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Abstract. We study the complexity of securely evaluating arithmetic
circuits over finite rings. This question is motivated by natural secure
computation tasks. Focusing mainly on the case of two-party protocols
with security against malicious parties, our main goals are to: (1) only
make black-box calls to the ring operations and standard cryptographic
primitives, and (2) minimize the number of such black-box calls as well
as the communication overhead.

We present several solutions which differ in their efficiency, generality,
and underlying intractability assumptions. These include:

– An unconditionally secure protocol in the OT-hybrid model which
makes a black-box use of an arbitrary ring R, but where the number
of ring operations grows linearly with (an upper bound on) log |R|.

– Computationally secure protocols in the OT-hybrid model which
make a black-box use of an underlying ring, and in which the num-
ber of ring operations does not grow with the ring size. The protocols
rely on variants of previous intractability assumptions related to lin-
ear codes. In the most efficient instance of these protocols, applied
to a suitable class of fields, the (amortized) communication cost is
a constant number of field elements per multiplication gate and the
computational cost is dominated by O(log k) field operations per
gate, where k is a security parameter. These results extend a previ-
ous approach of Naor and Pinkas for secure polynomial evaluation
(SIAM J. Comput., 2006).

– A protocol for the rings Zm = Z/mZ which only makes a black-box
use of a homomorphic encryption scheme. When m is prime, the
(amortized) number of calls to the encryption scheme for each gate
of the circuit is constant.
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All of our protocols are in fact UC-secure in the OT-hybrid model and
can be generalized to multiparty computation with an arbitrary number
of malicious parties.

1 Introduction

This paper studies the complexity of secure multiparty computation (MPC)
tasks which involve arithmetic computations. Following the general feasibility
results from the 1980s [60, 34, 4, 13], much research in this area shifted to effi-
ciency questions, with a major focus on the efficiency of securely distributing
natural computational tasks that arise in the “real world”. In many of these
cases, some inputs, outputs, or intermediate values in the computation are in-
tegers, finite-precision reals, matrices, or elements of a big finite ring, and the
computation involves arithmetic operations in this ring. To name just a few ex-
amples from the MPC literature, such arithmetic computations are useful in the
contexts of distributed generation of cryptographic keys [8, 28, 56, 32, 2], privacy-
preserving data-mining and statistics [48, 11], comparing and matching data [50,
31, 38], auctions and mechanism design [51, 21, 59, 7], and distributed linear al-
gebra computations [15, 52, 47, 20, 49].

This motivates the following question:

What is the complexity of securely evaluating a given arithmetic circuit
C over a given finite ring R?

Before surveying the state of the art, some clarifications are in place.

Arithmetic circuits. An arithmetic circuit over a ring is defined similarly to a
standard boolean circuit, except that the inputs and outputs are ring elements
rather than bits and gates are labeled by the ring operations add, subtract, and
multiply. (Here and in the following, by “ring” we will refer to a finite ring by
default.) In the current context of distributed computations, the inputs and
outputs of the circuit are annotated with the parties to which they belong.
Thus, the circuit C together with the ring R naturally define a multi-party
arithmetic functionality CR. Note that arithmetic computations over the integers
or finite-precision reals can be embedded into a sufficiently large finite ring or
field, provided that there is an a-priori upper bound on the bit-length of the
output. See Section 1.2 for further discussion of the usefulness of arithmetic
circuits and some extensions of this basic model to which our results apply.

Secure computation model. The main focus of this paper is on secure two-
party computation or, more generally, MPC with an arbitrary number of ma-
licious parties. (In this setting it is generally impossible to guarantee output
delivery or even fairness, and one has to settle for allowing the adversary to
abort the protocol after learning the output.) Our protocols are described in
the “OT-hybrid model,” namely in a model that allows parties to invoke an
ideal oblivious transfer (OT) oracle [57, 27, 33]. This has several advantages in
generality and efficiency, see [44] and Section 1.2 for discussion.



Ruling out the obvious. An obvious approach for securely realizing an arith-
metic computation CR is by first designing an equivalent boolean circuit C ′ which
computes the same function on a binary representation of the inputs, and then
using standard MPC protocols for realizing C ′. The main disadvantage of such
an approach is that it typically becomes very inefficient when R is large. A clean
way for ruling out such an approach, which is of independent theoretical inter-
est, is by restricting protocols to only make a black-box access to the ring R.
That is, Π securely realizes C if ΠR securely realizes CR for every finite ring R
and every representation of elements in R. The black-box access to R enables
Π to perform ring operations and sample random ring elements, but the corre-
spondence between ring elements and their identifiers (or even the exact size of
the ring) will be unknown to the protocol. This automatically ensures that the
overhead of Π (compared to an insecure implementation) does not grow with
the computational complexity of ring operations. When considering the special
case of fields, we allow by default the protocol Π to access an inversion oracle.
Most of our protocols will make black-box access to a ring, although we will also
consider some protocols outside of this model based on homomorphic encryption
(see below).

1.1 Previous Work

In the setting of MPC with honest majority, most protocols from the litera-
ture can make a black-box use of an arbitrary field. An extension to arbitrary
black-box rings was given in [19], building on previous black-box secret sharing
techniques of [26, 18] and previous MPC techniques of [4, 16].

In the case of secure two-party computation and MPC with no honest ma-
jority, most protocols from the literature apply to boolean circuits. Below we
survey some previous approaches from the literature that apply to secure arith-
metic computation with no honest majority.

