
Non-Malleable Obfuscation

Ran Canetti1,? and Mayank Varia2,??

1 School of Computer Science, Tel Aviv University (canetti@cs.tau.ac.il)
2 Massachusetts Institute of Technology (varia@csail.mit.edu)

Abstract. Existing de�nitions of program obfuscation do not rule out
malleability attacks, where an adversary that sees an obfuscated pro-
gram is able to generate another (potentially obfuscated) program that
is related to the original one in some way.
We formulate two natural �avors of non-malleability requirements for
program obfuscation, and show that they are incomparable in general.
We also construct non-malleable obfuscators of both �avors for some pro-
gram families of interest. Some of our constructions are in the Random
Oracle model, whereas another one is in the common reference string
model. We also de�ne the notion of veri�able obfuscation which is of
independent interest.

1 Introduction

The problem of program obfuscation has recently received a lot of attention in
cryptography. Informally, the goal of obfuscation is to transform a program in
such a way that its code becomes unintelligible while its functionality remains
the same. This intuitive idea was formalized in [1] using a simulation-based
de�nition.

In [1] it is shown that there do not exist generic algorithms that obfuscate
any program family. These results are extended in [2,3]. However, positive results
have been shown for some program families of interest, such as the family of
�point circuits,� which accept a single input string (that is explicitly given in the
circuit description) and reject all other inputs [4,5,6,7]. These constructions can
be generalized to form obfuscators for two more families: �multi-point circuits,�
which accept a constant number of input strings, and �point circuits with multibit
output,� which store a hidden string that is revealed only for a single input value
[8]. Finally, a di�erent de�nition of obfuscation has been formulated [9,10] in
which it is possible to obfuscate the family of re-encryption programs [10].

However, the question of malleability attacks on obfuscated programs has
not been addressed. In fact, many of the above constructions are malleable.
We provide an overview of the de�nition of obfuscation and then describe its
malleability concerns.

? Supported by NSF grant 0635297, US-Israel Binational Science Foundation grant
20006317, a European Union Marie Curie grant, and the Check Point Institute for
Information Security.

?? Supported by the Department of Defense through the NDSEG Program and by NSF
grant 0635297

Virtual black-box obfuscation. At a high level, the concept of �obfuscating� a
program is to produce a new program with the same functionality but with
�garbled� code. Of course, it is impossible for the garbled code to hide all useful
information, because at the very least one can run the program and observe its
input-output behavior. In this way, the code of a program must be at least as
useful as access to an oracle for the program. At a high level, obfuscation ensures
the converse: that access to the code of an obfuscated program is no more useful
than access to the oracle.

The formalization of this idea provided by [1], called the virtual black-box
property, considers two di�erent worlds. In the real world, an e�cient adversary
has access to the code of an obfuscated program, and attempts to learn a single-
bit predicate about the underlying program. Now consider an imaginary world
in which the code of an obfuscated program is not provided, but rather only
oracle access to the program is provided. Obfuscation ensures that there exists
an e�cient algorithm known as a simulator that can learn the same predicate in
the imaginary world that the adversary learns in the real world.

Malleability concerns. If an adversary has access to obfuscated code, the vir-
tual black-box property guarantees that she cannot �understand� the underlying
program. However, suppose the adversary instead uses the obfuscated code to
create a new program in such a way that she controls the relationship between
the input-output functionality of the two programs.

Intuitively, one might expect that virtual black-box obfuscation already pre-
vents malleability attacks. The simulator only has oracle access to the obfuscated
code, so any program that it makes can only depend on the input-output func-
tionality of the obfuscated code at a polynomial number of locations. Therefore,
obfuscation should guarantee that the adversary is also restricted to these triv-
ial malleability attacks. However, the virtual black-box de�nition in [1] does
not carry this guarantee. Upon close inspection, the problem is that the vir-
tual black-box de�nition only considers adversaries and simulators that output
a single bit, not adversaries and simulators that output programs.

A naïve solution to this problem is to extend the virtual black-box de�nition
to hold even when the adversary and simulator output long strings. However, in
this case obfuscation becomes unrealizable for any family of interest. Consider
the adversary that outputs its input. Then, a corresponding simulator has oracle
access to a program and needs to write the code for this program, which is usually
impossible.

In this paper, we demonstrate two di�erent methods to incorporate non-
malleability guarantees into obfuscation. Both non-malleability de�nitions ex-
tend the virtual black-box de�nition by allowing the adversary and simulator to
produce multiple bit strings, but only in a restricted manner. There are many
subtleties involved in constructing a proper de�nition, such as deciding the ap-
propriate restrictions to impose on the adversary and simulator, and creating
relations to test the similarities between the adversary's input and output pro-
grams. We defer treatment of these important details to Section 3. Here, we
motivate and describe the two de�nitions at a high level.

Functional non-malleability. Imagine that Alice, Bob, and Charles are three
graduate students in an o�ce that receives a new computer. The department's
network administrator wishes to con�gure the computer to allow the grad stu-
dents root access to the computer. The administrator receives the students'
desired passwords, and she needs to write a login program that accepts these
three passwords and rejects all other inputs. The administrator knows that she
has to be careful in designing the login program because the students will be able
to read the program's code. As a result, she forms the login program using an
obfuscator for the family of three-point circuits, which ensures that a dictionary
attack is the best that the graduate students can do to learn their o�cemates'
passwords.

However, obfuscation does not alleviate all of the administrator's fears, be-
cause the students will have root access to the computer so they can alter the
login program as well. The administrator would like to prevent tampering of the
login program, but the virtual black-box de�nition does not provide this guaran-
tee. For instance, suppose Alice wants to remove Bob's access to the computer.
There exist obfuscators of the three-point circuit such that Alice can succeed in
this attack with noticeable probability [8].

