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Abstract. The Naor-Yung (NY) paradigm shows how to build a chosen-ciphertext
secure encryption scheme from three conceptual ingredients:
� a weakly (i.e., IND-CPA) secure encryption scheme,
� a �replication strategy� that speci�es how to use the weakly secure encryption

scheme; concretely, a NY-encryption contains several weak encryptions of the
same plaintext,

� a non-interactive zero-knowledge (NIZK) proof system to show that a given ci-
phertext is consistent, i.e., contains weak encryptions of the same plaintext.

The NY paradigm served both as a breakthrough proof-of-concept, and as an inspira-
tion to subsequent constructions. However, the NY construction leads to impractical
encryption schemes, due to the usually prohibitively expensive NIZK proof.
In this contribution, we give a variant of the NY paradigm that leads to practical, fully
IND-CCA secure encryption schemes whose security can be based on a generic class of
algebraic complexity assumptions. Our approach re�nes NY's approach as follows:
� Our sole computational assumption is that of a Di�e-Hellman (DH) type two-

move key exchange protocol, interpreted as a weakly secure key encapsulation
mechanism (KEM).

� Our �replication strategy� is as follows. Key generation consists of replicating the
KEM several times, but only the �rst pass. Encryption then consists of performing
the second pass with respect to all of these, but with the same random coins in
each instance.

� For proving consistency of a given ciphertext, we employ a practical universal
hash proof system, case-tailored to our KEM and replication strategy.

We instantiate our paradigm both from computational Di�e-Hellman (CDH) and from
RSA type assumptions. This way, practical IND-CCA secure encryption schemes based
on search problems can be built and explained in a generic, NY-like fashion.
We would like to stress that while we generalize universal hash proof systems as a proof
system, we do not follow or generalize the approach of Cramer and Shoup to build IND-
CCA secure encryption. Their approach uses speci�c hash proof systems that feature,
on top of a NIZK property, a computational indistinguishability property. Hence they
necessarily build upon decisional assumptions, whereas we show how to implement our
approach with search assumptions. Our approach uses hash proof systems in the NY
way, namely solely as a device to prove consistency. In our case, secrecy is provided
by the �weak encryption� component, which allows us to embed search problems.
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1 Introduction

One of the main �elds of interest in cryptography is the design and the analysis of
the security of encryption schemes in the public-key setting (PKE schemes). The
notion of security against chosen-ciphertext attack (IND-CCA security) is due to
Racko� and Simon [23] and is now widely accepted as the standard security
notion for public-key encryption schemes. In contrast to security against passive
adversaries (security against chosen-plaintext attacks aka semantic security), in
a chosen-ciphertext attack the adversary plays an active role by obtaining the
decryptions of ciphertexts (or even arbitrary bit-strings) of his choosing. The
practical signi�cance of such attacks was demonstrated by Bleichenbacher [1] by
means of an IND-CCA attack against schemes following the encryption standard
PKCS #1.

The Naor-Yung paradigm. Historically, the �rst scheme that was prov-
ably secure against a weaker variant of IND-CCA attacks (namely, �lunch-time
attacks�) is due to Naor and Yung (NY) [21]. Dolev, Dwork, and Naor [9] later
showed how to modify the paradigm of NY to achieve full IND-CCA security. We
brie�y outline the general idea in the following. To start, let's assume a weakly
(i.e., IND-CPA) secure encryption scheme. (IND-CPA secure encryption schemes
are a well-understood primitive, and can be constructed from various search or
decisional computational problems, see, e.g., [11].) Now a ciphertext contains two
weakly secure encryptions of the same message (under di�erent public keys of
the weakly secure scheme), along with a non-interactive zero-knowledge (NIZK)
proof that indeed the same messages were encrypted. During the security proof,
a simulator will know precisely one of the two secret keys for the weakly secure
encryption schemes. (Note that in order to implement the decryption oracle, the
simulator only needs to decrypt one ciphertext component and rely on the sound-
ness of the NIZK proof.) Hence, we can carve out three conceptual ingredients
for the NY paradigm:
� a weakly (i.e., IND-CPA) secure encryption scheme,
� a �replication strategy� that speci�es how to use the weakly secure encryption
scheme, and

� a NIZK proof system to show that a given ciphertext is consistent.
Of course, these ingredients are not independent (e.g., the statement to be proven
by the NIZK proof depends both on the weakly secure encryption scheme and on
the replication strategy). The system of Dolev, Dwork and Naor uses a similar
overall approach, the main di�erence the used replication strategy. (Additionally,
they also require a more special type of �non-malleable� NIZK proof systems.)

Hash proof systems. The �rst practical schemes provably IND-CCA secure
under standard cryptographic hardness assumptions were due to Cramer and
Shoup [8,8]. They later generalized their initial scheme to the paradigm of �hash
proof systems� (HPSs) [7], thereby yielding new practical schemes from a number
of alternative intractability assumptions. The approach of Cramer and Shoup is
inspired by the NY paradigm. And indeed, a HPS, as used by Cramer and
Shoup, combines the encryption and the proof part of the NY paradigm in one



primitive. However, even though the concept of HPSs is generic, its use in [7]
to build encryption schemes inherently relies on decisional assumptions, such as
the assumed hardness of deciding if a given integer has a square root modulo a
composite number with unknown factorization, or if deciding if a given tuple is
a Di�e-Hellman tuple or not (DDH assumption).

Particular instances of the HPS-based schemes could later be optimized, lead-
ing to a number of even more e�cient schemes (e.g., [10,19,14,18]). However, all
of these schemes are based on decisional assumptions (mostly the DDH assump-
tion).

