai-
lored specifically for the full-information model, such notions have been stud-
ied in other settings for distributed computing. For example, Monderer and
Tennenholtz [25] consider an implementation problem in a distributed network.
Shneidman and Parkes [34] introduce the idea that protocols should be faithful.
Additionally, the field of Distributed Algorithmic Mechanism Design (DAMD)
focuses on implementing mechanisms for various problems in a distributed set-
ting. In a general “mission statement” for DAMD, Feigenbaum and Shenker [15]

2 Compare this with the fact that there are no protocols that are resilient against an
adversary of size n/2 [32].



argue that it would be desirable to incorporate various fault models into the
DAMD framework. Also, Halpern [21, 22] has expressed the need to incorpo-
rate faulty or malicious behavior into distributed settings with rational players.
Some papers that address this issue are Aiyer et al. [2], Abraham et al. [1], and
Gradwohl [18].

Finally, as mentioned in the introduction, this work is closely related to the
growing literature on rational cryptography (see, for example, Katz [24] and
the references therein). Many works in this literature study rational behavior in
a cryptographic setting, for which the full-information model is a special case.
However, due to computational issues, the definitions in the general setting are
messier (and often also weaker). We note that the way we model rushing is
closely related to an idea of Ong et al. [29], who adopt the methods of Kalai [23]
to a protocol design setting. The idea of considering rational coalitions was also
explored in this context by Ong et al. [28].

Our notions of stability of coalitions are related to similar notions in the game
theory literature, such as the strong Nash equilibrium of Aumann [7] and the
coalition-proof equilibrium notions of Bernheim et al. [9], Moreno and Wooders
[26], and Abraham et al. [1].

2 Protocols and Games

For any vector X = (X1, . . . , Xn) and S ⊂ [n], we denote by XS = {Xi}i∈S and
by X−S = {Xi}i 6∈S .

2.1 Resilient Protocols

We are interested in protocols involving many players and the incentives of
players in following these protocols. Thus, we will assume that players have
preferences over possible outcomes, as well as other private information. As in
the game theory literature, all this information is collectively called a player’s
type. Player i’s type is denoted by ti, and the vector t = (t1, . . . , tn) is called
the type profile. The space of possible types of player i is Ti.

Definition 1 (selection protocol). An n-player selection protocol P is spec-
ified by a function f , a natural number q, and, for each of the n players, a set
of q randomized functions

{
S1
i , . . . , S

q
i

}
i∈[n]. The protocol proceeds as follows:

– At round j, the i’th player broadcasts a random message M j
i obtained by

applying the randomized function Sj
i to all previous messages sent, namely

{M l
k : k ∈ [n], l < j}, as well as player i’s type ti. The randomness of the

function comes from the player’s independent coins.
– After q rounds, the players output f({M l

k : k ∈ [n], l ∈ [q]}) which is an
element of [m] in an m-item random sampling protocol and an element of
[n] in a leader election protocol. If all players follow the protocol then the
output is a uniformly random element (unless stated otherwise).



In any round j, a player i’s legal messages are those in
⋃

ti∈Ti
supp(Sj

i (ti, {M l
k :

k ∈ [n], l < j}))3. We assume that if a player noticeably deviates from the pro-
tocol (by broadcasting a message that is not legal), then his message is changed
to some default legal value.

Players may not legally base their messages in round j on the messages
of other players in round j. However, since we can not guarantee simultaneity
within a round, we allow the dishonest players to rush: they may base their
messages on the messages of other players from the same round (but not from
later rounds). A leader election protocol is ε-resilient to coalitions of size t if the
following holds: If at most t players are playing a coordinated rushing strategy,
then the probability that the elected leader is a cheating player is at most 1− ε.
Often we will implicitly be referring to a family of protocols, one for each value
of n. In this case, we say a protocol is resilient if there exists some ε > 0 such
that all protocols in the family with enough players are ε-resilient.