Intuitively, the goal of obfuscation is to turn a program into a �black box,�
so the only predicates that Alice can learn from the program are those she could
learn from a black box. We extend this intuition to cover modi�cations as well.
We say that an obfuscator is functionally non-malleable if the only programs
that Alice can create given obfuscated code are the programs she could create
given black-box access to the obfuscated code.

This de�nition provides a guarantee on the possible attacks Alice can apply.
For instance, if Alice only has black-box access to the login program, then she
can only remove Bob's access to the computer with negligible probability. In this
sense, functional non-malleability provides stronger security for Bob because it
protects all aspects of his access to the computer, whereas the virtual black-box
property only protects his password.

We wish to de�ne functional non-malleability using a simulation-based de�ni-
tion: for every adversary that receives obfuscated code and uses it to create a new
program, there exists a simulator that only has oracle access to the obfuscated
code and produces a program that is functionally equivalent to the adversary's
program. However, this de�nition is too strong: given the trivial adversary that
outputs its input, the simulator gets oracle access to a program and needs to
output the code of this program, which is usually impossible. But it is unfair
to demand that the simulator do this much work. After all, the adversary's in-
put is a program but the simulator's input is just an oracle. At the very least,
the adversary can output a program that uses its input program in a black-box
manner, and the simulator should have the same ability. Therefore, we allow the
program that the simulator outputs to have oracle access to the obfuscated code.

Veri�able non-malleability. Functional non-malleability is a nice property for
obfuscators, but there are some scenarios where even this does not su�ce. For
example, suppose that Alice wishes to play an April fools' prank on her o�ce-

mates by altering the login program to accept their old passwords appended to
the string �Alice is great.� Alice only knows her own password, so she cannot run
the obfuscator to produce this modi�ed program. Nevertheless, she can write the
following program: �on input a string s, check that s begins with `Alice is great,'
and if so, remove it from s and send the rest of the string to the administrator's
login program.� Functional non-malleability does not prevent this prank. In fact,
it is impossible to prevent this prank because Alice only uses the obfuscated login
program in a black-box manner.

Still, this attack is not �perfect�: after Alice performs this attack, the new
login program �looks� very di�erent from a program that the network admin-
istrator would create. As a result, we may not be able to prevent Alice from
performing her prank, but we may be able to detect Alice's modi�cation after-
ward and restore the original program. Alice's job is now harder, since she has
to modify obfuscated code in such a way that the change is undetectable. We
say that an obfuscator is veri�ably non-malleable if the only programs Alice can
create that pass a veri�cation procedure are the programs she could create given
black-box access to the obfuscated code. This approach gives us hope to detect
attacks that we cannot prevent, although it requires a stronger model in which
a veri�cation procedure routinely audits the program.

In the setting of our example, one simple way to achieve non-malleability is
for the network administrator to digitally sign every program she makes, and for
the veri�cation procedure to check the validity of the signature attached to an
obfuscated program before running it. By the existential unforgeability of the
signature scheme, Alice cannot make any modi�cations, so the non-malleability
goal is achieved.

However, this solution requires that the veri�cation procedure can �nd and
store the network administrator's veri�cation key, which may not be practical.
We want the non-malleability guarantee to be an intrinsic property of the ob-
fuscation, without relying on an external public key infrastructure. As a result,
in this paper we consider �public� veri�ers that depend only on the obfuscation
algorithm, and not on the party performing the obfuscation. Informally, a veri-
�er algorithm V accepts programs if and only if they could have been produced
by running the obfuscation algorithm. We stress that V does not receive any
party-speci�c information (such as public keys), so it does not depend on the
person that runs the obfuscator.

Veri�ability has interesting applications in and of itself, as we describe in the
Discussion section below, but in this paper we only use it to create a simulation-
based de�nition of veri�able non-malleability. The de�nition guarantees that
an adversary cannot maul obfuscated code into a new program that passes the
veri�cation test unless there exists a simulator that can perform the same attack
given only oracle access to the obfuscated code. (Note that the adversary must
create a new program and not simply output the obfuscated code it receives.)
Because we hope to detect attacks that operate in a black-box manner (which
we could not hope to prevent in the functional setting), we no longer give the
simulator the extra help that we gave it in the de�nition of functional non-

malleability. Instead, the simulator must output a fully-functional program that
does not have an oracle.

Comparison. We show that both forms of non-malleability imply the virtual
black-box property. Intuitively, this relationship holds because an adversary that
outputs programs should easily be able to encode a single bit of information in
the output. As a result, all known impossibility results regarding the virtual
black-box property continue to hold for both types of non-malleability [1,2].

Additionally, we compare the two �avors of non-malleability. The goal of
functional non-malleability is to prevent as many malleability attacks as possible,
whereas the goal of veri�able non-malleability is to detect as many attacks as
possible. Intuitively, these goals are incomparable: the veri�able de�nition is
stronger because we can detect more attacks than we can prevent, but on the
other hand it is weaker because the model requires its participants to understand
and apply the veri�cation algorithm. We justify this intuition by showing that
in the random oracle model, the two de�nitions of non-malleability are indeed
incomparable.

