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Abstract. Assume that two distant parties, Alice and Bob, as well as
an adversary, Eve, have access to (quantum) systems prepared jointly
according to a tripartite state ρABE . In addition, Alice and Bob can
use local operations and authenticated public classical communication.
Their goal is to establish a key which is unknown to Eve. We initiate
the study of this scenario as a unification of two standard scenarios:
(i) key distillation (agreement) from classical correlations and (ii) key
distillation from pure tripartite quantum states.
Firstly, we obtain generalisations of fundamental results related to sce-
narios (i) and (ii), including upper bounds on the key rate, i.e., the
number of key bits that can be extracted per copy of ρABE . Moreover,
based on an embedding of classical distributions into quantum states, we
are able to find new connections between protocols and quantities in the
standard scenarios (i) and (ii).
Secondly, we study specific properties of key distillation protocols. In
particular, we show that every protocol that makes use of pre-shared
key can be transformed into an equally efficient protocol which needs
no pre-shared key. This result is of practical significance as it applies
to quantum key distribution (QKD) protocols, but it also implies that
the key rate cannot be locked with information on Eve’s side. Finally,
we exhibit an arbitrarily large separation between the key rate in the
standard setting where Eve is equipped with quantum memory and the
key rate in a setting where Eve is only given classical memory. This shows
that assumptions on the nature of Eve’s memory are important in order
to determine the correct security threshold in QKD.

1 Introduction

Many cryptographic tasks such as message encryption or authentication rely
on secret keys,5 i.e., random strings only known to a restricted set of parties.
5 In the sequel, we will use the term key instead of secret key.



In information-theoretic cryptography, where no assumptions on the adversary’s
resources6 are made, distributing keys between distant parties is impossible if
only public classical communication channels are available [1, 2]. However, this
situation changes dramatically if the parties have access to additional devices
such as noisy channels (where also a wiretapper is subject to noise), a noisy
source of randomness, a quantum channel, or a pre-shared quantum state. As
shown in [2–6], these devices allow the secure distribution of keys.7

This work is concerned with information-theoretic key distillation from pre-
distributed noisy data. More precisely, we consider a situation where two distant
parties, Alice and Bob, have access to (not necessarily perfectly) correlated pieces
of (classical or quantum) information, which might be partially known to an
adversary, Eve. The goal of Alice and Bob is to distill virtually perfect key
bits from these data, using only an authentic (but otherwise insecure) classical
communication channel.

Generally speaking, key distillation is possible whenever Alice and Bob’s data
are sufficiently correlated and, at the same time, Eve’s uncertainty on these data
is sufficiently large. It is one of the goals of this paper to exhibit the properties
pre-shared data must have in order to allow key distillation.

In practical applications, the pre-distributed data might be obtained from
realistic physical devices such as noisy (classical or quantum) channels or other
sources of randomness. Eve’s uncertainty on Alice and Bob’s data might then be
imposed by inevitable noise in the devices due to thermodynamic or quantum
effects.

Quantum key distribution (QKD) can be seen as a special case of key distilla-
tion where the pre-shared data is generated using a quantum channel. The laws
of quantum physics imply that the random values held by one party, say Alice,
cannot at the same time be correlated with Bob and Eve. Hence, whenever Al-
ice and Bob’s values are strongly correlated (which can be checked easily) then
Eve’s uncertainty about them must inevitably (by the laws of quantum mechan-
ics) be large, hence, Alice and Bob can distil key. Because of this close relation
between key distillation and QKD, many of the results we give here will have
direct implications to QKD.

Furthermore, the theory of key distillation has nice parallels with the theory
of entanglement distillation, where the goal is to distil maximally entangled
states (also called singlets) from (a sequence of) bipartite quantum states. In
fact, the two scenarios have many properties in common. For example, there is a
gap between the key rate (i.e., the amount of key that can be distilled from some
given noisy data) and the key cost (the amount of key that is needed to simulate
the noisy data, using only public classical communication) [7]. This gap can be
seen as the classical analogue of a gap between distillable entanglement (the

6 In this context, the term resources typically refers to computational power and
memory space.

7 In certain scenarios, including the one studied in this paper, an authentic classical
channel is needed in addition.



amount of singlets that can be distilled from a given bipartite quantum state)
and entanglement cost (the amount of singlets needed to generate the state).

1.1 Related work

The first and basic instance of an information-theoretic key agreement scenario
is Wyner’s wiretap channel [8]. Here, Alice can send information via a noisy
classical channel to Bob. Eve, the eavesdropper, has access to a degraded version
of Bob’s information. Wyner has calculated the rate at which key generation
is possible if only Alice is allowed to send public classical messages to Bob.
Wyner’s work has later been generalised by Csiszár and Körner, relaxing the
restrictions on the type of information given to Eve [3]. Based on these ideas,
Maurer and Ahlswede and Csiszár have proposed an extended scenario where
key is distilled from arbitrary correlated classical information (specified by a
tripartite probability distribution) [2, 4]. In particular, Maurer has shown that
two-way communication can lead to a strictly positive key rate even though the
key rate in the one-way communication scenario might be zero [2].

In parallel to this development quantum cryptography emerged: in 1984 Ben-
nett and Brassard devised a QKD scheme in which quantum channels could be
employed in order to generate a secure key without the need to put a restriction
on the eavesdropper [5]. In 1991, Ekert discovered that quantum cryptographic
schemes could be based on entanglement, that is, on quantum correlations that
are strictly stronger than classical correlations [6]. Clearly, this is key distillation
from quantum information.

