
LEGO for Two-Party Secure Computation

Jesper Buus Nielsen and Claudio Orlandi

BRICS, Department of Computer Science, Aarhus University
{jbn,orlandi}@cs.au.dk

Abstract This paper continues the recent line of work of making Yao’s
garbled circuit approach to two-party computation secure against an ac-
tive adversary. We propose a new cut-and-choose based approach called
LEGO (Large Efficient Garbled-circuit Optimization): It is specifically
aimed at large circuits. Asymptotically it obtains a factor log |C| improve-
ment in computation and communication over previous cut-and-choose
based solutions, where |C| is the size of the circuit being computed. The
protocol is universally composable (UC) in the OT-hybrid model against
a static, active adversary.

1 Introduction

In secure two-party computation we have two parties, Alice and Bob, that want
to compute a function f(·, ·) of their inputs a, b, and learn the result y = f(a, b),
without any party learning any other information.

Yao [Yao82,Yao86] was the first to present a solution to this problem. His
protocol, presented and proved in [LP04], is only secure against a passive ad-
versary. We give a novel approach to making Yao’s idea secure against active
adversaries.

In Yao’s protocol Alice constructs a garbled circuit and sends it to Bob:
a malicious Alice can send Bob a circuit that does not compute the agreed
function, as a consequence the computation loses both privacy and correctness. In
our protocol instead Alice and Bob both participate in the circuit construction.
The main idea of our protocol is to have Alice prepare and send a bunch of
garbled NAND gates (together with some other components) to Bob. Bob selects
a random subset of the gates and Alice provides Bob with the keys to test them. If
they all work correctly he assumes that at most a small fraction of the remaining
gates are malfunctioning. Bob shuffles the remaining gates to put the faulty gates
in random positions and connects them into a circuit that computes the desired
function even in the presence of a few random faults — the scrambled NAND
gates are designed such that Bob can, with a limited help from Alice, connect
the gates as he likes. Then the circuit is evaluated by Bob as in Yao’s protocol:
Bob gets his keys running oblivious transfers (OT) with Alice and he evaluates
the circuit.

Related Work: In the last years many solutions have been proposed to achieve
two-party computation secure against malicious adversaries.

In [LP07,LPS08], Alice sends s copies of the Yao’s garbled circuit to be
computed. Bob checks half of them and computes on the remaining circuits. A
similar approach was suggested in [MF06]. Due to the circuit replication, they
need to introduce some machinery in order to force the parties to provide the
same inputs to every circuit, resulting in an overhead of s2 commitments per
input wire for a total of O(sκ|C| + s2κ|I|), where |C| is the size of the circuit,
|I| is the size of the input and κ is the length of a hash value. To optimize the
cut-and-choose construction, Woodruff [Woo07] proposed a way of proving input
consistency using expander graphs: using this construction it is possible to get
rid of the dependency on the input size and therefore achieving complexity of
O(sκ|C|). More concretely, the protocol in [LP07,LPS08] requires s copies of a
circuit of size |C| + |D|, where D is an input decoder, added to the circuit to
deal with so-called selective failures. They propose a basic version of D with
size O(s|I|) and a more advanced with size O(s + |I|). However, because of
the s2|I| commitments, their optimized encoding gives them just a benefit in
the number of OT required. With our construction, we can fully exploit their
encoding. In fact we need just to replicate s/ log(|C|) times a circuit of size O(|C|+
s + |I|) = O(|C|), which gives our protocol a complexity of O((s/ log(|C|))κ|C|),
i.e., our replication factor is reduced by the logarithm of the circuit size. The
improvement in replication factor from s to s/ log(|C|) comes from doing cut-
and-choose on individual gates instead of doing it on entire circuits.

Another approach to making Yao’s idea actively secure is to use generic zero-
knowledge proofs to force good behavior [GMW86]. In theory this can be done
with just a constant overhead in communication [NN01].

Other related works include: Considering UC security, in [JS07] a solution
for two party computation on committed inputs is presented. This construction
uses public-key encryption together with efficient zero-knowledge proofs, in order
to prove that the circuit was built correctly. Their asymptotic complexity is
O(κ′|C|), where κ′ is the length of factorization-based public-key cryptosystems.
In our protocol the parameter κ can be chosen to be much smaller i.e., the
required size for hashing and elliptic curves cryptography.

In [IPS08] a protocol for UC secure two-party computation in the OT-hybrid
model is presented with communication complexity O(|C|) + poly(s, d, log |C|),
where s is the security parameter and d is the depth of C. The hidden constant
factor and the term poly(s, d, log |C|), however, makes the comparison between
the protocols unclear. Moreover, their protocol has non-constant round complex-
ity as opposed to ours. Even the situation for very small or alternatively very
large circuits is not clear a priori without trying to optimize and implement
both approaches.

Our Contribution: Our scheme is based on three assumptions. We need a
UC secure OT scheme. In addition we assume a finite group and an element g
of prime order p such that the discrete logarithm problem is hard in 〈g〉, for
instance the group of points over an elliptic curve. Finally we need a function
H : Zp → Zp which is collision resistant and which is correlation resistant
according to Def. 1.

Definition 1. Given F : Zp → Zp, let OF be the following oracle: It samples a
uniformly random ∆ ∈ Zp and stores ∆. Whenever it is queried on c ∈ {0, 1, 2},
it samples a uniformly random K0 ∈ Zp, lets K1 = K0 + ∆ mod p, K2 =
K0 + 2∆ mod p and returns Kc and F (Kd) for d ∈ {0, 1, 2} \ {c}. We call H
correlation resistant if no poly-time adversary can distinguish OH from OR,
where R is a uniformly random function from Zp to Zp.

It is clear that a random function is correlation resistant and it seems rea-
sonable to assume that practical hash functions satisfy this property. The notion
of correlation resistance is closely related to the notion of correlation robustness
in [IKNP03].

Theorem 1. If H is collision resistant and correlation resistant according to
Def. 1 with output length at most κ, the DL problem is hard in 〈g〉, elements
of 〈g〉 can be represented with κ bits and 2−s is negligible, then our protocol
securely evaluates any function y = f(a, b) computed by a poly-sized Boolean
circuit C. The protocol is UC secure against a static, active adversary in the
OT-hybrid model. The round complexity is constant, the communication com-
plexity is O(κs|C|/ log |C|). Regarding computational complexity, O(s|C|/ log |C|)
exponentiations in 〈g〉 are performed and the number of OT calls is O(|I|+ s).

The version of our protocol presented in this short version of the paper is
less efficient than need be, to allow clearer presentation and analysis. In the full
version [NO08] some (constant factor) efficiency improvements are presented.