Constructions. In the random oracle model, we show that the obfuscator for
point circuits in [6] satis�es both functional and veri�able non-malleability. Next,
we study the family of multi-point circuits, which accept a constant number of
inputs. One idea to obfuscate the program that accepts values x1, . . . , xm is as
follows:

1. Use several instantiations of a single-point circuit obfuscator in order to
create obfuscated programs P1, P2, . . . , Pm, where each Pi accepts only the
value xi

2. Create the program P that contains P1 through Pm as subroutines, and
on input x, iteratively feeds x into the Pi and accepts if any one of these
programs accept.

This methodology is known as concatenation, and it is shown in [8] that con-
catenation preserves obfuscation. That is, given any obfuscator for the family
of single-point circuits, concatenation produces an obfuscator for the family of
multi-point circuits. However, concatenation does not preserve non-malleability.
The program P stores the subroutines P1 through Pm in a readily identi�able
way, so an adversary can modify one accepted point by changing one of the sub-
routines. This is true even if the obfuscator for the family of single-point circuits
is non-malleable.

In the veri�able setting, we resolve the problem with concatenation by us-
ing a self-signing technique to ensure that the subroutines are not modi�ed.
The veri�cation algorithm associated with this construction runs the veri�ca-
tion algorithm for the signature scheme. This approach does not su�ce in the
functional setting, where the self-signing technique is useless because there is no
guarantee that anybody checks the signature. Instead, we �glue� the accepted
points together in such a way that any attempt to change the obfuscated code
destroys information on all of the points simultaneously.

We also give a construction that does not use random oracles. Instead, it
uses the common reference string (CRS) model, in which a sequence of bits is
chosen uniformly at random and published in a public location that all partic-
ipants can access. (Note that this is di�erent from a public key infrastructure
because the CRS is not tied to the speci�c identity of the party performing the
obfuscation.) We construct a veri�ably non-malleable obfuscation for the family
of point circuits by providing any (potentially malleable) obfuscation along with
a non-malleable NIZK proof of knowledge [11,12] that the obfuscator knows the
point that is accepted.

Informally, a non-malleable NIZK proof of knowledge considers an adversary
that can request multiple proofs for statements of its choice and then produces
a new proof. The non-malleability guarantee requires that the adversary knows
a witness to its constructed proof, so it cannot simply modify the old proofs to
prove a new statement.

Intuitively, our construction is veri�ably non-malleable because an adversary
can only make a program that passes the veri�cation test if she knows its func-
tionality, so she cannot produce a program that is related to a given obfuscated
point circuit or else she would learn information about the obfuscated circuit,
which is impossible by the virtual black-box property. However, the actual proof
turns out to be delicate. Using proof techniques from [4], we achieve a some-
what weaker variant of veri�able non-malleability. Speci�cally, we show that for
a large class of relations, no adversary can perform a modi�cation that satis�es
the relation with noticeable probability.

Discussion on veri�able obfuscation. The concept of veri�able obfuscation is use-
ful even in situations where malleability is not a concern. For example, suppose
you create a new computer program that solves an important problem. You wish
to pro�t from your research by selling this program to others, but you also want
to protect the algorithm that you discovered. Therefore, you sell an obfuscated
version of the program to your customers. This protects your intellectual prop-
erty, but another problem has presented itself. Your customers do not wish to
install the obfuscated program on their computers because they no longer have
any guarantees about what this program does. For all they know, the program
could contain a virus, and because the program is obfuscated there is no hope for
a virus checker to detect the presence of a virus. Hence, you need a veri�cation
algorithm that proves to your customers that you are selling them a program
from the proper family.

Future work. First, the constructions in this paper use the random oracle model
or common reference string model. It remains an open question to construct a
non-malleable obfuscator (of either �avor) without trusted setup.

Second, we provide a veri�ably non-malleable obfuscation of single-point cir-
cuits in the CRS model for a large class of relations. Unfortunately, extending
this construction to the multi-point setting is insu�cient, as it only succeeds for
a small class of relations. It remains open to �nd a better construction in the
multi-point setting.

Organization. In Section 2, we provide an overview of virtual black-box obfus-
cation [1,2]. In Section 3, we provide rigorous de�nitions of the two notions of
non-malleability. In Sections 4 and 5, we present non-malleable obfuscators of
both �avors for the family of multi-point circuits.

2 Obfuscation

In [1], [2], and other works, an obfuscator is de�ned as a compiler that takes
a circuit as input and returns another circuit. The output circuit should be
equivalent in functionality to the input circuit, but the output circuit should
be unintelligible in the sense that any information that can be obtained from
the output circuit can also be obtained with oracle access to the circuit. In this
paper we will be interested in obfuscation with dependent auxiliary information,
as de�ned in [2].

Throughout this work, the adversaries and simulators are assumed to be
non-uniform.

De�nition 1 (Obfuscation). Let C = {Cn}n∈IN be a family of polynomial-size
circuits, where Cn denotes all circuits of input length n. A probabilistic polyno-
mial time (PPT) algorithm O is an obfuscator for the family C operating over
randomness R = {Rn} if the following three conditions are met.

� Approximate functionality: There exists a negligible function ε such that for
every n, every circuit C ∈ Cn, and for all x ∈ {0, 1}n,

Pr[r ← Rn, C ′ ← O(C, r) : C(x) = C ′(x)] > 1− ε(n) .

If this probability is always 1, then we say that O has exact functionality.

� Polynomial slowdown: There exists a polynomial p such that for every n,
circuit C ∈ Cn, and r ∈ Rn, the description length |O(C, r)| ≤ p(|C|).