In the semi-honest model, it is easy to employ any homomorphic encryption
scheme with plaintext group Zm for performing arithmetic MPC over Zm. (See,
e.g., [1, 11].) An alternative approach, which relies on oblivious transfer and uses
the standard binary representation of elements in Zm, was employed in [32]. Both
of the above protocols make a black-box use of the underlying cryptographic
primitives but do not make a black-box use of the underlying ring. Applying the
general compilers of [34, 12] to these protocols in order to obtain security in the
malicious model would result in inefficient protocols which make a non-black-box
use of the underlying cryptographic primitives (let alone the ring).

In the malicious model, protocols for secure arithmetic computation based
on threshold homomorphic encryption were given in [17, 24]4 (extending a sim-
ilar protocol for the semi-honest model from [29]). These protocols provide the
most practical general solutions for secure arithmetic two-party computation we

4 While [17, 24] refer to the case of robust MPC in the presence of an honest majority,
these protocols can be easily modified to apply to the case of MPC with no honest
majority.



are aware of, requiring a constant number of modular exponentiations for each
arithmetic gate. On the down side, these protocols require a nontrivial setup
of keys which is expensive to distribute. Moreover, they rely on special-purpose
zero-knowledge proofs and specific number-theoretic assumptions and thus do
not make a black-box use of the underlying cryptographic primitives, let alone
a black-box use of the ring.

The only previous approach which makes a black-box use of an underlying
ring (as well as a black-box use of OT) was suggested by Naor and Pinkas [50]
in the context of secure polynomial evaluation. Their protocol can make a black-
box use of any field, and its security is related to the conjectured intractability
of decoding Reed-Solomon codes with a sufficiently high level of random noise.
The protocol from [50] can be easily used to obtain general secure protocols for
arithmetic circuits in the semi-honest model. However, extending it to allow full
simulation-based security in the malicious model (while still making only a black-
box use of the underlying field) is not straightforward. (Even in the special case
of secure polynomial evaluation, an extension to the malicious model suggested
in [50] only considers privacy rather than full simulation-based security.)

Finally, we note that Yao’s garbled circuit technique [60], the main known
technique for constant-round secure computation of general functionalities, does
not have a known arithmetic analogue. Thus, in all general-purpose protocols for
secure arithmetic computation (including the ones presented in this work) the
round complexity must grow with the multiplicative depth of C – the maximal
number of multiplication gates on a path from an input to an output.

1.2 Our Contribution

We study the complexity of general secure arithmetic computation over finite
rings in the presence of an arbitrary number of malicious parties. We are moti-
vated by the following two related goals.

– Black-box feasibility: only make a black-box use of an underlying ring R or
field F and standard cryptographic primitives;

– Efficiency: minimize the number of such black-box calls, as well as the com-
munication overhead.

For simplicity, we do not attempt to optimize the dependence of the com-
plexity on the number of parties, and restrict the following discussion to the
two-party case.

We present several solutions which differ in their efficiency, generality, and
underlying intractability assumptions. All these constructions use the general
framework from [44]: one can obtain 2-party UC-secure protocols in the OT-
hybrid model, by combining an “outer MPC protocol” secure against active
adversaries in the honest majority setting, with an “inner two-party protocol”
for simple functionalities that need only be secure against passive adversaries.
The main technical contribution of this work is in designing inner protocols,
that can then be combined with appropriate variants of outer protocols from the



literature, to obtain secure protocols with desired properties. Below we describe
the main protocols we obtain in this way, along with their efficiency and security
features.

An unconditionally secure protocol. We present an unconditionally secure
protocol in the OT-hybrid model which makes a black-box use of an arbitrary
finite ring R, but where the number of ring operations and the number of ring
elements being communicated grow linearly with (an upper bound on) log |R|.
(We assume for simplicity that an upper bound on log |R| is given by the ring
oracle, though such an upper bound can always be inferred from the length
of the strings representing ring elements.) More concretely, the number of ring
operations for each gate of C is poly(k) · log |R|, where k is a statistical security
parameter. This gives a two-party analogue for the MPC protocol over black-
box rings from [19], which requires an honest majority (but does not require the
number of ring operations to grow with log |R|).
Protocols based on noisy linear encodings. Motivated by the goal of re-
ducing the overhead of the previous protocol, we present a general approach for
deriving secure arithmetic computation protocols over a ring R from linear codes
over R. The (computational) security of the protocols relies on intractability as-
sumptions related to the hardness of decoding in the presence of random noise.
These protocols generalize and extend in several ways the previous approach of
Naor and Pinkas for secure polynomial evaluation [50]. More concretely, we make
three main observations: (1) Using [44], secure evaluation of degree-1 polynomi-
als in the semi-honest model can be used in a black-box way for general secure
arithmetic computation in the malicious model; (2) In the case of degree-1 poly-
nomials, the approach of [50] can be generalized to rely on arbitrary linear codes
for which the relevant intractability assumption holds; (3) When using Reed-
Solomon codes as in [50], it is possible to significantly improve the efficiency by
batching together many instances of secure polynomial evaluation.

Using this approach, we obtain the following types of protocols in the OT-
hybrid model.

– A protocol which makes a black-box use of an arbitrary field F , in which
the number of field operations (and field elements being communicated) does
not grow with the field size. More concretely, the number of field operations for
each gate of C is bounded by a fixed polynomial in the security parameter k,
independently of |F |. The underlying assumption is related to the conjectured
intractability of decoding a random linear code over F . Our assumption is im-
plied by the assumption that a noisy codeword in a random linear code over F
is pseudorandom.