A protocol is oblivious if players’ messages are based only on their inter-
nal coin tosses. A protocol is explicit if players’ messages and the function f
are computable in probabilistic polynomial time (in the number of players and
log(m)).

2.2 Extensive-Form Games and Protocols

An n-player extensive-form game is specified by a game tree in which every
node is owned by a player and outgoing edges are labelled by actions. The game
begins at the root node and proceeds down the tree – at every node following
the edge labelled by the action played by the node’s owner. Payoffs for players
are specified at the leaves.

Definition 2 (Nash equilibrium (NE)). A Nash equilibrium (NE) in an
extensive-form game is a mixed strategy for every player at every node that he
owns, such that: if all players play their NE strategy, then no player obtains a
higher expected payoff by deviating at any of his nodes.

We note that in the games we consider, the NE will be completely mixed
strategies (i.e. players will play every action with positive probability). Such
Nash equilibria are in fact subgame perfect (see [30]).

Consider a selection protocol, where each player i derives some utility ui :
Ti × [m] 7→ R from outputs of the protocol. ui is such that for o 6= o′ ∈ [m], we
have that ui(ti, o) > ui(ti, o

′) if and only if player i of type ti strictly prefers o
to o′. Then any protocol in which only one player sends a message in each round
can be viewed as an extensive-form game4: if after j − 1 rounds and messages
M1, . . . ,Mj−1 player i plays in round j, i owns the node at level j in the game

3 Note that a player’s legal actions include messages in the support of Sj
i for all types,

not just the true one. This is so because the other players do not know i’s true type.
4 While it is possible to model simultaneous play as an extensive-form game with

imperfect information, the ability to rush and the lack of synchrony are more difficult
to incorporate into this framework.



tree reached by the game path M1, . . . ,Mj−1. Player i’s payoff from an instance
of play resulting in o is ui(ti, o). Such a selection protocol is in a NE if, in the
associated game, it is a NE for every player i to play according to strategy Sj

i if
any of his nodes at level j is reached (we say that i follows strategy Si).

2.3 Rationality in Selection Protocols – Definitions

We now define notions of what it means for a protocol to be faithful, i.e. in
which it is in players’ best interests to follow the protocol specification. Because
there is no synchrony within rounds of a selection protocol, we may view the
possibility of rushing as a strategy for players. That is, a player may choose to
wait until others have played, and only then submit his message. Thus, NE does
not suffice as a solution concept for such games. However, if only one player plays
in each round, then this does not matter (since rushing is only allowed within
rounds), and so for such protocols NE is a reasonable solution concept. For
general protocols, we would like the protocol to be optimal for players regardless
of the order of play within a round. This motivates the following.

For any q-round protocol P, we can construct protocol P ′ with at most qn
rounds, and such that only one player sends a message in each round. We say that
P ′ is a linearization of P, and it is constructed as follows: Let π : [n]× [q] 7→ [nq]
be some bijective map. Then P ′ is such that in round `, if (i, k) = π−1(`) then
player i sends a message sampled from Sk

i . This is well-defined for oblivious
protocols, and essentially means players play in an arbitrary order, but only
one player per round. For non-oblivious protocols, we require π to be round-
respecting : π(i, k) = ` if and only if for all j ∈ [n] and k′ < k it holds that
π(j, k′) < `. That is, here the arbitrary ordering is only within rounds.

We note that the idea of considering all linearizations appears also in Ong et
al. [29].

Our first solution concept for selection protocols in the full-information model
is a full-information dominant strategy equilibrium, which essentially means that
for any player i, regardless of the messages sent by others in all rounds, i can
never strictly increase his utility by deviating from the protocol. The following
generalizes the definition of [5] to multi-round protocols.

Definition 3 (full-information dominant strategy equilibrium). An obliv-
ious selection protocol P is in a dominant strategy equilibrium if for all type
profiles, all linearizations of P are in a NE.