2 Ideal Functionalities

The ideal functionality we implement is described in Fig. 1 (see Fig. 2 for no-
tation). It is “insecure” in the sense that it allows Alice to guess Bob’s input
bits. This can be solved in a black-box manner by replacing C with a circuit
computing a function of an encoded version of Bob’s input. The randomized
encoding is such that any s bits of a codeword are uniformly random and inde-
pendent. The security follows from the fact that Alice cannot guess s or more
bits with probability more than 2−s, and if she guesses less bits she will learn no
information. One method for this is given in [LP07]. The extra number of gates
used is O(|IB | + s), where |IB | is the length of Bob’s input and s is a security
parameter.

We implement Fsce in the OT-hybrid model with an ideal functionality Fot.
We also assume an ideal functionality Fzk for zero-knowledge proof of knowledge.
This can be implemented by s calls to the OT functionality: The prover offers a
reply to challenge e = 0 and e = 1 and the verifier chooses and verifies one of the
replies. The simulator reads the verifier’s challenge and sets the corresponding
message to be a simulated reply. The extractor can get both replies and compute
the witness if both are correct. Repeating s times gives a soundness error of 2−s.
We use in total just 2 calls to the proof of knowledge functionality, giving an
overhead of 2s calls to Fot.

The ideal functionality Fsce is parametrized by a circuit C and runs as follows:

Inputs: Alice inputs {xw}w∈IA to specify an input bit xw for each of her wires w,
and Bob inputs {xw}w∈IB .

Abort: If a party is corrupted and inputs abort!, then Fsce outputs abort! to
the other party and terminates.

Evaluation: If no party inputs abort!, then Fsce computes {yw}w∈O =
C({xw}w∈I) and outputs {yw}w∈O to Alice.

Guess: If Alice is corrupted, she can after Bob inputs {xw}w∈IB give an input
W ⊆ IB and {βw}w∈W . If βw = xw for all w ∈ W , then Fsce outputs correct!
to Alice and continues as above. Otherwise, it outputs You were busted! to
Alice, outputs Alice cheats! to Bob and then terminates.

Figure 1. Our ideal functionality for secure circuit evaluation

3 LEGO Circuits

We start by describing our variation of Yao circuits. It is designed to allow Alice
to generate garbled gates independently and later let Bob connect the gates in
any order. In the description we use the notation in Fig. 2.

We work with garbled circuits where each wire can carry a value c ∈ {0, 1, 2}.
Input wires to the circuit and output values from the circuit only carry values
c ∈ {0, 1} — the value c = 2 is only carried by certain internal wires. For a wire
with name w we use V(w) ∈ {0, 1, 2} to denote the value carried by the wire.
The values on input wires are specified by Alice and Bob.

LEGO circuits consist of wires and so-called bricks. Wires are essentially just
names w ∈ {0, 1}∗ to which we will associate certain values, in particular a zero-
key K0 and a commitment [K0]. We write Z(w) = K0 to denote the zero-key
associated to wire w and we write COM(w) = [K0] to denote the associated
commitment to K0. Alice knows K0 and [K0] while Bob knows only [K0] from
the beginning. During the evaluation of the garbled circuit Bob will learn a key
Kc ∈ {K0,K1, K2} for each wire w — here Kc = K0 + c∆ mod p. We think of
this as the wire w carrying the value c ∈ {0, 1, 2}. Bob does not know the value
of K0 and therefore he does not know the value of c.

Bricks are special garbled circuits allowing Bob to compute on keys Kc.
As an example we sketch the not-two brick. It has one input wire wI and one
output wire wO — these are just unique names from {0, 1}∗. Let I0 = Z(wI) and
O0 = Z(wO) be the associated zero-keys. If Bob knows Ix ∈ {I0, I1, I2} then the
not-two brick will allow Bob to compute Oz ∈ {O0, O1} with z = nt(x). The not-
two brick does not leak either x or z to Bob. We also have an addition brick with
two input wires (with zero-keys L0 and R0) and one output wire (with zero-key
S0): from Lx ∈ {L0, L1} and Ry ∈ {R0, R1} it allows Bob to compute Sx+y ∈
{S0, S1, S2}. Finally we have a key-filter brick with one associated zero-key K0.
Given a possibly large set of keys K ⊂ Zp it allows to compute K∩ {K0,K1}. It
is among other things used to ensure that Alice sends valid keys for her input
wires.

– s is the security parameter.
– C is a Boolean circuit specifying the function to be computed. It consists of

NAND gates only.
– |C| is the number of NAND gates in C.
– I,O are the names of input wires respectively output wires in C. IA ⊂ I are

Alice’s input wires and IB = I \ IA are Bob’s input wires.
– {yw}w∈O = C{xw}w∈I says that if input wires w ∈ I are assigned the bits xw

and C is evaluated on them, then the output wires w ∈ O will hold the bits yw.
– p is a large prime.
– [x] is a Pedersen commitment to x ∈ Zp. It is computed as [x] = gxhr for

uniformly random r ∈ Zp. Here g is a group generator of order p, and h ∈R 〈g〉
is chosen by Bob. The prime p and the group is picked such that no poly-time
algorithm can solve the DL problem in 〈g〉 with probability better than 2−s.

– If [x] = gxhr and [y] = gyhs then [x]¢ [y] = [x][y] = gx+yhr+s is a commitment
to x + y mod p, and [x] ¯ [y] = [x][y]−1 = gx−yhr−s is a commitment to x −
y mod p.

– ∆ ∈ Zp is the global difference, chosen uniformly at random by Alice and
unknown by Bob; [∆] is a uniformly random commitment to it. Our use of ∆
is inspired by [KS08].

– K0 ∈ Zp denotes a so-called zero-key. After ∆ is fixed it defines the one-key
K1 = K0 + ∆ mod p and the two-key K2 = K0 + 2∆ mod p. The key Kc will
be Bob’s representation of the “plaintext” c ∈ {0, 1, 2}.

– [K0] is a commitment to a zero-key, always produced by Alice. From [K0] and
[∆] Bob can compute commitments [K1] = [K0] ¢ [∆] and [K2] = [K1] ¢ [∆].

– Σ ∈ Zp denotes a so-called shifting value: It is a difference Σ = K′
0−K0 mod p

between two zero-keys K0 and K′
0. Note that Kc + Σ = K′

c for c = 0, 1, 2.
– H : Zp → Zp is a hash function which is collision resistant and correlation

resistant according to Def. 1. It is picked such that no poly-time adversary can
distinguish with probability better than 2−s in Def. 1.

– For K, K ′ ∈ Zp we let EK(K′) = H(K) + K′ mod p and think of it as a
deterministic encryption of K′ using K. We let DK(C) = C −H(K) mod p =
K′.