� Virtual black-box: For every polynomial ρ and every PPT adversary A, there
exists a PPT simulator S such that for all su�ciently large n, for all C ∈ Cn,
and for all auxiliary information z ∈ {0, 1}∗,

∣∣Pr[A(O(C), z) = 1]− Pr[SC(1n, z) = 1]
∣∣ <

1
ρ(n)

,

where the �rst probability is taken over the coin tosses of A and O, and the
second probability is taken over the coin tosses of S. Furthermore, we require
that A and S operate in time polynomial in the length of their �rst input.

We de�ne obfuscation without auxiliary information in the same manner,
except that the auxiliary information is removed from the virtual black-box
de�nition. Unless otherwise speci�ed, in this paper we assume that obfuscations
are secure with respect to dependent auxiliary information.

3 De�ning Non-malleable Obfuscation

In this section, we rigorously de�ne the two variants of non-malleable obfusca-
tion.

3.1 Functionally Non-malleable Obfuscation

We obtain functionally non-malleable obfuscation by generalizing the virtual
black-box de�nition to allow the adversary and simulator to output programs
instead of bits. Intuitively, a functionally non-malleable obfuscation has the prop-
erty that an adversary, given the obfuscated code to a program, can only make
a related program if it could have already done so given only black-box access
to the program.

This is problematic in general, because the simulator cannot emulate all pro-
grams that the adversary can produce [1,7]. For example, consider the adversary
that outputs its input. Then, the simulator has oracle access to a circuit and
has to produce a program that is functionally equivalent to its oracle. This is
impossible unless the circuit is learnable with oracle queries, in which case the
entire concept of obfuscation is uninteresting. To make the de�nition meaning-
ful, we allow the program that the simulator produces to make oracle queries to
the original circuit as well.

To capture the e�ectiveness of an adversary's modi�cation, we introduce
a polynomial-time computable relation E that receives the adversary's input
program and output program. The adversary succeeds in the modi�cation if E
accepts it. The de�nition of non-malleability ensures that for every relation E,
the simulator can perform a successful modi�cation with the approximately the
same probability as the adversary.

One technical concern about the relation E is the manner in which it re-
ceives the adversary's input and output programs. The goal of functional non-
malleability is to compare the functionality of these programs, and not their
underlying code, so E should operate in the same manner when given function-
ally equivalent inputs. Our de�nition resolves this issue by giving the relation
a �canonical� member of the family that is equivalent to the adversary's output
program. (See the Discussion section below for more detail on this issue.)

Additionally, in many situations, the adversary knows some a-priori useful
information on the obfuscated program, so we allow dependent auxiliary in-
formation in the de�nition of non-malleability. For instance, in the motivating
example from the Introduction in which Alice wishes to modify a login program,
she possesses the knowledge of her own password.

De�nition 2 (Functional equivalence). We say that two circuits C1 and C2

are functionally equivalent, and write C1 ≡ C2, if for all inputs x it holds that
C1(x) = C2(x).

De�nition 3 (Functionally non-malleable obfuscation). Let C and D be
families of circuits, and let O be a PPT algorithm. We say that O is an ob-
fuscator for C that is functionally non-malleable over D if the following three
conditions hold:

� Almost exact functionality: There exists a negligible function ε such that for
every n and every circuit C ∈ Cn, Pr[r ← Rn : O(C, r) ≡ C] > 1− ε(n).

� Polynomial slowdown: There exists a polynomial p such that for every n,
circuit C ∈ Cn, and r ∈ Rn, the description length |O(C, r)| ≤ p(|C|).

� Functional non-malleability: for every polynomial ρ and PPT adversary A,
there exists a PPT simulator S such that for all su�ciently large n, for
all circuits C ∈ Cn, for all auxiliary information z ∈ {0, 1}∗, and for all
polynomial time computable relations E : Cn×Dn → {0, 1} (that may depend
on the circuit C),

|Pr[P ← A(O(C), z) : ∃D ∈ Dn s.t. D ≡ P and E(C,D) = 1]

−Pr[Q← SC(1n, z) : ∃D ∈ Dn s.t. D ≡ QC and E(C,D) = 1]| < 1
ρ(n)

,

where the probabilities are over the coin tosses of A, O, and S. We require
that A and S run in time polynomial in the length of their �rst inputs.

If D = C, we say that O is a functionally non-malleable obfuscator for C.

Discussion. We make several remarks about this de�nition.

Almost exact functionality. The functionality requirement here is stronger than
the one used in De�nition 1 above. Approximate functionality only guarantees
that an obfuscated program O(C, r) is �close� in functionality to C. However,
O(C, r) might never have the same functionality as C does (for any choice of
r). By contrast, almost exact functionality requires that the two circuits have
identical functionality for most choices of r.

We note that most of the constructions in this paper satisfy exact function-
ality.

Bivariate relation. In this de�nition, the bivariate relation E is allowed to depend
on the choice of circuit C ∈ Cn. Thus, restricting attention to univariate relations
E(D) results in an equivalent de�nition. We use a bivariate relation only to
emphasize the fact that E depends on both C and D.

Possible de�nitions for E. As mentioned above, an important feature of the
de�nition is that E only depends on the functionality of the adversary's output
P and simulator's output QC , and not on the code of these circuits. We found
three possible ways to enforce this condition on E.

First, we can constrain E to receive only oracle access to the program P or
QC . As a result, it follows immediately that E only depends on the function-
ality of these programs, and not on their underlying code. Unfortunately, this
de�nition is too weak, because there are many natural predicates that cannot
be tested by relations of this type.

For instance, consider the family of point circuits, where Iw is the circuit that
accepts only the string w. Suppose the adversary is given an obfuscation of the

point circuit Ix and wishes to create a new point circuit Iy such that the �rst
bit of x and y are equal. No polynomial-time relation E (even ones that know x,
since E can depend on x) can test the adversary's probability of success given
only oracle access to Iy. We believe that relations of this type are meaningful,
and therefore we want a de�nition that can test for them.