An alternative, more direct but equivalent formulation is the following:

Definition 4 (full-information dominant strategy equilibrium – alter-
native formulation). An oblivious n-player, q-round, m-item selection pro-
tocol is in a full-information dominant strategy equilibrium if for all i ∈ [n]
and messages M−i = {M l

k : k ∈ [n] \ {i}, l ∈ [q]} sent by all other play-
ers in all rounds, it holds that ui (ti, f(M−i,Mi)) = ui (ti, f(M−i,M

′
i)), where

Mi,M
′
i ∈ supp(S1

i )× . . .× supp(Sq
i ).



Remark 1. The reason we have equality above, as opposed to an inequality, is
that the actions in the support of Sj

i are all dominant. That is, all these actions
are best-responses, even conditioned on the actions of others. It can thus not be
that one such action is better than the other, for then the other would not be
dominant.

The definition of a full-information dominant strategy equilibrium is rather
strong, but still achievable (for example, Theorems 2, 3, and 4 below). We note
that our impossibility result, Theorem 1, applies even to our weaker solution
concepts.

In a full-information ex post NE the requirement is a bit relaxed: a player
i can not strictly increase his expected utility in any round j by deviating,
regardless of the messages of players in all rounds up to and including round
j. That is, regardless of the order of play within the current round, i has no
incentive to deviate (on expectation over play in future rounds). The following
definition is new:

Definition 5 (full-information ex post Nash equilibrium). A selection
protocol P is in an ex post NE if for all type profiles, all round-respecting lin-
earizations of P are in a NE.

An alternative, more direct but equivalent formulation for this solution con-
cept is a bit more involved, and appears in the full version of this paper [19].

2.4 Rationality in the Face of an Adversary – Definitions

A protocol that satisfies the definitions of Section 2.3 is an optimal strategy for
players assuming all others also follow the protocol. If some of the players are
adversarial, however, then this may not hold. In this case, we actually want a
stronger guarantee. To this end, we need the following definition, first defined
by [1] (for normal-form games):

Definition 6 (v-tolerant NE). A v-tolerant NE in an extensive-form game
is a mixed strategy for every player at every node that he owns, such that the
following holds: for any V ⊂ [n] of size at most v, if all players in [n] \ {V }
play their NE strategy, then none of them can obtain a higher expected payoff by
deviating from the NE at any of their nodes regardless of the actions of players
in V .

The ideal faithfulness guarantee that we would like for selection protocols is
roughly the following: no player should be able to strictly improve his expected
payoff by deviating, assuming most players follow the protocol, some play arbi-
trarily, and the order within any round is also arbitrary.

Definition 7 (full-information v-tolerant ex post NE). A leader election
protocol P is in a full-information v-tolerant ex post NE if all round-respecting
linearizations of P are in a v-tolerant NE.



One possible weakening of this definition is to consider an adversary who does
not act arbitrarily, but also has his own utility function uA. Suppose an adversary
corrupts a set V of players. Then we say he is playing a coalition-optimal strategy
with respect to strategies S = (S1, . . . , Sn) if, when the players not in V follow
strategies S−V , the members of V play a coordinated strategy that maximizes
the expectation of uA. We say he is playing a strictly coalition-optimal strategy
with respect to strategies S if the above holds, and if, at every node owned by
some i ∈ V , i follows Si if his part of the coordinated deviation does not strictly
increase the expectation of uA. (A more formal definition appears in the full
version of this paper [19]).

Definition 8 (v-tolerant NE with (strictly) self-interested adversary).
A v-tolerant NE with self-interested adversary in an extensive-form game is a
mixed strategy Sj for every player j for every node that he owns, such that the
following holds: for any V ⊂ [n] of size at most v and any player i 6∈ V , if
the players in V play any coalition-optimal strategy and the others play their Sj

strategy, then i can not increase his expected utility by deviating from Si. If this
holds only when the players V play a strictly coalition-optimal strategy, then the
equilibrium is a v-tolerant NE with strictly self-interested adversary.