The first to spot a relation between the classical and the quantum develop-
ment were Gisin and Wolf; in analogy to bound entanglement in quantum in-
formation theory, they conjectured the existence of bound information, namely
classical correlation that can only be created from key but from which no key
can be distilled [9]. Their conjecture remains unsolved, but has stimulated the
community in search for an answer.

To derive lower bounds on the key rate, we will make repeated use of results
by Devetak and Winter, who derived a bound on the key rate if the tripar-
tite quantum information consists of many identical and mutually independent
pieces, and by Renner and König, who derived privacy amplification results
which also hold if this independence condition is not satisfied [10, 11].

1.2 Contributions

We initiate the study of a unified key distillation scenario, which includes key
distillation from pre-shared classical and quantum data (Section 2). We then
derive a variety of quantitative statements related to this scenario. These unify
and extend results from both the quantum and classical world.

There are numerous upper bounds available in the specific scenarios and it
is our aim to provide the bigger picture that will put order into this zoo by
employing the concept of a secrecy monotone, i.e., a function that decreases
under local operations and public communication (Section 3), as introduced



in [12]. The upper bounds can then roughly be subdivided into two categories:
(i) the ones based on classical key distillation [13] and (ii) the ones based on
quantum communication or entanglement measures [14].

The unified scenario that we develop does not stop at an evaluation of the key
rate but lets us investigate intricate connections between the two extremes. We
challenge the viewpoint of Gisin and Wolf who highlight the relation between key
distillation from classical correlation and entanglement distillation from this very
correlation embedded into quantum states [9]: we prove a theorem that relates
key distillation from certain classical correlation and key (and not entanglement)
distillation from their embedded versions (Section 4). This ties in with recent
work which established that key distillation can be possible even from quantum
states from which no entanglement can be distilled [15].

A fruitful concept that permeates this work is the concept of locking of classi-
cal information in quantum states: let Alice choose an n-bit string x = x1 . . . xn
with uniform probability and let her either send the state |x1〉 . . . |xn〉 or the
state H⊗n|x1〉 . . . |xn〉 to Bob, where H is the Hadamard transformation. Not
knowing if the string is sent in the computational basis or in the Hadamard
basis, it turns out that the optimal measurement that Bob can do in order to
maximise the mutual information between the measurement outcome y and Al-
ice’s string x is with respect to a randomly chosen basis, in which case he will
obtain I(X;Y ) = n

2 . If, however, he has access to the single bit which deter-
mines the basis, he will have I(X;Y ) = n. A single bit can therefore unlock an
arbitrary amount of information. This effect has been termed locking of classical
information in quantum states or simply locking and was first described in [16].
In this paper, we will discuss various types of locking effects and highlight their
significance for the design and security of QKD protocols (Section 5).

Finally, we demonstrate that the amount of key that can be distilled from
given pre-shared data strongly depends on whether Eve is assumed to store
her information in a classical or in a quantum memory. This, again, has direct
consequences for the analysis of protocols in quantum cryptography (Section 6).

For a more detailed explanation of the contributions of this paper, we refer
to the introductory paragraphs of Sections 3–6.

2 The unified key distillation scenario

In classical information-theoretic cryptography one considers the problem of dis-
tilling key from correlated data specified by a tripartite probability distribution
pijk (pijk ≥ 0,

∑
i,j,k pijk = 1). Alice and Bob who wish to distil the key have

access to i and j, respectively, whereas the eavesdropper Eve knows the value
k (see, e.g., [17]). Typically, it is assumed that many independently generated
copies of the triples (i, j, k) are available8. The key rate or distillable key of a
distribution pijk is the rate at which key bits can be obtained per realisation of

8 Using de Finetti’s representation theorem, this assumption can be weakened to the
assumption that the overall distribution of all triples is invariant under permutations
(see [18] for more details including a treatment of the quantum case).



this distribution, if Alice and Bob are restricted to local operations and public
but authentic classical communication.

Before we continue to introduce the quantum version of the key distillation
scenario described above, let us quickly note that it will be convenient to regard
probability distributions as classical states, that is, given probabilities pi, we
consider ρ =

∑d
i=1 pi|i〉〈i|, where |i〉 is an orthonormal basis of a d-dimensional

Hilbert space; we will assume that d < ∞. In the sequel we will encounter not
only classical or quantum states, but also states that are distributed over sev-
eral systems which might be partly classical and partly quantum-mechanical. To
make this explicit, we say that a bipartite state ρAB is cq (classical-quantum) if
it is of the form ρAB =

∑
i pi|i〉〈i|A ⊗ ρiB for quantum states ρiB and a proba-

bility distribution pi. This definition easily extends to three or more parties, for
instance:

– a ccq (classical-classical-quantum) state ρABE is of the form
∑
i,j pij |i〉〈i|A⊗

|j〉〈j|B ⊗ ρijE , where pij is a probability distribution and ρijE are arbitrary
quantum states.

– the distribution pijk corresponds to a ccc (classical-classical-classical) state
ρABE =

∑
i,j,k pijk|ijk〉〈ijk|ABE , where we use |ijk〉ABE as a short form

for |i〉A ⊗ |j〉B ⊗ |k〉E (as above, the states |i〉A for different values of i, and
likewise |j〉B and |k〉k, are normalised and mutually orthogonal).