Lossy trapdoor functions and the approach of Rosen and Segev. An
alternative generic framework of constructing IND-CCA secure encryption schemes
is given by the recent concept of lossy trapdoor functions [22] that led to the
�rst construction based on a (decisional) assumption related to �nding shortest
vectors on lattices. However, also lossy trapdoor functions inherently rely on
decisional assumptions rather than computational assumptions.1

Recently, Rosen and Segev [24] proposed a re�nement of the NY approach
that does not require an explicit NIZK part. (In fact, consistency of a cipher-
text can be checked deterministically be the decryptor, since they employ weak
encryption schemes that are actually functions.) Unfortunately, their approach
requires a nonstandard computational assumption, namely one-way security of
several independent functions under correlated inputs. They show that security
under correlated inputs is implied by lossy trapdoor functions; however, they do
not show security under a standard search assumption.

IND-CCA security from identity-based encryption. Boneh et al [3] de-
scribe a completely generic transformation of a selective-ID secure identitity-
based encryption scheme into an IND-CCA secure PKE scheme. Their assump-
tion (a selective-ID secure IBE scheme) cannot be directly counted as a search
or decisional assumption. However, as it is based upon indistinguishability of
adversarial views, it is arguably closer to a decisional assumption.

Decisional vs. search assumptions. We conclude that all known generic
paradigms of constructing practical IND-CCA secure encryption seem to rely on
decisional assumptions, as opposed to search assumptions. No generic paradigm
is known under which practical IND-CCA secure schemes based on, say, the CDH
problem could be constructed or explained.

In most known cases related to cryptography, decisional assumptions form a
much stronger class of assumptions than the corresponding search assumptions.
For example, deciding if a given integer has a modular square root or not may be
much easier than actually computing a square root (or, equivalently, factoring
the modulus). Only recently were practical schemes proposed whose IND-CCA
security does not rely on decisional assumptions (e.g., [3,5,13,16]). In particular,
the �rst practical encryption scheme IND-CCA secure under the Computational

1 Unless, of course, the decisional assumption can be proved equivalent to a compu-
tational assumption, as it is the case with cryptosystems based on the problem of
�learning with error� [22].



Di�e-Hellman (CDH) assumption was proposed by Cash, Kiltz, and Shoup [5]
in 2008, and improved by Hanaoka and Kurosawa [13] later that year. In 2009,
Hofheinz and Kiltz proposed a very e�cient IND-CCA secure encryption scheme
under the factoring assumption [16].

However, there seems to be no overarching concept that explains these schemes.
Each of these schemes relies on di�erent techniques to achieve security, and in
particular to conduct a reduction in the security proof.

Our contribution. In this work, we re�ne the abstract NY paradigm in a
way that allows to construct and explain practical IND-CCA secure encryption
schemes whose security is based on general widely believed search assumptions.
Concretely, we modify the NY paradigm as follows:

� Our sole computational assumption is that of a Di�e-Hellman type two-
move key exchange protocol. This assumption is implied, e.g., under the CDH
assumption in cyclic groups, or under the RSA assumptions. We interpret
the key exchange protocol as a weakly secure key encapsulation mechanism.
(That is, the �rst KE message is the KEM public key, and the second KE
message is the KEM ciphertext.)

� Our �replication strategy� uses the above KEM several times, but with the
same encryption random coins (and not with the same key or plaintext as
in the original NY paradigm). Our replication strategy comes with a special
simulation setup, such that the simulator in the security proof can decrypt
all consistent ciphertexts, except for one predetermined target/challenge
ciphertext.

� For proving consistency of a given ciphertext, we employ a generic but prac-
tical universal hash proof system. This forms a special type of designated-
veri�er NIZK proof system, case-tailored to our KEM and replication strat-
egy. We stress that we do not use the HPS in the same way that Cramer
and Shoup do to achieve IND-CCA security. In fact, [7] require a NIZK proof
property and a computational property. We only use a proof property of our
HPS, and obtain secrecy from our assumption on the KEM, much like in
the original NY paradigm. Hence we do not generalize the Cramer-Shoup
approach to achieving IND-CCA secure encryption.

The technical assumption we use to capture a Di�e-Hellman type key ex-
change protocol is that of a hard algebraic set system. Roughly, an algebraic set
system consists of a �nite Abelian group S, together with a commutative, uni-
tary sub-ring Φ of group endomorphisms over S that ful�l a number of natural
algebraic properties. It is a hard algebraic set system if a Di�e-Hellman style
computational problem is intractable. Examples of hard algebraic set systems
can be obtained from standard computational assumptions such as the CDH
and the RSA assumptions (using hardcore bit extraction). Our main result is
an e�cient transformation from any hard algebraic set system into a practical
IND-CCA secure encryption scheme. With respect to the results our construc-
tion can be seen as a generalization of the recent speci�c constructions from
computational problems [3,5,13,16].



1.1 Technical details

We now give some technical details of our transformation.