Definition 9 (full-information v-tolerant ex post NE with (strictly)
self-interested adversary). A leader election protocol P is in a full-information
v-tolerant ex post NE with a (strictly) self-interested adversary if all round-
respecting linearizations of P are in a v-tolerant NE with a (strictly) self-interested
adversary.

2.5 Resilience to Rational Coalitions – Definitions

In Section 2.4 the adversarial coalition could act arbitrarily, or by maximizing
some joint utility function uA. In this section we define notions of rational coali-
tions – i.e. coalitions that rational players might reasonably want to form. In
the following definitions, we assume there is some prescribed protocol P for the
players. When we say players are “at least as well off” or “strictly gain”, this is
with respect to following the prescribed protocol.

Definition 10 (Pareto coalition). A coalition V is a Pareto coalition if there
exists a coordinated rushing strategy S∗V for the players in V such that all players
in V are at least as well off when playing S∗V , and one player strictly gains.

Definition 11 (strong coalition). A coalition V is strong if there exists a
coordinated rushing strategy S∗V for players V such that the expected utility of
every i ∈ V strictly increases when playing S∗V .

Definition 12 (stable coalition). A coalition V is stable if there exists a
coordinated rushing strategy S∗V for players V such that the expected utility of
every i ∈ V strictly increases when playing S∗V , and, in addition, for all sub-
coalitions V ′ ⊂ V and any coordinated rushing strategy S∗V ′ , playing S∗V ′ does
not increase the expected utility of all players in V ′ when players V \V ′ play S∗V .



3 Impossibility with Complex Preferences

A player in a selection protocol has complex preferences if for any two outcomes
o 6= o′ he strictly prefers one over the other. We now show that there are no
faithful selection protocols for players with such preferences.

Theorem 1. No selection protocol can be in a full-information ex post NE for
players with complex preferences.

Proof. Suppose there exists an oblivious selection protocol P in an ex post Nash
equilibrium, and fix some round-respecting linearization of P. Let T be the cor-
responding game tree, where some player i owns a node u (that is reached with
positive probability) at the lowest non-leaf level `. Suppose the protocol speci-
fication is for i to play mixed strategy Si at level `. Now, if different actions in
supp(Si) result in leaves with different outcomes, then i prefers one outcome over
the others (due to complex preferences). However, due to the full-information ex
post NE this can not be the case: a player’s different actions should not affect his
expected utility, for otherwise he would have a beneficial deviation. We conclude
that player i’s actions do not influence the final choice of item. Hence, u can
safely be omitted, resulting in a new, smaller tree. We continue shrinking the
tree in this manner, yielding a deterministic selection protocol (a contradiction).
The extension to non-oblivious protocols appears in the full version of this paper
[19].

4 Rational Leader Election Protocols

4.1 Basic Faithful Leader Election Protocols

Because of Theorem 1, we must limit the preferences in order to obtain protocols.
One natural setting for leader election is that of self-interested players: players
care only about whether or not they are elected (they either want to win or
want to not win), but are indifferent otherwise. Note that if a leader election
protocol is in a full-information dominant strategy equilibrium for self-interested
players, then the messages sent by others determine whether a player is elected
or not (because the equilibrium holds for all type profiles). That player can
only determine who is elected if he is not. The same holds for leader election
protocols in a full-information ex post NE, but on expectation over messages in
future rounds.

There are some basic protocols that we will use in our constructions. The
first is a 1-round leader election protocol that is in a full-information dominant
strategy equilibrium (but is not resilient). This protocol was given by Anton-
akopoulos [6] for the uniform distribution, and then generalized by Altman and
Tennenholtz [5].

Theorem 2 ([5]). For any n ≥ 4 and any distribution D over [n] there exists
a 1-round, n-player leader election protocol PAT in a full-information dominant
strategy equilibrium, and in which each player i is elected with probability D(i).