– We define nt : {0, 1, 2} → {0, 1} by nt(0) = nt(1) = 1 and nt(2) = 0.
– We define ∧̄ : {0, 1}×{0, 1} → {0, 1} by a∧̄b = 0 iff a = 1 and b = 1. Note that

if a, b ∈ {0, 1}, then nt(a + b) = a∧̄b.
– K : {0, 1}∗ → 2Zp maps wire names w ∈ {0, 1}∗ to subsets of keys.

Figure 2. Notation, explained further in main text

In the evaluation of the circuit Alice will send Ka ∈ {K0,K1} to represent
her input a ∈ {0, 1} for each of her input wires w with zero-key K0. Bob uses a
key-filter brick to ensure that Ka ∈ {K0, K1}. For each of Bob’s input wires Alice
offers K0 and K1 in an OT and Bob inputs b to get the key Kb representing input
b ∈ {0, 1}. Then the circuit C is evaluated by Bob on these keys. Each NAND
gate in C is implemented by an addition brick followed by a not-two brick. When
Bob knows Kc = K0 + c∆ mod p for an output wire he sends Kc to Alice who
computes c ∈ {0, 1} using K0 and ∆.

1

1 1

[L0 + R0]

[R0][L0]

1
[I0]

3
[O0]

EI0 (O1)

EI1 (O1)

EI2 (O0)

NT

n

n

[K0]

[K′
0]

n
[K0]

H(K0)

H(K1)

KF

[K0]
2

1

1

1 1

3 3 3

9

EI0 (O1)

EI1 (O1)

EI2 (O0)

[I0]

[O0]

NT

[S0]

[S0] = [L0 + R0]

[R0][L0]

[O0]

EI′0
(O′1)

EI′1
(O′1)

EI′2
(O′0)

NT

[O′0]

[I′0]

[S0]

[O0]

NT

[O′′0]

[I′′0]

[S0]

[O0]

EI′′0
(O′′1)

EI′′1
(O′′1)

EI′′2
(O′′0)

n
[K0]

[K0]
1

3-KF

9

1 1

[O0]

[R0][L0]

3-NAND

n

1

6

1
1

1
[K0]

H(K′
0)

H(K′
1)

H(K′′
0)

H(K′′
1)

H(K0)

H(K1)

KF KF KF

[O0] [O0]

[K′
0] [K′′

0]

[K0] [K′
0] [K′′

0]

[K0] [K0]

[K0]

Maj

[O0]

[R0][L0]

2-NAND

[K′
0]

1

3-KF

6
[K′

0]

3-KF

1

[K0]

R0
R1

Ka

K′
a∧̄b

[K0]
[R0]

Rb

b
OT

Figure 3. Graphical notation, explained in main text

The above did not use the associated commitments [K0]. These are used to
allow Bob to connect the bricks as he desires, even though they were generated
independently. A wire w with zero-key K0 is connected to a wire w′ with zero-
key K ′

0 by Alice opening [K ′
0] ¯ [K0] to Bob to let him learn Σ = K ′

0 −K0 mod
p. Given Kc for w, Bob can then compute K ′

c = Kc + Σ mod p for w′. The
commitments are use to prevent Alice from sending a wrong value of Σ.

Alice can, however, cheat when she generates the bricks. To deal with this
she produces more bricks than needed and a random subset of them is selected
by Bob for testing. In the test Bob selects a random input for the brick and

Alice sends the appropriate keys by opening the associated commitments. If the
selected bricks pass the test Bob will be ensured that most of the remaining
bricks will also run correctly. To deal with a small number of incorrect bricks
Bob will replicate each of the bricks in the circuit design.

We now give the details of how bricks are generated, evaluated, connected
and replicated.

Potential Keys: Above we said that Bob learns Kc ∈ {K0,K1, K2} for each
wire. In fact, at some points Bob might hold more than one potential key for
a wire. To ease notation we introduce a function K : {0, 1}∗ → 2Zp mapping a
wire name w to the set of potential keys held by Bob.

NT Bricks: An NT brick (Fig. 3 top, left) with input wire wI and output
wire wO contains two commitments [I0] and [O0], where COM(wI)

def= [I0] and
COM(wO) def= [O0]. Besides it contains three encryptions C0 = EI0(O1), C1 =
EI1(O1), C2 = EI2(O0). The zero-keys I0, O0 ∈ Zp are chosen uniformly at
random by Alice, and Alice computes and sends (wI , wO, [I0], {C0, C1, C2}, [O0])
to Bob. The three ciphertexts are sent in a randomly permuted order, so that
Bob does not know which ciphertext encrypts which key.

Given potential keys K(wI) for the input wire wI , Bob computes potential
keys for the output wire as follows:

K(wO) def=
⋃

K∈K(wI)

{DK(C0), DK(C1), DK(C2)} .

If K = Ic for Ic ∈ {I0, I1, I2}, then it follows from Cc ∈ {C0, C1, C2} that
Ont(c) ∈ {DK(C0), DK(C1), DK(C2)}. Therefore

Ic ∈ K(wI) ⇒ Ont(c) ∈ K(wO) .

Note that |K(wO)| ≤ 3|K(wI)|. Our particular use of NT bricks will at all
times ensure that |K(wI)| = 1, and thus |K(wO)| ≤ 3. This is depicted by the
numbers in circles next to the wires in Fig. 3.

Addition Bricks: An addition brick (Fig. 3 left, second to the top) has two
input wires wL and wR and one output wire wS . It contains two commitments
[L0] and [R0], where COM(wL) def= [L0], COM(wR) def= [R0]. We let [S0] =
[L0] ¢ [R0] and let COM(wS) def= [S0]. I.e., the zero-key S0 for the output wire
is S0 = L0 + R0 mod p. Alice picks L0, R0 ∈ Zp uniformly at random and sends
(wL, wR, wS , [L0], [R0]) to Bob.

Given potential keys K(wL) and K(wR) for the input wires, Bob computes
potential keys for the output wire as follows:

K(wS) def= K(wL) +K(wR) = {L + R mod p|L ∈ K(wL) ∧R ∈ K(wR)} .

Note that Lx +Ry ≡p (L0 +x∆)+(R0 +y∆) ≡p (L0 +R0)+(x+y)∆ ≡p Sx+y.
Therefore, if x, y ∈ {0, 1}, then

Lx ∈ K(wL) ∧Ry ∈ K(wR) ⇒ Sx+y ∈ K(wS) .

Our particular use of addition bricks will at all times ensure that |K(wL)| = 1
and |K(wR)| = 1, and thus |K(wS)| = 1. This is depicted by the numbers in
circles next to the wires in Fig. 3.

