
Threshold Decryption and Zero-Knowledge
Proofs for Lattice-Based Cryptosystems

Rikke Bendlin and Ivan Damg̊ard

Department of Computer Science, Aarhus University
{rikkeb, ivan}@cs.au.dk

Abstract. We present a variant of Regev’s cryptosystem first presented
in [Reg05], but with a new choice of parameters. By a recent classical re-
duction by Peikert we prove the scheme semantically secure based on the
worst-case lattice problem GapSVP. From this we construct a threshold
cryptosystem which has a very efficient and non-interactive decryption
protocol. We prove the threshold cryptosystem secure against passive
adversaries corrupting all but one of the players, and againts active ad-
versaries corrupting less than one third of the players. We also describe
how one can build a distributed key generation protocol. In the final part
of the paper we show how one can, in zero-knowledge - prove knowledge
of the plaintext contained in a given ciphertext from Regev’s original
cryptosystem or our variant. The proof is of size only a constant times
the size of the public key.

1 Introduction

Cryptography based on lattice problems is one of the most important examples of
techniques holding promise for public-key cryptography that is secure even under
quantum attacks and are also interesting in that they can be based on worst-
case complexity assumptions. Recently, these techniques have become much more
efficient after it has been realized that one can base the actual cryptosystem on
the learning with error problem (LWE), and then argue that the (variant of
the) LWE problem used is as hard as some lattice related problem, typically
computing the shortest vector in a lattice. In the LWE problem, the adversary
must compute a secret vector s with entries in some field or ring, given only the
inner products of s with some public vectors where, however, some noise has
been added to the products. As mentioned, basing a cryptosystem on LWE can
lead to quite efficent cryptosystems, see, e.g., [Reg05],[PVW08],[MR08],[Pei09].

As lattice-based cryptography moves closer to practice, it becomes an impor-
tant research question to investigate whether these cryptosystems can provide
the same “extra” functionality we have come to expect from well-known public-
key cryptosystems based on factoring or discrete logarithms. For instance, can
we have threshold versions of these systems? In other words, we want to share
the private key among a set of servers and efficently decrypt a ciphertext while
revealing nothing but the plaintext to the adversary. And furthermore, can one

prove, in zero-knowledge and efficiently, knowledge of the plaintext contained in
a given ciphertext?

In this paper we construct such a threshold cryptosystem, based on a variant
of Regev’s system [Reg05]. We show our scheme semantically secure based on
a worst-case lattice problem using a recent reduction of Peikert [Pei09]. To the
best of our knowledge, it is the first lattice-based threshold cryptosystem. We
need to use a larger modulus than Regev, thus making ciphertexts larger, on
the other hand we get a very efficient and non-interactive decryption protocol:
each player needs only to do local computation and announce a single element
from the underlying ring. The basic version of the protocol is secure against a
passive adversary corrupting all but one of the players. For a small number of
players, we show an equally efficent version secure against a malicious adversary
corrupting less than a third of the players. We also describe a distributed protocol
for generating keys.

Various improvements of Regev’s original cryptosystem have been made since
its first appearence, e.g. in [PVW08] and [MR08]. Our threshold cryptosystem
can be generalized in the same way, but we stick to Regev’s original approach
here for simplicity.

In the final part of the paper we present a zero-knowledge protocol for proving
knowledge of the plaintext contained in a given ciphertext, for Regev’s original
cryptosystem as well as our variant. The proof is much more efficient than what
generic methods would give us: it has size only a constant times the size of the
public key, and the computation required is comparable to what is required to
generate keys. The protocol is based on the construction from [IKOS07] of zero-
knowledge from multiparty computation protocols. Whereas this paradigm has
perhaps been perceived primarily as a theoretical tool, we show here that it can
also be potentially relevant in practice.

2 Preliminaries

When writing x ∈R S we mean that x is chosen uniformly at random from the
set S. Equivalently x ∈χ S means choosing x from the set S according to the
distribution χ. For some distribution χ writing x ∼ χ means that x is distributed
according to χ.

Given a probability distribution χ on Zq, let n be some integer and s ∈ Znq .
We define As,χ as the distribution on Znq × Zq obtained by choosing a ∈R Znq ,
e ∈χ Zq and outputting (a, 〈a, s〉 + e). We define the decisional learning with
errors (LWE) problem as being able to distinguish between a sample from As,χ

and the uniform distribution on Znq × Zq with non-negligible probability. We
define the search LWE problem as given a sample from As,χ finding s with
non-negligible probability.

By Ψα we denote a discrete Gaussian distribution on Zq with mean 0 and
standard deviation qα√

2π
. Likewise Ψα is a continuous Gaussian distribution on

T = R/Z with mean 0 and standard deviation α√
2π

. By χ∗k we denote the
distribution given by summing k independent samples from χ.

3 Cryptosystem

We first present the underlying cryptosystem which was proposed first in [Reg05],
but with a new choice of parameters better suited for the distributed decryption
protocol given later.

Let n be the security parameter of the cryptosystem. Then the main param-
eter is an integer q which is chosen as q = 2O(n). More specifically q will not be a
prime but a B-smooth number where B is of polynomial size. That is q =

∏
pi

is a product of prime numbers p1, . . . , pk, where pi < B and also pi > u, the
number of players in the distributed decryption protocol. The latter requirement
on the primes is necessary in order to do secret sharing over the the ring Zq,
more on this later. We also need an integer m which will be chosen to be O(n3).
Finally, we need a distribution χ on Zq which will be taken to be the discrete
Gaussian distribution Ψα, where α = qβ for β = 1/4.