[5] also showed that there is no faithful 1-round leader election protocol for
3 players. The following protocol, which we will use in our constructions, does
work for 3 players, albeit at the cost of having 2 rounds5. Fix any natural number
k ≥ 3, and denote i+ = (i mod (k − 1)) + 1. Then for any positive p1, . . . , pk
with p1 + . . .+ pk = 1 define

Protocol Pk:

1. Player k chooses one player i 6= k, each with probability
pi+

1−pk
.

2. For each j ∈ {1, . . . , k − 1}, if player j is chosen in round 1, he elects player
k with probability pk and player j+ with probability 1− pk as leader.

Proposition 1. Pk is a leader election protocol in a full-information ex post
NE that elects each player i with probability pi.

4.2 Combining Rationality and Resilience in Leader Election

Neither of the protocols of Section 4.1 is resilient for any t > 1. The following the-
orem can be combined with resilient leader election protocols to obtain protocols
that are both resilient and in full-information dominant strategy equilibria.

Theorem 3. For any n ≥ 4, k = Ω(
√
n), and any explicit, oblivious r(n)-

round leader election protocol P there exists an explicit protocol P ′ in a dominant
strategy equilibrium that has r(dn/4e) rounds. If P is resilient to t(n) faults, then
P ′ is resilient to t(bn/4c)− k faults.

Proof. In the protocol below and the rest of the proof, indices are cyclical. We
will prove the theorem for n a multiple of 4. The general case follows similar lines.
The players are partitioned into 4 disjoint sets C1, C2, C3, C4, where i ∈ Cj if
d4i/ne = j. The following is done in parallel:

1. Each set Ci runs protocol P to select a representative Ri.
2. For each i, Ri chooses a random player from Ci+1, say Li+1, and outputs

a random message bi to PAT (i.e. bi is a random element of Bi, where PAT

takes inputs from B1 × . . .×B4).
3. The winner is Lj , where j is the winner of PAT with inputs b1, b2, b3, b4.

Since the 3 steps are done in parallel, all players choose a random player and a
random input in step 2., but the output depends only on the choices of the Ri’s.

Fix some player x, and suppose x ∈ Ci. x is chosen as the leader only if Ri−1
chooses x. The probability that this occurs does not change regardless of the
actions of x. Additionally, for x to win, i must be the winner of P4. However,
since PAT is in an ex post NE, no player in Ci can influence the probability that
this occurs. Hence, from x’s perspective, it does not matter who is chosen as Li.

5 Note that the case of 2 players is impossible by the lower bound of [32], regardless
of the number of rounds.



Now consider some cheating coalition of t players. In order for a member of
the coalition to win, at least one member of the coalition must be chosen as
Li for some i. In order for this to occur, either Ri−1 must be a member of the
coalition (and then he can choose a fellow member in Ci), or Ri−1 is an honest
player who chooses a member of the coalition. Suppose there are c1 faulty players
in Ci−1 and c2 faulty players in Ci, where c1 + c2 ≤ t. Then the probability that
there are more than c2 + k honest players in Ci−1 who choose a faulty player
is at most a constant e = exp(−2k2/(n/4 − c1)) < exp(−16k2/n) < 1 by a
multiplicative Chernoff bound, and using the fact that c1 ≤ t(n/4) < n/8 (since
no leader election protocol can be resilient to more than half the players). Thus,
with probability at least 1− e, there are at most c1 + c2 + k ≤ t(n/4) players in
Ci−1 who choose a coalition member in Ci. The maximal probability that one
of them wins and becomes Ri−1 is at most a constant ε < 1 (since we can view
the honest players who chose a coalition-member as additional faulty players).
The probability that a coalition member becomes Li for any i is thus at most
1− (1− ε)4 · (1− e)4, which is some constant < 1.

In Theorem 3 is that the size of the coalition shrinks by about a factor of 4,
and so we can not use it to get a faithful protocol with resilience close to the
optimal n/2. The following protocol has optimal resilience, is in a full-information
dominant strategy equilibrium, and has log∗(n) + O(1) rounds (same as in the
state-of-the-art leader election protocols [31, 14]). The proof is in the full version
of this paper [19].