An IND-CPA secure construction. We start by describing a simple IND-CPA
secure construction from any hard algebraic set system (S, Φ). It is actually a key
encapsulation mechanism [8] (KEM) that can be viewed as a natural abstraction
of the Di�e-Hellman key-exchange protocol. The scheme's secret key consists of
a random χ ∈ Φ and the public-key is a random g ∈ S and u = χ(g) ∈ S.
Encryption picks random ψ ∈ Φ, computes the ciphertext c = ψ(g) ∈ S and
uses the encapsulated key K = Ext(ψ(u)) to blind the message. (Here Ext is an
extractor function that is part of the underlying hard computational problem of
the algebraic set system.) Decryption reconstructs the key by computing K =
Ext(χ(c)). In our construction, we will have that χ and ψ commute. This directly
implies correctness of the scheme, since then χ(c) = χ(ψ(g)) = ψ(χ(g)) = ψ(u).
Our IND-CCA secure construction. We augment the above IND-CPA secure
construction in a clean and modular way (much like Naor and Yung) by adding
a �replication part� and a �NIZK part� to the scheme. The two new parts require
no computational assumptions, and so the resulting scheme is IND-CCA secure if
the old scheme is IND-CPA secure. More concretely, ciphertexts are now tuples of
the form (c,d, π), where c is from the IND-CPA construction, d is the �trapdoor
element�, and π is the �NIZK element� that proves consistency of the ciphertext.
We now explain our construction by showing how the di�erent parts a�ect the
ability to perform decryption.

The idea behind the trapdoor element d in the ciphertext is that can be set
up by a simulator such that it is possible to decrypt (without the knowledge of
the scheme's secret key χ) all consistent ciphertexts (c,d) except the ciphertext
that is used to challenge the adversary (in the security reduction to the IND-
CPA secure scheme). This �all-but-one� simulation technique can be traced back
at least to [20], where it was used in the context of pseudorandom functions.2

In the encryption context, �all-but-one� simulations have been used in identity-
based encryption [2] and were already applied to several encryption schemes
in [3,4,5,14,17,22,16].

The above all-but-one simulation technique allows to correctly simulate de-
cryption of arbitrary for consistent ciphertexts (c,d) but consistency can only be
checked using the secret key which is not available during simulation. To provide
an alternative consistency check we add the NIZK element π to the ciphertext.
Actually, the NIZK element is generated using a hash proof system [7] and proves
that (c,d) is contained in the trapdoor language consisting of all consistent ci-
phertexts. However, we stress that we use hash proof system techniques here

2 We stress that our use of the term �all-but-one� refers to the ability to generate
a secret key that can be used to decrypt all consistent ciphertexts except for an
externally given ciphertext. This is very di�erent from the techniques of, e.g., [8]:
in this latter framework, the �rst step in the proof consists in making the challenge

ciphertext inconsistent, and then constructing a secret key that can be used to con-
struct all consistent ciphertexts. Hence, �all-but-one� really refers to an �arti�cially
punctured� secret key.



without relying on a (computational or decisional) assumption. Instead, we use
a hash proof system only as a NIZK proof, in which case the hash proof system's
soundness is information-theoretic.

We also note that the �trapdoor part� of a consistent ciphertext, along with
the NIZK proof that the ciphertext is consistent, can be seen as a variant of
an (extractable) NIZK proof of knowledge. However, in our case, the challenge
ciphertext plays a special role: we need to construct the trapdoor language from
a given challenge ciphertext. (Hence, extraction is�naturally�not possible for
the challenge ciphertext.)

Our technical contribution (that may be of independent interest) is to boot-
strap the trapdoor part and the the NIZK part (i.e., the hash proof system for
the trapdoor language) generically from the abstract algebraic properties of al-
gebraic set systems. In contrast to the generic NIZK-based constructions from
[9,21] our constructions are relatively e�cient: the key-size and ciphertexts of
the obtained IND-CCA secure scheme contain O(k) elements in S, where k is the
security parameter. In many cases the ciphertexts can be �compacti�ed� into a
constant number of elements in S, giving truly practical schemes.

2 Preliminaries

2.1 Notation

Generic notation. A probabilistic polynomial-time (PPT) algorithm is a
randomized algorithm which runs in strict polynomial time. By k we denote
the security parameter, which indicates the �amount of security� we desire. A
function f : N → R is negligible if for all c ∈ N, there exists k0 ∈ N such
that |f(k)| < k−c for all k > k0. Furthermore, f is overwhelming if 1 − f is

negligible. For random variables X and Y , we write X
c
≈ Y if X and Y are

computationally indistinguishable, i.e., if for all PPT algorithms D, we have

that Pr [D(X) = 1] − Pr [D(Y ) = 1] is negligible. Similarly, we write X
s
≈ Y

if the statistical distance between X and Y is negligible. For a vector h =
(h1, . . . , h`) and a nonempty set J ⊆ {1, . . . , `}, we write hJ for the restricted
vector (hi)i∈J . Furthermore, if φ is a function, then φ(h) denotes the component-
wise application of φ, i.e., φ(h) = (φ(hi))i.
Group endomorphisms. For an abelian group, we denote its group oper-
ation additively. If S is an abelian group, then End(S) consists of all group-
homomorphisms χ : S → S. It has a ring-structure, where point-wise-addition
is ring-addition (denoted �+�) and functional composition is ring-multiplication
(denoted �◦�). Suppose Φ is an additive sub-group of End(R). Then Ann(Φ) ⊂ S,
consists of all g ∈ S for which χ(g) = 0 for all χ ∈ Φ, and it is a sub-group of S.
A sub-ring of End(R) is unitary if it contains the identity endomorphism.

2.2 Key encapsulation mechanisms

Instead of a public-key encryption scheme we consider the conceptually simpler
KEM framework. It is well-known that an IND-CCA secure KEM combined with



a (one-time-)IND-CCA secure symmetric cipher (DEM) yields a IND-CCA secure
public-key encryption scheme [8]. E�cient one-time IND-CCA secure DEMs can
be constructed even without computational assumptions, using an encrypt-then-
MAC paradigm [8], or using strong pseudorandom permutations.