Shifts: The next component is the shift (Fig. 3 left, second to the bottom).
Assume that Bob just evaluated a brick, like an NT brick, to get potential keys
K(w) for its output wire w, and let [K0] = COM(w) be the commitment associ-
ated to w. Bob needs to use K(w) as input for the next brick in the LEGO circuit.
The next brick was, however, generated independently of the brick producing the
potential keys K(w). This means that it has an input wire w′ 6= w and another
associated commitment [K ′

0] = COM(w′). This is handled as follows: After Bob
announces the position of the bricks in the LEGO circuit, Alice will open the
commitment [K ′

0]¯ [K0] to let Bob learn the shifting value Σ = K ′
0−K0 mod p

for each pair of output wire w and input wire w′, where w is to feed w′. We
denote such a connection by w =⇒ w′. Given Σ, Bob can compute

K(w′) def= K(w) + Σ = {K + Σ mod p|K ∈ K(w)} .

Note that Kc + Σ ≡p (K0 + c∆) + (K ′
0 −K0) ≡p K ′

0 + c∆ ≡p K ′
c. Therefore

Kc ∈ K(w) ⇒ K ′
c ∈ K(w′) ,

unless Alice opens [K ′
0] ¯ [K0] to Σ 6= K ′

0 − K0 mod p, which would involve
breaking the computational binding of the commitment scheme. We make this
precise in the formal analysis. Clearly |K(w′)| = |K(w)|.
KF Bricks: Already with the above components one can evaluate a NAND
circuit C, using one addition brick and one NT brick to securely evaluate each
NAND gate in C. The maximal size of potential-key sets, however, grows by a
factor 3 after each NT gate and squares after each addition gate. We deal with
this using the key-filter brick.

A KF brick (Fig. 3 left, bottom) has one input wire wI and one output wire
wO. It consists of one commitment [K0] and COM(wI)

def= [K0] and COM(wO) def=
[K0]. It also contains two hash values T0 = H(K0) and T1 = H(K1). Alice
chooses K0 uniformly at random and sends ([K0], {T0, T1}) to Bob, with T0 and
T1 in a uniformly random order.

When Bob has potential-key set K(wI) for the input wire he computes po-
tential keys for wO as follows

K(wO) def= {K ∈ K(wI)|H(K) ∈ {T0, T1}} .

It clearly holds for b ∈ {0, 1} that Kb ∈ K(wI) ⇒ Kb ∈ K(wO). It is also clear
that when Alice knows K0 and K1 such that T0 = H(K0) and T1 = H(K1), then
unless the collision resistance of the hash function is broken, K(wO) ⊆ {K0,K1}.
Therefore, except with negligible probability,

K(wO) = K(wI) ∩ {K0,K1} .

NAND Composites: Take an addition brick Add = (wL, wR, wS , [L0], [R0])
and an NT brick NT = (wI , wO, [I0], {C0, C1, C2}, [O0]). We call (Add,wS =⇒
wI , NT) a NAND brick. I.e., Bob is given Σ = I0−S0 mod p so that he can shift
the potential output keys from the Add brick to the NT brick. If for x, y ∈ {0, 1}
we have Lx ∈ K(wL) and Ry ∈ K(wR), then Sx+y ∈ K(wS) and therefore
Ont(x+y) ∈ K(wO). I.e.,

Lx ∈ K(wL) ∧Ry ∈ K(wR) ⇒ Ox∧̄y ∈ K(wO) .

The above describes our components and how they work when they are cor-
rect. We now proceed to describe how we deal with faulty components using
replication. We start with the NT brick.

Consider the NT brick NT = (wI , wO, [I0], {C0, C1, C2}, [O0]) connected to
an addition brick above. If the encryptions of NT are not correct, it might
not output the correct Oz. To deal with this, we use a fresh NT brick NT ′ =
(w′I , w

′
O, [I ′0], {C ′0, C ′1, C ′2}, [O′0]) and we add a new fresh wire name ν′ to the

circuit, with COM(ν′) = [O0] and Z(ν′) = O0. We then connect the output
wire of Add to the input wire of NT ′ and the output wire w′O of NT ′ to ν′ by
adding (wS =⇒ w′I , NT ′, w′O =⇒ ν′) to the circuit design.

If for x, y ∈ {0, 1} we have Lx ∈ K(wL) and Ry ∈ K(wR), then Sx+y ∈
K(wS) and therefore (by wS =⇒ w′I) I ′x+y ∈ K(w′I). So, if NT ′ is correct, then
O′nt(x+y) ∈ K(w′O) and thus (by w′O =⇒ ν′) Ont(x+y) ∈ K(ν′). We already argued
that if NT is correct, then Ont(x+y) ∈ K(wO). This implies that if NT is correct
or NT ′ is correct, then Ont(x+y) ∈ K(wO)∪K(ν′). We can therefore add a fresh
wire u to the circuit and let Bob compute K(u) = K(wO) ∪ K(ν′). We picture
this as the wires wO and ν′ being joined in Fig. 3.

When using a total of ` NT bricks we call the structure an `-NAND composite
or `-NANDC, as depicted in the top, center of Fig. 3. When we use a NANDC
in a larger construction we depict it as the right, top graphic. It is clear that if
at least one of the ` NT bricks is correct, then for x, y ∈ {0, 1} we have

Lx ∈ K(wL) ∧Ry ∈ K(wR) ⇒ Ox∧̄y ∈ K(u) .

In our use of `-NANDC’s we always ensure that |K(wL)| = |K(wR)| = 1,
which clearly implies that |K(u)| ≤ 3`.

KF Composites: Also KF bricks can be incorrect, e.g. by T0 and T1 being
random values. If both are incorrect it is not a real problem as Bob will end
up with K(wO) = ∅ in all cases. Alice might, however, create a brick where
T0 = H(K0) and T1 is random. In that case Bob will get K(wO) = {K0} if K0 ∈
K(wI) and K(wO) = ∅ if K1 ∈ K(wI). In the first case he completes the protocol,
but in the second case he has to terminate. Alice detects the termination by not
receiving her keys, which allows her to learn the bit on the (possibly) internal
wire wO. To avoid this leakage via conditional failure we replicate key filters.

The simple observation is that if we run several KF bricks on the same
potential keys, then a correct key will be contained in the output of all correct
filters. If we use 2`+1 filters under the assumption that that at most ` are faulty,
this allows us to pick the correct keys by majority voting.

To ease the presentation, we describe just the case ` = 1. Consider three
KF bricks KF = (wI , wO, [K0], {T0, T1}), KF ′ = (w′I , w

′
O, [K ′

0], {T ′0, T ′1}),
KF ′ = (w′′I , w′′O, [K ′′

0], {T ′′0 , T ′′1 }), add fresh wires ν′, ν′′, v with COM(ν′) def=
[K0], COM(ν′′) def= [K0] and COM(v) def= [K0], and add the shifts wI =⇒ w′I ,
wI =⇒ w′′I , w′O =⇒ ν′, w′O =⇒ ν′′. Let K(v) consist of the K which are found
in at least two of the sets K(wO),K(ν′),K(ν′′). We write

K(v) def= Maj(K(wO),K(ν′),K(ν′′)) .

