Complexity of Multi-party Computation
Problems: The Case of 2-Party Symmetric
Secure Function Evaluation*

Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek

Department of Computer Science, University of Illinois, Urbana-Champaign
{hmaji2,mmp,rosulek}@uiuc.edu

Abstract. In symmetric secure function evaluation (SSFE), Alice has
an input x, Bob has an input y, and both parties wish to securely com-
pute f(x,y). We show several new results classifying the feasibility of se-
curely implementing these functions in several security settings. Namely,
we give new alternate characterizations of the functions that have (sta-
tistically) secure protocols against passive and active (standalone), com-
putationally unbounded adversaries. We also show a strict, infinite hi-
erarchy of complexity for SSFE functions with respect to universally
composable security against unbounded adversaries. That is, there ex-
ists a sequence of functions fi, fa, ... such that there exists a UC-secure
protocol for f; in the f;-hybrid world if and only if ¢ < j.

The main new technical tool that unifies our unrealizability results is
a powerful protocol simulation theorem, which may be of independent
interest. Essentially, in any adversarial setting (UC, standalone, or pas-
sive), f is securely realizable if and only if a very simple (deterministic)
“canonical” protocol for f achieves the desired security. Thus, to show
that f is unrealizable, one need simply demonstrate a single attack on a
single simple protocol.

1 Introduction

In the classical setting of secure two-party computation, Alice and Bob have
private inputs x and y respectively, and they want to to jointly compute a com-
mon value f(z,y) in a secure way. Starting from Yao’s millionaire’s problem [21],
such symmetric secure function evaluation (SSFE) problems have remained the
most widely studied multi-party computation problems, in many security mod-
els. SSFE problems are fully specified by their associated function tables (i.e.,
a matrix M with M, , = f(z,y)); studying this matrix can tell us everything
about the corresponding SSFE problem. Despite this apparent simplicity, and
several works carefully exploring SSFE problems, the landscape of such problems
has remained far from complete.

* Partially supported by NSF grants CNS 07-47027 and CNS 07-16626.

”

On “cryptographic complexity.” One expects different cryptographic tasks to
have different levels of cryptographic sophistication. For instance public-key en-
cryption is more complex than symmetric-key encryption. One indication of this
is that in a computationally unbounded setting one-time pads provide (a limited
version of) symmetric-key encryption, but public-key encryption is simply impos-
sible. Impagliazzo and Rudich [8] provide a separation between the complexity
of these two primitives by demonstrating another primitive (namely random or-
acles) which is sufficient to realize (full-fledged) symmetric-key encryption, but
not enough for public-key encryption (in, say, a computationally unbounded set-
ting). Our goal in this work is to understand such complexity separations among
2-party SSFE functionalities (and more generally, among multi-party computa-
tion functionalities).

The natural tool for comparing qualitative complexity of two tasks is a re-
duction. In the context of cryptographic feasibility, the most natural reduction
is a black-box security reduction — we say that an SSFE functionality f reduces
to another functionality g if it is possible to securely realize f using calls to a
trusted party that securely implements g. As in computational complexity, the
most fine-grained distinctions in complexity are made by considering the most
restricted kinds of reductions. In fact, fine-grained complexity distinctions often
disappear when using more generous reductions. In this work, we consider a very
strong formulation of black-box security reduction: universally composable secu-
rity in computationally unbounded environments against active (and adaptive)
adversaries.

Our goal is to identify broad complexity classes of SSFE functionalities un-
der this notion of reduction. This involves identifying various functionalities that
reduce to each other, and — this is typically the more difficult part — estab-
lishing separations (non-reducibility) between functionalities. A complexity class
can be understood by providing alternate (say combinatorial) characterizations
of the functionalities in the class. Another approach to understanding a class
is to identify a complete functionality, which provides a concrete embodiment
of the complexity of all functionalities in that class. Conversely, the inherent
cryptographic qualities of a given functionality can be understood by studying
its “degree,” namely, the class of all functionalities that can be reduced to it.
We pursue all these approaches in this paper.

Finally, a systematic study of multi-party computation functionalities, under
a stringent notion of reduction, unifies several prior advances in different security
models. In particular, the two main classes that we identify and combinatori-
ally characterize in this paper, which are downward-closed under this reduction,
correspond to realizability in weaker security models — standalone security and
passive security (a.k.a, semi-honest or honest-but-curious security). We empha-
size that in plotting these classes in our complexity map, we do not change our
notion of reduction.

Our results only start to unveil the rich landscape of cryptographic com-
plexity of multi-party computation functionalities. We believe it will be of great
theoretical — and potentially practical — value to further uncover this picture.

1.1 Previous Work

Cryptographic complexity of multi-party computation functionalities (though
not necessarily under that name) has been widely studied in various security
models. We restrict our focus mostly to work on 2-party SSFE functions in
computationally unbounded settings. Complexity questions studied were limited
to realizability (least complex), completeness (most complex) and whether there
exist functions of intermediate complexities.

Realizability. The oldest and most widely studied model for SSFE is security
against passive (honest-but-curious) adversaries. Chor and Kushilevitz [6] char-
acterized SSFE functions with boolean output. Beaver [2] and Kushilevitz [17]
independently extended this to general SSFE function, but restricted to the case
of perfect security (as opposed to statistical security). These characterizations
were given in the standalone security model, but do extend to the the universal
composition (UC) framework [4] that we use.

However, in the case of security against active (a.k.a malicious) adversaries,
demanding composability does affect realizability. The following hold for both
computationally bounded and unbounded settings. In the UC-setting, Canetti
et al. [5] characterized securely realizable SSFE functions as those in which the
function is insensitive to one party’s input. Lindell [18] showed that UC security
is equivalent to concurrent self-composable security, for a class of functionalities
that includes SSFE. But Backes et al. [1] gave an example of a function that is
realizable in the standalone setting, but not in the UC-setting. The problem of
identifying all such functions remained open.