– A variant of the previous protocol which makes a black-box use of an
arbitrary ring R, and in particular does not rely on inversion. This variant is
based on families of linear codes over rings in which decoding in the presence
of erasures can be done efficiently, and for which decoding in the presence of (a
suitable distribution of) random noise seems intractable.

– The most efficient protocol we present relies on the intractability of decod-
ing Reed-Solomon codes with a (small) constant rate in the presence of a (large)



constant fraction of noise.5 The amortized communication cost is a constant
number of field elements per multiplication gate. (Here and in the following,
when we refer to “amortized” complexity we ignore an additive term that may
depend on the security parameter and the circuit depth, but not on the circuit
size. In most natural instances of large circuits this additive term does not form
an efficiency bottleneck.)
A careful implementation yields protocols whose amortized computational cost
is O(log k) field operations per gate, where k is a security parameter, assuming
that the field size is super-polynomial in k. In contrast, protocols which are
based on homomorphic encryption schemes (such as [17] or the ones obtained
in this work) apply modular exponentiations, which require Ω(k + log |F |) ring
multiplications per gate, in a ciphertext ring which is larger than F . This is the
case even in the semi-honest model.

Protocols making a black-box use of homomorphic encryption. We also
consider protocols for the specific rings Zm = Z/mZ (thus leaving behind the
black-box ring model), but which make black-box use of any homomorphic en-
cryption scheme with plaintext group Zm. Alternatively, the protocol can make a
black-box use of homomorphic encryption schemes in which the plaintext group
is determined by the key generation algorithm, such as those of Paillier [53] or
Damg̊ard-Jurik [23]. In both variants of the protocol, the (amortized) number of
communicated ciphertexts and calls to the encryption scheme for each gate of C
is constant, assuming that m is prime. This efficiency feature is comparable to
the protocols from [17, 24] discussed in Section 1.1 above. Our protocols have the
advantages of using a more general primitive and only making a black-box use of
this primitive (rather than relying on special-purpose zero-knowledge protocols).
Furthermore, the additive term which we ignore in the above “amortized” com-
plexity measure seems to be considerably smaller than the cost of distributing
the setup of the threshold cryptosystem required by [17].

Both variants of the protocol can be naturally extended to the case of ma-
trix rings Zn×n

m , increasing the communication complexity by a factor of n2.
(Note that emulating matrix operations via basic arithmetic operations over Zm

would result in a bigger overhead, corresponding to the complexity of matrix
multiplication.) Building on the techniques from [49], this protocol can be used
to obtain efficient protocols for secure linear algebra which make a black-box
use of homomorphic encryption and achieve simulation-based security against
malicious parties (improving over similar protocols with security against covert
adversaries [3] recently presented in [49]).

All of our protocols are in fact UC-secure in the OT-hybrid model and can
be generalized to multiparty computation with an arbitrary number of malicious

5 The precise intractability assumption we use is similar in flavor to an assumption
used in [50] for evaluating polynomials of degree d ≥ 2. With a suitable choice of
parameters, our assumption is implied by a natural pseudorandomness variant of the
assumption from [50], discussed in [46]. The assumption does not seem to be affected
by the recent progress on list-decoding Reed-Solomon codes and their variants [37,
14, 6, 54].



parties. The security of the protocols also holds against adaptive adversaries,
assuming that honest parties may erase data. (This is weaker than the standard
notion of adaptive security [10] which does not rely on data erasure.) The round
complexity of all the protocols is a constant multiple of the multiplicative depth
of C.
From the OT-hybrid model to the plain model. An advantage of present-
ing our protocols in the OT-hybrid model is that they can be instantiated in a
variety of models and under a variety of assumptions. For instance, using UC-
secure OT protocols from [55, 25], one can obtain efficient UC-secure instances
of our protocols in the CRS model. In the stand-alone model, one can implement
these OTs by making a black-box use of homomorphic encryption [42]. Thus,
our protocols which make a black-box use of homomorphic encryption do not
need to employ an additional OT primitive in the stand-alone model.

We finally note that our protocols require only O(k) OTs with security in
the malicious model, independently of the circuit size; the remaining OT invo-
cations can all be implemented in the semi-honest model, which can be done
very efficiently using the technique of [41]. Furthermore, all the “cryptographic”
work for implementing the OTs can be done off-line, before any inputs are avail-
able. We expect that in most natural instances of large-scale secure arithmetic
computation, the cost of realizing the OTs will not form an efficiency bottleneck.
Extensions. While we explicitly consider here only stateless arithmetic circuits,
this model (as well as our results) can be readily generalized to allow stateful,
reactive arithmetic computations whose secret state evolves by interacting with
the parties.6

As it turns out, reactive arithmetic computations are useful not only for the
obvious purpose of implementing stateful functionalities, but also, somewhat sur-
prisingly, for enriching the (non-reactive) arithmetic computation model. They
can be used to obtain efficient secure realizations of several “non-arithmetic”
manipulations of the state, including decomposing a ring element into its bit-
representation, equality testing, inversion, comparison, exponentiation, and oth-
ers [21, 59]. These reductions enhance the power of the basic arithmetic model,
and allow protocols to efficiently switch from one representation to another in
computations that involve both boolean and arithmetic operations.

2 Preliminaries

Black-box rings and fields. A probabilistic oracle R is said to be a valid
implementation of a finite ring R if it behaves as follows: it takes as input
one of the commands add, subtract, multiply, sample and two m bit “element
identifiers” (or none, in the case of sample), and returns a single m bit string.