Syntactics. A key encapsulation mechanism (KEM) KEM = (Gen,Enc,Dec)
consists of three PPT algorithms. Via (pk , sk)← Gen(1k), the key generation al-
gorithm produces public/secret keys for security parameter k ∈ N; via (K,C)←
Enc(pk), the encapsulation algorithm creates a symmetric key3 K ∈ {0, 1}k to-
gether with a ciphertext C; via K ← Dec(sk , C), the possessor of secret key
sk decrypts ciphertext C to get back a key K which is an element in {0, 1}k
or a special reject symbol ⊥. For correctness, we require that for all possible
k ∈ N, and all (K,C) ← Enc(pk), we have Pr[Dec(sk , C) = K] = 1, where the
probability is taken over the choice of (pk , sk) ← Gen(1k), and the coins of all
the algorithms in the expression above.

Security. The common requirement for a KEM is indistinguishability against
chosen-ciphertext attacks (IND-CCA) [8], where an adversary is allowed to adap-
tively query a decapsulation oracle with ciphertexts to obtain the corresponding
key. Formally:

De�nition 1 (IND-CCA security of a KEM). Let KEM = (Gen,Enc,Dec) be a
KEM. For any PPT algorithm A, we de�ne the following experiments ExpCCA-real

KEM,A

and ExpCCA-rand
KEM,A :

Experiment ExpCCA-real
KEM,A (k)

(pk , sk)← Gen(1k)

(K∗, C∗)← Enc(pk)
Return ADec(sk ,·)(pk ,K∗, C∗)

Experiment ExpCCA-rand
KEM,A (k)

(pk , sk)← Gen(1k)
R← {0, 1}k
(K∗, C∗)← Enc(pk)
Return ADec(sk ,·)(pk , R, C∗)

In the above experiments, the decryption oracle Dec(sk , C) returns K ← Dec(sk , C),
for all C 6= C∗. We de�ne A's advantage in breaking KEM's IND-CCA security
as

AdvCCA
KEM,A(k) :=

1
2

∣∣∣Pr
[
ExpCCA-real

KEM,A (k) = 1
]
− Pr

[
ExpCCA-rand

KEM,A (k) = 1
]∣∣∣ .

We say that KEM is IND-CCA secure if AdvCCA
KEM,A is negligible for all PPT A.

As a stepping stone, we will also consider the weaker requirement of IND-CPA
security of a KEM. The IND-CPA security experiment is very similar to the IND-
CCA security experiment, only without a decryption oracle for the adversary:

De�nition 2 (IND-CPA security of a KEM). Let KEM = (Gen,Enc,Dec) be a
KEM. For any PPT algorithm A, we de�ne the following experiments ExpCPA-real

KEM,A

3 For simplicity we assume that the KEM's keyspace are bitstrings of length k.



and ExpCPA-rand
KEM,A as identical to the experiments ExpCCA-real

KEM,A and ExpCCA-rand
KEM,A from

De�nition 1, only that A does not get access to a decryption oracle Dec. Let

AdvCCA
KEM,A(k) :=

1
2

∣∣∣Pr
[
ExpCPA-real

KEM,A (k) = 1
]
− Pr

[
ExpCPA-rand

KEM,A (k) = 1
]∣∣∣ .

We say that KEM is IND-CPA secure if AdvCCA
KEM,A is negligible for all PPT A.

3 Set Systems

3.1 Basic De�nition

De�nition 3 (Set system). A set system SS = (S, Φ) consists of the following
� A �nite, non-empty set S.
� A non-empty set Φ of functions χ : S → S.

Furthermore, we require that e�cient algorithms exist for the following tasks:

� Sampling∗ with the uniform distribution from S.
� Sampling∗ with the uniform distribution from Φ.
� Evaluating χ(g) when given χ ∈ Φ and g ∈ S.

Here, ∗ means that it is su�cient if sampling can be performed approximatively
uniform (that is, if a distribution can be sampled which is statistically close to
uniform).

We stress that while our de�nitions are typically asymptotic, an explicit security
parameter is sometimes suppressed for ease of exposition.

De�nition 4 (Commutative set system). A set system (S, Φ) is commu-
tative if the functions in Φ commute pairwise, i.e., for all χ, ψ ∈ Φ, we have
χ ◦ ψ = ψ ◦ χ.

3.2 Hard Set Systems

The following de�nition encapsulates the computational hardness assumption
associated with set systems.

De�nition 5 (Hard set system). Let (S, Φ) be a commutative set system, and
let Ext : S → {0, 1}n be e�ciently computable. We say that (S, Φ) is a hard set
system with randomness extractor Ext if

(g, χ(g), ψ(g), E)
c
≈ (g, χ(g), ψ(g), R),

where g ∈ S, χ, ψ ∈ Φ, and R ∈ {0, 1}n are uniformly chosen, and E =
Ext(χ(ψ(g)) ∈ {0, 1}n.



3.3 Algebraic Set Systems

We now set abstract algebraic conditions that are su�cient for the existence of
a quite e�cient transformation that we will use to achieve CCA security.

De�nition 6 (Algebraic set system). A set system (S, Φ) is an algebraic set
system if the following algebraic conditions are ful�lled.
Group structure. S is a �nite Abelian group.
Recognizability. S is e�ciently recognizable.
Commutative endomorphisms. Φ is a commutative, unitary sub-ring of End(S).
Almost-transitivity. A g ∈ S is called normal if

∀h ∈ S ∃φ ∈ Φ : h = φ(g) .