Completeness. The question of completeness for SSFE was essentially settled by
Kilian [12], who showed that a function is complete if and only if it contains a
generalized “OR-minor.” This relies on the completeness of the SFE functionality
of oblivious transfer, a result originally proven in [10], and proven in the UC
setting in [9].} The reduction in [12] was reconsidered in the UC setting by [15].

Intermediate Complezities. In some security settings, there are only two distinct
levels of complexity: the realizable tasks and the complete tasks, with nothing in
between. Indeed, such a dichotomy holds in the case of asymmetric SFE (in which
only one party receives any output), both for passive [3] and active security [13],2
and also in the case of passive security for boolean output SSFE [14]. In [20]
it is conjectured that such a dichotomy holds for general functionalities in a
computationally bounded setting. However, there is no such simple dichotomy
in the setting of SSFE. Indeed the characterizations of complete and realizable

! The protocol in [10] is not UC-secure, but an extension presented in [11] is likely to
be.

2 [3] also considers a notion of active security for computationally bounded setting,
and extends their dichotomy using a stronger notion of realizability and a weaker,
non-black-box notion of completeness; this result draws the line between realizability
and completeness differently from [13]. The dichotomy does not extend to the UC-
setting.

SSFE functions [12, 5] leaves much gap between them. Further, [2,17, 14] give an
example SSFE function which is neither complete nor even passively realizable.

1.2 Owur Results

A visual overview of our results is given in Figure 1.

First, we show that o0
SSFE functions with per-
fect passive-secure pro-
tocols (as characterized
by Beaver and Kushile-
vitz) are exactly those
with statistically secure,
passive-secure protocols
(Theorem 3). They are
also exactly the functions
that are UC-realizable :
in the Feom-hybrid world | |, |® >~ g3e infinite
— 1i.e., realizable against goe [hierarchy
active adversaries in the
UC framework, using calls
to an ideal commitment
functionality (Theorem 4). ~ UG-realizable
Thus, fcom’ exactly cap- * = self—cjnséfllils;trl??eefﬁgg}?lzn[l[g}
tures the difficulty of pas-
sively realizing SSFE func-
tions (it cannot be said to be complete, since it is not SSFE itself). We also show
that the perfectly secure deterministic protocols used by Kushilevitz achieve op-
timal round complexity, even among randomized, statistically secure protocols
(Corollary 2).

Next, we give an explicit and simple combinatorial characterization of the
standalone-realizable SSFE functions, as the uniquely decomposable functions
which are “maximal” (Theorem 5). We call such functions saturated functions.
We also show that every SSFE function which is standalone-realizable but not
UC-realizable also has no protocol secure under concurrent self-composition
(Theorem 6), strengthening a negative result from [1], and yielding a much sim-
pler proof of Lindell’s characterization [18] for the special case of SSFE.

Finally, we focus our investigation on the vast area between the two complex-
ity extremes of completeness and UC-realizability. We leverage ideas from passive
security and standalone security to obtain a new technique for obtaining impos-
sibility results in the UC framework. Namely, we describe a purely combinatorial
criterion of two functions f, g (which has to do with the round complexity of
realizing f and ¢) which implies that there is no UC-secure protocol for f that
uses calls to an ideal functionality for ¢g. (Theorem 7).

We apply this new separation technique to obtain several new results. We
first demonstrate an infinite hierarchy of complexity — that is, SSFE functions

* [2,10,13]

w w o
N = O

passively realizable
= decomposable [2,17]
= UC-realizable using Feom

standalone-realizable
= saturated

=Jie

Fig. 1. Cryptographic complexity of 2-party SSFE

g1, 92, - - - such that there is a secure protocol for g; using calls to an ideal g; if
and only if i < j (Corollary 8). We also show that there is no complete function
(complete under our strong notion of reduction) for the class of standalone-
realizable or passively realizable SSFE functions (Corollary 9). Finally, we show
that there exist SSFE functions with incomparable complexities (Corollary 10),
answering an open problem from [20].

We note that our characterizations of passive (Theorem 3) and standalone
security (Theorem 5) were also independently discovered by Kiinzler, Miiller-
Quade, and Raub [16]. They also extend these results to a multi-party setting,
and beyond the symmetric-output case.

About our techniques. The characterization of Beaver and Kushilevitz for passive
security gives very simple deterministic protocols for SSFE functions, which we
call canonical protocols. Our results demonstrate the special privilege of canon-
ical protocols in the universe of SSFE. Our main technical tool is Theorem 1,
which strongly formalizes the intuition that every protocol for f must disclose
information in essentially the same order as the canonical protocol for f. Stated
more formally, for any secure protocol 7 for an SSFE function f, if the canonical
protocol for f is unique (up to some isomorphism), then the canonical protocol
is “as secure as” m, in the UC simulation sense. That is, for any adversary in
the canonical-protocol-real-world, there is an adversary in the m-real-world that
achieves the same effect for all environments. Note that standalone security and
passive security can both be expressed as restrictions of the UC definitions, so
our theorem is applicable to a wide variety of security settings.

Using this powerful theorem, it is quite simple to demonstrate impossibility
results for secure realizability. Roughly speaking, an SSFE function f satisfying
the above condition is realizable in a given security model if and only if its
canonical protocol achieves the desired security. Thus, to show f is unrealizable,
we simply describe a feasible attack against the (simple) canonical protocol.

We crucially use Theorem 1 as the unifying component when proving im-
possibility of secure realization in the standalone (Theorem 5), concurrent self-
composition (Theorem 6), and even UC hybrid world settings (Theorem 7).