6 An ideal functionality which formally captures such general reactive arithmetic com-
putations was defined in [24] (see also [59, Chapter 4]) and referred to as an arith-
metic black-box (ABB). All of our protocols for arithmetic circuits can be naturally
extended to realize the ABB functionality.



There is a one-to-one mapping label : R ↪→ {0, 1}m such that for all x, y ∈ R
R(op, label(x), label(y)) = label(x ∗R y) where op is one of add, subtract and
multiply and ∗R is the ring operation +,−, or · respectively. When an input is
not from the range of label, the oracle outputs ⊥. (In a typical protocol, if a
⊥ is ever encountered by an honest player, the protocol aborts.) The output of
R(sample) is label(x) where x will be drawn uniformly at random from R. We will
be interested in oracles of the kind that implements a family of rings, of varying
sizes. Such a function should take an additional input id to indicate which ring
it is implementing.

Definition 1. A probabilistic oracle R is said to be a concrete ring family (or
simply a ring family) if, for all strings id, the oracle R(id, ·) (i.e., with first input
being fixed to id), is an implementation of some ring. This concrete ring will be
denoted by Rid.

Note that so far we have not placed any computability requirement on the or-
acle; we only require a concrete mapping from ring elements to binary strings.
However, when considering computationally secure protocols we will typically
restrict the attention to “efficient” families of rings: we say R is a computation-
ally efficient ring family if it is a ring family that can be implemented by a
probabilistic polynomial time algorithm.

There are some special cases that we shall refer to:

1. Suppose that for all id, we have that Rid is a ring with an identity for mul-
tiplication, 1. Then, we call R a ring family with inverse if in addition to
the other operations, R(id, one) returns labelid(1) and R(id, invert, labelid(x))
returns labelid(x−1) if x is a unit (i.e., has a unique left- and right-inverse)
and ⊥ otherwise.

2. If R is a ring family with inverse such that for all id the ring Rid is a field,
then we say that R is a field family.

3. We call a ring family with inverse R a pseudo-field family, if for all id, all
but negligible fraction of the elements in the ring Rid are units.

Some special families of rings we will be interested in, other than finite fields,
include rings of the form Zm = Z/mZ for a composite integer m (namely, the
ring of residue classes modulo m), and rings of matrices over a finite field or
ring. With an appropriate choice of parameters, both of these families are in
fact pseudo-fields. Note that a concrete ring family R for the rings of the form
Zm could use the binary representation of m as the input id; further the elements
in Zm could be represented as dlog me-bit strings in a natural way. Of course, a
different concrete ring family for the same ring can use a different representation.

Finally, for notational convenience we assume that the length of all element
identifiers in Rid is exactly |id|. In particular, the ring Rid has at most 2|id|

elements.
Arithmetic circuits. We consider arithmetic circuits with gates labeled by
add, subtract, or multiply. (In addition, for fields there is an additional constant
gate one.) For a concrete ring family R, we denote by CR the mapping which



takes an id and a vector of input identifiers and outputs the corresponding vector
of output identifiers. In the context of multi-party computation, each input or
output to such a circuit is annotated to indicate which party (or parties) it
“belongs” to. Given such an annotated circuit C and a concrete ring family R,
we define the functionality FR

C to behave as follows:

– The functionality takes id as a common (public) input, and receives (private)
inputs to C from each party. It then evaluates the function CR(id, inputs)
using access to R, and provides the outputs to the parties.7

Protocols securely realizing arithmetic computations. We follow the
standard UC-security framework [9]. Informally, a protocol π is said to securely
realize a functionality F if there exists a PPT simulator Sim, such that for all
(non-uniform PPT) adversaries Adv, and all (non-uniform PPT) environments
Env which interact with a set of parties and an adversary, the following two
scenarios are indistinguishable: the real interaction where the parties run the
protocol π and the adversary is Adv; the ideal interaction where the parties
communicate directly with the ideal functionality F and the adversary is SimAdv.
Indistinguishability can either be statistical (in the case of unconditional secu-
rity) or computational (in the case of computational security). All parties, the
adversary, the simulator, the environment and the functionality get the security
parameter k as implicit input. Polynomial time computation, computational or
statistical indistinguishability and non-uniformity are defined with respect to
this security parameter k. However, since we don’t impose an a-priori bound
on the size of the inputs received from the environment as a function of k, the
running time of honest parties is bounded by a fixed polynomial in the total
length of their inputs (rather than a fixed polynomial in k).

We distinguish between static corruption and adaptive corruption. In the
latter case it also makes a difference whether the protocols can erase part of
their state (so that a subsequent corruption will not have access to the erased
information), or no erasure is allowed. Our final protocols will have security
against adaptive corruption with erasures.

We shall consider protocols which make oracle access to a ring family R.
The standard security definition is adapted to this case by giving all algorithms
(including the environment) oracle access to R. For such a protocol we define
its arithmetic computation complexity as the number of oracle calls to R. Simi-
larly the arithmetic communication complexity is defined as the number of ring-
element labels in the communication transcript. The arithmetic computation (re-
spectively communication) complexity of our protocols will dominate the other
computation steps in the protocol execution (respectively, the number of other
bits in the transcript). Thus, the arithmetic complexity gives a good measure of
efficiency for our protocols.

7 FR
C can take id as input from each party, and ensure that all the parties agree on

the same id. Alternately, we can restrict to environments which provide the same
common input id to all parties.



Note that while any computational implementation of the ring oracle neces-
sarily requires the complexity to grow with the ring size, it is possible that the
arithmetic complexity does not depend on the size of the ring at all.

We now define our main notion of secure arithmetic computation.