We require that a uniformly chosen g ∈ S is normal with overwhelming
probability.

Uniformity. For uniformly chosen g, u ∈ S and χ ∈ Φ, we have (g, χ(g))
s
≈

(g, u).

Remark 1. If Φ consists of all multiplications by non-negative integers then Φ is
a commutative, unitary sub-ring of End(S).

3.4 Examples

Di�e-Hellman. Let S be a cyclic group G = 〈g〉 of prime order p. (For this
and the next example, we stick to the more common notation and write the
group multiplicatively.) We de�ne Φ as

Φ := {χ(g) = gx : x ∈ Zp}.

If we require that S is e�ciently recognizable, this makes (S, Φ) a set system.
Let χ, ψ ∈ Φ, i.e., χ(g) = gx and ψ(g) = gy, for some x, y ∈ Zp. Now χ(ψ(g)) =
(gy)x = gxy = (gx)y = ψ(χ(g)) and therefore (S, Φ) is commutative. Since S is
e�ciently recognizable, it is easy to see that (S, Φ) is also algebraic.

If the DDH assumption holds in G, then (S, Φ) is a hard set system with
randomness extractor Ext : G→ {0, 1}n, where Ext is an arbitrary pseudorandom
generator. If the CDH assumption holds in G, then (S, Φ) is a hard set system
with randomness extractor Exts : G → {0, 1}. Here, Exts maps g ∈ G to the

Goldreich-Levin bit
∑|g|
i=1 gisi, where |g| denotes the bit length and gi the i-th

bit of g in some canonical bit representation, and s = (s1, . . . , s|g|) ∈ {0, 1}|g|.
We stress that knowledge of the order of G is not required. (Only one must

be able to approximatively sample uniform exponents.) In particular, G could
be instantiated over a higher-genus curve.

RSA. We use the group of signed quadratic residues [12,15]. Fix a Blum
integer N = PQ for safe primes P,Q ≡ 3 mod 4 (such that P = 2p + 1 and
Q = 2q+1 for primes p, q). Let JN ⊆ Z∗N denote the set of elements with Jacobi
symbol 1 modulo N and let QRN ⊂ JN denote the set of quadratic residues



modulo N . Consider the quotient group S := QR+
N := QRN/±1. Together with

the group operation a ◦ b := |a · b mod N | this forms a �nite Abelian group of
order pq. Furthermore, since QR+

N = J+
N := JN/±1 = {|x| : x ∈ JN}, S is

e�ciently recognizable. De�ne

Φ := {χ(g) = |gx| : x ∈ ZbN/4c}.

Observe that we can sample uniformly from S and Φ. Furthermore, (g, χ(g))
is statistically close to (g, u) for uniform g, u ∈ S and χ ∈ Φ, since bN/4c
approximates pq, the order of S, suitably well. This makes (S, Φ) a set system.

Finally, if the RSA assumption holds in ZN , then (S, Φ) is also hard with
randomness extractor Ext : S → {0, 1}, where Ext maps g ∈ S to the least
signi�cant bit LSB(g) of g.

4 IND-CPA secure KEMs from commutative set systems

Construction 7 (Semantically secure KEM) Assume that (S, Φ) is a hard
commutative set system with randomness extractor Ext : S → {0, 1}n. Then,
our basic key encapsulation scheme KEM = (Gen,Enc,Dec), which is an obvious
abstraction of the Di�e-Hellman scheme, is de�ned as follows.
Key Generation. Gen(1k) chooses g ∈ S and χ ∈ Φ uniformly, and computes

u = χ(g) ∈ S. Public key is pk = (g, u) ∈ S×S, and secret key is sk = χ ∈ Φ.
Encapsulation. Given pk = (g, u) ∈ S × S, Enc chooses ψ ∈ Φ uniformly and

computes the ciphertext c = ψ(g) ∈ S. Next, Enc derives the encapsulated
key

K = Ext(ψ(u)) ∈ {0, 1}n. (1)

Decapsulation. Given sk = χ ∈ Φ and c ∈ S, Dec computes

χ(c) = (χ ◦ ψ)(g) = (ψ ◦ χ)(g) = ψ(u)

to derive the encapsulated key K ∈ {0, 1}n as in (1). Note that here it is
exploited that the functions in Φ commute.

Theorem 1 (Construction 7 is an IND-CPA secure KEM). If (S, Φ) is
a hard commutative set system, then the KEM from Construction 7 is IND-CPA
secure in the sense of De�nition 2.

Proof. This follows directly from De�nition 5.

5 Hash proof systems

5.1 De�nitions

We will use hash proof systems for a language L, as de�ned in [7, Section 5 of
full version]. However, we stress that we will neither de�ne nor use the concept
of a subset membership problem (which essentially would require that elements
in the language are computationally indistinguishable from elements outside of
the language, see [7, Section 4 of full version]). For our purposes, only the proof
system itself (whose security is de�ned information-theoretically) is relevant.



De�nition 8 (Hash proof system). Let L be a language and let ε be a real
number with 0 ≤ ε < 1. A hash proof system with error probability ε consists of
the following.

� A �nite non-empty set V: this is where the veri�er samples a secret veri�cation-
key from, to enable him to check proofs.

� A �nite non-empty set P and a function α : V → P: this maps a veri�cation
key to its projection, which is an auxiliary input for the prover to construct
a proof.

� A non-empty �nite set Π: this is where proof strings will be sampled from.

Furthermore, e�cient algorithms for the following tasks exist.