Second, we can give the relation E full access to the code of P or QC , but
restrict our attention to relations that have identical output when given two
functionally equivalent programs. Speci�cally, we only consider relations E such
that given any programs C ∈ Cn, D ∈ Dn, and P , P ′ such that D ≡ P ≡ P ′,
it follows that E(C,P) = E(C,P ′). This de�nition does allow E access to the
code of its input programs. The advantage of this de�nition is that E �nally
gets access to the code of the programs. The disadvantage is that the condition
we impose on relations is very restrictive. As a result, it is still impossible to
compute many relations, such as the one described in the previous paragraph.

Speci�cally, the virtual black-box de�nition guarantees that any relation
E(Ix,O(Iy)) cannot compute whether x and y have the same �rst bit with
probability greater than 1

2 . Thus, the condition that we impose on E is that it
has the same probability of success even when it is given Ix and Iy as inputs, in
which case E has enough information to perform the computation with proba-
bility 1 but must fail half of the time anyway in order to be consistent with the
condition.

Third, we can allow all polynomial-time relations E, but instead of providing
the code of P or QC as input to E, we provide the code of a functionally equiv-
alent member in Dn. This is the option we use in De�nition 3 above, because it
clearly satis�es the requirement that E only depend on the functionality of the
adversary and simulator's output, and it is a stronger de�nition that can test for
many relations that the previous two de�nitions cannot. For these reasons, we
choose to use relations of this type in the de�nition of functional non-malleability.

One technical point to keep in mind is that the relation E takes the descrip-
tion of circuits in Cn and Dn as input. As a result, this de�nition is dependent
upon the representation of the circuits in these families, and not just the func-
tionality of these circuits. Therefore, we should choose a representation of the
circuit families that enables relations to extract important information easily
from the description of a circuit.

As a result, we de�ne the families of multi-point circuits as follows. Given
w1, w2, . . . , wm ∈ {0, 1}n, let I{w1,...,wm} be the circuit that stores w1, . . . , wm

in some canonical, explicit manner, and on input x returns 1 if and only if x = wi

for some i. In particular, relations can extract the strings w1, . . . , wm from the
description of I{w1,...,wm} in polynomial time. Note that the wi need not be
distinct, so the circuit I{w1,...,wm} accepts between 1 and m points. For technical
reasons, we may also want to consider the circuit I∅ that immediately rejects all
inputs. Let

Pm
n = {I{w1,...,wm} : w1, . . . , wm ∈ {0, 1}n} ∪ {I∅}

be the set of all m-point circuits on n bits, and let Pm = {Pm
n }n∈IN be the family

of m-point circuits. Also, let Pm+ be the subfamily that does not include I∅.

Output family D. According to our de�nition, an adversary succeeds only if it
outputs a circuit that is equivalent to a circuit in the family D. The most natural
family to choose is D = C, but we allow D to be di�erent from C in order to
consider a wider range of adversaries. For instance, perhaps C is the family of
point circuits, but we are concerned with adversaries that produce two-point
circuits as output as well. The de�nition of functional non-malleability allows us
to form a larger family D to acknowledge this.

Of course, there is no reason to stop there: we may also be concerned with
an adversary that produces a three-point circuit, or a four-point circuit, or any
circuit for that matter. In fact, the presence of the circuit family D in the de�ni-
tion seems restrictive. It would be nice if our de�nition simultaneously covered
all possible outputs of the adversary, and not just those in a speci�c family. In
other words, we would like a functionally non-malleable obfuscator when D is
the family of all circuits, but unfortunately this is impossible. Intuitively, the
family of all circuits is so big that it allows A to output the obfuscated code that
it receives as input, which the simulator cannot do. A formal proof can be found
in the full version of this paper [13].

Comparison to virtual black-box obfuscation. Now that we have introduced a
new de�nition of obfuscation, it is natural to compare it to the old one. We
show that the functional non-malleability property implies the virtual black-box
property (at least for reasonable choices of the circuit family D). This justi�es
our terminology of using the word �obfuscation� in De�nition 3.

Theorem 4. Let C and D be circuit families, and let O be an obfuscator for C
that is functionally non-malleable over D. Furthermore, suppose that for su�-
ciently large n, there exist circuits D0, D1 ∈ Dn such that D0 6≡ D1. Then, O
satis�es the virtual black-box property. As a result, O is an obfuscator for C.

This theorem also holds if neither the virtual black-box property nor functional
non-malleability allows auxiliary information.

Intuitively, this theorem holds because an adversary that outputs programs
can use this channel to transmit a single bit of information b by outputting the
program Db. See the full version of this paper [13] for a rigorous proof.

One consequence of this theorem is that all impossibility results pertaining
to the virtual black-box property immediately carry over to the non-malleability
setting [1,2].

3.2 Veri�ably Non-malleable Obfuscation

In this section, we develop the notion of veri�able obfuscation and use it to de�ne
another de�nition of non-malleability.

De�nition 5 (Veri�er). Given a pair of PPT algorithms O and V and a cir-
cuit family C, we say that V is a veri�er forO applied to C if there exists a negligi-
ble function ε such that for all n and for all C ∈ Cn, Pr[V (O(C)) = 1] > 1−ε(n),
where the probability is taken over the randomness of V and O.

If O is an obfuscator for the family of circuits C, then we say that the pair
(O, V) constitutes a veri�able obfuscator for C.