If Kc ∈ K(wI) and KF (resp KF ′,KF ′′) is correct, then Kc ∈ K(wO) (resp.
K(ν′),K(ν′′)). So, if a majority of the KF bricks are correct, then Kc ∈ K(wI) ⇒
Kc ∈ K(v). Furthermore, since a correct KF brick only output keys in {K0,K1},
it follows that K(v) ⊆ {K0,K1}. So, except with negligible probability

K(v) = K(wI) ∩ {K0,K1} .

We depict the KFC in Fig. 3 (center, bottom). When using a KFC in a larger
construction we depict it as the right, second from the top graphic.

Overall Architecture: To evaluate a NAND circuit C with replication pa-
rameter ` we place one (` + 1)-NANDC on each NAND gate G in C and attach
a (2`+1)-KFC to the output wire of the NANDC — we connect them using the
appropriate shift u =⇒ wI . We consider the two input wires wL and wR of the
NANDC as the input wires of G and we consider the output wire v of the KFC
as the output wire of G. We then use shifts to connect output wires of gates to
input wires of other gates according to the architecture of C.

In the evaluation Bob will learn input keys Kxw for his input wires via an
OT of K0 and K1. By letting Alice send the opening of [Kxw] in the OT, Bob
can verify that Kxw is correct. For Alice’s input wires, she will simply send
Kxw to give input xw on wire w. To prevent her from sending an incorrect key,
K ′ 6∈ {K0,K1} we add an extra (2` + 1)-KFC and send K ′ through this filter
before feeding it unto w. This ensures that K ′ ∈ {K0,K1}, if accepted.

In Fig. 3 (bottom, right) we depict this construction for ` = 1 and C consisting
of one NAND gate where Alice provides the left input and Bob provides the right
input.

It is easy to see that if for each (` + 1)-NANDC at most ` NT bricks are
incorrect and for each (2` + 1)-KFC at most ` KF bricks are incorrect, then the
LEGO circuit will compute the correct result, in the following sense: If Z(w) +
xw∆ mod p ∈ K(w) for all input wires w ∈ I and xw ∈ {0, 1}, then Z(w) +
yw∆ mod p ∈ K(w) for all output wires w ∈ O and {yw}w∈O = C({xw}w∈I).

If in addition K(w) is a singleton set for all w ∈ I, then K(w) will be a
singleton set for all w ∈ O, except with negligible probability. As detailed in
the analysis, this follows from the use of KFC’s and the fact that Bob could not
compute both keys K0 and K1 for a wire even if he tried.

4 The Protocol

The overall protocol is given in Fig. 4. It depends on the NAND circuit C and a
replication factor ` ∈ N.

Bricks Production: Details of how individual bricks are produced and which
values are sent to Bob were given in Section 3. Alice will produce PNT = (1 +
τNT)(` + 1)|C| NT bricks and Bob will select a uniformly random subset of size
τNT (` + 1)|C| for testing. This leaves (` + 1)|C| NT bricks, which is sufficient
to construct a (` + 1)-NANDC for each gate in C. She generates PKF = (1 +
τKF)(2`+1)(|C|+|IA|) KF bricks and Bob tests a random subset of size τKF (2`+
1)(|C|+ |IA|), leaving enough to construct a (2`+1)-KFC for each gate and each
of Alice’s input wires.

After sending the components, and before the tests, Alice proves to Bob
that she knows the openings of all commitments in the bricks, as follows: Let
[K(1)

0], . . . , [K(n)
0] be the set of all commitments contained in the bricks. Bob

picks a uniformly random challenge e ∈R Zn
p and sends e to Alice. Bob computes

[
∑n

i=1 eiK
(i)
0] = ¢n

i=1[K
(i)
0]ei and Alice computes the opening of [

∑n
i=1 eiK

(i)
0].

Then Alice uses Fzk to prove that she knows this opening. Bob terminates if the
proof fails.

Addition bricks are by definition correct, as Bob lets [S0] = [L0] ¢ [R0]. For
NT bricks and KF bricks Alice can cheat by not providing correct encryptions
respectively hash values, which is the reason for the following tests.

NT Bricks: A test of NT = (wI , wO, [I0], [O0], {C0, C1, C2}) proceeds as
follows:

1. Alice sends a value telling Bob the correct order C0, C1, C2 of {C0, C1, C2}.
2. Bob computes [O1] = [O0]¢ [∆], [I1] = [I0]¢ [∆], [I2] = [I1]¢ [∆] and sends

challenge e ∈R {0, 1, 2} to Alice.
3. Alice opens [Ie] and [Ont(e)] to let Bob learn Ie and Ont(e).
4. Bob accepts iff the openings are correct and EIe(Ont(e)) = Ce.

It is clear that if Alice can answer all three challenges correctly and cannot break
the computational binding of the commitment scheme, then NT is a correct NT
brick, i.e., it would produce the correct output key in {O0, O1} on all input keys
in {I0, I1, I2}, where I0 is the key in [I0] and and O0 is the key in [O0]. For now,
we informally define the key in [I0], [O0] as the value Alice can open [I0], [O0] to.
The formal analysis is, of course, more crisp.

KF Bricks: A test of KF = (wI , wO, [K0], {T0, T1}) proceeds as follows:

1. Alice sends a bit telling Bob the correct order T0, T1 of {T0, T1}.
2. Bob computes [K1] = [K0] ¢ [∆] and sends a one bit challenge e ∈R {0, 1}

to Alice.
3. Alice opens [Ke] to let Bob learn Ke.
4. Bob accepts iff the opening is correct and Te = H(Ke).

It is clear that if Alice can answer both challenges, then she can open [K0] to
K0 such that H(K0) = T0 and H(K0 + ∆) = T1, or she can break the computa-
tional binding of the commitment scheme. Therefore KF is correct except with
negligible probability. I.e., it would work correctly on both K0 and K1, where
K0 is the key in [K0].

5 Analysis

In the full version of this paper [NO08] we prove Theorem 1. Here we sketch
the proof, but assuming that H is a random oracle. By a hybrid argument
the random oracle can be replaced by a collision resistant function which is
correlation resistant according to Def. 1.

5.1 Corrupted Bob

We first consider the case where Alice is honest and Bob is corrupted. We model
H as a non-programmable and non-extractable random oracle.

The UC simulator S runs Alice’s part of the protocol towards Bob completely
honestly, except that it uses xw = 0 for each of her input wires. If Bob sends keys
in Result announcement which makes Alice reject, then S inputs abort! to
Fsce on behalf of Bob. Otherwise, S for each of Bob’s wires takes xw ∈ {0, 1} to
be the input of Bob to the OT associated to wire w ∈ IB and inputs these xw

to Fsce on behalf of Bob. That completes the description of S.
It remains to argue that the views of the environment in the simulation

and in the protocol are indistinguishable. When H is random they are in fact
statistically close. There are the following differences between the simulation and
the protocol:

1. In the simulation xw = 0 for each of Alice’s wires. In the protocol the xw’s
have the values specified by the environment.