� Sampling with the uniform distribution from V.
� Computing α(κ) ∈ P when given κ ∈ V.
� Computing the proof π ∈ Π when given the statement x ∈ L, along with
either the projection α(κ) and a witness φ ∈ Φ (that x ∈ L), or, alternatively,
the veri�cation key κ itself.

The following security properties hold, even in the presence of an unbounded
adversary.

Completeness. If indeed x ∈ L, a proof π ∈ Π thus computed is accepted when
veri�ed using the secret veri�cation key κ. This veri�cation is performed
e�ciently by the veri�er.

Soundness. For every x 6∈ L, every projection P ∈ P, and every purported proof
π̃ ∈ Π: the probability (over uniform V ∈ V with α(V ) = P ) that π̃ will be
accepted is at most ε.

Uniqueness. The proof π ∈ Π is unique. In the veri�cation procedure referred to
above, the veri�er actually �rst computes π′ from x ∈ L and the veri�cation
key κ. The decision is then made by checking whether π′ = π. In other words,
the veri�er can compute the proof himself from seeing the statement, using
his secret veri�cation key.

Note that the uniqueness property implies a non-interactive zero-knowledge
property, in the following sense. In the zero-knowledge setting, the veri�cation
key can be set up by a simulator, who then can generate the unique proofs π as
π = κ(x) for arbitrary statements x and without witness.

We make a number of remarks and comments concerning our de�nitions:

� The error probability ε can be decreased exponentially by running copies
based on independently selected keys in parallel.

� Such a hash proof system will be �global� in the sense that it does not
essentially depend on the length ` or on the choice of the base vectors g,h.
Furthermore, is assumed that the generation of the secret veri�cation key
does not depend on the choice of base vectors.

� Obviously, however, several technical details in the de�nition above will typi-
cally �scale with `.� Also, all algorithms involved may take ` and g,h as input
(except secret key generation, which may not depend on g,h, see above). But
this dependence is suppressed in the notation.



5.2 Our trapdoor language

We de�ne a natural language derived from set systems that simply �singles out�
sequences of elements obtained by applying the same function to (a subset of)
some �xed sequence elements. We note that [24] use the related but dual concept
of �correlated products� to obtain chosen-ciphertext security. Namely, they apply
several trapdoor functions to the same preimage, while in our approach, we apply
one function to several preimages. We also note that in their work, it is crucial
that the functions can be inverted (using a trapdoor). We do not have this
requirement.

De�nition 9 (Trapdoor language). Let (S, Φ) be a set system, let ` be a
positive integer, and let

g ∈ S, h = (h1, . . . , h`) ∈ S`,

be base vectors. Then the trapdoor language L associated to (S, Φ) and g,h is
de�ned as

L = {(c,d, J) ∈ S × SJ × J | ∃χ ∈ Φ such that c = χ(g) ∧ d = χ(hJ)},

where J consists of all non-empty subsets of {1, . . . , `}. (Recall our abbreviation
χ(hJ) = (χ(hi))i∈J .) Such a function χ ∈ Φ (not necessarily unique) is called a
witness.

In the remaining part of this section we show the following theorem.

Theorem 2 (HPS for our trapdoor language). Let (S, Φ) be a an algebraic
set system and let g ∈ S, h ∈ S` be randomly chosen base vectors. If g is normal
(in the sense of De�nition 6) and hi 6= 0 for all i, then there exists a hash proof
system for the language L. The error probability is at most `/p, where p is the
smallest prime divisor of |S|.

The proof proceeds in two steps. First we prove the case ` = 1 and then we
show how the general case follows from that by induction.

Let g ∈ S be normal, and let h ∈ S. Since g is normal, h = ρ(g) for some
ρ ∈ Φ. We now construct a hash proof system for the trapdoor language L. The
hash proof system is de�ned as follows.

Z = {(χ(g), ψ(h)) : χ, ψ ∈ Φ} ⊂ S × S, (2)

L = {(χ(g), χ(h)) : χ ∈ Φ} ⊂ Z. (3)

(For simplicity and ease of presentation, we omit the J component of Z and L,
since in case ` = 1 this component is trivial.)
Setup. The veri�er chooses a random secret veri�cation key (δ, ρ) ∈ Φ×Φ, and

computes its projection

α = δ(g) + ρ(h).



Proof phase. The prover holds (c, d) ∈ L and a witness χ ∈ Φ such that

(c, d) = (χ(g), χ(h)).

He computes the proof
π = χ(α).

Veri�cation. The veri�er checks whether

π = δ(c) + ρ(d).

Note that if the prover is honest, then indeed by commutativity

π = χ(α) = χ(δ(g) + ρ(h)) = δ(χ(g)) + ρ(χ(h)) = δ(c) + ρ(d) .

We sketch why the above hash proof system satis�es the conditions of De�ni-
tion 8. The full proof (as well as the case of general `) is contained in the full
version of this paper [6]. Let (c, d) ∈ Z. Suppose the prover falsely claims that
(c, d) ∈ L. The pair (δ, ρ) is randomly distributed on Φ × Φ conditioned on the
projection being equal to α. Then, by a technical lemma, each solution z of the
two equations α = δ(g) + ρ(h) and z = δ(c) + ρ(d) is equally likely to be the
�correct proof.� Since there are at least p such solutions Theorem 2 now follows
(for ` = 1).