Definition 2. Let C be an arithmetic circuit. A protocol π is said to be a secure
black-box realization of C-evaluation for a given set of ring families if, for each
R in the set,

1. πR securely realizes FR
C , and

2. the arithmetic (communication and computation) complexity of πR is bounded
by some fixed polynomial in k and |id| (independently of R).

In the case of unconditional security we will quantify over the set of all ring
families, whereas in the case of computational security we will typically quantify
only over computationally efficient rings or fields. In both cases, the efficiency
requirement on π rules out the option of using a brute-force approach to emulate
the ring oracle by a boolean circuit.

We remark that our constructions will achieve a stronger notion of security,
as the simulator used to establish the security in item (1) above will not depend
on R. A bit more precisely, the stronger definition is quantified as follows: there
exists a simulator such that for all adversaries, ring families, and environments,
the ideal process and the real process are indistinguishable. For simplicity how-
ever we phrase our definition as above which does allow different simulators for
different R.

3 Arithmetic Computation with Passive Corruption

To construct a protocol for general arithmetic circuit evaluation over a black-box
ring family R, that is secure against passive (adaptive) corruption it is enough to
realize the following functionality Fpdt-shr (see [45] for more details). Let R = Rid,
where id is an implicit common input.

– A sends a ∈ R and B sends b ∈ R to Fpdt-shr.
– Fpdt-shr samples two random elements zA, zB ∈ R such that zA + zB = ab,

and gives zA to A and zB to B.

A well-known approach for securely realizing this functionality against passive
corruption, using a homomorphic encryption scheme (if available), goes as fol-
lows:

– Bob generates a public/secret key-pair encryption scheme, and sends an
encryption of b along with the public key.

– Alice picks a random element zA in the ring. She then computes an encryp-
tion of ab − zA from the encryption b (and the public-key) and sends it to
Bob.



– Bob decrypts this ciphertext and accepts it as zB . The encryption scheme
should ensure that even with the secret-key, Bob does not learn anything
else about (a, zA) from the message she receives from Alice.

Indeed when such a homomorphic encryption scheme is available this gives a
protocol with security against passive corruption for this task. However, such
schemes are known only for select families of rings, and further do not meet the
goal of making only black-box access to the ring.

This basic approach can be extended to the black-box ring setting with the
help of an OT channel to ensure part of the privacy: Instead of an encryption,
Alice sends an encoding of a under an appropriate erasure correcting code, but
with sufficient noise to hide a from Bob. Her “secret-key” is the information
about which co-ordinates are noisy. The code should have homomorphic proper-
ties to let Bob create a noisy encoding of ab+zB from this. To ensure that Alice
does not learn anything beyond ab + zB , Bob does not send the resulting noisy
codeword to Alice, but lets her use an OT channel to pick up only the non-noisy
co-ordinates of the codeword.

This high-level description fits the approach taken by Naor and Pinkas [50]
for the special case of Reed-Solomon codes. Our protocols in this section provide
more general and more efficient instantiations of this approach, to realize the
functionality Fpdt-shr described above. In Section 3.1 we describe our encoding
schemes, and in Section 3.2 we show how these encoding schemes can be used
in protocols that realize Fpdt-shr against passive corruption.

3.1 Noisy Encodings

We describe several noisy encoding schemes based on linear codes. All our encod-
ing schemes are specified using a code generation algorithm G, over a ring family
R. G is a randomized algorithm such that GR(id, k) outputs (G, L, H), where G
is an n × k generator matrix of a linear code over Rid of length n = n(k), L is
a subset of [n] of size `(k) which specifies the set of coordinates which are not
replaced by noise, and H is another matrix which is used to facilitate efficient
decoding. Here k is the security parameter as well as the code dimension, and
n(k) (code length) and `(k) (number of coordinates without noise) are parame-
ters of G. In our instantiations n will be a constant multiple of k and in most
cases we will have ` = k.

Let R be a ring family. Given G, a parameter t(k) ≤ k (number of ring
elements to be encoded, t = 1 by default), and x ∈ Rt

id, we define a distribution
ER
(G,t)(id, k, x) as that of the public output in the following encoding process:

– Encoding EncodeR
(G,t)(id, k, x):

• Input: x = (x1, . . . , xt) ∈ Rt, where R = Rid and t = t(k).
• Let (G, L, H)← GR(id, k)
• Pick a random vector u ∈ Rk conditioned on ui = xi for i = 1, . . . , t

(i.e., u is x padded with k − t random elements). Compute Gu ∈ Rn.



• Let v = Gu + e, where e← Rn is drawn uniformly random conditioned
on ei := 0 for i ∈ L.
• Let the private output be (G, L, H, v) and the public output be (G, v).

The matrix H is not used in the encoding above, but will be useful towards
efficient decoding. In our main instantiations H can be readily derived from G
and L. We include H explicitly in the outcome of G, because in some cases it is
possible to obtain efficiency gains if (G, H,L) are sampled together.

Below we describe four instantiations of the above encoding scheme. The
respective code generation algorithms are denoted by GStat, GRing, GRand, and
GRS. The first three use t = 1, i.e., a single ring element is encoded in a noisy
codeword, and the last one allows t(k) to be constant fraction of k, say k/2. The
first three schemes allow homomorphic operations of multiplication and addition
of the encoded element with an unencoded element. The last one allows co-
ordinate wise multiplication and addition of t-long vectors. The last two require
the ring family to be a field family.