The cryptosystem is now defined as follows:

– Secret key: Choose s ∈R Znq . The secret key is then s.
– Public key: Choose m vectors a1, . . . ,am ∈R Znq , m elements e1, . . . , em ∈χ

Zq. The public key is then given by (ai, bi = 〈ai, s〉+ ei)mi=1.
– Encryption: Choose a vector r = (r1, . . . , rm) ∈R {0, 1}m. Given a bit γ,

the encryption of γ is given by (
∑m
i=1 riai, γ · b

q
2c+

∑m
i=1 ribi).

– Decryption: Given a ciphertext (a, b), calculate b − 〈a, s〉 and determine
whether it is closer to 0, the encrypted bit being 0, or closer to q

2 , the
encrypted bit being 1.

The correctness of the decryption protocol is given by the following theorem.

Theorem 1 (Correctness). If for any k ∈ {0, 1, . . . ,m} it holds that

Pr
e∼χ∗k

(|e| ≥ 3
√
q) ≤ 2−O(n)

then the decryption protocol will give correct output except with negligible prob-
ability.

A similar theorem is proved in [Reg05] for Regev’s original choice of parameters.
The intuition is clear, if the noise added is not too big, we will be able to
decrypt to the right bit. The correctness with the new parameters follows from
the following claim.

Claim (Correctness). For the choice of parameters made, for any k ∈ {0, 1, . . . ,m},
a constant c ∈ (0, 4) and e ∼ χ∗k it holds that

Pr
e∼χ∗k

(|e| ≥ c
√
q) ≤ 2−O(n)

Proof. We will prove this using the Chebyshev inequality, but first we will reduce
the problem from Ψα to Ψα. Given e ∼ Ψ

∗k
α we have that e =

∑k
i=1bqxie (mod q),

where xi ∼ Ψα. The value of e is at most k < m < c
√
q/2 away from e′ =

∑k
i=1 qxi (mod q), so it is sufficient to prove that |e′| < c

√
q/2 except with

negligible probability. Since e′ comes from a distribution with standard deviation√
k · 4
√
q and mean 0 we get the following result from Chebyshev’s inequality,

Pr (|e′| ≥ 3
√
q/2) ≤ Pr (|e′| ≥ t ·

√
k 4
√
q) ≤ 1

t2

where m = n3 and t =
c
√
q

2
√
m 4√q ≥

c
√
q

d
√
q 4√q = q1/c · q−1/d · q−1/4, for some constant

d. Now considering 1/t2 we see that this will be negligible if d > − 4c
c−4 . But we

can always choose such a d since c < 4. ut

Note that the inequalities used above are not very tight, especially the Chebyshev
inequality. Therefore in practice one would expect to be able to choose much
better parameters, for instance a bigger standard deviation on the distribution
used. This would in turn give us security reductions to the hardness of somewhat
bigger lattice problem instances. Furthermore the claim is actually stronger than
what is needed for the original decryption protocol to be correct, but we will
need this stronger result in the proofs of the distributed decryption protocols
described below.

The security of the cryptosystem is given by the following theorem.

Theorem 2 (Security). The cryptosystem is semantically secure under the
assumption that GapSVP is hard in the worst case.

Proof. We sketch the ideas of the proof. The proof of security given in [Reg05]
is based on the property that distinguishing between encryptions of 0 and 1 is
at least as hard as distinguishing public keys from randomly chosen elements
in Znq × Zq. The latter problem being the decision LWE problem. The proof of
the reduction does not depend heavily on the values of the parameters, and is
therefore still valid with the new choice of parameters.

The decision LWE is then further reduced to search LWE. This reduction in
[Reg05] heavily relies on the fact that q is chosen to be polynomial in that it
does exhaustive search over all elements in Zq. But in fact the same idea can
be used when q is exponential in size, but B-smooth with B polynomial. The
idea being to do the reduction modulo each of the primes pi in q, and recombine
the solutions to a full solution modulo q using the Chinese Remainder Theorem.
This was already observed in [Pei09].

The last step is to reduce search LWE to standard lattice problems. Since q
is chosen to be exponentially large we can use the reduction to GapSVP made
in [Pei09]. ut

This is another advantage of choosing an exponentially large q: With the original
choice of a polynomial q the reductions to lattice problems are either a quantum
reduction as in [Reg05] or a reduction to a special variant of GapSVP, the
hardness of which is not completely understood.

4 Distributed Decryption (Passive Adversaries)

In this section we present a distributed decryption protocol for the above cryp-
tosystem involving u players which is secure against a static, passive adversary
corrupting up to t = u − 1 players. That is, we assume the adversary is able
to see all messages and internal data of a corrupted player, but the player still
follows the protocol. The adversary must choose which players to corrupt at the
start of the protocol.

We assume that communication is synchronous and that the client has access
to a broadcast channel to all players. Private channels between players are not
necessary since there is no interaction between players in the protocol. We assume
the adversary sees all communication between the client and the players.

We use Shamir secret sharing over Zq as described in [Sha79] to make secret
sharings of various values in the protocol. Normally Shamir secret sharing is
done over a field, but since q is not a prime Zq is only a ring. This turns out
not to be a problem with the choice made of the prime factors in q. The only
thing that is needed is that one can do Lagrange interpolation over the points
1, . . . , u which in turn boils down to being able to invert elements in this range.
We chose q =

∏
pi, where pi > u, so obviously inversion of the points needed is

possible.
We furthermore make use of the concept of pseudorandom secret sharing

(PRSS) described in [CDI05]. PRSS will enable the players to non-interactively
share a common random value from some interval. The idea is as follows. For
each subset A of size t of the players we associate a key KA ∈R Zq. Such a key
is given to player Pj exactly if Pj /∈ A. Assume we are given a pseudorandom
function φ that given a key and a ciphertext as input, will output values in the
interval [−√q,√q]. A player can now compute φKA

(c) for all KA he has been
given, and afterwards take an appropriate linear combination of the results.
This will result in all players having a Shamir share of the common random
value x =

∑
A φKA

(c). Since |A| = t there are
(
u
t

)
possibilities for A, so x will be

in the interval
[
−
(
u
t

)√
q,
(
u
t

)√
q
]
. We note that

(
u
t

)
= u for our choice of t (but

we will consider other choices later).
The protocol and proofs will be given in the setting of the Universal Com-

posability (UC) framework proposed by Canetti. For details of this see [Can01].