We will be concerned with key distillation from arbitrary tripartite quantum
states ρABE shared by Alice, Bob, and an adversary Eve, assisted by local quan-
tum operations and public classical communication (LOPC) [10, 19, 15]. A local
quantum operation on Bob’s side is of the form

ρABE 7→ (IAE ⊗ ΛB)(ρABE) .

Public classical communication from Alice to Bob can be modelled by copying
a local classical register, i.e., any state of the form ρAA′BE =

∑
i ρ
i
ABE ⊗ |i〉〈i|A′

is transformed into ρ′AA′BB′EE′ =
∑
i ρ
i
ABE ⊗ |iii〉〈iii|A′B′E′ . Similarly, one can

define these operations with the roles of Alice and Bob interchanged.
The goal of a key distillation protocol is to transform copies of tripartite

states ρABE into a state which is close to

τ `ABE =
1
2`

2`∑
i=1

|ii〉〈ii|AB ⊗ τE (1)

for some arbitrary τE . τ `ABE (also denoted τ ` for short) corresponds to a perfect
key of length `, i.e., uniform randomness on an alphabet of size 2` shared by
Alice and Bob and independent of Eve’s system. We measure closeness of two
states ρ and σ in terms of the trace norm ‖ρ−σ‖ := 1

2Tr|ρ−σ|. The trace norm
is the natural quantum analogue of the variational distance to which it reduces
if ρ and σ are classical.

We will now give the formal definition of an LOPC protocol and of the key
rate.



Definition 1. An LOPC protocol P is a family {Λn}n∈N of completely positive
trace preserving (CPTP) maps

Λn : (HA ⊗HB ⊗HE)⊗n → Hn
A ⊗Hn

B ⊗Hn
E

which are defined by the concatenation of a finite number of local operation and
public communication steps.

Definition 2. We say that an LOPC protocol P distills key at rate RP if there
exists a sequence {`n}n∈N such that

lim sup
n→∞

`n
n

= RP

lim
n→∞

‖Λn(ρ⊗nABE)− τ `nABE‖ = 0

where τ `nABE are the ccq states defined by (1). The key rate or distillable key of
a state ρABE is defined as KD(ρABE) := supP RP .

The quantity KD obviously depends on the partition of the state given as
argument into the three parts controlled by Alice, Bob, and Eve, respectively.
We thus indicate the assignment of subsystems by semicolons if needed. For
instance, we write ρAD;B;E if Alice holds an additional system D.

It can be shown that the maximisation in the definition of KD can be re-
stricted to protocols whose communication complexity grows at most linearly in
the number of copies of ρABE . Hence, if d = dimHA ⊗HB ⊗HE <∞ then the
dimension of the output of the protocol is bounded by log dimHn

A⊗Hn
B⊗Hn

E ≤
cn log d, for some constant c. (The proof of this statement will appear in a full
version of this paper.)

The above security criterion is (strictly) weaker than the one proposed in [10]9,
hence KD(ρABE) is lower bounded by a lower bound derived in [10]:

KD(ρABE) ≥ I(A : B)ρ − I(A : E)ρ . (2)

This expression can be seen as a quantum analogue of the well-known bound of
Csiszár, Körner, and Maurer [3, 17]. Here I(A : B)ρ denotes the mutual infor-
mation defined by I(A : B)ρ := S(A)ρ+S(B)ρ−S(AB)ρ where S(A)ρ := S(ρA)
is the von Neumann entropy of system A (and similarly for B and E). For later
reference we also define the conditional mutual information I(A : B|E)ρ :=
S(AE)ρ + S(BE)ρ − S(ABE)ρ − S(E)ρ.

Note also that the criterion for the quality of the distilled key used in Defi-
nition 2 implies that the key is both uniformly distributed and independent of
the adversary’s knowledge, just as in [11]. Previous works considered uniformity
and security separately. Note that, even though weaker than certain alternative

9 The security criterion of [10] implies that, conditioned on any value of the key, Eve’s
state is almost the same. In contrast, according to the above definition, Eve’s state
might be arbitrary for a small number of values of the key.



criteria such as the one of [10], the security measure of Definition 2 is universally
composable [11].

In [20], the question was posed whether the security condition also holds
if the accessible information is used instead of the criterion considered here.
Recently, it has been shown that this is not the case [21]. More precisely, an
example of a family of states was exhibited such that Eve has exponentially small
knowledge in terms of accessible information but constant knowledge in terms
of the Holevo information. This implies that in this context, security definitions
based on the accessible information are problematic. In particular, a key might
be insecure even though the accessible information of an adversary on the key
is exponentially small (in the key size).

3 Upper bounds for the key rate

In this section, we first derive sufficient conditions that a function has to satisfy
in order to be an upper bound for the key rate (Section 3.1). We focus on func-
tions that are secrecy monotones [12], i.e., they are monotonically decreasing
under LOPC operations. Our approach therefore parallels the situation in clas-
sical and quantum information theory where resource transformations are also
bounded by monotonic functions; examples include the proofs of converses to
coding theorems and entanglement measures (see, e.g., [14]). As a corollary to
our characterisation of secrecy monotones, we show how to turn entanglement
monotones into secrecy monotones.