2. In the protocol Alice’s output to the environment is computed from the
values sent by Bob. In the simulation it is the value output by Fsce.

To handle the first difference we argue that Bob’s view is statistically inde-
pendent of Alice’s input. To handle the second difference we argue that if Alice
does not abort she outputs the same yw values in the two settings, and we argue
that she aborts with the same probability in the two settings.

It is straight-forward to verify that when H is a uniformly random function,
then the LEGO circuit leaks no information on Alice’s input to Bob unless he
queries H on two different points P, P ′ ∈ {K0, K0 + ∆, K0 + 2∆} for some zero-
key K0 of the bricks sent by Alice, and that until he makes such queries, ∆ is
uniformly random in the view of Bob. It follows from an easy application of the
birthday bound that when ∆ is uniformly random and independent of the view
of Bob, the probability that he makes such queries is less than 2−s, because of
our choice of p.

Setup: We assume Alice and Bob agree on a generator g of order p. Bob picks
uniformly random h ∈R 〈g〉 and sends it to Alice. This defines the commitment
scheme [K] = gKhr. Alice picks a global difference ∆ ∈R Zp and sends a
commitment [∆] to Bob and uses Fzk to prove knowledge of the opening of [∆].

Bricks production: Alice produces PNT uniformly random and independent NT
bricks, PKF uniformly random and independent KF bricks and PAdd = |C|
uniformly random addition bricks, and sends all these bricks to Bob. All bricks
are produced using ∆.

Test: Bob selects some NT bricks and KF bricks for testing. For each such brick
he picks a random input and Alice provides Bob with the keys needed to run
on those inputs. Bob terminates if any test fails.

Bricks shuffling: For each NAND gate G in C Bob picks: a random unused ad-
dition brick, ` + 1 random unused NT bricks and 2` + 1 random unused KF
bricks and assigns them to G. For each of Alice’s input wires he picks 2` + 1
random unused KF bricks and assigns them to w. He announce the assignment
to Alice.

Bricks connection: The positions of the bricks chosen by Bob define a number of
brick output wires w feeding unto brick input wires w′. For each such connection
Alice and Bob add w =⇒ w′ to the circuit by Alice opening COM(w′) ¯
COM(w) to Bob. Bob terminates if any opening is incorrect.

Bob’s input: For each input wire w ∈ IB (with Z(w) = K0 and COM(w) = [K0])
Bob has an input xw ∈ {0, 1}. Alice and Bob run an OT where Alice inputs

messages m
(w)
0 = (K0, r0) and m

(w)
1 = (K1, r1) and Bob inputs the selection

bit xw — here (K0, r0) is the opening of [K0] and (K1, r1) is the opening of

[K1] = [K0]¢[∆]. Bob terminates if m
(w)
wx is not an opening of [Kwx]. Otherwise

he lets K(w)
def
= {Kxw} for w ∈ IB .

Alice’s input: For each input wire w ∈ IA (with Z(w) = K0 and COM(w) =
[K0]) Alice has an input xw ∈ {0, 1}. She sends Kxw to Bob and Bob lets
K(w) = {Kxw}. Bob evaluates the KFC for w on K(w) to get K(w′). Since
|K(w)| = 1 and K(w′) = K(w) ∩ {K0, K1}, it follows that |K(w′)| ≤ 1 and
K(w′) ⊂ {K0, K1}. If |K(w′)| = 1 for all of Alice’s wires w, Bob adopts the sets
K(w′) for w ∈ IA, otherwise he terminates.

Garbled evaluation: If Bob did not yet terminate, he holds a singleton set
K(w) ⊂ {K0, K1} for all input wires w ∈ I, where K0 = Z(w). Now Bob
computes singleton sets K(w) ⊂ {K0, K1} for all output wires w ∈ O, where
K0 = Z(w). Details of how this is done were given in Section 3.

Result announcement: For each output wire w, Bob sends (w,K(w)) to Alice.
Alice terminates if any set K(w) is not a singleton. Otherwise she picks K ∈
K(w) and tries to write K as K = Z(w) + yw∆ mod p for yw ∈ {0, 1}. If this
fails, she terminates the protocol; Otherwise, she adopts yw as the output bit
for wire w.

Figure 4. The LEGO protocol

Now note that from the keys Kxw , w ∈ IA sent by Alice and the keys
Kxw , w ∈ IB Bob chooses in the OT’s, he can compute Kyw for each w ∈ O,
where {yw}w∈O = C({xw}w∈I). So, Bob knows the correct output keys Kyw . If

Bob sends Kyw
for all w ∈ O, then Alice accepts and outputs the correct values

yw.
If Bob sends K ′ 6= Kyw

for some wire, then Alice rejects unless K ′ = K1−yw
.

But then, if K ′ = K1−yw , Bob could query H on two different points Kyw ,K ′ ∈
{K0, K0+∆,K0+2∆}, and we already argued that this happens with probability
less than 2−s. So, the probability that Alice aborts is statistically close to the
probability that Bob sends some K ′ 6= Kyw

.

5.2 Corrupted Alice

We then consider the case where Bob is honest and Alice is corrupted.

The simulator: The simulator runs Bob honestly in Setup, Bricks produc-
tion, Test, Bricks shuffling, Bricks connection, Bob’s input and Alice’s
input, except that:

1. It inspects Alice’s input to Fzk in Setup. If the input to Fzk is not an
opening of [∆], it inputs abort! to Fsce on behalf of Alice. Otherwise it
records ∆.

2. For each of Bob’s input wires w ∈ IB it records both of Alice’s inputs m
(w)
0

and m
(w)
1 to Fot in Bob’s input. For c = 0, 1, if m

(w)
c is a valid opening of

the [Kc] defined in Bob’s input, it defines V
(w)
c

def= Kc. If m
(w)
c is not an

opening of [Kc], it defines V
(w)
c

def= ⊥.

Plain abort: If Alice (formally the adversary) makes Bob abort in any of the
steps run so far, e.g. by sending a key for one of Alice’s input wires which is
not accepted by the corresponding KFC, then S inputs abort! to Fsce to make
it output abort! to the environment, exactly as Bob would have done in the
protocol. The only step in which S cannot compute whether Bob would have
aborted is in Bob’s input, as S does not know the inputs {xw}w∈Iw of Bob —
these were input to Fsce by the environment. This is handled as follows.