4.1 Key Generation and Distribution

We assume for now that generation and distribution of keys and key-shares to
players are handled by the functionality FKeyGen.

Functionality FKeyGen

1. When receiving “start” from all honest players, choose the secret key s =
(s1, ..., sn) and construct the public key (ai, bi)mi=1 as described in section 3.
Furthermore for each subset A of size t of the players, choose key KA ∈R Zq.

2. Receive from the adversary a set of shares si,j , i = 1, . . . , n for each corrupted
player Pj . Then construct using Lagrange interpolation a complete set of
shares si,j , i = 1, . . . , n, j = 1, . . . , u consistent with the shares received from
the adversary, and such that si,1, . . . , si,u form a set of shares of si. We write
[s] as short for the set of all shares. Send privately to each player Pj his
shares from [s] and all keys KA where Pj /∈ A.

3. Finally send the public key to all players and the adversary.

It may seem strange that this functionality allows the adversary to decide which
shares he wants to get of the secret key – why not let the functionality do the
sharing on its own? However, we need to define the functionality this way to
make sure it can be implemented. The problem is that a simulator trying to
simulate a given protocol will have to make sure that the view of the protocol
it generates for the adversary is consistent with what the functionality says to
the honest players. This is not possible if the functionality decides on all shares
on its own. One could say that what we model here is that we don’t care which
shares the adversary gets, as long as the secret is safe.

4.2 Decryption Protocol

We now describe the decryption protocol. To make things more easily describ-
able we introduce a client, who is the party receiving the ciphertext in the first
place, and who wants to decrypt with help from the players.

Protocol Decrypt

1. Each player sends “start” to FKeyGen and stores the public key, the share of
the secret key and the keys KA received.

2. When receiving a ciphertext c = (a, b), the client broadcasts c to all players.
3. The players compute [e′] = [b − 〈a, s〉] = [e + b q2c · γ]. Since (a, b) is public

this is a linear operation on s and only requires the players to locally do
the same linear operation on their shares. Then φKA

(c) is computed for all
the keys KA the player received and the player takes an appropriate linear
combination of the result to obtain a sharing [x] = [

∑
A φKA

(c)]. Finally the
players compute [x+ e′], and send all these shares to the client.

4. Having received all the shares of [x+e′] the client reconstructs x+e′, checks
whether it is closer to 0 or to q/2, and outputs 0 or 1 accordingly.

4.3 Security

To prove security we wish to be able to implement the following functionality.

Functionality FKeyGen−and−Decrypt

1. Upon receiving “start” from all honest players, choose the secret key and
construct the public key to be used. Send the public key to all players, the
client and the adversary.

2. Hereafter on receiving “decrypt (a, b)” from the client, send “decrypt (a, b)”
to all players and the adversary.

3. In the next round, send “result γ” to the client and the adversary, where γ
is the bit corresponding to the given ciphertext.

Theorem 3 (Security). When given access to the functionality FKeyGen and
assuming that φ is a pseudo-random function, the protocol Decrypt securely
implements FKeyGen−and−Decrypt. The adversary is assumed to be passive and
static, corrupting up to t = u− 1 of the players.

Proof. We abbreviate FKeyGen−and−Decrypt by FKG−D in the following. To prove
security we must construct a simulator to work on top of the ideal functionality
FKG−D, such that an adversary playing with either the simulator and ideal func-
tionality or the real world decryption protocol cannot tell in which case he is.
We denote by Adv the adversary communicating with the real decryption pro-
tocol and must show that we can simulate everything Adv sees. The simulation
proceeds as follows.

1. Let B denote the set of players corrupted by Adv. When receiving “start” to
FKeyGen send “start” to FKG−D. Upon receiving the public key, compute a
sharing of 0, the zero-vector in Znq , to simulate sharing the secret key. Also
choose the necessary keys KA. Then send to the adversary the public key,
the shares of the secret key corresponding to B, and the keys KA that should
be send to players in B.

2. When receiving “decrypt (a, b)” from FKG−D, the ciphertext is sent to Adv
for each player in B. When “result γ” is received in the next round, we have
to simulate the shares of x+ e′ that honest players would send. To play the
role of x, we form a value y as the sum of those φKA

(c) where the adversary
knows KA, and one uniformly random value from [−√q,√q] for each KA

that the adversary does not know. The idea is to let y+b q2c·γ play the role of
the value x+e+b q2c·γ that would be revealed in the real protocol. Note that
from the shares and keys given to the adversary, we can compute the shares
corrupted players would send to the client. Using Lagrange interpolation, we
can compute a polynomial f of degree at most t that is consistent with these
shares and has f(0) = y+ b q2c ·γ. We use this polynomial to compute shares
for the honest players and give these to the adversary.

The final thing is to prove that no environment is able to distinguish between
the real decryption protocol and the simulation presented above. This basically
comes down to proving that the decryption protocol is able to recover the bit
encrypted and that the distributions of the shares sent to the adversary in both
cases are computationally indistinguishable.

The shares of the secret key in step 1 are distributed in the same way in both
cases beacuse of the security of the underlying secret sharing scheme used. The
keys KA are also obviously distributed identically in the two cases.