2 Preliminaries

In this section we present some standard notions, and also introduce some con-
cepts and definitions used in our constructions and proofs.

MPC Problems and Secure Realization. Following the Universal Composition [4]
framework, a multi-party computation problem is defined by the code of a trusted
(probabilistic, interactive) entity called a functionality. A protocol 7 is said to se-
curely realize an MPC functionality F, if for all (static) active adversaries, there
exists a simulator such that for all environments, | Pr[EXECx = 1] — Pr[EXEC, =
1]| < e(k), for some negligible function e. Here k is the security parameter that
is an input to the protocol and simulator. EXECx denotes the environment’s

output distribution in the “ideal” execution: involving JF, the environment, and
the simulator; EXEC, denotes the environment’s output in the “real” execu-
tion: involving an instance of the protocol, the environment, and the adversary.
Throughout this paper, we consider a UC model in which all entities are com-
putationally unbounded.

We also consider hybrid worlds, in which protocols may also have access to
a particular ideal functionality. In a G-hybrid world, parties running the proto-
col 7 can invoke up any number of independent, asynchronous instances of G.
Regular protocols could be considered to use the (authenticated) communication
functionality. If a protocol 7 securely realizes a functionality F in the G-hybrid
world, we shall write 7 C G. The C relation is transitive and reflexive, and it
provides our basis for comparing the complexity of various functionalities.

We also consider two common restrictions of the security model, which will
prove useful in our results. If we restrict the security definition to environments
which do not interact with the adversary during the protocol execution (i.e.,
simulators are allowed to rewind the adversary), we get a weaker notion of se-
curity, called standalone security. If we restrict to adversaries and simulators
which receive an input from the environment and run the protocol honestly, we
get a different relaxation of security called passive security. Note that in this def-
inition, simulators must behave honestly in the ideal world, which means they
simply pass the input directly to the functionality.

Symmetric SFE Functionalities. In this paper we focus exclusively on classifying
2-party symmetric secure function evaluation (SSFE) functionalities. An SSFE
functionality Fy is parameterized by a function f: X xY — Z, where X,Y,Z
are finite sets.®> The functionality F t simply receives the inputs from the two
parties, computes f on the inputs and sends the result to both the parties.
However, as is standard, we also allow the adversary to first receive the output
and block delivery if desired (see Figure 2). For convenience, we shall often use
f and Fy interchangeably.

— Wait for (and record) input x from Alice and input y from Bob.

— When both z and y have been received, if either party is corrupt, then send
(OuTPUT, f(z,y)) to the adversary.

— On input DELIVER from the adversary, or if neither party is corrupt, send
f(z,y) to both Alice and Bob.

Fig. 2. Functionality F;: Symmetric Secure Function Evaluation of f with abort

3 We restrict our attention to finite functions. In particular, the size of the domain of
a function does not change with the security parameter. This is in line with previous
works. Further, in the computationally unbounded setting, it is reasonable to have
the ideal world not involve the security parameter. Nevertheless, all of our results
can be extended to the case where f’s input domain is polynomially bounded in the
security parameter. We can show that this restriction is necessary for most of our
results.

2.1 Structure of Functions and Protocols

We say that two functions are isomorphic if each one can be computed using a
single call to the other with no other communication (with only local processing
of the inputs and output). That is, Alice and Bob can independently map their
inputs for f function to inputs for g, carryout the computation for g, and then
locally (using their private inputs) map the output of g to the output of f (and
vice-versa).

Definition 1 (Function Isomorphism,). Let f : X XY — D and g : X' x
Y’ — D’ be two functions. We say f < g, if there exist functions I, : X — X',
Ipg:Y -Y' My: XxD — D and Mg : Y x D' — D, such that for any
v € X andy €Y f(z,y) = Ma(z,g(Ia(z),15(y))) = Mp(y,9(1a(x), I(y))).
If f <gand g < f then f =g (f is isomorphic to g).

. 1. . . .12
For example, the XOR function is isomorphic to the function .

Definition 2 (Decomposable [2,17]). A function f : X xY — D is row
decomposable if there exists a partition X = X1 U---UX; (X; #0), t > 2, such
that the following hold for all i < t:

— forallyeY, xz e X;, 2’ € (X \ X;), we have f(z,y) # f(a'y); and
— f’X .y is either a constant function or column decomposable, where f!vaY
denotes the restriction of f to the domain X; x Y.

We define being column decomposable symmetrically with respect to X and Y.
We say that f is simply decomposable if it is either constant, row decomposable,
or column decomposable.

001
For instance, 00 and 01 are decomposable, but 00 and |3 4 1| are not.
2 10 01 399

Note that our definition differs slightly from [2,17], since we insist that row
and column decomposition steps strictly alternate. We say that a function f is

uniquely decomposable if all of its decompositions are equivalent up to re-indexing

X1,..., Xt (Y1,...,Y;) at each step. Thus is uniquely decomposable, but (1) é

is not.

Canonical protocols [2, 17]. If f is decomposable, then a canonical protocol for
f is a deterministic protocol defined inductively as follows:

— If f is a constant function, both parties output the value, without interaction.

—If f: X XY — Z is row decomposable as X = X; U---U Xy, then Alice
announces the unique ¢ such that her input € X;. Then both parties run
a canonical protocol for f ’ XY

—If f: X XY — Z is column decomposable as Y = Y; U---UY, then Bob
announces the unique 4 such that his input y € Y;. Then both parties run a

canonical protocol for f ‘ -

It is a simple exercise to see that a canonical protocol is a perfectly secure
protocol for f against passive adversaries (cf. [2,17]).