6 IND-CCA secure KEMs from algebraic set systems

Construction 10 (Chosen-ciphertext secure KEM) Let (S, Φ) a hard al-
gebraic set system with randomness extractor Ext : S → {0, 1}n. Further, assume
a target collision resistant hash function T on S (whose formal de�nition can
be looked in [6]). For c ∈ S, T(c) is encoded as a subset of {1, . . . , 2k}, with
|T(c)| = k. Note that if T(c) 6= T(c′), then these two sets are incomparable by
inclusion.
Key generation. Let (S, Φ) be an algebraic set system. Choose

g ∈ S, h = (h1, . . . , h2k) ∈ S2k.

Using Theorem 2, set up an instance of the hash proof system from Section 5
(with negligible error probability ε) for the trapdoor language L, resulting in
a veri�cation key κ ∈ V. Note that proofs for membership in L are from a
set Π ⊆ Sm for some m. Next, compute the projection value α = α(κ) ∈ P.
Finally, choose a function χ ∈ Φ uniformly and compute

u = χ(g) ∈ S.

The public/secret key pair is

pk = (g, u,h, α) ∈ S × S × S2k × P, sk = (χ, κ) ∈ Φ× V.



Encapsulation. Given pk = (g, u,h, α), choose a function ψ ∈ Φ at random,
and compute

c = ψ(g)

Next, compute J = T(c) ⊂ {1, . . . , 2k} and

d = ψ(hJ) ∈ Sk

Using ψ ∈ Φ, α ∈ P and d ∈ L, compute the proof π ∈ Π ⊆ Sm that
(c,d, J) ∈ L. The ciphertext consists of the pair

(c,d, π) ∈ S × Sk × Sm,

and the session key is computed as

K = Ext(ψ(u)) ∈ {0, 1}n. (4)

Decapsulation. Given sk = (χ, κ) and a ciphertext (c,d, π) ∈ S1+k+m, com-
pute J = T(c) ⊂ {1, . . . , 2n} and verify that π ∈ Sm proves (c,d, J) ∈ L. If
the proof is invalid, reject. Otherwise, compute the session key as

K = Ext(χ(c)) ∈ {0, 1}n.

Correctness. We argue that the above KEM satis�es correctness. Note that for
correctly generated ciphertexts, we have that

(c,d, π) = (ψ(g), ψ(hJ), π),

where π is a proof that (c,d, J) ∈ L. Hence, correctly generated ciphertexts
are not rejected. Furthermore,

χ(c) = (χ ◦ ψ)(g) = ψ(u),

which implies that decapsulation extracts the same key as encapsulation.

Theorem 3. If (S, Φ) is a hard algebraic set system, then the above KEM is
IND-CCA secure in the sense of De�nition 1.

Proof. We give a simulation of the IND-CCA experiment for an arbitrary PPT
adversary A. It su�ces to construct a simulator S such that the following holds.
On input

(g, χ(g), ψ(g), E∗)

(with g, χ, ψ,E∗ as in De�nition 5), S simulates the real IND-CCA experiment
ExpCCA-real

KEM,A , and on input
(g, χ(g), ψ(g), R∗),

S simulates the random IND-CCA experiment ExpCCA-rand
KEM,A .

Setup. So say that S is invoked on input (g, u, c∗, P ), for c∗ = ψ(g), u = χ(g),
and unknown χ, ψ ∈ Φ. Furthermore, P ∈ {0, 1}n is either equal to the extraction
E∗ or random.



First, S sets up a substitute decapsulation key that can be used to decrypt
all ciphertexts except the challenge ciphertext, which will be constructed around
ψ(g). Concretely, S computes from its own challenge (g, u, c∗, P ) the value J∗ =
T(c∗) ⊂ {1, . . . , 2k}. Then, S chooses uniformly η = (η1, . . . , η2k) ∈ Φ and de�nes

hi = ηi(g) for i ∈ J∗, (5)

hi = ηi(g) · u for i 6∈ J∗. (6)

Finally, S sets up a hash proof system for the trapdoor language L induced by g
and h (see De�nition 9). Let κ and α be the corresponding veri�cation key and
its projection. Then, S de�nes a public key pk along with a substitute secret key
sk ′ as follows:

pk = (g, u,h, α) ∈ S × S` × S2k × P sk ′ = (η, κ) ∈ Φ` × V.

Note that by the uniformity of (S, Φ) (see De�nition 6), the public keys prepared
by S are statistically close to authentic public keys as produced by the key
generation from Construction 10.

Challenge ciphertext and key. Next, S prepares a challenge ciphertext
(c∗,d∗, π∗) ∈ S × SJ∗ × Sm. We have already de�ned c∗ above, so it remains to
de�ne d∗ = (d∗i )i∈J∗ and π. Namely, S sets d∗i = ηi(c∗) for i ∈ J∗. Since

d∗i = ηi(c∗) = ηi(ψ(g)) = ψ(ηi(g))
i∈J∗= ψ(hi),

this gives a (c∗,d∗) exactly as produced by the encapsulation algorithm of Con-
struction 10. Because (c∗,d∗, J∗) ∈ L, a proof π for that statement can be pro-
duced using the veri�cation key κ. This yields a challenge ciphertext (c∗,d∗, π∗)
exactly as produced by the encapsulation algorithm.

Note that if S's challenge P satis�es

P = E∗ = Ext((χ ◦ ψ)(g)),

then P equals the real key K as the encapsulation algorithm would have com-
puted in (4), and hence P is distributed as the challenge key K in the real IND-
CCA experiment ExpCCA-real

KEM,A . On the other hand, if P is random, then clearly P

is distributed as a random challenge key in the IND-CCA experiment ExpCCA-rand
KEM,A .