Next, note that in both simulation and real protocol, the shares revealed in
the decryption step follow deterministically from the information sent in step 1

and the values y + b q2c · γ, x + e + b q2c · γ used in simulation, respectively real
protocol. It is therefore enough to show that these values are computationally
indistinguishable in the view of the adversary. For this, note that in the real
protocol the adversary is not given all keys KA, and so, by pseudorandomness
of φ and construction of y, y + e + b q2c · γ is computationally indistinguishable
from the x + e + b q2c · γ in the view of the adversary. Second since y is a sum
including at least one value that is uniform in an interval of size 2

√
q, which is

exponentially larger than the interval [− 3
√
q, 3
√
q] in which e is distributed, we

find that y + b q2c · γ is statistically indistinguishable from y + e+ b q2c · γ.
Finally in both the simulated and the real run the client will output the

correctly decrypted value. This is obvious in the simulated case and in the real
world it follows from Lemma 1 below. ut

Lemma 1 (Correctness). Let
(
u
t

)
< 1

4

√
q − 1. Assume that the reconstructed

value in the distributed descryption protocol is given by e + x, and furthermore
that the following is satisfied

Pr [|e| ≥ b√qc] ≤ 2−O(n).

Then the error probability when decrypting is negligible.

Proof. Given an encryption of 0 the result which is reconstructed is given by
b − 〈a, s〉 = e + x =

∑m
i=1 riei + x. Since

(
u
t

)
< 1

4

√
q − 1 according to our

assumption, we have that |x| < q
4 −
√
q. Combined with the assumption on |e|

we get that |e + x| < q
4 with probability at least 1 − 2−O(n). In this case the

result is closer to 0 than q
2 and the decryption is correct. A similar proof can be

done for an encryption of 1. ut

The distribution of e is exactly given by χ∗
P
ri , when FKeyGen has been used

to produce the keys, therefore according to the claim of section 3 we know that
|e| < b 3

√
qc with probability at least 1− 2−O(n). And so the assumptions in the

lemma is fulfilled.
We note that the correctness puts an upper bound on the possible number of

players, which is also to be expected, since there is a limit to how much random
noise can be added before an encryption of 0 turns into an encryption of 1.

5 Distributed Decryption for Stronger Adversaries

The protocol for doing distributed decryption against a passive adversary cor-
rupting up to t = u−1 players, can easily be turned into a protocol secure against
a stronger adversary. First, if the adversary is semi-honest, i.e. corrupted players
follow the protocol but may stop at any point, exactly the same protocol will
be secure, if t < u/2. The proof is the same, one just notes that at least t + 1
players will always complete the protocol.

If the adversary is active, again almost the same protocol and proof applies,
if we assume t < u/3. The only significant difference to the protocol is that the

client must use standard methods for error correction to reconstruct x + e′ at
the end of the decryption since some players may lie about their shares. This is
possible exactly when t < u/3.

It should be noted that both variants of the protocol are only feasible to
execute for a small number of players, since the number of keys KA we must give
to each player increases exponentially with u whenever t is a constant fraction of
u. However, in most realistic applications of threshold cryptography, one indeed
expects the number of players to be small.

6 Distributed Key Generation

In this section we will describe how to do key generation and distribution. In some
of the parts involving interaction between the players, we will have to assume
private communication channels between players. For a passive adversary, key
generation is quite straightforward, so we focus on the more interesting case of
an active, static adversary corrupting less than t = u/3 players.

We will need the following functionality for generating random (shared) val-
ues. It offers a number of commands, and a command is executed if all honest
players input the same command.

Functionality FRand

– On input “Random value to B” for a set of players B, choose s at random
in Zq and send s to all players in B.

– On input “Random shared value”, ask the adversary for a set of shares S =
{sj | Pj is corrupt}. Choose s at random in Zq and use Lagrange interpolation
to construct a set of shares [s] consistent with S, i.e., each corrupt Pj gets
share sj . Send shares from [s] to all honest players.

– On input “Shared value from D”, do the same as for “Random shared value”,
but get s from player D instead of choosing it at random.

– On input “Constrained value from D”, do the same as for “Shared value from
D”, but check that s received from D is in the interval [−2

(
u
t

)
3
√
q, 2
(
u
t

)
3
√
q].

If not, send “fail” to all players. Furthermore, if D is honest, he is assumed
to choose s in the interval [− 3.5

√
q, 3.5
√
q]. The seemingly strange choice of

intervals is dictated by the implementations that are available, see more
details below.

“Shared value from D” can be implemented using any protocol for verifiable
secret sharing. A simulator would simply run the protocol with the adversary
while following the protocol for the honest players (and using a dummy value
for s if D is honest), and then send the shares obtained for corrupt players to
the functionality. “Random shared value” can be done by calling “Shared value
from Pi” for each Pi, asking Pi to supply a random value si, and then locally
adding the resulting shares, thus obtaining [

∑
i si] which we use as [s]. “Random

value to B” is implemented by calling “Random shared value” and then have
players send their shares to all players in B.