Normal form for protocols. For simplicity in our proofs, we will often assume
that a protocol is given in the following normal form:

1. At the end of the interaction, both parties include their outputs in the
transcript as their last message before terminating, so that each party’s output
is a function of the transcript alone (i.e., not a function of their input and random
tape, etc.). Since both parties should receive the same output, this is without
loss of generality, even for standalone or UC security.

2. If uy,uo,... are the messages exchanged in a run of the protocol, then
(u1,us,...) can be uniquely and unambiguously obtained from the string ujus - - - .

3. The honest protocol does not require the parties to maintain a persistent
state besides their private input (in particular, no random tape). Instead, the
protocol is simply a mapping P : {0,1}* x {0,1}* x {0,1}* — [0, 1], indicating
that if ¢ is the transcript so far, and a party’s input is x, then its next message
is u with probability P(¢,x,u). In other words, randomness can be sampled as
needed and immediately discarded. This requirement is without loss of generality
for computationally unbounded parties.*

Deviation revealing. In [20] it is shown that for a class of functionalities called
“deviation revealing”, if a protocol 7 is a UC-secure realization of that function-
ality, then the same protocol is also secure against passive adversaries. Note that
this property is not true in general for all SFE functionalities. For example, the
SFE where Alice gets no output but Bob gets the boolean-OR of both parties’ in-
puts is not passively realizable. However, the protocol where Alice simply sends
her input to Bob is UC-secure, since a malicious Bob can always learn Alice’s
input in the ideal world by choosing 0 as its input to the functionality. It turns
out SSFE functions are deviation revealing. We include an adapted version of
the argument in [20]:

Lemma 1 ([20]). Let be a UC-secure (perhaps in a hybrid world) or a standalone-
secure protocol for an SSFE f. Then w itself is a passive-secure protocol for f
as well (in the same hybrid world as).

Proof. We show that, without loss of generality, the simulator for 7 maps passive
real-world adversaries to passive ideal-world adversaries. A passive adversary A
for 7 is one which receives an input x from the environment, runs 7 honestly,
and then reports its view to the environment. Note that the relevant kinds
of environments comprise a special class of standalone environments, so that
even if 7 is only standalone secure, its security still holds with respect to the
environments we consider for passive security.

Suppose S is the simulator for A. In the ideal world, both parties produce
output with overwhelming probability, and so & must also allow the other party

4 Note that because of this, security against adaptive corruption and static corruption
are the same for this setting.

to generate output in the ideal world with overwhelming probability. Thus with
overwhelming probability, S must receive = from the environment, send some z’
to the ideal functionality f, receive the output f(z’,y) and deliver the output.
Without loss of generality, we may assume S does so with probability 1.
Suppose 2’ is the input sent by S to f. If f(x,y) # f(2',y) for some input
1y, then consider an environment that uses y for the other party’s input. In this
environment, the other party will report f(x,y) in the real world, but f(a',y) in
the ideal world, so the simulation is unsound. Thus with overwhelming probabil-
ity, S sends an input 2’ such that f(z,-) = f(2’,). We may modify S by adding
a simple wrapper which ensures that x (the input originally obtained from the
environment) is always sent to f. With overwhelming probability, the reply from
f is unaffected by this change. Conditioned on these overwhelming probability
events, the output of the wrapped S is identical to that of the original S. How-
ever, the wrapped S is a passive ideal-world adversary: it receives x from the
environment, sends = to f, and delivers the output. a

3 Simulation of Canonical Protocol in a General Protocol

In this section, we develop our main new technical tool, the protocol simulation
theorem. Throughout the section we fix an SSFE f with domain X x Y, and fix
a secure protocol 7 for f.

Definition 3. We say that x,2',y,y’ forms a Fd-minor (resp. [H-minor) in f

if:
f(xvy) = f(xvy/) f(xay) # f(xvy/)
resp. if =
[y) # f@y) @ y) # [, y')

In the canonical protocol for a function that is entirely a FJ-minor, Alice
must completely reveal her input before Bob reveals (anything about) his input.
We show that, in general, this intuition carries through for any protocol, with
respect to any embedded B or [H-minor. That is, there must be a point at
which Alice has completely made the distinction between two of her inputs, but
Bob has not made any distinction between two of his inputs.

Definition 4. Let Pr[u|z,y] denote the probability that m generates a transcript
that has u as a prefir, when executed honestly with x and y as inputs.

Let F be a set of strings that is prefiz-free.® Define Pr[F|x,y] = Y, c p Prlulz, y].
We call F' a frontier if F is mazimal — that is, if Pr[F|z,y] = 1 for all x,y. We
denote as DRY the probability distribution over F where uw € F is chosen with
probability Prul|x,y].

Lemma 2 (EJ Frontiers). For all x # x' € X, there is a frontier F and
negligible function v such that, for all y,y € Y:

5 That is, no string in F is a proper prefix of another string in F.

— if f(z,y) # f(2',y), then SD(D?Z/,D?’Z’) >1-v(k), and
—if x,2',y,y" form a Ed-minor, then SD(D?’y,Df,’y/),SD(D?’y,Df;’y') <
v(k).

We defer the technical proof of Lemma 2 to the full version [19].

Our main protocol simulation theorem extends this intuition to show that
the information disclosed during a protocol must come in the same order as
in the canonical protocol, provided that the canonical protocol is unique. This
restriction on the canonical protocol is necessary, since different (non-isomorphic)
canonical protocols for the same f can admit completely different kinds of attacks
(e.g., for the XOR function, depending on which party speaks first).

Theorem 1 (Protocol Simulation). If f has a unique decomposition, then
for any protocol 7 for f, the canonical protocol for f is “as secure as” w. That
is, for every adversary attacking the canonical protocol, there is an adversary
attacking ™ which achieves the same effect in every environment.