We do not place any restrictions on V when its input is not the result of the
obfuscator applied to a circuit in the family. In particular, given any obfuscator
O, the pair (O, 1l) is a veri�able obfuscator, where 1l is the algorithm that ac-
cepts all inputs. In many cases, however, we can create much better veri�cation
algorithms. For example, the (r, rx) construction of [4] can simply be veri�ed by
checking whether r and rx are elements in the desired group G of prime order,
because there is a unique discrete log of rx so the program does implement a
point circuit as desired. This results in a perfect veri�er that accepts its input
program if and only if it has the form of a program produced by the obfuscator.

Now we create a de�nition of non-malleability for veri�able obfuscators. As
before, we consider an adversary that takes an obfuscated circuit as input and
outputs a program. In this model, the adversary succeeds only if her output
program passes the veri�cation test and is related to the input program. Our
de�nition of non-malleability requires that a simulator succeeds with approxi-
mately the same probability, so it must also output a program that passes the
veri�cation test. In particular, we no longer give an oracle to the program con-
structed by the simulator. A formal de�nition follows.

De�nition 6 (Veri�able non-malleability). Let C and D be a families of
circuits such that C ⊆ D, and let O and V be PPT algorithms. We say that (O, V)
is an obfuscator for C that is veri�ably non-malleable over D if the following four
conditions hold:

� Veri�cation: V is a veri�er for O applied to C. Additionally, for every n and
every circuit P with n bits of input such that V (P) = 1, there exists D ∈ Dn

such that P ≡ D.
� Almost exact functionality: There exists a negligible function ε such that for
every n and every circuit C ∈ Cn, Pr[r ← Rn : O(C, r) ≡ C] > 1− ε(n).

� Polynomial slowdown: There exists a polynomial p such that for every n,
circuit C ∈ Cn, and r ∈ Rn, the description length |O(C, r)| ≤ p(|C|).

� Veri�able non-malleability: for every polynomial ρ and PPT adversary A,
there exists a PPT simulator S such that for all su�ciently large n, for
all circuits C ∈ Cn, for all auxiliary information z ∈ {0, 1}∗, and for all
polynomial time computable relations E : Cn ×Dn → {0, 1},

|Pr[P ← A(O(C), z) : P 6= O(C), V (P) = 1, ∃D ∈ Dn s.t. D ≡ P , E(C, D) = 1]

−Pr[Q← SC(1n, z) : V (Q) = 1, ∃D ∈ Dn s.t. D ≡ Q, E(C, D) = 1]| < 1

ρ(n)
,

where A and S run in time polynomial in the length of their �rst inputs.

If D = C, we say that (O, V) is a veri�ably non-malleable obfuscator for C.

It is potentially reasonable to relax the de�nition by not requiring the sim-
ulator to pass the veri�cation text. We choose not to do so because the current

de�nition puts the adversary and simulator on more equal footing and because
all of our constructions satisfy the stronger notion.

We also note that the de�nition requires that V only accept circuits that are
equivalent to members of D. The bene�t of this restriction is that the adversary
can e�ciently test whether she outputs a circuit in Dn, which is a requirement
for her to succeed under this de�nition.

Additionally, the remarks pertaining to functional non-malleability also apply
here:

1. Restricting to univariate relations E(D) results in an equivalent de�nition.
2. It is usually impossible to achieve veri�able non-malleability if D is the family

of all circuits.
3. Veri�able non-malleability also implies the virtual black-box property.

Theorem 7. Let C and D be circuit families, and let (O, V) be an obfuscator
for C that is veri�ably non-malleable over D. Then, O is an obfuscator for C.
This theorem also holds if neither de�nition allows auxiliary information.

3.3 Comparison

We conclude this section by showing that the two non-malleability de�nitions
are incomparable. Intuitively, functional non-malleability prevents more attacks.
This is re�ected in the de�nition by the fact that an adversary attacking func-
tional non-malleability does not have to pass a veri�cation test, so the simulator
must emulate more potential attacks. A concrete example of this separation is
the obfuscator described in Algorithm 2 below, which does not prevent the attack
described in the Introduction in which Alice removes Bob's password.

On the other hand, veri�able non-malleability detects more attacks. This is
re�ected in the de�nitions by the fact that the program Q constructed by the
simulator is not given oracle access to C in the veri�able de�nition. A con-
crete example of this separation is the functionally non-malleable obfuscator for
multi-point functions described in the full version of the paper [13], which is
vulnerable to a slightly modi�ed form of Alice's April fools' prank described in
the Introduction.

4 Constructions of Functionally Non-malleable

Obfuscators

In this section, we present a functionally non-malleable obfuscator for the family
of multi-point circuits in the random oracle model.

We begin with the single-point case. Algorithm 1 describes an obfuscator
OP1 for the family P1 [6]. Informally, OP1 obfuscates the point circuit Iw by
recording R(w). This provides an information-theoretic way to hide the point w
while still making it easy to check whether the input to the obfuscated program
is w. However, the obfuscator should not be deterministic [4], so OP1 uses some
randomness as well.

Algorithm 1 Obfuscator OP1 for the family of point circuits P1

Input: a circuit of the form Iw or I∅
1: if the input circuit is I∅ then

2: choose r
U← {0, 1}3|w| and t

U← {0, 1}4|w| (that is, uniformly at random)
3: else
4: extract the point w and choose randomness r

U← {0, 1}3|w|
5: set t = R(w ◦ r), where ◦ denotes the string concatenation operation
6: end if

7: output the circuit Φr,t that stores r and t in some clearly identi�able manner, and
on input a string x, outputs 1 if R(x ◦ r) = t and 0 otherwise

Theorem 8. In the random oracle model, the algorithm OP1 is a functionally
non-malleable obfuscator for the family of point circuits P1.