Finally, “Constrained value from D” can be implemented using the technique
of non-interactive verifiable secret sharing (NIVSS) described in [CDI05] which
builds on top of PRSS described earlier. In the protocol for doing NIVSS, a set
of keys {KD

A } is assumed to be set up similar as for PRSS, i.e., KD
A is known

to all players not in A. But furthermore player D holds all keys and the value
s to be shared. The keys can be set up by calling “Random value to B”. The
pseudorandom function involved is chosen such that it outputs random values
from the interval [− 3

√
q, 3
√
q]. To generate the shared value, each player locally

computes random shares of a value r as in PRSS, and D can compute r since he
knows all keys. D then broadcasts s− r, and each player adds this value to their
share in r, thus obtaining [s]. D is disqualified if the value broadcast is not in
the interval [−

(
u
t

)
3
√
q,
(
u
t

)
3
√
q]. This guarantees that s is in the required interval

even if D is corrupt, since r is in the interval [−
(
u
t

)
3
√
q,
(
u
t

)
3
√
q]. If D is honest,

the distribution of s−r is statistically close to uniform in [−
(
u
t

)
3
√
q,
(
u
t

)
3
√
q] since

s is smaller than r by an exponentially large factor.
Given FRand, key generation is for the most part straightforward. The tricky

part, however, is that to generate the noise to be added to the public key, shares
of non-uniformly distributed values are to be generated and distributed. For this
we will invoke “Constrained value from Pj” for each Pj , since we can rely on
honest Pj ’s using the correct distribution, while corrupt Pj ’s cannot choose val-
ues that are large enough to do any damage, as we shall see.

Protocol KeyGeneration
The protocol assumes FRand is available.

1. To generate and distribute the secret key, invoke “Random shared value” n
times to form [s].

2. To generate and distribute the keys KA for PRSS, invoke for each set A of t
players “Random value to B”, where B is the complement of A (we assume
for simplicity that a random value from Zq is sufficient to form a key KA).

3. To generate the public key, invoke “Random value to P” nm times, where
P is the set of all players, and use the output as entries in the vectors ai.

4. Each player Pj chooses noise contributions ei,j , i = 1, . . . ,m according to the
distribution Ψα and uses these as input to invocations of “Constrained value
from Pj”. Note that a correctly chosen ei,j will be in the correct interval
[− 3.5
√
q, 3.5
√
q] except with negligible probability. Thus, we obtain [ei,j] for

i = 1 . . . u, j = 1, . . . ,m, and players compute by local operations [ei] =
[
∑
j ei,j].

5. Finally the players can compute by local operations [bi] = [ai · s + ei], and
reconstruct the bi’s by broadcasting the shares.

6.1 Security

For proving security one could show that the protocol KeyGeneration securely
implements the functionality FKeyGen defined in section 4.1. This functionality

however does not reflect the influence an active adversary will have on the pub-
lic key when using the protocol above. We therefore define a slightly different
functionality FKeyGen′ and use this in the security proof instead. In the end of
this section we will then show that the differences in the two functionalities does
not matter in terms of correctness and security.

The main difference from FKeyGen is that we will have the adversary supply
additional inputs before constructing and distributing keys. More specifically the
adversary will supply the functionality with noise contributions used in gener-
ating the public key.

Functionality FKeyGen′

1. When receiving “start” from all honest players, also receive from the adver-
sary, for each corrupted player Pj shares si,j , i = 1, . . . , n of the secret key
to assign to Pj .

2. Choose the secret key s and for each subset A of size t of the players choose
keys KA ∈R Zq.

3. For each entry i in the secret key make a complete set of shares si,j , i =
1, . . . , n, j = 1, . . . , u for each player consistent with the shares already re-
ceived from the adversary. This is done by Lagrange interpolation. To each
player Pj privately send his shares from [s] and all keys KA where Pj /∈ A.

4. For each corrupted player Pj receive noise contributions ei,j , i = 1, . . . ,m for
generating the public key.

5. To generate the public key choose the m vectors a1, . . . ,am ∈R Znq . For
each non-corrupted player Pj choose noise contributions ei,j according to
the distribution Ψα, the noise elements ei are now given by ei =

∑u
j=1 ei,j .

The public key is then given by (ai, bi = 〈ai, s〉+ ei)mi=1.
6. Finally send the public key to all players and the adversary.

Theorem 4. Given access to FRand, the protocol KeyGeneration securely im-
plements the functionality FKeyGen′ . The adversary is assumed to be active and
static, corrupting less than t = u/3 of the players.

Proof. We must construct a simulator to work on top of FKeyGen′ , such that
an adversary playing with either the simulator and FKeyGen′ or the real world
key generation protocol cannot tell the difference. By Adv we denote the adver-
sary communicating with the real world and must show that we can simulate
everything Adv sees. The simulation proceeds as follows.

1. When receiving the set of shares S from Adv in order to invoke “Random
shared value”, send “start” to FKeyGen′ and the shares received from Adv.

2. To simulate the generation of the public key, first choose nm random values
and send them to all players to simulate running “Random value to P”.

3. When receiving the noise contributions ei,j from Adv, also give these to
FKeyGen′ . Now we must simulate sharing all the noise contributions in the
real protocol from the invocation of “Constrained value from Pj”. Again
receive the shares that corrupted players will be given from Adv, and for the
rest simply choose random shares.

4. Finally when given the public key (ai, bi = 〈ai, s〉+ ei)mi=1 from FKeyGen we
must simulate the broadcast of shares of the bi’s in the real protocol. First
compute the shares the corrupted players are holding, based on the shares
provided by the adversary during the simulation. Then broadcast shares of
the bi’s consistent with the shares of the corrupted players. These can be
computed using Lagrange interpolation.

It should be fairly clear from the above steps, that an adversary will not be able
to distinguish communicating with the real protocol and the functionality with
simulator. Everything that is send back and forth, the secret key shares, public
key shares, KA keys and intermediate shares are distributed exactly the same
and in the same order. ut

We must also prove that security is still maintained in the original cryptosys-
tem, and furthermore that correctness and security is maintained in the dis-
tributed decryption protocol “Decrypt”. We abbreviate FKeyGen′−and−Decrypt
by FKG′−D in the following. By the functionality FKG′−D we denote the func-
tionality FKG−D using FKeyGen′ instead of FKeyGen.