The first encoding scheme has a statistical hiding property, whereas the oth-
ers depend on computational assumptions for their hiding property. The assump-
tion, in these three cases, is as follows:

Assumption 1 (Generic version, for a given G, R and t(k).) For all se-
quences {(idk, xk, yk)}k such that xk, yk ∈ R

t(k)
idk

, the ensembles {ER
(G,t)(idk, k, xk)}k

and {ER
(G,t)(idk, k, yk)}k are computationally indistinguishable (by any poly(k)-

size nonuniform distinguisher).

Statistically hiding encoding. Our statistically hiding encoding mixes an
additive secret sharing of x with an equal number of uniformly random ring
elements. Following is a more precise description of the encoding algorithm GStat

which fits into the above general framework.

– Let R = Rid. Let n = 2m where m = log2 |R|+ k.
– Let A0 be the m×m matrix with 1 along the main diagonal and −1 along

the rest of the first row.8 Let G be the fixed 2m×m matrix G0 =
[

A0
A0

]
.

– Define L as follows. Let L = {a1, . . . , am} where ai = i or m + i uniformly
at random. (That is ai indices the i-th row in one of the two copies of A0.)

– Note that G|L = A0. H has 1 along the main diagonal and the first row, so
that HG|L = I.

The encoding of x is the vector v = G0u + e, where u is a random vector
with u1 = x and e is a random noise vector with ei = 0 for i ∈ L; v is then
simply a random vector conditioned on

∑
i∈L vi = x. This simple encoding has

the useful property that it statistically hides x when the decoding information
L is not provided. In the full version [45], we prove this fact using the Leftover
Hash Lemma [39] (similarly to previous uses of this lemma in [40, 43]).

8 Here it is not necessary to assume that the ring has a multiplicative identity. In
computing the matrix product, 1.a and −1.a stand for a and −a.



Lemma 1. For any R, id, and x ∈ Rid, the statistical distance between the
distribution of ER

(GStat,1)
(id, k, x) and (G0, v), where v is drawn uniformly from

R2m
id , is 2−Ω(k).

We note that in light of efficient algorithms for low-density instances of subset
sum, one cannot hope to obtain significant efficiency improvements by choosing
a smaller value of m and settling for computational security.
Ring code based instantiation. Our next encoding scheme also uses t = 1,
and works with any arbitrary ring family. It differs from the previous encoding
scheme by not requiring n to depend on |R|; instead we fix n = 2k. The code
generation algorithm, denoted by GRing, is very similar to GStat, except that G =
[ A
B ], where A and B are two random k × k upper triangular matrices with 1

along the main diagonal. L is the same as before (using k instead of m). Note
that G|L is an upper triangular matrix with 1 in the main diagonal. It is easy to
compute an upper triangular matrix H (also with 1 in the main diagonal) using
only the ring operations on elements in G|L such that HG|L = I.

The hiding property is no longer statistical, but is a consequence of Assump-
tion 1, instantiated with GRing and t = 1. GRing could be modified to use more
than two matrices A and B, to make the resulting assumption weaker, at the
expense of increasing n. In the full version we give an alternative to GRing which
relies on a random walk in the special linear group.
Random code based instantiation. Our next instantiation of the generic
encoding, again with t = 1, uses a code generation algorithm GRand based on
a random linear code. It restricts the ring family to be a field family (or a
pseudo-field family) F. But this instantiation of Assumption 1 is a more standard
assumption, which can be reduced to the hardness of decoding a random linear
code when the field is small. GF

Rand works as follows:

– Let F = Fid and n = 2k.
– Pick a random n× k matrix G← Fn×k.
– Pick a random subset L ⊆ [n], |L| = k, such that the k×k submatrix G|L is

non-singular, where G|L consists of those rows in G whose indices are in L.
– Let H = G|−1

L .

These three encoding schemes encode a single element in the ring (or field) R.
They allow the following homomorphic operation: given an encoding of x ∈ R,
namely v = Gu + e where u1 = x, for any a, z ∈ R, an encoding of ax + z
(with the same non-noisy co-ordinates) can be computed as av + Gw, where w
is a random vector with w1 = z. Further they all have the hiding property that
after such a homomorphic operation, the non-noisy co-ordinates of the resulting
encoding reveals nothing beyond the value ax + z. Finally, a noisy encoding
v ∈ Rn of x ∈ R can be decoded by taking the first coordinate of Hv|L.
Reed-Solomon code based instantiation. In our final instantiation of the
generic encoding, we will let t(k) be a constant fraction of k, say t = k/2. This
variant of the construction exploits a stronger homomorphic property of Reed-
Solomon codes, which was previously exploited in [30]. The code generation



algorithm GRS uses n = ck, for a sufficiently large constant9 c > 4. For a field
F = Fid the n×k matrix G is a linear transformation that extrapolates a degree
k − 1 polynomial, given by its value at k randomly chosen points ζi in the field
F , to n other randomly chosen evaluation points ϑi. (All ζi and ϑi are distinct,10

and can be thought of as specifying G.) The non-noisy coordinates L ⊆ [n] are
chosen at random, where |L| = 2k − 1 to allow reconstructing polynomials of
degree 2(k − 1).

This encoding allows the following homomorphic operation: given an encod-
ing of x ∈ F t, namely v = Gu+e where ui = xi for i = 1, . . . , t, for any a, z ∈ F t,
an encoding of ax + z (where ax denotes coordinate-wise multiplication) can be
computed as pv + w, where p, w ∈ Fn are the values of random polynomials of
degree k and 2k respectively at the n evaluation points ϑi, which evaluate to a
and z respectively in the first t of the k points ζi. Note that the resulting vector
encodes (with noise) a degree 2k polynomial.