In a second part (Section 3.2), we provide a number of concrete secrecy
monotones that satisfy the conditions mentioned above. They can be roughly
divided into two parts: (i) functions derived from the intrinsic information and
(ii) functions based on entanglement monotones. Finally, we will compare dif-
ferent secrecy monotones (Section 3.3) and study a few particular cases in more
detail (Section 3.4).

3.1 Secrecy monotones

Theorem 1. Let M(ρ) be a function mapping tripartite quantum states ρ ≡
ρABE into the positive numbers such that the following holds:

1. Monotonicity: M(Λ(ρ)) ≤M(ρ) for any LOPC operation Λ.
2. Asymptotic continuity: for any states ρn, σn on Hn

A⊗Hn
B⊗Hn

E, the condition
‖ρn − σn‖ → 0 implies 1

log rn

∣∣M(ρn) −M(σn)
∣∣ → 0 where rn = dim(Hn

A ⊗
Hn
B ⊗Hn

E).
3. Normalisation: M(τ `) = ` .

Then the regularisation of the function M given by M∞(ρ) = lim supn→∞
M(ρ⊗n)

n
is an upper bound on KD, i.e., M∞(ρABE) ≥ KD(ρABE) for all ρABE with
dimHA ⊗HB ⊗HE <∞. If in addition M satisfies

4. Subadditivity on tensor products: M(ρ⊗n) ≤ nM(ρ),



then M is an upper bound for KD.

Proof. Consider a key distillation protocol P that produces output states σn such
that ‖σn−τ `n‖ → 0. We will show thatM∞(ρ) ≥ RP . Let us assume without loss
of generality that RP > 0. Indeed, by monotonicity we have M(ρ⊗n) ≥M(σn),
which is equivalent to

1
n
M(ρ⊗n) ≥ `n

n

(
M(σn)−M(τ `n)

`n
+ 1

)
, (3)

where we have used the normalisation condition. As remarked in Definition 2
there is a constant c > 0 such that log rn ≤ cn and by definition of RP there
exists a c′ > 0 and n0 such that for all n ≥ n0, log dn ≥ c′n. Hence `n ≥ c′n ≥
c′

c log rn, therefore asymptotic continuity implies

lim
n→∞

1
`n

∣∣M(σn)−M(τ `n)
∣∣ = 0 .

Taking the limsup on both sides of (3) gives M∞(ρ) ≥ lim supn
`n
n = RP . Thus

we have shown that M∞ is an upper bound for the rate of an arbitrary protocol,
so that it is an also upper bound for KD. ut

If we restrict our attention to the special case of key distillation from bi-
partite states ρAB , we can immediately identify a well-known class of secrecy
monotones, namely entanglement monotones. A convenient formulation is in
this case not given by the distillation of states τ ` with help of LOPC opera-
tions, but rather by the distillation of states γ` via local operations and classical
communication (LOCC), where γ` = U |ψ〉〈ψ|⊗`AB ⊗ ρA′B′U†, for some unitary

U =
∑2`

i=1 |ii〉〈ii|AB ⊗ U
(i)
A′B′ and |ψ〉 = 1√

2
(|00〉+ |11〉) [15, 22]. Note that mea-

suring the state γ` with respect to the computational bases on Alice and Bob’s
subsystems results in ` key bits.

Corollary 1. Let E(ρ) be a function mapping bipartite quantum states ρ ≡ ρAB
into the positive numbers such that the following holds:

1. Monotonicity: E(Λ(ρ)) ≤ E(ρ) for any LOCC operation Λ.
2. Asymptotic continuity: for any states ρn, σn on Hn

A ⊗ Hn
B, the condition

‖ρn−σn‖ → 0 implies 1
log rn

∣∣E(ρn)−E(σn)
∣∣ → 0 where rn = dim(Hn

A⊗Hn
B).

3. Normalisation: E(γ`) ≥ ` .

Then the regularisation of the function E given by E∞(ρ) = lim supn→∞
E(ρ⊗n)

n
is an upper bound on KD, i.e., E∞(ρAB) ≥ KD(|ψ〉〈ψ|ABE) where |ψ〉〈ψ|ABE
is a purification of ρAB. If in addition E satisfies

4. Subadditivity on tensor products: E(ρ⊗n) ≤ nE(ρ),

then E is an upper bound for KD.



The analogue of this result in the realm of entanglement distillation has long
been known: namely, every function E satisfying LOCC monotonicity, asymp-
totic continuity near maximally entangled states as well as normalisation on
maximally entangled states (E(|ψ〉〈ψ|) = log d for |ψ〉 = 1√

d

∑
i |ii〉) can be

shown to provide an upper bound on distillable entanglement ED [23, 24], that
is, E∞(ρ) ≥ ED(ρ). Additionally, if E is subadditive, the same inequality holds
with E∞ replaced by E. Indeed this result can be seen as a corollary to Corol-
lary 1 by restricting from distillation of states τ ` to distillation of |ψ〉〈ψ|⊗` and
noting that |ψ〉〈ψ|⊗` is of the form τ ` with trivial A′B′.

In the above corollary, we have identified asymptotic continuity on all states
as well as normalisation on the states γ` (rather than on singlets) as the crucial
ingredients in order for an entanglement measure to bound distillable key from
above. Note also that we require those additional conditions as, for instance, the
logarithmic negativity as defined in [25] satisfies the weaker conditions, therefore
being an upper bound on distillable entanglement, but fails to be an upper bound
on distillable key.