Proof (Sketch). The proof (presented in [19]) involves a careful inductive gen-
eralization of Lemma 2. Consider a step in the decomposition of X x Y, say
X = X7 U---UXg. Roughly, if the function is uniquely decomposable, then for
each i # j, there is a witnessing Fd-minor z, 2/, y,y" with z € X;, 2’ € X;. Thus
we may apply Lemma 2 to obtain a frontier with respect to these inputs. We
can combine these individual frontiers to obtain a frontier representing the entire
decomposition step X = X7 U---U X;. We show inductively that the transcript
distribution at this combined frontier statistically reveals (in this case) which X;
contains Alice’s input, while at the same is nearly independent of any further
distinctions among either party’s inputs within X x Y.

Given such frontiers, the required simulation is fairly natural. The simulator’s
job is to simulate the canonical protocol to an adversary A, while interacting
with the honest party in the protocol . The simulator & simply keeps track of
the current step in the decomposition of f, and runs 7 honestly with any repre-
sentative input. Each time S reaches a frontier for a decomposition step by the
honest party, the transcript distribution at the frontier statistically determines
with great certainty which part of the decomposition the honest party’s input
belongs to. Thus S can simulate to A what the honest party would send next in
the canonical protocol. Then the simulator receives the adversary’s next move
in the canonical protocol. S changes its own input for 7 to any input consistent
with the canonical protocol transcript so far, if necessary. Since the w-transcript
so far is nearly independent of such distinctions among the adversary’s input,
it is indeed possible to swap inputs to 7 at this point and maintain a sound
simulation. It is also for this reason that we consider protocols to be in a nor-
mal form, so that the protocol’s next-message function depends only on the
(currently considered) input and the transcript so far — i.e., not on any other
persistent state. a

Let R(m,x,y) denote the random variable indicating the number of rounds
taken by 7 on inputs x,y, and let R(f,z,y) denote the same quantity with
respect to the canonical protocol for f (which is deterministic).

Corollary 2 If f is uniquely decomposable, then its canonical protocol achieves
the optimal round complexity. That is, for every secure protocol 7 for f, we have
E[R(m,z,y)] > R(f,z,y) — v, where v is a negligible function in the security
parameter of .

Proof. The proof of Theorem 1 constructs for « a frontier for each step in the
decomposition of f (corresponding to each step in the canonical protocol). By the
required properties of the frontiers, the transcript for 7 must visit all the relevant
frontiers in order, one strictly after the next, with overwhelming probability. O

4 Characterizing Passive Security

In this section, we apply Lemma 2 to extend the characterization of Beaver [2]
and Kushilevitz [17] to the case of statistical security. We also show a new char-
acterization of passive security in terms of the ideal commitment functionality.

Theorem 3. f is decomposable if and only if f has a (statistically secure)
passive-secure protocol.

Proof (Sketch). (=) Trivial by the (perfect) security of canonical protocols.

(<) Suppose [is not decomposable. Without loss of generality, we may
assume that f is not even row- or column-decomposable at the top level. Then
for each way that Alice might start revealing information about her input, there
is a [H-minor that witnesses the fact that this information cannot be revealed
first — Bob must reveal a particular distinction of his inputs before it is safe for
Alice to reveal information this way. However, the converse statement holds as
well, and so neither party can be the first to safely reveal any information about
their input.

More formally, we suppose a secure protocol exists for f. We consider all (-
minors, and take the upper envelope of their associated frontiers from Lemma 2.
This new frontier corresponds to the first point at which Alice reveals significant
information about her input. Similarly, we construct a frontier corresponding to
the first point at which Bob reveals significant information. The properties of
Lemma 2 imply that with overwhelming probability, the protocol must visit the
first frontier after the second one, and visit the second frontier after the first one
(i.e., neither party can be the first to significantly reveal information). This is a
contradiction, since the two frontiers cannot coincide — they consist of points
where different parties have just spoken. Thus no secure protocol is possible. 0O

Theorem 4. f has a passive-secure protocol if and only if f has a UC-secure
protocol in the Feom-hybrid world, where Feom denotes the ideal commitment
functionality defined in Figure 3.

— On input (COMMIT, z, P») from party Pi, send (COMMITTED, P;) to party Ps,
and remember x.

— On input REVEAL from party Pi, if x has already been recorded, send z to
party Ps.

Fig. 3. Commitment functionality Fcom

Proof (Sketch). (<) By Lemma 1, any UC-secure protocol m for a symmetric
SFE f is also passively secure. There is a trivial passive-secure protocol for Feom
(the committing party sends “COMMITTED” in the commit phase and sends the
correct value in the reveal phase). We can compose 7 with the passive-secure
Feom Protocol to obtain a passive-secure protocol for f in the plain model.

(=) We will give a general-purpose “compiler” from passive-secure protocols
to the UC-secure Feom-hybrid protocols. Suppose 7 is a passive-secure protocol
for f, in normal form. In fact, we need to consider only the canonical proto-
col for f. Below we consider an arbitrary deterministic protocol 7. (In the full
version [19] we extend this compiler to randomized protocols as well.)