Handling conditional failures: If V
(w)
0 = V

(w)
1 = ⊥ for some w ∈ IB , then

S inputs abort! to Fsce on behalf of Alice. Note that Bob would always abort
in the protocol in this case, as he would always receive an incorrect opening for
the wire w. If not already terminated, then S computes W = {w ∈ IB |V (w)

0 =
⊥∨V

(w)
1 = ⊥} and for w ∈ W sets βw ∈ {0, 1} to be the value where V

(w)
βw

6= ⊥.
It then inputs (W, {βw}w∈W) to Fsce on behalf of Alice in Guess. Note that
Fsce aborts iff βw 6= xw for some w ∈ W . By construction of the protocol and
definition of the V

(w)
c , Bob would have aborted in the protocol iff V

(w)
xw 6= Kxw ,

if he was running with the inputs {xw}w∈IB
input to Fsce by the environment.

Therefore S makes Fsce abort iff Bob would have aborted in the protocol. So,
until now the simulation is perfect.

Extracting inputs: If S did not yet make Fsce abort, it must now give an
input to Fsce on behalf of Alice. Note that if S did not yet make Fsce abort,

then it knows a key K(w) for each w ∈ IA, namely the keys obtained by running
the KFC’s on the keys sent by Alice in Alice’s input. The simulator uses ∆ to
compute K

(w)
−1 = K

(w)
xw −∆ and K

(w)
+1 = K

(w)
xw + ∆.1 Then it runs the KFC for

input wire w on K = {K(w)
−1 ,K(w),K

(w)
+1 }. If the output from the KFC does not

consist of two keys K and K ′ where K−K ′ ∈ {∆,−∆} or K(w) 6∈ {K, K ′}, then
S makes Fsce abort. Otherwise it names and orders the two keys as K

(w)
0 ,K

(w)
1

such that K
(w)
1 = K

(w)
0 +∆ and computes xw ∈ {0, 1} such that K(w) = K

(w)
xw . It

inputs {xw}w∈IA
to Fsce and gets back {yw}w∈O = C({xw}w∈IA

∪ {xw}w∈IB
).

Evaluation: By now S has a key K(w) for each w ∈ IA. It lets K(w) = {K(w)}.
For each w ∈ IB it lets K(w) = {V (w)

0 } if V
(w)
0 6= ⊥ and K(w) = {V (w)

1 } if
V

(w)
0 = ⊥. Note that at this point V

(w)
1 6= ⊥ when V

(w)
0 = ⊥. It then evaluates

the LEGO circuit on these K(w). If the evaluation fails, then it makes Fsce

abort. Otherwise it computed K(w) = {K(w)} for w ∈ O. It computes K =
{K(w)

−1 ,K(w),K
(w)
+1 } as above and runs the KFC from the gate computing K(w)

on K. If the output does not consist of two keys which can be named and ordered
such that K

(w)
1 = K

(w)
0 +∆ it makes Fsce abort. Otherwise, it sends {K(w)

yw }w∈O
to Alice, where the yw are the values received from Fsce.

That completes the description of the simulator.

Analysis: We argued that the simulation is perfect up until the evaluation.
What remains is to argue that the simulator aborts in the evaluation with the
same probability as Bob would in the protocol and that when it does not abort,
then the keys {K(w)

yw }w∈O sent to Alice have the same distribution in the protocol
and the simulation. This boils down to arguing that the LEGO circuit is correct
if Bob does not abort before the evaluation phase.

Defining good and bad : We start the analysis by dividing bricks into good
and bad and use this to define good and bad composites.

Consider the entire state of an execution after Alice sent all bricks to Bob
and before Bob sends the challenge e ∈ Zn

p . Define q to be the probability that

Bob accepts Alice’s proof for [Ke]
def= [

∑n
i=1 eiK

(i)
0], when run from this fixed

state (formally we fix the random tape of the environment and the adversary).
If q ≤ 2/p we define all bricks to be bad. Otherwise we extract the openings of
all commitments and use these to define the goodness of the bricks, as described
now.

For a fixed state of Alice she will for a fixed e ∈ E
def= Zn

p input a correct
opening of [Ke] to Fzk with probability 0 or 1. Let Eg denote the e ∈ E where
the probability is 1. Then q = |Eg|/|E|, and we have a poly-time oracle for
computing Ke

def=
∑n

i=1 eiK
(i)
0 for e ∈ Eg: Given any e ∈ E we can run the

execution from the fixed state until Alice inputs to Fzk. If e ∈ Eg, this gives
us Ke. Let n denote the number of commitments [Ki]. It is clear that if we get
Kei for n linear independent values ei ∈ Zn

p , then we can efficiently solve for
1 Both additions are modulo p. Below we will continue not explicitly mentioning the

mod p when computing on elements from Zp.

openings of all [Ki]. We get the ei by querying the oracle on several uniformly
random e ∈ E. At any point, let {ei} denote the ei on which we got an opening
of [Kei]. We continue querying as long as span{ei} 6= Zn

p . If we query on a fresh
uniformly random e ∈ E, then the probability that e ∈ span{ei} is at most 1/p.
The probability that e ∈ Eg is q. Therefore the probability that e ∈ Eg\span{ei}
is at least q − 1/p ≥ q/2. It follows that the expected number of queries to
get span{ei} = Zn

p is at most n(q/2)−1 = 2nq−1. The expected running time
is therefore poly(s)q−1. We only need to run the above extraction when Bob
accepts the proof in the simulation, which he does with probability q. Therefore
the expected running time of running the simulation once and extracting if Bob
accepts is q poly(s)q−1 = poly(κ).

After having extracted openings of all commitments we let Z(w) = K0 for
all wires, where [K0] = COM(w) and K0 is the key extracted from [K0].

We then define a KF brick (wI , wO, [K0], {T0, T1}) to be good if there is
an ordering T0, T1 of {T0, T1} such that T0 = H(K0) and T1 = H(K0 + ∆).
We define an NT brick (wL, wR, wO, [L0], [R0], [O0], {C0, C1, C2}) to be good if
there is an ordering C0, C1, C2 of {C0, C1, C2} such that C0 = H(I0) + O0 + ∆,
C1 = H(I0 + ∆) + O0 + ∆ and C2 = H(I0 + 2∆) + O0. All other KF and NT
bricks are defined to be bad.