We will now show how to turn this bound for bipartite states (or tripartite
pure states) into one for arbitrary tripartite states. The recipe is simple: for
a given state ρABE , consider a purification |ψ〉〈ψ|AA′BB′E where the purifying
system is denoted by A′B′ and is split between Alice and Bob. Clearly, for any
splitting, KD(|ψ〉〈ψ|AA′BB′E) ≥ KD(ρABE). This inequality combined with the
previous corollary applied to |ψ〉〈ψ|AA′BB′E proves the following statement.

Corollary 2. If E satisfies the conditions of Corollary 1 then

KD(ρABE) ≤ E∞(ρAA′BB′) ,

where ρAA′BB′ = TrE |ψ〉〈ψ|AA′BB′E and ρABE = TrA′B′ |ψ〉〈ψ|AA′BB′E. If E is
subadditive, the same inequality holds with E replacing E∞.

3.2 Examples of secrecy monotones

We will now introduce a number of secrecy monotones. We will only briefly
comment on the relations between them. A more detailed analysis of how the
different bounds on the key rate compare is given in Section 3.3.

Intrinsic information The intrinsic information of a probability distribution
pijk is given by

I(A : B ↓ E) := inf I(A : B|E′)ρ (4)

where ρABE is the ccc state corresponding to pijk. The infimum is taken over
all channels from E to E′ specified by a conditional probability distributions
pl|m. ρABE′ is the state obtained by applying the channel to E. This quantity
has been defined by Maurer and Wolf and provides an upper bound on the key
rate from classical correlations [13]. We can extend it in the following way to
arbitrary tripartite quantum states ρABE .



Definition 3. The intrinsic information of a tripartite quantum state ρABE is
given by

I(A : B ↓ E)ρ := inf I(A : B|E′)ρ

where the infimum is taken over all CPTP maps ΛE→E from E to E′ where
ρABE′ = (IAB ⊗ ΛE→E)(ρABE).

This definition is compatible with the original definition since it reduces to (4)
if the systems A, B and E are classical.

It is straightforward to show that the intrinsic information satisfies the re-
quirements of Theorem 1. Hence we have proved the following theorem.

Theorem 2. The intrinsic information is an upper bound on distillable key,
i.e., KD(ρABE) ≤ I(A : B ↓ E)ρ.

Let us note that this bound differs from the bound proposed in [26, 19] where
instead of all quantum channels, arbitrary measurements were considered. Our
present bound can be tighter, as it can take into account Eve’s quantum memory.

In the case where ρABE is pure, this bound can be improved by a factor of two
because I(A : B ↓ E)ρ = 2Esq(ρAB), where Esq is the squashed entanglement
defined below and because squashed entanglement is an upper bound for the key
rate.

Squashed entanglement

Definition 4. Squashed entanglement is defined as

Esq(ρAB) =
1
2

inf
ρABE :

ρAB=TrEρABE

I(A : B|E)ρ

Squashed entanglement can be shown to be a LOCC monotone, additive [27], and
asymptotically continuous [28]. In [29, Proposition 4.19] it was shown to satisfy
the normalisation condition and is therefore an upper bound on distillable key
according to Corollary 1.

Theorem 3. Squashed entanglement is an upper bound on distillable key, i.e.,
KD(ρABE) ≤ Esq(ρAA′BB′) where ρAA′BB′ = TrE |ψ〉〈ψ|AA′BB′E and ρABE =
TrA′B′ |ψ〉〈ψ|AA′BB′E.

Reduced intrinsic information There is another way in which we can find
a bound on the key rate which is tighter than the intrinsic information. In [30]
it was shown that the classical intrinsic information is E-lockable, i.e., it can
increase sharply when a single bit is taken away from Eve. Since (classical) dis-
tillable key is not E-lockable, the bound that the intrinsic information provides
cannot be tight. This was the motivation for defining the reduced intrinsic infor-
mation by I(AB ↓↓ E) = inf I(AB ↓ EE′) + S(E′) where the infimum is taken
over arbitrary classical values E′ [30]. We now define the quantum extension of
this function.



Definition 5. Let a = 1, 2. The reduced intrinsic information (with parameter
a) is given by

I(A : B ↓↓ E)(a)ρ = inf{I(AB ↓ EE′)ρ + aS(E′)ρ}

where the infimum is taken over all extensions ρABEE′ with a classical register
E′ if a = 1 and over arbitrary extensions ρABEE′ if a = 2.

The parameter a reflects the different behaviour of the intrinsic information
subject to loss of a single bit (qubit). The reduced intrinsic information is an
upper bound on distillable key since

KD(ρABE) ≤ KD(ρABEE′) + aS(E′) ≤ I(AB ↓ EE′) + aS(E′) .

The first inequality corresponds to Corollary 4 below.

Theorem 4. The reduced intrinsic information is an upper bound on distillable
key, i.e., KD(ρABE) ≤ I(A : B ↓↓ E)(a)ρ , for a = 1, 2.

Relative entropy of entanglement The relative entropy of entanglement
and its regularised version are well-known entanglement measures that serve as
important tools in entanglement theory.

Definition 6. The relative entropy of entanglement is given by [31, 32]

ER(ρAB) = inf
σAB

S(ρAB‖σAB)

where S(ρAB‖σAB) = TrρAB [log ρAB − log σAB ] and the minimisation is taken
over all separable states σAB, i.e. σAB =

∑
i piρ

i
A ⊗ ρiB.