Decapsulation queries. S then invokes adversary A with public key pk ′,
challenge ciphertext (c∗,d∗, π∗), and challenge key P . By the above, this yields
a view for A as in the real, resp. random IND-CCA experiment, depending on
whether P = E∗ or P is random.

It remains to implement a decapsulation oracle for A. To this end, assume
that A makes a decapsulation query (c,d, π). First, we may assume c ∈ S,
d ∈ SJ (for J = T(c)), and π ∈ Sm, since S is e�ciently recognizable. If π is
not a correct proof of (c,d, J) ∈ L according to κ, then S rejects, exactly as the
authentic decapsulation algorithm would have done. In the following, we hence
may further assume that π is a valid (with respect to veri�cation key κ) proof



that (c,d, J) ∈ L. By the soundness of the hash proof system,4 this in particular
implies that, with overwhelming probability, there exists ψ̃ ∈ Φ with ψ̃(g) = c
and ψ̃(hi) = di for all i ∈ J .

Observe that c = c∗ would imply J∗ = J , so that for all i ∈ J∗ = J ,

di = ψ̃(hi) = ηi(ψ̃(g)) = ηi(c) = ηi(c∗) = d∗i .

By the uniqueness of valid proofs, this would hence imply (c,d, π) = (c∗,d∗, π∗),
which is a forbidden decapsulation query for A. Thus, we may even assume that
c 6= c∗.

Without loss of generality, from c 6= c∗ it follows that J = T(c) 6= T(c∗) = J∗.
(Otherwise, A has found a T-collision.) But J 6= J∗ implies that there exists an
i ∈ J \ J∗, i.e., an i ∈ J for which hi = ηi(g) · u. This allows S to derive χ(c)
using

di = ψ̃(hi) = ψ̃(ηi(g)) · ψ̃(u) = ηi(ψ̃(g)) · χ(ψ̃(g)) = ηi(c) · χ(c)

and its knowledge about ηi. On the other hand, χ(c) allows to compute K =
Ext(χ(c)) exactly as the decapsulation algorithm. Hence, the prepared substitute
secret key sk ′ = (η, κ) can be used to answer A's decapsulation queries.

Summarizing, the prepared simulation shows Theorem 3.

7 Discussion and variants

Global parameters. Note that the set system (S, Φ) employed in our en-
cryption scheme can be re-used in many instances of the scheme. (In other
words, there is no trapdoor related directly to the de�nition of (S, Φ) itself.)
In particular, in the RSA set system from Section 3.4, no knowledge about the
factorization of the modulus N is required. That means that N can be used as
a global parameter for many parties.

Parallelization. In some of our examples from Section 3.4, the extracted
values are only bits. This means that when implementing our generic CCA-secure
encryption scheme with these examples, the corresponding KEM keys are only
bits. However, it is possible to get larger keys by running several instances of
the encryption scheme at once, without damaging the chosen-ciphertext security.
Concretely, instead of publishing u = χ(g) in the public key, one can publish
ui = χi(g) for independently chosen χi ∈ Φ (i = 1, . . . , n). The sender still
only uses one witness ψ ∈ Φ to compute c = ψ(g), but now can extract from
n separate values ψ(u1), . . . , ψ(un). The adaptation of hash proof system and

4 We stress that A only gets to see a proof π∗ of a valid statement, which could
have already been derived from the projected key α. Hence π∗ does not disturb a
reduction to the soundness of the hash proof system. This distinguishes our use of
hash proof systems from the one in [8]. (In [8], the challenge ciphertext contains a
proof of an invalid statement, which reveals information about the veri�cation key
κ beyond what is known from its projection α.)



trapdoor language are straightforward. (However, we stress that in order to
decrypt, there must be 2k elements hi,1, . . . , hi,` for each i = 1, . . . , n. Hence,
not only the public key size, but also the ciphertext size grows linearly in n.)

Compact ciphertexts. For concrete set system platforms, we can substan-
tially reduce the size of ciphertexts (from O(k) group elements to O(1)). To see
how, recall that in the IND-CCA secure encryption scheme, the ciphertext con-
tains (the projection of) a vector d = ψ(hJ), where h is part of the public key.
The setup of h during the security proof (see (5)) has been chosen such that d
allows to recover χ(c) as χ(c) = di/ηi(c) for any i ∈ J \ J∗. Now consider what
happens if we substitute the vector d in the ciphertext with a single element

D := ψ

(∏
i∈J

hi

)
=

(∏
i∈J

ηi(c)

)
·

 ∏
i∈J\J∗

χ(c)

 .

Then, the simulation in the security proof can still derive
∏
i∈J\J∗ χ(c) = χ(c)∆

for ∆ := |J \ J∗|. (Note that 0 < ∆ ≤ 2k.) If we set L := lcm(1, . . . , 2k), then ∆
divides L, so that the simulation can always compute ψ(u)L. We can then modify
the randomness extraction into Ext′(z) := Ext(zL), such that the decapsulation
can be computed from χ(c)L (instead of χ(c)). Note that this automatically
allows to compress the proof part π of the ciphertext down to one element. In
particular, the ciphertext size (in group elements) is now constant. However, our
modi�cations require that

(g, χ(g), ψ(g), E′)
c
≈ (g, χ(g), ψ(g), R), (7)

where g ∈ S, χ, ψ ∈ Φ, and R ∈ {0, 1}n are uniformly chosen, and E′ =
Ext′(χ(ψ(g)) = Ext(χ(ψ(g))L) ∈ {0, 1}n. Note that (7) holds in the case of
the Di�e-Hellman- and RSA-based set systems from Section 3.4 (since L and
the order of S are coprime).
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