Theorem 5. Assume we use FKeyGen′ to generate a key pair pk, sk and the
number of players u satisfies u

(
u
t

)
< 10
√
q/(2m). If GapSVP is hard in the worst

case, encryption under pk is semantically secure against any polynomial time ad-
versary who gets to interact with FKeyGen′ during key generation. Moreover, the
protocol Decrypt securely implements the slightly modified functionality FKG′−D
when given access to FKeyGen′ , in particular, decryption under sk produces the
correct plaintext except with negligible probability.

Proof. For semantic security note that by previous arguments solving decision
LWE is at least as hard as solving GapSVP. First note that a ciphertext is made
out of the public key (ai, bi = 〈ai, s〉 + ei)mi=1, especially if the bi’s are random,
ciphertexts contain no information on the plaintext. What we then show is, that
if an adversary is able to distinguish a public key generated by FKeyGen′ from
a sample from the uniform distribution on Znq × Zq, then we could use such an
adversary to solve decision LWE. Now given an instance I of LWE pretend to
run the FKeyGen′ functionality with the adversary. Get the noise contributions
from the adversary and add them to the LWE instance I. Return the instance
as the public key to the adversary and output exactly what he outputs. If I
contains uniform values so will the “public key” given to the adversary, if I is
taken from As,χ then our output given to the adversary exactly matches the
output of the real FKeyGen′ .

We will now argue that decryption is still correct except with negligible
probability. Let e + x be the reconstructed value after running the decryption
protocol, we will then look at e. First note that the noise contributed by honest
players is much smaller than that by corrupted players. We will look at the worst
case where the public key is made entirely by corrupted players. We have e =∑m
i=1 riei =

∑m
i=1

∑u
j=1 riei,j , where each ei,j has potential size 2

(
u
t

)
3
√
q. This

leads to a worst case with |e| = 2um
(
u
t

)
3
√
q. According to Lemma 1 decryption

will be correct if the probability that |e| ≥ √q is negligible. Therefore we get
that decryption is correct if the equality u

(
u
t

)
< 6
√
q/(2m) is fulfilled.

Finally we argue that we can still simulate the execution of the protocol
Decrypt now using the slightly modified FKG′−D. The proof is essentially the
same as the proof of Theorem 3, the only difference is that we should argue that
the interval from which e is taken is still exponentially much smaller than the
interval [−√q,√q] from which x is taken. Following the argument from above
we see that if we further limit the number of players, this can still be satisfied.
Assume for instance that we limit e to the interval [− 2.5

√
q, 2.5
√
q], this gives the

requirement that the inequality u
(
u
t

)
< 10
√
q/(2m) should be fulfilled. ut

7 Zero-Knowledge Proof of Plaintext Knowledge

In this section, we consider Regev’s original cryptosystem, where the random
choices and plaintext are binary and q is a prime. All arithmetic in this section
is modulo q. In the appendix we describe a slightly more complicated scheme
that works for our variant

We define the relation RRegev as the set of pairs {x,w} such that x =
((ai, bi)mi=1, (a, b)), and w = (r1, . . . , rm, γ) such that (a, b) = (

∑m
i=1 riai, γ ·

b q2c+
∑m
i=1 ribi). The language LRegev will be the set of x for which there exist

w with (x,w) ∈ RRegev. Our goal is to build a zero-knowledge interactive proof
for LRegev which is also a proof of knowledge for RRegev. In other words, the
prover demonstrates that the ciphertext is well-formed and that he knows the
plaintext and random coins that were used to form it.

We will use the technique from [IKOS07] where it was shown how to construct
zero-knowledge proofs from multiparty computation protocols. We briefly sketch
the idea: Assume we have a multiparty computation protocol π for input client I,
players P1, . . . , Pu and output client O, where I gets the prover’s secret witness
as input, shares it among the players, who then carry out a secure computation
that verifies whether the witness is valid with respect to the public common
input. The players send their results to O who outputs 1 or 0 accordingly. The
protocol must be secure against a malicious adversary corrupting the clients
and/or up to t of the other players. The prover now emulates π “in his head”
and commits to the views of all players. Here, a view consists of the inputs
and random coins of the player, and all received messages. The verifier selects
a random subset of players among those that π can tolerate as corrupted sets1.
The prover must open the corresponding commitments and the verifier checks
that these views are consistent with each other and with the protocol and accepts
or rejects accordingly.

The intuition is that the protocol is zero-knowlegde since π is secure even
if the set chosen by the verifier is corrupted, and hence no information on the
secret witness is released. The protocol is sound since if the witness is invalid,

1 The protocol must be secure against a corrupt I, but the verifier is of course not
allowed to “open” I.

the prover must introduce some inconsistency to make it seem that π accepts
the witness.

Indeed, it is shown in [IKOS07] that if π implements the function that checks
the witness with perfect sercurity and if both u and t are θ(n), then the result-
ing two-party protocol has soundness error 2−Ω(n). It is honest verifier zero-
knowledge, and can be made zero-knowledge in general, e.g., by generating the
verifier’s choice of subset to corrupt via a suitable coinflip protocol.

We make a couple of observations that are helpful in constructing a protocol
π for our purposes: first, while broadcast is usually considered an expensive
resource, it is virtually for free in this setting - any information π would broadcast
can just be sent to the verifier immediately, as he would see it anyway no matter
what subset is chosen. This was already noted in [IKOS07]. Second, π does
not have to guarantee termination, in the following sense: suppose all players
broadcast some message in some round of π, and then all honest players decide
(using the same procedure) whether to abort or continue. Suppose further that
if all players have behaved honestly so far, we will never abort, and that further
π has perfect correctness and privacy conditioned on the event that we do not
abort. In this case, we can simply ask the verifier to reject if the prover sends
a set of broadcast messages that would cause an abort. This will not hurt the
honest prover, but will force a cheating prover to claim that he lets the virtual
players behave such that π terminates.