Theorem 4. For every constant δ > 0 and n ≥ 4 there exists an explicit
(log∗ n+O(1))-round leader election protocol resilient against n(1/2− δ) faults
that is in a full-information dominant strategy equilibrium.

Extensions and Further Results Theorem 3 can actually be generalized to obtain
any distribution over the players. If we plug a 1-round leader election protocol
into Theorem 3 with any distribution, we get a 1-round protocol that implements
any distribution and is in a full-information dominant strategy equilibrium. This
confirms a conjecture of Altman and Tennenholtz [4] about the existence of
such protocols in which all players influence the outcome of the protocol in
some instance. We can also construct protocols that satisfy a stronger notion of
resilience against adversarial coalitions – namely, they have bounded cheaters’
edge [6] – that are in a full-information ex post NE. Finally, our protocols can
also be used to construct leader election protocols in which a player is elected at
random from the set of players who want to be elected. All these extensions can
be found in the full version of this paper [19].

4.3 Rationality in the Face of an Adversary

While the protocols of Section 4.2 are resilient against adversarial behavior, they
are in equilibrium only if all players follow the protocol. What if this is not the
case? Can an honest player’s protocol specification be optimal even when some



others play adversarially? The main difficulty here is that a player’s actions may
now also influence the actions of adversarial players in future rounds. Even if the
protocol is oblivious, an adversary’s strategy might not be. Definition 7 defines
a the concept of an full-information v-tolerant ex post NE to deal precisely with
this issue.

Unfortunately, Theorem 5 below implies that no leader election protocol
can be in a v-tolerant ex post NE, and so we must look for some relaxation.
For Definition 7 we make no assumptions about the adversary. If we assume
that the adversary also has some preferences, then we may be able to weaken
this restriction. We will assume here that the adversary’s goal is to maximize
the probability that some member of his coalition gets elected (the standard
assumption for leader election) – that is, we consider Definition 9, where uA
is the probability that a member of the coalition gets elected. Theorem 5 also
shows that this relaxation does not suffice:

Theorem 5. There does not exist a leader election protocol in a v-tolerant ex
post Nash equilibrium with self-interested adversary for any v ≥ 1.

Proof. Fix some protocol P in an ex post Nash equilibrium and a round-respecting
linearization of P. Suppose i is the first player who has a mixed strategy in the
game, where two possible messages in i’s support are I1, I2. Because i is even-
tually chosen by P with some probability that i can not influence himself (he
wins with the same expected probability whether he plays I1 or I2), there must
exist some other player whose choice of messages does influence this probability.
In the subtree rooted at the node following i choosing I1 there must exist some
player j who has a strategy S1 that increases the probability of i getting elected,
and some other strategy S2 that decreases this probability. Because P is in an ex
post Nash equilibrium, these choices of player j do not harm his own chance of
getting elected. A valid (adversarial) strategy for player j is to play S1 whenever
i plays I1. Alternatively, j can play S2 whenever i plays I1. Because i does not
know which strategy j is using (since j is adversarial), and in either case one of
I1 or I2 is strictly better than the other, no single strategy of player i can be
optimal in both cases.

If we limit the adversary even more by assuming that deviation is costly, we
can get an explicit protocol. The following assumes that the adversary is strictly
self-interested – he is self-interested, but also only deviates if he strictly gains
from doing so (a formal definition appears in the full version of this paper [19]).

Theorem 6. For any positive k and n = 3k there exists an explicit n-player
2 log3(n)-round leader election protocol P that is in a full-information n-tolerant
ex post Nash equilibrium with a strictly self-interested adversary. Furthermore,
P is resilient against nlog3(2)/2 faults.