Instantiations of Assumption 1. Each of the above instantiations of the
encoding leads to a corresponding instantiation of Assumption 1. For the sake
of clarity we collect these assumptions below.

Assumption 2 (a) [For GRand, with t(k) = 1.] For every computationally ef-
ficient field family F and sequence {(idk, xk, yk)}k such that xk, yk ∈ Fidk

,
the ensembles {EF

(GRand,1)
(idk, k, xk)}k and {EF

(GRand,1)
(idk, k, yk)}k are compu-

tationally indistinguishable.
(b) [For GRing, with t(k) = 1.] For every computationally efficient ring fam-

ily R and sequence {(idk, xk, yk)}k such that xk, yk ∈ Ridk
, the ensembles

{EF
(GRing,1)

(idk, k, xk)}k and {EF
(GRing,1)

(idk, k, yk)}k are computationally indis-
tinguishable.

(c) [For GRS, with t(k) = k/2.]11 Let t(k) = k/2. For every computationally
efficient field family F and sequence {(idk, xk, yk)}k such that xk, yk ∈ F

t(k)
idk

,
the ensembles {EF

(GRS,t(k))(idk, k, xk)}k and {EF
(GRS,t(k))(idk, k, yk)}k are com-

putationally indistinguishable.

3.2 Product-Sharing Secure Against Passive Corruption

Below we list the protocols for securely realizing Fpdt-shr that we obtain from
the noisy encodings above. They have increasing efficiency, but use stronger
assumptions. These protocols use only black-box access to the ring (or field), and
are in the OT-hybrid model. The protocols follow the pattern described at the
beginning of Section 3. But this achieves security only against static corruption.

9 We require c > 4 so that Assumption 2(c) will not be broken by known list-decoding
algorithms for Reed-Solomon codes [37]. Letting c = 8 may be a safe choice, with
larger values of c being more conservative.

10 This requires to ensure that |F | > n + k. If id does not satisfy this requirement the
algorithm uses a sufficiently large extension field of F .

11 We can make the assumption weaker by choosing smaller values of t, or larger values
of n in GRS.



In the full version [45] we show how to transform them into protocols that are
secure against adaptive passive corruption, with erasures. In brief, in the new
protocol, first the original protocol is run on random inputs, and then its working
memory is deleted, and finally the real inputs and the outcome of the original
protocol are used to complete the protocol.

The different protocols are as follows:
– Protocol ρOT (with statistical security): this protocol uses the statistically

hiding encoding scheme based on GStat, and achieves statistical security.
– Protocol σOT: this protocol uses the computationally hiding encoding scheme

based on GRand (for fields) or GRing. Security follows from Assumption 2(a) or (b),
respectively.

– Protocol τOT (using packed encoding): this protocol uses the noisy encod-
ing scheme with the code generation algorithm GRS. It realizes multiple (t = k/2)
parallel sessions of Fpdt-shr. Security follows from Assumption 2(c).

4 Arithmetic Computation with Active Corruption

In [44] it is shown how to obtain a UC-secure protocol in the OT-hybrid model for
any two-party functionality F against active corruption by making a black-box
use of the following two ingredients:

1. An “outer protocol” for F which employs k auxiliary parties (servers);
this protocol should be UC-secure against active corruption provided that only
some constant fraction of the servers can be (adaptively) corrupted.

2. An “inner protocol” for a reactive two-party functionality corresponding
to each server in the outer protocol. In contrast to the outer protocol, this
protocol only needs to be secure against passive (adaptive) corruption. The inner
protocol is allowed to be in the OT-hybrid model and to have memory erasures.

Below we summarize the results we obtain by combining appropriate choices
for the outer protocol with the inner protocols from Section 3. All these results
can be readily extended to the multi-party setting as well, where the complexity
grows polynomially with the number of parties; see [45] for details. All of the
protocols provide adaptive security with erasures.

Combining the protocol from [19] (which makes a black-box use of an arbi-
trary ring) as the outer protocol with ρOT as the inner protocol, we get:

Theorem 1 (Unconditionally Secure Protocol). For any arithmetic circuit
C, there exists a protocol Π in the OT-hybrid model that is a secure black-box
realization of C-evaluation for the set of all ring families. The security holds un-
conditionally against computationally unbounded adversaries and environments.

The arithmetic communication complexity of the protocol ρOT, and hence
that of the above protocol, grows linearly with (a bound on) | log Rid|. To obtain
a computationally secure protocol whose arithmetic communication complexity
is independent of the ring, we can replace ρOT by σOT (with GRand as the code
generation scheme) in the previous construction:



Theorem 2. Suppose that Assumption 2(a) holds. Then, for every arithmetic
circuit C, there exists a protocol Π in the OT-hybrid model that is a secure black-
box realization of C-evaluation for the set of all computationally efficient field
families F. Further, the arithmetic complexity of Π is poly(k) · |C|, independent
of F or id.

Using GRing instead of GRand, this result extends to all computationally efficient
ring families:

Theorem 3. Suppose that Assumption 2(b) holds. Then, for every arithmetic
circuit C, there exists a protocol Π in the OT-hybrid model that is a secure black-
box realization of C-evaluation for the set of all computationally efficient ring
families R. Further, the arithmetic complexity of Π is poly(k) · |C|, independent
of R or id.

Finally, to obtain our most efficient protocol we use τOT (with n = O(k)
and t = Ω(k)) as the inner protocol. The outer protocol is a variant of the
protocol from [22] in which the computational complexity is optimized using
an idea from [36] (see [45] for a description). To get the computational com-
plexity specified below, the size of the field should be super-polynomial in the
security parameter. (The communication complexity does not depend on this
assumption.)