In view of the above, all we have to do is to build an efficient protocol π that
checks r1, . . . , rm, γ against (ai, bi)mi=1 and (a, b). In order to do this, we need
to borrow two tools from the design of efficient multiparty protocols, namely
Packed Secret-Sharing[FY92] and Hyper-Invertible Matrices[BTH08], which we
describe below.

7.1 Packed Secret Sharing

Packed Secret-Sharing is a generalization of standard Shamir sharing where se-
cret values are assigned to more than one interpolation point. In other words, the
secret to share is in fact a vector (x1, . . . , x`) ∈ Zlq. To do the sharing, we con-
struct a random polynomial f of degree at most d, such that f(0) = x1, f(−1) =
x2, . . . , f(−` + 1) = x`. The shares are, as usual, f(1), . . . , f(u). To make this
possible, and to guarantee privacy against t corrupted players, d must be at least
t+ `−1. In our case, we will choose ` = n+1, and t to be θ(n). Furthermore, we
will need that there are sufficiently many honest players such that their shares
alone can determine a polynomial of degree 2d, i.e., u − t ≥ 2(t + n + 1). This
shows that we can indeed choose u to be θ(n), as promised above.

Note that to ensure that we have enough distinct evaluation points, we need
that if q is a prime, it must be larger than `+ u = n+ 1 + u which is θ(n) or, in
our construction of q for the threshold scheme, the smallest prime factor must
be larger than `+ u. This is already satisfied by the schemes as they stand.

We will write [z]d for a set of shares determining a packed sharing of the
block z using a polynomial of degree d.

Note that if players locally add respectively multiply their shares of blocks
z, z’, this results in shares in the coordinate-wise sum respectively product, i.e.,
we have [z]d + [z’]d = [z+z’]d, and [z]d ∗ [z’]d = [z ∗ z’]2d, where ∗ denotes the
coordinate-wise product.

7.2 Hyper-Invertible Matrices

A hyper-invertible matrix M (with entries in Zq) has the property that any
square submatrix of M is invertible. Such matrices can be constructed from Van
der Monde matrices and were used in [BTH08] to check consistency of secret
sharings with zero error probability. We briefly explain how this works:

Suppose M is a matrix with u rows and u− t columns. Suppose the players
hold u − t sets of shares [z1], . . . , [zu−t], and we want to check that each set
of shares is consistent with a polynomial of degree at most e. The players can
locally compute u new sets of shares,

[M(z1, . . . , zu−t)1], . . . , [M(z1, . . . , zu−t)u] := [y1], . . . , [yu],

simply by multiplying M on the vector of u− t shares that they hold (thinking
of the shares as a column vector). Assume now that for i = 1, . . . , u, each player
sends his share in [yi] to Pi. This allows Pi to check that the shares he receives
are e-consistent, i.e., on a polynomial of degree at most e. Pi can now broadcast
whether his check was OK or not.

We can see that if all players are happy, it means in particular that all honest
players are happy, and that they therefore agree with all honest players on the
set of u− t e-consistent shares that they checked. I.e., {[yj]}j∈H , where H is the
set of honest players, are all e-consistent. Let MH be the matrix we get from M
by only taking the rows corresponding to players in H. This matrix is invertible
by assumption on M , so we can obtain [z1], . . . , [zu−t] as a linear function defined
by M−1

H of the the shares in {[yj]}j∈H , and hence the [zi]’s are all e-consistent
as well.

Furthermore, if it is important that the shared information is kept secret, one
can arrange the input shares such that only [z1], . . . , [zu−2t] contains informa-
tion we want to protect, while [zu−2t+1], . . . , [zu−t] are chosen randomly using
polynomials of degree at most e. These t random sets of shares will randomize
the t sets of shares seen by corrupt players, again by hyper-invertibility of M .
This also means that we do not need, for instance, [z1] to be a random sharing
of z1 to be able to hide it.

Note also that this method can be used to also check if z1, . . . , zu−t all satisfy
some fixed condition, as long as what the condition asks is that each zi satisfies
some linear equation. For instance, we might want to check that zi = (0, . . . , 0)
for all i. This is done by having players verify that all yi satisfy the same con-
dition.

Regarding the complexity, it is easy to see that a set of shares of total size
T bits can be verified while keeping the shared information perfectly private by
sending O(T) bits and creating random shares of size O(T) bits.

7.3 The Multiparty Protocol

Recall that the secret witness to be checked consists of binary values r1, . . . , rm, γ
where (a, b) = (

∑m
i=1 riai, γ·b

q
2c+

∑m
i=1 ribi), and where the public information is

public key (ai, bi)mi=1 and ciphertext (a, b). For any z ∈ Zq, we set z = (z, z, ..., z),
a vector of length n+ 1. The protocol works as follows:

Protocol VerifyCiphertext

1. The input client I sends shares [ri]d, i = 1, . . . ,m and [γ]d to the players. In
addition, it also sends random shares as required for the verifications below
using the hyper-invertible matrix M .

2. Verify that [r1]d, . . . , [rm]d, [γ]d are d-consistent and that in each block shared,
all n+ 1 entries are equal. If any player broadcasts “not OK”, the protocol
aborts.