Due to space constraints, rigorous proofs of non-malleability for all of our
constructions are deferred to the full version of this paper [13].

Constructing a functionally non-malleable obfuscator for the family of multi-
point circuits Pm is signi�cantly more di�cult. Roughly speaking, the principal
issue is that the obfuscated program must �bundle together� the m points in a
way that would prevent the adversary from changing any point in the bundle
without applying the exact same change to all points in the bundle. For instance,
simply concatenating m obfuscations of a single-point circuit (even obfuscations
that are individually non-malleable) does not su�ce because an adversary will
be able to change some of the points at will. Instead, the obfuscated program
must be a �house of cards� in the sense that an adversary cannot change the code
without destroying information about all of the accepted points simultaneously.
Our construction is described in the full version of this paper [13].

5 Constructions of Veri�ably Non-malleable Obfuscators

In this section, we present veri�ably non-malleable obfuscators for the family of
multi-point circuits in the random oracle and common reference string models.

5.1 Random Oracle Model

In the single-point case, the obfuscator OP1 from Algorithm 1 can also be used
to create a veri�ably non-malleable obfuscation. Let VP1 be the veri�cation al-
gorithm that accepts if and only if its input is a program of the form Φr,t. It
is clear from Algorithm 1 that VP1 always accepts proper obfuscations of point
circuits.

Theorem 9. In the random oracle model, (OP1 , VP1) is a veri�ably non-malleable
obfuscator for P1.

In the multi-point setting, we can concatenate m copies of OP1 and �glue�
them together using a self-signing technique in order to construct the obfuscator
OPm described in Algorithm 2. The associated veri�cation algorithm VPm checks
that its input program has the proper structure and validates the signature.

The self-signing technique ensures that an adversary will be detected if she
tries to re-use any of the OP1 obfuscations given to her, because she will not be
able to forge the required signature. For instance, using the example described
in the Introduction, Alice cannot keep the pieces of the obfuscated circuit that
accept Charles and herself but remove the part that accepts Bob. However, the
scheme does not prevent Alice from implementing this attack, so the scheme is
malleable in the functional sense.

The one-time signature scheme can be constructed from any one-way function
[14] so in particular it can be constructed from the random oracle.

Algorithm 2 Obfuscator OPm for the family of m-point circuits

Input: a circuit of the form I{w1,...,wm} or I∅
1: let k be the number of distinct accepted points for the input circuit (possibly 0)
2: extract the k distinct points w1, . . . , wk

3: choose randomness r1, . . . , rm
U← {0, 1}3mn

4: choose a signature-veri�cation key pair (s, v) for a one-time signature scheme
5: for i = 1 to k do

6: set ti = R(wi ◦ ri ◦ v)
7: end for

8: for i = k + 1 to m do

9: choose ti
U← {0, 1}n+3mn+|v|

10: end for

11: choose a random permutation π on m elements, and permute the ri and ti by π
12: compute the signature σ = signs(t1, . . . , tm)
13: output the circuit that stores the ri, ti, v, and σ in a clearly identi�able manner,

and on input x does the following: �for i from 1 to m, accept if R(x ◦ ri ◦ v) = ti�

Theorem 10. In the random oracle model, (OPm , VPm) is a veri�ably non-
malleable obfuscation for Pm. However, OPm is malleable in the functional
sense.

The self-signing technique can also be applied to the functionally non-malleable
obfuscator for the family of multi-point circuits described in the full version of
the paper [13], producing an obfuscator that simultaneously satis�es both forms
of non-malleability.

5.2 Common Reference String Model

In the common reference string (CRS) model, we provide veri�ably non-malleable
obfuscators for the family Pm+ of multi-point circuits that does not include I∅.

This is a slightly di�erent family than we used in the random oracle construc-
tions, because the constructions in this section have the property that it is easy
to tell that obfuscated circuits accept at least one input, which was not the case
in the random oracle constructions.

Also, in this section we can only prove a slightly weaker form of veri�able non-
malleability. We �rst present an obfuscator in the single-point setting, where we
believe the weaker non-malleability property is meaningful. Then, we generalize
the obfuscator to operate in the multi-point setting, but we also show that the
weaker form of non-malleability is insu�cient in this setting.

Single-point circuits. Our construction uses two building blocks:

1. Let ÔP1+ be any obfuscator for P1+ without auxiliary information, along
with a perfect veri�er V̂P1+ for ÔP1+ , such as the obfuscator of [4] described
in Section 3.2.

2. Let Π be a non-malleable non-interactive zero-knowledge (NIZK) proof of
knowledge system [11,12]. Informally, the proof system Π has the property
that given an adversary that sees a proof π and then creates a proof π′ with
π′ 6= π, there exists an extractor that extracts the witness to the proof of π′.

Using these building blocks, we form the obfuscator ÕP1+(Iw) that outputs
ÔP1+(Iw) along with a proof that it knows the point w. The veri�cation algo-
rithm ṼP1+ associated to ÕP1+ runs V̂P1+ and the veri�cation algorithm of the
proof system Π to check the validity of the proof.

More formally, we de�ne an NP relation RÔP1+
based on ÔP1+ as follows:

RÔP1+
(P,w) = 1 if and only if ∃r s.t. P = ÔP1+(Iw, r) .