The relative entropy of entanglement was the first upper bound that has been
provided for KD(|ψ〉〈ψ|ABE) [15, 22]. We now extend this result to all tripartite
quantum states ρABE .

Theorem 5. The relative entropy of entanglement is an upper bound on dis-
tillable key, i.e., KD(ρABE) ≤ E∞

R (ρAA′BB′) ≤ ER(ρAA′BB′) where ρAA′BB′ =
TrE |ψ〉〈ψ|AA′BB′E and ρABE = TrA′B′ |ψ〉〈ψ|AA′BB′E.

It is a particular advantage of ER in its function as an upper bound that it
is not lockable [33].

3.3 Comparison of secrecy monotones

Pure versus mixed For entangled states, bounds derived from entanglement
measures are usually tighter than the intrinsic information and its reduced ver-
sion. Consider for example the state ρABE = |ψ〉〈ψ|AB ⊗ ρE where |ψ〉AB =
1√
2
(|00〉+ |11〉). Here we have

ER(ρABE) = E∞
R (ρABE) = Esq(ρABE) = KD(ρABE) = 1 ,



while
I(A : B ↓ E)ρ = I(A : B ↓↓ E)(a)ρ = 2 ,

for a = 1, 2. In general, for tripartite pure states, squashed entanglement is a
tighter bound on the key rate than the intrinsic information by at least a factor
of two:

2Esq(|ψ〉〈ψ|ABE) = I(A : B ↓ E)|ψ〉〈ψ|.

The locking effect We will now give a concrete example which shows that
there is a purification |ψ〉AA′BB′E of ρABE such that

KD(ρABE) = ER(ρAA′BB′) < I(AA′ : BB′ ↓ E)ρ .

Consider the distribution pijkl defined by the following distribution for pij

i 0 1 2 3

j

0 1
8

1
8 0 0

1 1
8

1
8 0 0

2 0 0 1
4 0

3 0 0 0 1
4

and where k and l are uniquely determined by (i, j),

k = i+ j(mod 2) for i, j ∈ {0, 1}
k = i(mod 2) for i ∈ {2, 3}
l = bi/2c

for all (i, j) with pij > 0. We denote the corresponding cccc state by ρABEF =∑
ijkl pijkl|ijkl〉〈ijkl|. Clearly KD(ρA;B;EF ) = 0, as Eve can factorise Alice and

Bob, by keeping k when l = 1 and forgetting it when l = 0. In the former case,
when l = 0, then Alice and Bob have (i, j) = (2, 2), and when l = 1, then Alice
and Bob have (i, j) = (3, 3). In the latter case, both Alice and Bob have at
random 0 or 1 and they are not correlated.

On the other hand, when Eve does not have access to l, then the key rate
is equal to 1, i.e., KD(ρA;B;E)=1. Indeed, it cannot be greater, as key can-
not increase more than the entropy of the variable that was taken out from
Eve. However one finds that the intrinsic information is equal to 3/2, i.e.,
I(A : B ↓ E)ρ = 3/2 [30].

Let us consider the purification of the above state,

|ψA′ABEF 〉 =
1
2
(
|0〉A′ |22〉AB |0〉E |0〉F + |0〉A′ |33〉AB |1〉E |0〉F

+|ψ〉A′AB |0〉E |1〉F + |φ〉A′AB |1〉E |1〉F
)
,



where
|ψ〉 =

1√
2

(|0〉A′ |00〉AB + |1〉A′ |11〉AB)

and
|φ〉 =

1√
2

(|0〉A′ |01〉AB + |1〉A′ |10〉AB) .

Thus when E and F are with Eve, the state ρAA′;B of Alice and Bob is a mixture
of four states: |0〉|22〉, |0〉|33〉, |φ〉 and |ψ〉. This state is separable state, hence
ER(ρAA′;B) = 0.

Consider now the state ρAA′F ;B where F is controlled by Alice instead of Eve.
Measuring F makes the state separable and in [33] it was shown that measuring
a single qubit cannot decrease the relative entropy of entanglement by more than
1, thus we obtain

ER(ρAA′F ;B) ≤ 1.

By Theorem 5 we then have KD(ρABE) ≤ 1, but indeed one can distil one bit
of key from ρABE , therefore

KD(ρABE) = ER(ρAA′F ;B) = 1.

In [30] the considered distribution was generalised to make the gap between in-
trinsic information and distillable key arbitrarily large. It is not difficult to see
that ER is still bounded by one. This shows that the bound based on relative
entropy of entanglement, though perhaps more complicated in use, can be sig-
nificantly stronger than intrinsic information bound. We leave it open, whether
or not the intrinsic information bound is weaker in general when compared to
the relative entropy bound. This parallels the challenge to discover a relation
between the relative entropy of entanglement and squashed entanglement. Here
it has also been observed that squashed entanglement can exceed the relative
entropy of entanglement by a large amount, due to a locking effect [34].

3.4 Upper and lower bounds when ρABE = ρAB ⊗ ρE

In this section we focus on states of the form ρABE = ρAB⊗ρE . Since distillable
key cannot increase under Eve’s operations, the form of the state ρE is not
important and we conclude that KD(ρAB ⊗ ρE) is a function of ρAB only. If the
state ρAB is classical on system A, then it is known that distillable key is equal
to the quantum mutual information, KD(ρAB ⊗ ρE) = I(A : B)ρ [10]. Indeed,
we know from Theorem 2 that the key rate can never exceed I(A : B)ρ. For
separable quantum states ρAB we were able to further improve this bound. The
upper bounds are summarised in the following theorem. (Its proof will appear
in a full version of this paper.)