To get an idea for the proof, we show that Pk with k = 3 and the uniform
distribution is in a full-information 3-tolerant ex post NE with a strictly self-
interested adversary. If none or all of the players are adversarial, then all non-
adversarial players should follow the protocol (since it is in a full-information



ex post NE). If two players are adversarial, then they can always force a win,
and so the third player may as well follow the protocol. Finally, if only one
player is adversarial, then he can not increase his chance of winning (by the
full-information ex post NE), and since the adversary is strictly self-interested
he will not deviate. Hence, it is also a full-information ex post NE for the others
to follow the protocol.

To generalize this to more players, we divide the players into sets of 3, each
running P3. We then repeat this on the winners, until only one is left. The full
version of this paper [19] contains further details and an analysis of the resilience
of this protocol.

4.4 Resilience to Rational Coalitions

In Sections 4.2 and 4.3 the adversary corrupts some set of v players, and coordi-
nates their actions. Here we let players form a “rational coalition” to benefit all
members – namely, we consider the definitions of Section 2.5. For the following
theorems (whose proofs appear in the full version [19]), we restrict ourselves to
the case in which players are self-interested, and all want to be elected. First,
we show that it is impossible to have resilience against our weakest notion of a
rational coalition.

Theorem 7. Every leader election protocol in a full-information ex post NE has
a Pareto coalition of two players.

For a stronger notion, however, we can get a protocol that side-steps the
impossibility of leader election with adversarial coalitions of size n/2:

Theorem 8. There exists an explicit 2-round leader election protocol in a full-
information ex post Nash equilibrium with only 1 stable coalition. The coalition
is of size n− 1.

The protocol that achieves this is Pk with k = n and the uniform distribution
(see Section 4.1). We also have the following theorem, as a weak illustration
that we gained something by weakening our requirement from strong to stable
coalitions.

Theorem 9. For any n-player leader election protocol in a full-information ex
post Nash equilibrium, all coalitions of size n− 1 are strong.

5 Rational Random Sampling Protocols

We consider some universe of m items, and will construct protocols that output
each item with probability proportional to the number of players who (claim to)
like that item most. In the full version [19] we discuss generalizations to other
distributions. Due to Theorem 1, we restrict ourselves to single-minded players
– each i’s type ti ∈ [m] is the item he prefers, and he is indifferent about the



others. Theorem 1 also implies that no random sampling is possible with m = 2.
If m > 2 but players prefer only one of two items we are sampling from two items.
So we must limit the type profiles. We do this by considering balanced profiles: a
profile (t1, . . . , tn) for m items is z-balanced if each type occurs between n/m+z
and n/m− z times.

Theorem 10. For any n ≥ 66 and explicit r(n)-round leader election protocol
resilient to t(n) faults in a full-information ex post NE, there exists an explicit
(r(n) + 3)-round random selection protocol for a universe of size m ≥ 66 that is
in a full-information ex post NE for all (n(1/66− 1/m))-balanced type profiles.
For such profiles, the random selection protocol is resilient to t(bn/3 − n/66c)
faults.

Proof. The protocol is the following:

1. Each player announces his preferred item. Players are split into 3 categories
C1, C2, C3 as follows: all players with the same announced type are in the
same category, and the categories are “roughly” balanced: sets of players
with the same declared type are greedily assigned to the smallest Ci. Fix
ci = |Ci|, and note that |ci − cj | ≤ d for d = n/66 (assuming at most one
player lies about his preferred item).

2. For each i, players in Ci run the leader election protocol P to elect a repre-
sentative Ri.

3. For each i, the players in Ci+1 ∪ Ci+2 run the leader election protocol P,
and the winner chooses a uniformly random player Li from Ci.

4. R1, R2, and R3 run P3. The protocol is run so that players are elected with
probabilities c1

n , c2
n , and c3

n respectively.

5. The protocol’s output is the announced item of player Lj , where j is the
winner of P3 in the last round.

If a player i ∈ Cj truthfully announces his type, then he can no longer change
the probability of his type getting chosen: he only affects which of the other types
are potential winners (via his choice of Lk for k 6= j) or which player from Ci

participates in P3. However, since P3 is in a full-information ex post NE, this
does not matter either.