That is, the �rst input to the relation must be a valid output of the obfuscator
ÔP1+ (which can be e�ciently veri�ed by V̂P1+), and the second input must be
the unique point that is accepted by this circuit. The obfuscator ÕP1+ , described
in Algorithm 3, uses the NIZK Π on this NP relation.

Algorithm 3 Obfuscator ÕP1+ for the family of point circuits in the CRS model

Input: a circuit of the form Iw and a common reference string Σ
1: produce the obfuscated circuit Îw = ÔP1+(Iw)
2: use Π to prove that the obfuscator knows a witness w to the statement that

RÔP1+
(Îw, w) = 1, and call the resulting proof πw

3: output the circuit Ĩw that is equal to Îw except that it also stores πw in some
clearly visible way

Intuitively, the non-malleability of the obfuscation follows from the non-
malleability of the NIZK. Unfortunately, the proof turns out to be quite del-
icate, and we can only prove a weaker version of the veri�able non-malleability
property.

De�nition 11 (Weakly veri�able non-malleability in the CRS model).
Let C be a family of circuits and (O, V) be a pair of algorithms. We say that
(O, V) is weakly veri�ably non-malleable for relation E if for every polynomial
ρ and PPT adversary A, there exists a PPT simulator S such that for all su�-
ciently large n and for all circuits C ∈ Cn,

|Pr[P ← A(O(C), Σ) : P 6= O(C), V (P, Σ) = 1, ∃D ∈ Cn s.t. D ≡ P , E(C, D) = 1]

−Pr[(Q, Σ)← SC(1n) : V (Q, Σ) = 1, ∃D ∈ Cn s.t. D ≡ Q, E(C, D) = 1]| < 1

ρ(n)
,

where the �rst probability is taken over the coin tosses of A and O, along with
the uniformly random choice of the common reference string Σ, and the second
probability is taken over the coin tosses of S.

Note that this de�nition is weaker than the veri�able non-malleability prop-
erty in De�nition 6 in two ways: the simulator S is allowed to depend on the
relation E, and there is no auxiliary information in this de�nition. We can prove
that our construction satis�es this weaker variant of non-malleability for many
interesting relations E.

De�nition 12 (Invertible relation). A bivariate relation E is invertible if
there exists a polynomial time algorithm Ē such that for every y, Ē(y) returns
a list of all x such that E(x, y) = 1.

In particular, because E is a polynomial time algorithm, it can only output
a list that is polynomially long in length. Therefore, for every y, there must be
only polynomially many x such that E(x, y) = 1.

Theorem 13. Let E be an invertible relation. In the common reference string
model, (ÕP1+ , ṼP1+) is a weakly veri�ably non-malleable obfuscator for E.

Multi-point circuits. The obfuscator ÕP1+ can be generalized to the multi-point
setting, as follows. Let ÕPm+ be the obfuscator that, when given I{w1,...,wm} as

input, outputs the concatenation of m single-point obfuscations ÔP1+(Iw1), . . .,
ÔP1+(Iwm

) followed by a non-malleable NIZK proof of knowledge that it knows
all of the accepted points w1, . . . , wm. As before, let ṼPm+ be the veri�cation
algorithm that checks the structure of the program and the validity of the proof.
It is shown in [8] that ÕPm+ is an obfuscator, and we show that this obfuscator
is weakly veri�ably non-malleable for invertible relations.

Theorem 14. Let E be an invertible relation. In the common reference string
model, (ÕPm+ , ṼPm+) is a weakly veri�ably non-malleable obfuscator for E.

Unfortunately, in the multi-point setting, the set of invertible relations is too
small. For example, the simple relation E(I{w1,...,wm}, I{w′

1,...,w′
m}) that accepts

if any of the wi equal any of the w′
j is not invertible. As a result, Theorem 14 is

a promising result but still unsatisfactory. Future research is needed to �nd an
obfuscator that is veri�ably non-malleable for a wider class of relations.

Acknowledgment. We thank Ronny Dakdouk for his useful comments. In partic-
ular, an improvement in Theorem 7 and an error in an earlier proof of Theorem
9 were found by Ronny.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: CRYPTO. Volume 2139
of Lecture Notes in Computer Science., Springer (2001) 1�18

2. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS, IEEE Computer Society (2005) 553�562

3. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: TCC. Volume
4392 of Lecture Notes in Computer Science., Springer (2007) 194�213

4. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: CRYPTO. Volume 1294 of Lecture Notes in Computer Science.,
Springer (1997) 455�469

5. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions. In: Proceedings of the 30th ACM Symposium on Theory of Computing.
(1998) 131�140

6. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfus-
cation. In: EUROCRYPT. Volume 3027 of Lecture Notes in Computer Science.,
Springer (2004) 20�39

7. Wee, H.: On obfuscating point functions. In: Proceedings of the 37th ACM Sym-
posium on Theory of Computing. (2005) 523�532

8. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output.
In: EUROCRYPT. Volume 4965 of Lecture Notes in Computer Science., Springer
(2008) 489�508

9. Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes.
In: TCC. Volume 4392 of Lecture Notes in Computer Science., Springer (2007)
214�232

10. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely ob-
fuscating re-encryption. In: TCC. Volume 4392 of Lecture Notes in Computer
Science., Springer (2007) 233�252

11. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS. (1999) 543�553

12. Santis, A.D., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.: Robust
non-interactive zero knowledge. In: CRYPTO. Volume 2139 of Lecture Notes in
Computer Science., Springer (2001) 566�598

13. Canetti, R., Varia, M.: Non-mallable obfuscation. Cryptology ePrint Archive,
Report 2008/495 (2008) http://eprint.iacr.org/2008/495.

14. Lamport, L.: Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