Suppose Alice’s input is ¢ € {1,...,n}, and let x € {0,1}" be the associated
characteristic vector, where x; = 1 if and only if ¢ = x. Alice commits to both
Xo(1)s -+ -3 Xo(n) and a(1),...,0(n) for many random permutations o. For each
pair of such commitments, Bob will (randomly) ask Alice to open either all
of Xo(1),-+1Xo(n) (and verify that x has exactly one 1) or open all (i) (and
verify that o is a permutation). Bob also commits to his own input in a similar
way, with Alice giving challenges. Then both parties simulate the 7 protocol one
step at a time. When it is Alice’s turn in 7, she computes the appropriate next
message b € {0,1} and sends it. For a deterministic protocol, the next message
function is a function of the transcript so far and the input. Given the partial
transcript so far ¢, both parties can compute the set X, = {2’ | w(¢,2’) = b}; i.e.,
the set of inputs for which the protocol instructs Alice to send b at this point.
Then Alice can open enough of her commitments to prove that y; = 0 for all
1 € X1_p to prove that the message b was consistent with her committed input
and the honest protocol. a

Note that much like the well-known GMW compiler [7], we convert an ar-
bitrary passive-secure protocol to a protocol secure in a stronger setting. In
particular, we do not use the fact that the protocol realizes a functionality with
symmetric, deterministic outputs. Thus the compiler may be of more general
interest. Unlike the GMW compiler, our compiler operates in an unbounded set-
ting, given ideal commitments. The GMW compiler relies on the existence of
commitment protocols and zero-knowledge proofs, while in an unbounded set-
ting, commitment protocols are impossible and zero-knowledge proofs are trivial.

5 Characterizing Standalone Security

From Lemma 1, we know that standalone-realizability for SSFE is a special case
of passive-realizability, and hence by Theorem 3, any standalone realizable SSFE
must be decomposable. In this section we identify the additional properties that
exactly characterize standalone realizability.

Decomposition strategies. Fix some decomposition of an SSFE function f :
X xY — D. We define an Alice-strategy as a function that maps every row
decomposition step Xo = X3 U--- U Xy to one of the X;’s. Similarly we de-
fine a Bob-strategy for the set of column decomposition steps. If A, B are Alice
and Bob-strategies for f, respectively, then we define f*(A, B) to be the subset
X' xY' C X xY obtained by “traversing” the decomposition of f according to
the choices of A and B.

The definition of f* is easy to motivate: it denotes the outcome in a canonical
protocol for f, as a function of the strategies of (possibly corrupt) Alice and Bob.

Definition 5 (Saturation). Let f be a uniquely decomposable function. We
say that f is saturated if f = f*.

To understand this condition further, we provide an alternate description
for it. For every x € X we define an Alice-strategy A, such that at any row
decomposition step Xo = X7 U---U X; where x € X, it chooses X; such that
x € X;. (For Xy such that ¢ Xy, the choice is arbitrary, say X;.) Similarly
for y € Y we define a Bob-strategy B,. Note that in the canonical protocol, on
inputs z and y, Alice and Bob traverse the decomposition of f according to the
strategy (Ag, By), to compute the set f*(A,, By) (where f is constant). If f is
saturated, then all Alice strategies should correspond to some z that Alice can
use as an input to f. That is, for all Alice-strategies A, there exists a x € X such
that for all y € Y, we have f*(A, By) = f*(As, By); similarly each Bob strategy
B is equivalent to some B,,.

As an example, is not uniquely decomposable. (2) ; é is uniquely decom-

. 110,
posable, but not saturated. Finally, (2) 39 g is saturated.
Note that there is exactly one saturated function (up to isomorphism) for

each decomposition structure.

Theorem 5. f is standalone-realizable if and only if f is saturated.

Proof (Sketch). (<) To securely realize a saturated f, we use its canonical pro-
tocol. The simulator for an adversary A is a rewinding simulator, which does
the following: Without loss of generality, assume A corrupts Alice. First fix a
random tape w for A, then for every Bob-strategy B, run the canonical protocol
against A (using random tape w), effecting the strategy B. The choices of A
at each step uniquely determine an Alice-strategy. By the saturation of f, A
is equivalent to some A, strategy, and we use x as the adversary’s input to f.
After receiving the output f(zx,y), we simulate the unique canonical protocol
transcript consistent with f(z,y).

(=) We shall use the following lemma (proven, in the full version [19], by
induction on the number of steps in the protocol):

Lemma 3. If 7 is a 2-party protocol whereby both parties agree on the output,
then for any way of coloring the possible outputs red and blue, ™ has one of the
4 properties:

1. A malicious Alice can force a red output and can force a blue output.

2. A malicious Bob can force a red output and can force a blue output.

3. Both a malicious Bob and malicious Alice are able to force a red output.
4. Both a malicious Bob and malicious Alice are able to force a blue output.

By Lemma 1, we have that f is passively realizable and thus decomposable.
We can show that if f is not uniquely decomposable, then there is a way to
color its outputs red and blue so that each of the 4 conditions of Lemma 3 for
any protocol evaluating f is a violation of security. Thus f must be uniquely
decomposable.

Now, since f is uniquely decomposable, Theorem 1 implies that f is standalone-
realizable if and only if its canonical protocol is standalone secure. Suppose that
f is not saturated. Then there is a (without loss of generality) Alice-strategy A
that corresponds to no A, strategy. The strategy A can be trivially effected by
a malicious Alice in the canonical protocol. If Bob’s input is chosen at random
by the environment, then the same outcome can not be achieved by an ideal-
world adversary (who must send an input to f). Thus the canonical protocol
is standalone insecure; a contradiction. Therefore f must be saturated. a

6 Characterizing Concurrent Self-Composition

Backes et al. [1] showed that even a perfectly secure protocol with rewinding
simulator cannot in general be transformed into even a protocol secure under
concurrent self-composition. Recall that in concurrent self-composition, the en-
vironment initiates several protocol instances, but does not interact with the
adversary during their execution. The adversary also corrupts the same party in
all protocol instances. We are able to greatly strengthen their negative result to
show that concurrent attacks are the rule rather than the exception:

Theorem 6. If f is standalone-realizable but not UC-realizable, then f has no
protocol secure against concurrent self-composition.