3. Compute, using local multiplications, [ri(1− ri)]2d for i = 1, . . . ,m and
[γ(1− γ)]2d.

4. Form sharings of the public vectors: [(ai, bi)]d, i = 1, . . . ,m, [(0, . . . , 0, b q2c)]d,
and [(a, b)]d (using some default choice of polynomial of degree at most d).
We then emulate the encryption on the shared values: compute, using local
computation,

[
m∑
i=1

ri ∗ (ai, bi)]2d + [(0, . . . , 0, bq
2
c) ∗ γ]2d = [(

m∑
i=1

riai,
m∑
i=1

ribi + γbq
2
c)]2d

From this, we locally subtract shares of the ciphertext [(a, b)]d, so we get

[(
m∑
i=1

riai − a,
m∑
i=1

ribi + γbq
2
c)− b]2d := [(z, v)]2d

5. Verify that [r1(1− r1)]2d, . . . , [rm(1− rm)]2d, [γ(1− γ)]2d and [(z, v)]2d are
indeed 2d-consistent sharings of all-zero blocks. If any player broadcasts “not
OK”, the protocol aborts. This ensures that the ri’s and γ are binary, and
that encryption results in the claimed ciphertext.

Since the verifications of shares work with zero error probability, it is clear
that if the protocol terminates successfully, we are guaranteed that the shared
values determine the correct ciphertext. No information on the secret is released,
since the only communication is what is required for the verification of sharings,
and we already argued above that these release no information on the shared
values that we verify.

Regarding complexity, it is clear from inspection of the protocol that it is
completely determined by the total size T of the sharings [ri]d, i = 1, . . . ,m and
[γ]d, in particular, the total size of communication is O(T). We have that T is
O(mu log q) which is O(mn log q). Note that the size of the public key is also
O(mn log q).

It is described in [IKOS07] how to transform this protocol into a zero-
knowledge proof using an unconditionally binding commitment scheme. If this
scheme allows us to commit to strings with an additive length increase that is
independent of the string length, we can preserve the efficiency of the multiparty
protocol. An unconditionally hiding commitment scheme is also needed, for the
verifier to commit to his challenge. This gives us:

Theorem 6. Given an unconditionally binding and an unconditionally hiding
commitment scheme with constant additive overhead, using protocol VerifyCi-
phertext in the construction from [IKOS07] produces a two-party zero-knowledge
proof for LRegev. The protocol has communication complexity O(mn log q) bits
and error probability 2−Ω(n).

We can base the commitment schemes needed on lattice problems, thus us-
ing assumptions we would need anyway. An efficient unconditionally binding
scheme follows from the cryptosystem in[PVW08], while an unconditionally hid-
ing scheme can be based on any collision intractable hash function [DPP98],
which in turn can be based on lattice assumptions.

In [IKOS07], it was not shown that their construction is a proof of knowl-
edge for RRegev. However, for the honest verifier zero-knowledge version of the
protocol, one can do a rewinding argument to show that it is indeed a proof of
knowledge with negligible knowledge error. If we go to the version that is zero-
knowledge in general, things are different, since the construction from [IKOS07]
has the verifier commit to his challenges, which means rewinding the prover is
not possible unless the extractor can equivocate these commitments.

However, in the common reference string model, we can easily make the
protocol be a proof of knowledge for RRegev, by having a public key for a com-
mitment scheme placed in the reference string, e.g., a public key for the cryp-
tosystem from [PVW08], and the prover uses these for committing to the views.
If the extractor knows the corresponding secret key, it can extract all committed
views without rewinding and easily compute the secret.

References

[BTH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure mpc with
linear communication complexity. In TCC, pages 213–230, 2008.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

[CDI05] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseu-
dorandom secret-sharing and applications to secure computation. In TCC,
pages 342–362, 2005.

[DPP98] Ivan Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. Statistical se-
crecy and multibit commitments. IEEE Transactions on Information Theory,
44(3):1143–1151, 1998.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure
computation (extended abstract). In STOC, pages 699–710, 1992.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In STOC, pages 21–30, 2007.

[MR08] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In D. J.
Bernstein and J. Buchmann, editors, Post-quantum Cryprography. Springer,
2008.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In STOC, pages 333–342, 2009.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for
efficient and composable oblivious transfer. In CRYPTO, pages 554–571,
2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93, 2005.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

A Zero-Knowledge Proof when q is not prime

The only part of the multiparty protocol underlying our zero-knowledge proof
that does not work when q is not a prime is the step where it is verified that
the ri are binary, essentially by verifying that ri(1 − ri) mod q = 0. Of course,
this check is not good if q is not prime. We sketch a procedure that can be used
instead, but has only statistical security:

The input client I supplies [ri]d and it is checked as in the original protocol
that a block has been shared where all entries are equal. Note that if the sharing
was correctly formed, it would be the case that r′ = 2ri − (1, . . . , 1) would be
(1, . . . , 1) or (−1, . . . ,−1). I also supplies a sharing [z]d = [(z1, . . . , zn+1]d such
that all zi are randomly chosen to be 1 or −1. Finally, a public random challenge
is generated: v = (v1, . . . , vn+1), where each vi is 0 or 1. (When transforming this
to a 2-party protocol, we let the verifier generate the challenge). We compute
(locally)

[r′ ∗ z ∗ v + z ∗ (1− v)]3d.

Finally we add a random degree 3d-sharing of the all-zero block and open the
result. The opened block must contain only 1’s and −1’s. Put another way, the
opening shows us, in each coordinate position, an entry from z or from r′ ∗z and
they must all be ±1.

For privacy, the intuition is that by random choice of z, r′ ∗ z has no infor-
mation on r′ and neither does z, so seeing, for each index i, the i’th entry of
r′ ∗ z or z reveals nothing on r′.

For correctness, if there is just a single position in which both z and r′ ∗ z
are ±1, r′ will be ±1 in that position too, and this implies that the original ri
was 0 or 1. On the other hand, if no such position exists, the honest players will
accept [ri] with probability only 2−n−1, by the assumed randomness of v.