Theorem 4. Suppose that Assumption 2(c) holds. Then, for every arithmetic
circuit C, there exists a protocol Π in the OT-hybrid model with the follow-
ing properties. The protocol Π is a secure black-box realization of C-evaluation
for the set of all computationally efficient field families F, with respect to all
computationally bounded environments for which |Fid| is super-polynomial in k.
The arithmetic communication complexity of Π is O(|C|+ k · depth(C)), where
depth(C) denotes the depth of C, and its arithmetic computation complexity is
O(log2 k) · (|C|+ k · depth(C)). Its round complexity is O(depth(C)).

By using a suitable choice of fields and evaluation points for the Reed-Solomon
encoding, and under a corresponding specialization of Assumption 2(c), the com-
putational overhead of the above protocol can be reduced from O(log2 k) to
O(log k). (In this variant we do not attempt to make a black-box use of the
underlying field and rely on the standard representation of field elements.)

4.1 Protocols from Homomorphic Encryption

So far we considered protocols using only black-box access to a ring. If we fur-
ther assume a black-box access12 to a homomorphic encryption scheme over the
ring, there are simple protocols for Fpdt-shr secure against passive adversaries.
These can then be used instead of the protocols from Section 3.2 in the above
constructions.
12 When saying that a construction makes a black-box use of a homomorphic encryption

primitive, we refer to the notion of a fully black-box reduction as defined in [58].



We are interested in homomorphic encryptions over rings that support addi-
tion of two encrypted elements, and multiplication of an encrypted element by
an unencrypted element. There are two kinds of such schemes. The more versa-
tile kind — which we shall call a controlled-ring scheme — allows one to specify
id during the key-generation phase, and then allows operations on elements in
Rid, where R is the ring family associated with the scheme. Candidates for such
schemes are the classic Goldwasser-Micali encryption scheme [35] (for which the
ring family consists of the single ring Z2) and Benaloh’s scheme [5] (for which
the ring family consists of rings Zp where p is a polynomially bounded prime
number). Any such R-homomorphic encryption scheme can be used as a black-
box to obtain a homomorphic encryption scheme for the ring family of square
matrices over R (where the matrix size n is specified by id).

Theorem 5. For every arithmetic circuit C, there exists a protocol Π in the OT-
hybrid model, such that for every ring family R, the protocol ΠR securely realizes
FR

C by making a black-box use of any controlled-ring homomorphic encryption
for R. The number of invocations of the encryption scheme is poly(k) · |C|,
independent of R or id.

Note that the protocol in the above theorem, when instantiated with the ring of
n×n matrices over Zp, has communication complexity poly(k)·|C|·n2. Combined
with [49], this yields constant-round protocols for secure linear algebra which
make a black-box use of homomorphic encryption and whose communication
complexity is nearly linear in the input size.

For the case of fields, we obtain the following more efficient version of the
result by using the same outer protocol as used in Theorem 4:

Theorem 6. For every arithmetic circuit C, there exists a protocol Π in the
OT-hybrid model, such that for every field family F, the protocol ΠF securely
realizes FF

C by making a black-box use of any controlled-ring homomorphic en-
cryption for F. The security holds against adaptive corruption with erasures.
Further, Π makes O(|C| + k · depth(C)) invocations of the encryption scheme,
and the communication complexity is dominated by sending O(|C|+k ·depth(C))
ciphertexts.

Homomorphic encryption schemes like the Paillier cryptosystem [53] are ho-
momorphic with respect to the ring ZN , where N is a randomly chosen product
of two large primes chosen at the time of key generation; N cannot be speci-
fied ahead of time. We call such a scheme an “uncontrolled ring” homomorphic
encryption scheme. Using standard techniques computation over ZM for an a
priori fixed modulus M can be securely reduced to computation over ZN where
N is a sufficiently large, dynamically chosen modulus (see [45] for more details).
We obtain the following results:

Theorem 7. Let R be the ring family where Rid is the standard representation of
the ring Zid. For every arithmetic circuit C there exists a black-box construction
of a protocol Π in the OT-hybrid model from any uncontrolled-ring homomorphic
encryption for R, such that Π is a secure realization of C-evaluation for R. The



number of invocations of the encryption scheme is poly(k) · |C|, independent of
id, and the communication complexity is dominated by poly(k) · |C| ciphertexts.
During the protocol, the ring size parameter fed to the encryption scheme by
honest parties is limited to k′ = O(k + |id|).

If, further, the ring over which C should be computed is restricted to be a field,
there exists a protocol as above which makes O(|C|+k ·depth(C)) invocations of
the encryption scheme, and where the communication complexity is dominated
by sending O(|C|+ k · depth(C)) ciphertexts.

The second part of the above theorem also applies to the case of arithmetic
computation over pseudo-fields. Furthermore, it can be generalized to the ring
of n×n matrices, which when used with constructions of uncontrolled-ring ZN -
homomorphic encryption schemes from the literature [53, 23] would yield arith-
metic protocols for matrices over large rings whose complexity grows quadrati-
cally with n.

We finally note that in the stand-alone model, the OT oracle in the above
protocols can be realized by making a black-box use of the homomorphic encryp-
tion primitive without affecting the asymptotic number of calls to the primitive.
This relies on the black-box construction from [42] and the fact that only O(k)
OTs need to be secure against active corruption. Thus, the above theorems hold
also in the plain, stand-alone model (as opposed to the OT-hybrid UC-model).
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