Proof. A function f is UC-realizable if and only if it is decomposable with de-
composition depth 1 [5]. Thus an f as in the theorem statement must be uniquely
decomposable (by Theorem 5), with decomposition depth at least 2. We show a
concurrent attack against two instances of the canonical protocol for f, which by
Theorem 1 will imply that f is not realizable under concurrent self-composition.

By symmetry, suppose Alice moves first in the canonical protocol, and let
z,x’ be two inputs which induce different messages in the first round of the
protocol. Let y,y’ be two inputs which induce different messages in the second
round of the protocol when Alice has input = (thus f(z,y) # f(z,9)). We
consider an environment which runs two instances of f, supplies inputs for Alice
for the instances, and outputs 1 if Alice reports particular expected outputs for
the two instances. The environment chooses randomly from one of the following
three cases:

1. Supply inputs = and z’. Expect outputs f(x,y’) and f(z’,y).

2. Supply inputs 2’ and z, Expect outputs f(z’,y) and f(x,y’).

3. Supply inputs x and x. Expect outputs f(z,y) and f(z,y).

A malicious Bob can cause the environment to output 1 with probability 1 in
the real world. He waits to receive Alice’s first message in both protocol instances
to determine whether she has x or 2’ in each instance. Then he can continue the
protocols with inputs y or y’, as appropriate.

In the ideal world, Bob must send an input to one of the instances of f
before the other (i.e., before learning anything about how Alice’s inputs have
been chosen); suppose he first sends g to the first instance of f. If f(x,y) #
f(z,y), then with probability 1/3, he induces the wrong output in case (3). But
if f(z,9) = f(z,y) # f(z,y), then with probability 1/3, he induces the wrong
output in case (1). Similarly, if he first sends an input to the second instance of
f, he violates either case (2) or (3) with probability 1/3. O

Put differently, UC-realizability is equivalent to concurrent-self-composition-
realizability for SSFE. This is in fact a special case of a theorem by Lindell [18],
although our proof is much more direct and requires only 2 instances of the
protocol /functionality, as in [1].

7 Finer Complexity Separations

Finally, we develop a new technique for deriving separations among SSFE func-
tions with respect to the C relation, and apply the technique to concrete func-
tions to inform the landscape of cryptographic complexity.

Theorem 7. Let F be any (not necessarily SSFE) UC functionality with a
passive-secure, m-round protocol. Let f be an SSFE function with unique de-

composition of depth n > m + 1.6 Then there is no UC-secure protocol for f in
the F-hybrid world; i.e., f L F.

Proof (Sketch). We use a modified version of Theorem 1. Suppose for contra-
diction that 7 is a protocol for f in the F-hybrid world. By Lemma 1, 7 is also
passive-secure in the same setting. Define 7 to be the result of replacing each call
to F in w with the m-round passive-secure protocol for F. 7 is a passive-secure
protocol for f in the plain setting. Say that an adversary behaves consistently
for a span of time if it runs the protocol honestly with an input that is fixed
throughout the span.

We mark every 7 transcript prefix that corresponds to a step in the F sub-
protocol, except for the first step of that subprotocol. Intuitively, if a T-adversary
behaves consistently during every span of marked transcripts, then that adver-
sary can be mapped to a m adversary that achieves the same effect by interacting
with F appropriately during these points.

Since f is uniquely decomposable, we describe a feasible adversary A attack-
ing the canonical protocol for f, and apply Theorem 1 to obtain an equivalent

5 We remark that this condition can be tightened to m > m via a more delicate
analysis.

adversary S attacking 7. Theorem 1 always constructs an adversary S that be-
haves consistently except for a small number of times where it might swap its
input. We will construct A so that S only needs to swap its input at most once. If
we can ensure that S will always be able to swap its input at an unmarked point
in 7, then S behaves consistently during the marked spans, so we can obtain an
adversary successfully attacking 7 in the F-hybrid world, a contradiction.

Suppose by symmetry that Alice goes first in the canonical protocol for f. Let
2o, Yo be inputs that cause the canonical protocol to take a maximum number
of rounds, and let y; be such that the (unique) transcripts for g, yo and xg, y1
agree until Bob’s last message; thus f(zo, y0) # f(zo,y1). Let 21 be an input for
which Alice’s first message is different than for .

We consider an environment which chooses a random b < {0, 1} and supplies
xp as Alice’s input. It expects the adversary to detect and correctly report its
choice of b. If b = 0, then the environment chooses a random ¢ < {0,1}, and
gives c¢ to the adversary. The environment expects the adversary to induce Alice
to report output f(xp,y.). The environment outputs 1 if the adversary succeeds
at both phases (guessing b and inducing f(xp, y.) when b = 0). These conditions
are similar to those of a “split adversary” considered by [5]. In the ideal world,
an adversary must choose an input for f with no knowledge of Alice’s input,
and it is easy to see that the adversary fails with probability at least 1/4. On
the other hand, a trivial adversary A attacking the canonical protocol for f can
always succeed.

Applying Theorem 1 to A will result in a S that considers n levels of frontiers
in T — one for each step in the canonical protocol. S only needs to swap its input
at most once (possibly from yy to y1). By the choice of zy and x1, S can make
its decision to swap after visiting the first frontier. Let k& be the last round in
which Bob moves, then k € {n — 1,n}. By the choice of yg and y1, S can safely
swap anywhere except after visiting the (k — 1)th frontier. It suffices for the
transcript to encounter an unmarked step in 7 in this range. This is true with
overwhelming probability, since there is an unmarked step in every m < k — 1
consecutive steps in the protocol, and the frontiers are encountered in strict
order with overwhelming probability, O

Let g, : {0,2,...,2n} x {1,3,...,2n + 1} — {0,1,...,2n} be defined as
gn(2,y) = min{z,y}. It can be seen by inspection that g, has a unique decom-
position of depth 2n. The corresponding canonical protocol is the one in which
Alice first announces whether z = 0, then (if necessary) Bob announces whether
y =1, and so on — the “Dutch flower auction” protocols from [1].