Theorem 6. For all states ρAB ⊗ ρE,

KD(ρAB ⊗ ρE) ≤ I(A : B)ρ



with equality if ρAB is classical on system A. If ρAB is separable, i.e., ρAB =∑
i piρ

i
A ⊗ ρiB, then

KD(ρAB ⊗ ρE) ≤ ILOPC
acc (E) ≤ Iacc(E)

where E = {pi, ρiA ⊗ ρiB} and ILOPC
acc (E) is the maximal mutual information that

Alice and Bob can obtain about i using LOPC operations (see e.g. [35, 36]),
whereas Iacc(E) denotes the usual accessible information, i.e. maximal mutual
information about i obtained by joint measurements.

We will now derive a general lower bound on the key rate in terms of the
distillable common randomness.

Definition 7. We say that an LOPC protocol P distills common randomness
at rate RP if there exists a sequence {`n}n∈N such that

lim sup
n→∞

`n −mn

n
= RP

lim
n→∞

‖Λn(ρ⊗nAB)− τ `n‖ = 0

where mn is the number of communicated bits. The distillable common random-
ness of a state ρAB is defined as DR(ρAB) := supP RP .

For some protocols the rate may be negative. However it is immediate that
DR(ρAB) is nonnegative for all ρAB . The following statement is a direct conse-
quence of the results in [10, 11].

Theorem 7. For the states ρABE = ρAB ⊗ ρE the distillable key is an upper
bound on the distillable common randomness, i.e., KD(ρAB ⊗ ρE) ≥ DR(ρAB)
for all ρAB and ρE.

4 Embedding classical into quantum states

The problem of distilling key from a classical tripartite distribution (i.e., ccc
states) is closely related to the problem of distilling entanglement from a bipar-
tite quantum state (where the environment takes the role of the adversary), as
noted in [9, 30]. It thus seems natural to ask whether, in analogy to bound entan-
gled quantum states (which have positive entanglement cost but zero distillable
entanglement), there might be classical distributions with bound information.
These are distributions with zero key rate but positive key cost, i.e., no key can
be distilled from them, yet key is needed to generate them. The existence of such
distributions, however, is still unproved. (There are, however, some partial posi-
tive answers, including an asymptotic result [30] as well as a result for scenarios
involving more than three parties [37].)

In [9, 30], it has been suggested that the classical distribution obtained by
measuring bound entangled quantum states might have bound information. Such
hope, however, was put into question by the results of [15], showing that there



are quantum states with positive key rate but no distillable entanglement (i.e.,
they are bound entangled). However, the examples of states put forward in [15]
have a rather special structure. It is thus still possible that distributions with
bound information might be obtained by measuring appropriately chosen bound
entangled states.

In the following, we consider a special embedding of classical distributions
into quantum states as proposed in [9]. We then show how statements about
key distillation starting from the original state and from the embedded state are
related to each other. Let

ρccc :=
∑
ijk

pijk|ijk〉〈ijk|ABE (5)

be a ccc state defined relative to fixed orthonormal bases on the three subsystems
(in the following called computational bases). We then consider the qqq embedding
ρqqq = |ψ〉〈ψ| of ρccc given by

|ψ〉 =
∑
i

√
pijk|ijk〉ABE .

Note that, if Alice and Bob measure ρqqq in the computational basis, they end
up with a state of the form

ρccq =
∑
ij

pij |ij〉〈ij|AB ⊗ |ψij〉〈ψij |E (6)

for some appropriately chosen |ψij〉. We call this state the ccq embedding of ρccc.
In a similar way as classical distributions can be translated to quantum states,

classical protocols have a quantum analogue. To make this more precise, we
consider a classical LOPC protocol P that Alice and Bob wish to apply to a ccc
state ρccc as in (5). Obviously, P can equivalently be applied to the corresponding
ccq embedding ρccq as defined in (6) (because Alice and Bob’s parts are the same
in both cases). Because Eve might transform the information she has in the ccq
case to the information she has in the ccc case by applying a local measurement,
security of the key generated by P when applied to ρccq immediately implies
security of the key generated by P when applied to ρccc. Note, however, that the
opposite of this statement is generally not true.

In general, a classical protocol P can be subdivided into a sequence of steps
of the following form:

1. generating local randomness
2. forgetting information (discarding local subsystems)
3. applying permutations
4. classical communication.

The coherent version of P, denoted Pq, is defined as the protocol acting on a qqq
state where the above classical operations are replaced by the following quantum
operations:



1. attaching subsystems which are in a superposition of fixed basis vectors
2. transferring subsystems to Eve
3. applying unitary transformations that permute fixed basis vectors
4. adding ancilla systems (with fixed initial state) to both the receiver’s and

Eve’s system, and applying controlled not (CNOT) operations to both an-
cillas, where the CNOTs are controlled by the communication bits.

Consider now a fixed ccc state ρccc of the form (5) and let P be a classical
protocol acting on ρccc. It is easy to see that the following operations applied
to the qqq embedding ρqqq of ρccc result in the same state: (i) measuring in the
computational basis and then applying the classical protocol P; or (ii) apply-
ing the coherent protocol Pq and then measuring the resulting state γ` in the
computational basis. This fact can be expressed by a commutative diagram.

|ψ〉〈ψ|⊗n Pq−−−−→ γ`

measurement
y ymeasurement

ρ⊗nccq
P−−−−→ τ `

Hence, if the coherent version Pq of P acting on ρqqq distills secure key bits at
rate R then so does the protocol P applied to the original ccc state ρccc.