It remains to show that it is optimal for i to truthfully reveal his type.
Suppose i’s preferred item is B, the fraction of other players who announce B is
β, and they all get placed in Cj . Suppose i lies about his type and gets placed
in Ck 6= Cj . How can i cheat? i wins the leader election protocol of step (2) with
probability 1/ck and the leader election protocol of step (3) (choosing Lj) with
probability 1/(ck+c`) for ` 6= j, k. If i is elected in both leader election protocols,
he can force the winner to be a player who wants B with probability at most
1. If he wins only the leader election protocol of step (2), he can cause j to win
in P3 with probability 1 − ck/n. If he wins only the leader election protocol of
step (3), he can force Lj to be a player who wants B (but that player wins P3

with probability cj/n. The probability that B is the chosen type given that i is



cheating is

Pr [B wins] <

(
1− 1

ck + c`
− 1

ck
+

1

ck
· 1

ck + c`

)
· β

+
1

ck + c`
· cj
n

+
1

ck
· βn
cj

(
1− ck

n

)
+

1

ck
· 1

ck + c`

= β − β

ck + c`
− β

ck
+

cj
(ck + c`)n

+
βn

ck · cj
− β

cj
+

1

ck
· 1

ck + c`
.

By our balancedness assumption, we know that n/3−d ≤ c1, c2, c3 ≤ n/3+d,
and that β ≤ d/n. Plugging in these values (and performing some manipulations)
yields

Pr [B wins] < β +

(
n+ 3d

2n− 6d

)
1

n
+

9d+ 18(
n
3 − d

)2 .
It can be verified that when d ≤ n/66 and n ≥ 66, we get that Pr [B wins] <

β+1/n. Now, if player i were to bid truthfully, then the probability that B wins
would be β + 1/n (since i’s vote adds to B’s chance of winning). Thus, it is an
optimal strategy for i to bid truthfully.

What about resilience? Suppose there is an adversary of size at most t(bn/3−
n/66c) faults. In order to force an outcome in some predefined set, the adversary
must win at least one of the 6 runs of the leader election protocol P, and each
runs on a set of at least bn/3−n/66c players. Since P is resilient for this number
of adversaries, the probability that the adversary loses all of them is at least ε6

for some constant ε > 0.

The following works for smaller m, and is proved in the full version [19].

Theorem 11. For n ≥ 3, any explicit r(n)-round leader election protocol re-
silient up to t(n) faults in a full-information ex post NE, and any constant nat-
ural number m ≥ 3, there exists an explicit (r(n) + 4)-round random selection
protocol for a universe of size m that is in a full-information ex post NE for all
z-balanced profiles, where z = n/10m2. For such profiles, the random selection
protocol is resilient up to t(bn/m− zc) faults.

6 Conclusion and Open Problems

Perhaps the main insight of this paper is that the full-information model is a
setting that allows for a relatively clean examination of the interplay between
rationality and adversarial behavior in the presence of asynchronous communi-
cation. While we have explored numerous aspects of this interplay, we are now
faced with many more open questions.

The first set of questions consists of direct extensions of the results presented
here. For example, can one generalize the types of preferences for which there
are faithful and resilient protocols? For random selection protocols, for example,



one might consider a setting in which each players likes some set of items, and
dislikes the others. Are there random sampling protocols with weaker balanced-
ness assumptions? How about such protocols that are rational in the face of
an adversary, or resilient to rational coalitions? Also, are there protocols with
few strong coalitions? Finally, one may consider approximate solution concepts:
for example, one may desire all linearizations of a protocol to be in an ε-Nash
equilibrium for a small but positive ε. Note that in this case our impossibility
result of Theorem 1 no longer applies.

The second set of questions is more open-ended. What can one say about
rationality for more general protocol problems in the full-information model?
And are there other tractable models for the study of the interplay between
rationality and adversarial behavior?
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