Corollary 8 The functions g1, 9o, - - . form a strict, infinite hierarchy of increas-
ing E-complexity. That is, g; T g; if and only if i < j.

Proof. By Theorem 7, g; £ g; when ¢ > j. It suffices to show that g, C gn+1,
since the C relation is transitive. It is straight-forward to see that the following
is a UC-secure protocol for g, in the g,41-hybrid world: both parties to send
their g,-inputs directly to g,+1, and abort if the response is out of bounds for

the output of g, (i.e., 2n or 2n + 1). The simulator for this protocol crucially
uses the fact that the adversary can receive the output and then abort. a

Corollary 9 There is no function f which is complete (with respect to the C
relation) for the class of passively realizable SSFE functions, or for the class
standalone-realizable SSFE functions.

Proof. This follows from Theorem 7 and by observing that there exist functions
of arbitrarily high decomposition depth in both classes in question. ad

Corollary 10 There exist SSFE functions f,g whose complexities are incom-
parable; that is, f L g and g L f.

Proof. If f is passively realizable but not standalone realizable, and g is stan-
dalone realizable, then f [Z g, since the class of standalone security is closed un-
der composition (at least when restricted to SSFE functions with abort, where
the only kind of composition possible is sequential composition). On the other
hand, if g has a unique decomposition depth at least 2 larger than the decom-
position depth of f, then g Z f, by Theorem 7. ad

One example of such a pair of functions is f = XOR and g = g2 from Corol-
lary 8. In fact, using a more careful analysis, one can choose g = g1 (see [19]).
Thus XOR is incomparable to the entire {g;} hierarchy.

8 Conclusion and Open Problems

We have gained significant insight into the terrain of SSFE functions. However,
there are regions of complexity of SSFE functions that we do not fully under-
stand. In particular, we have not studied the class of incomplete functions which
are not passive realizable. Nor have we attempted fully characterizing which func-
tions are reducible to which ones. Going beyond SSFE functions, it remains open
to explore similar questions for multi-party functionalities, for reactive function-
alities, and (in the case of passive-security) for randomized functionalities. In the
computationally bounded setting, the “zero-one conjecture” from [20] — that all
functionalities are either realizable or complete — remains unresolved. It is also
an intriguing problem to consider cryptographic complexity of multi-party func-
tionalities vis a vis the “complexity” of cryptographic primitives (like one-way
functions) that are required to realize them (in different hybrid worlds). In short,
our understanding of cryptographic complexity of multi-party functionalities is
still quite limited. There are exciting questions that probably call for a fresh set
of tools and approaches.

References

1. M. Backes, J. Miiller-Quade, and D. Unruh. On the necessity of rewinding in secure
multiparty computation. In TCC, pages 157-173, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. D. Beaver. Perfect privacy for two-party protocols. In J. Feigenbaum and M. Mer-

ritt, editors, Proceedings of DIMACS Workshop on Distributed Computing and
Cryptography, volume 2, pages 65—77. American Mathematical Society, 1989.

A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure
computation. In M. J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 80-97. Springer, 1999.

R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TRO1-
016, 2001. Extended abstract in FOCS 2001.

R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. In E. Biham, editor,
EUROCRYPT, volume 2656 of Lecture Notes in Computer Science. Springer, 2003.
B. Chor and E. Kushilevitz. A zero-one law for boolean privacy (extended ab-
stract). In STOC, pages 62-72. ACM, 1989.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691-729, July 1991. Preliminary version in FOCS’ 86.

R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In STOC, pages 44-61. ACM, 1989.

Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious
transfer - efficiently. In D. Wagner, editor, CRYPTO, volume 5157 of Lecture
Notes in Computer Science, pages 572-591. Springer, 2008.

J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20-31.
ACM, 1988.

J. Kilian. Uses of Randomness in Algorithms and Protocols. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 1989.

J. Kilian. A general completeness theorem for two-party games. In STOC, pages
553-560. ACM, 1991.

J. Kilian. More general completeness theorems for secure two-party computation.
In Proc. 32th STOC, pages 316-324. ACM, 2000.

J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and complete-
ness in private computations. SIAM J. Comput., 29(4):1189-1208, 2000.

D. Kraschewski and J. Miiller-Quade. Completeness theorems with constructive
proofs for symmetric, asymmetric and general 2-party-functions. Unpublished
Manuscript, 2008. http://iks.ira.uka.de/eiss/completeness.

R. Kiinzler, J. Miiller-Quade, and D. Raub. Secure computability of functions in
the it setting with dishonest majority and applications to long-term security. In
these proceedings.

E. Kushilevitz. Privacy and communication complexity. In FOCS, pages 416-421.
TEEE, 1989.

Y. Lindell. Lower bounds for concurrent self composition. In M. Naor, editor,
TCC, volume 2951 of Lecture Notes in Computer Science. Springer, 2004.

H. Maji, M. Prabhakaran, and M. Rosulek. Complexity of multiparty computation
problems: The case of 2-party symmetric secure function evaluation. Cryptology
ePrint Archive, Report 2008/454, 2008. http://eprint.iacr.org/.

M. Prabhakaran and M. Rosulek. Cryptographic complexity of multi-party com-
putation problems: Classifications and separations. In CRYPTO, pages 262-279,
2008.

A. C. Yao. Protocols for secure computation. In Proc. 23rd FOCS, pages 160-164.
IEEE, 1982.