We already now note that Alice cannot later open shifting values incorrectly:
Assume that Alice opens [K ′

0] ¯ [K0] to Σ 6= K ′
0 −K0 as part of implementing

w =⇒ w′ (here [K0] = COM(w),K0 = Z(w), [K ′
0] = COM(w′),K ′

0 = Z(w′)).
We can then use the opening of [K ′

0] to K ′
0, the opening of [K0] to K0 and the

opening of [K ′
0] ¯ [K0] to Σ to compute an opening of e.g. [K0] to two different

values. Since all three openings originate from Alice2 and were computed in
expected poly-time, we broke the computational binding of the commitment
scheme. We also note the easy fact that if a KF brick is defined to be bad, then
there exists at least one challenge e ∈ {0, 1} on which Alice cannot make Bob
accept a test, and if an NT brick is defined to be bad, then there exists at least
one challenge e ∈ {0, 1, 2} on which Alice cannot make Bob accept a test.3

We call a composite bad if it consists of more than ` bad composites. Oth-
erwise it is good. An NANDC consists of ` + 1 bricks and a KFC consists of
2`+1 bricks. As a consequence they will work correctly if they are good. It then
follows from Section 3 that a LEGO circuit consisting of only good composites
will compute correct K(w) for all w ∈ O.

We first analyze the probability that any NANDC is bad. Let P = (1+τ)(`+
1)|C| be the number of NT bricks produced by Alice, let B be the number of
NT bricks being defined as bad, let T = τ(` + 1)|C| be the number of NT bricks
being tested, and let U = (` + 1)|C| be the number of NT bricks used in the
LEGO circuit.

Split each good NT brick into three green balls and split each bad NT brick
into two green balls and a red ball. A ball represents one of the values a specific

2 The two first ones from extraction and the last because she sent it.
3 In both case, unless she breaks the computational binding of the commitment

scheme.

brick can be tested on. Each bad brick has at least one value which will catch
Alice if Bob tests on that value — this is the red ball. There are 3P balls and
B are red. We analyze the game where Bob chooses T balls at random and
accepts if they are all green. This upper bounds his probability of accepting
in the protocol, except for a negligible amount coming from Alice’s possible
breaking of the commitment scheme. The probability that Bob accepts in the
game is upper bounded by

(
3P−B

3P

)T
. The probability that a given NANDC is

bad is upper bounded by
(

B
U

)`+1
, so by a union bound, the probability that Bob

accepts and there is at least one bad NANDC is upper bounded by

(
3P −B

3P

)T

|C|
(

B

U

)`+1

= |C|
((

3P −B

3P

)τ |C|
B

U

)`+1

. (1)

This is maximal in B when (3P −B)τ |C|
B is maximal in B, which it is

when B = 3P (1 + τ |C|)−1 = 3(1 + τ)(` + 1)|C|(1 + τ |C|)−1 ≈ 3 1+τ
τ (` + 1) =

3(1 + τ−1)(` + 1). We use B = 3(1 + τ−1)(` + 1). Then B/U = 3(1 + τ−1)|C|−1 ,
and (3P −B)(3P)−1 = 1−B(3P)−1 = 1− (1+ τ−1)(1+ τ)|C|−1 = 1− τ−1|C|−1.
So,

(
3P−B

3P

)τ |C|
= (1−τ−1|C|−1)τ |C| ≈ e−1. Plugging this into (1), we get an error

probability of |C|−`
(

3(τ+1)
eτ

)`+1

. Isolating for a probability of 2−s that there is
a bad NT composite we get

` ≈ s + 0.1423 + log τ+1
τ

log |C| − 0.1423− log τ+1
τ

= O(s/ log |C|) .

We round up this value to the nearest integer to get the replication factor for
the protocol. A more careful analysis without the approximations shows that
this actually gives a probability of O(2−s) that Bob accepts and yet there is a
NANDC being defined as bad.

Correctness: In the full version [NO08] we give a similar analysis for KFCs
and recommend optimal values of τ for a wide range of circuit sizes and de-
sired security levels. Here it suffices to note that for ` = O(s/ log |C|) also the
probability that Bob accepts and there is a bad KFC is O(2−s). Therefore, if
Bob accepts (in the protocol or simulation) then all composites are good, ex-
cept with negligible probability. As described in Section 3, this implies that Bob
will be able to evaluate the LEGO circuit in both settings, or at least abort
with negligible probability. Furthermore, in the protocol the keys sent to Alice
are {K(w)

yw }w∈O, where K
(w)
0 is the key she can open COM(w) to (by the ex-

traction argument) and {yw}w∈O = C({xw}w∈IA
∪ {xw}w∈IB

) for Bob’s inputs
{xw}w∈IB and inputs {xw}w∈IA defined by the keys {K(w)

xw }w∈IA sent by Alice
and the keys K

(w)
0 she can open the commitment of the input KFCs to. By con-

struction of the simulator the keys sent to Alice are {K(w)
yw }w∈O, where K

(w)
0 is

the key she can open COM(w) to and {yw}w∈O = C({xw}w∈IA ∪{xw}w∈IB) for
Bob’s inputs {xw}w∈IB (held by the Fsce) and the inputs {xw}w∈IA extracted

from the keys sent by Alice. So, it suffices to argue that the extraction produces
the correct values of xw for w ∈ IA: Since Bob did not abort, the KFC for w
produced a unique output. Since the KFC is correct, the output is of the form
K(w) = K(0) + c∆, defined relative to the K(0) Alice can open COM(w) to
and c ∈ {0, 1}. Therefore {K(w)

0 ,K
(w)
1 } ⊂ {K(w)

−1 ,K(w),K
(w)
+1 }. Therefore the

KFC outputs K ∩ {K(w)
0 ,K

(w)
1 } = {K(w)

0 ,K
(w)
1 }. By construction this leads to

S computing the xw ∈ {0, 1} for which K(w) = K
(w)
0 + xw∆.

Acknowledgments

We thank the TCC reviewers for their suggestions on improving the presentation
and in particular Yuval Ishai who provided valuable feedback during our writing
of the conference version.

References

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design (extended
abstract). In FOCS, 1986.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In CRYPTO, 2003.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO, 2008.

[JS07] S. Jarecki and V. Shmatikov. Efficient two-party secure computation on
committed inputs. In EUROCRYPT, 2007.

[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates
and applications. In ICALP (2), 2008.

[LP04] Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party
computation. Electronic Colloquium on Computational Complexity, 2004.

[LP07] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. In EUROCRYPT, 2007.

[LPS08] Y. Lindell, B. Pinkas, and N.P. Smart. Implementing two-party computation
efficiently with security against malicious adversaries. In SCN, 2008.

[MF06] P. Mohassel and M.K. Franklin. Efficiency tradeoffs for malicious two-party
computation. In PKC, 2006.

[NN01] M. Naor and K. Nissim. Communication preserving protocols for secure
function evaluation. In STOC, 2001.

[NO08] J.B. Nielsen and C. Orlandi. Lego for two party secure computation, 2008.
[Woo07] D.P. Woodruff. Revisiting the efficiency of malicious two-party computation.

In EUROCRYPT, 2007.
[Yao82] A.C. Yao. Protocols for secure computations (extended abstract). In FOCS,

1982.
[Yao86] A.C. Yao. How to generate and exchange secrets (extended abstract). In

FOCS, 1986.