It is natural to ask whether there are cases for which the converse of this
statement holds as well. This would mean that security of a classical protocol
also implies security of its coherent version. In the following, we exhibit a class of
distributions for which this is always true. The key rate of any such distribution
is thus equal to the key rate of the corresponding embedded qqq state.

Roughly speaking, the class of distributions we consider is characterised by
the property that the information known to Eve is completely determined by
the joint information held by Alice and Bob.

Theorem 8. Let ρccc be a ccc state of the form (5) such that, for any pair of
values (i, j) held by Alice and Bob there exists at most one value k of Eve with
pijk > 0. If a classical protocol P applied to ρccc produces key at rate R then
so does its coherent version Pq applied to the qqq embedding |ψ〉 of ρccc (and
followed by a measurement in the computational basis).

Proof. The ccq embedding of ρccc is given by a state of the form

ρccq =
∑
ij

pij |ij〉〈ij|AB ⊗ |ψij〉〈ψij |E .

Since, by assumption, every pair (i, j) determines a unique k = k(i, j), |ψij〉〈ψij |E
equals |k(i, j)〉〈k(i, j)| and, hence, ρccq is identical to the original ccc state ρccc.
The assertion then follows from the fact that measurements in the computational
basis applied to Alice and Bob’s subsystems commute with the coherent version
Pq of P. ut



Corollary 3. Let ρccc be a ccc state of the form (5) such that, for any pair of
values (i, j) held by Alice and Bob there exists at most one value k of Eve with
pijk > 0. Then, the key rate for the qqq embedding ρqqq of ρccc satisfies

KD(ρqqq) = KD(ρccc) .

Note that the above statements do not necessarily hold for general distribu-
tions. To see this, consider the state

|ψ〉ABA′E = |00〉AB |+〉A′ |+〉E + |11〉AB |ψ+〉A′E

where |+〉 := 1√
2
(|0〉+ |1〉) and |ψ+〉 := 1√

2
(|0〉|0〉+ |1〉|1〉). Moreover, let ρccc be

the ccc state obtained by measuring |ψ〉〈ψ|AA′;B;E in the computational basis.
Because all its coefficient are positive, it is easy to verify that |ψ〉〈ψ|ABA′E can
be seen as the qqq embedding of ρccc. Observe that, after discarding subsystem
A′, ρccc corresponds to a perfect key bit. However, the ccq state obtained from
|ψ〉〈ψ|ABA′E by discarding A′ and measuring in the computational basis is of the
form 1

2 (|00〉〈00|AB ⊗ |+〉〈+|E + |11〉〈11|AB ⊗ IE/2). This state, of course, does
not correspond to a key bit as Eve might easily distinguish the states |+〉〈+|
and IE/2.

We continue with a statement on the relation between the intrinsic infor-
mation of a ccc state and the so-called entanglement of formation10 EF of its
qqq embedding. More precisely, we show that, under the same condition as in
Theorem 8, the first is a lower bound for the latter (see also [39, 40]).

Theorem 9. Let ρccc be a ccc state of the form (5) such that, for any pair of
values (i, j) held by Alice and Bob there exists at most one value k of Eve with
pijk > 0, and let ρqqq be the qqq embedding of this state. Then

I(A : B ↓ E)ρccc ≤ EF (TrE(ρqqq)) .

Proof. Note first that any decomposition of TrE(ρqqq) into pure states can be
induced by an appropriate measurement on the system E. Hence, we have

EF (TrE(ρqqq)) = min
{|k̄}〉

∑
k̄

pk̄S(A)|ψk̄〉 (7)

where the minimum ranges over all families of (not necessarily normalised) vec-
tors |k̄〉 such that

∑
k̄ |k̄〉〈k̄| = IE (this ensures that they form a measurement),

pk̄ := |〈k̄|E |ψ〉ABE |2, and |ψk̄〉 := 〈k̄|E |ψ〉ABE/
√
pk̄.

For any pair (i, j) of values held by Alice and Bob (with nonzero probability)
we have TrAB [ρqqq (|ij〉〈ij| ⊗ IE)] = pij |k〉〈k|, where k = k(i, j) is the corre-
sponding (unique) value held by Eve. Hence, the probability distribution of the
state ρ̄ccc obtained by applying the above measurement on Eve’s system satisfies

qijk̄ := Tr(|ψ〉〈ψ|ABE |ijk̄〉〈ijk̄|) = pijkqk̄|k ,

10 The entanglement of formation EF is an entanglement measure defined for bipartite
states by EF (σAB) := min

P
i piS(TrB(σi

AB)) where the minimum is taken over all
ensembles {pi, σ

i
AB} with

P
i piσ

i
AB = σAB [38].



where qk̄|k := Tr(|k̄〉〈k̄||k〉〈k|). The intrinsic information is thus bounded by

I(A : B ↓ E)ρccc ≤ min
{|k̄〉}

I(A : B|Ē)ρ̄ccc ,

where ρ̄ccc is the state defined above (depending on the choice of the vectors
|k̄〉). Moreover, using Holevo’s bound, we find

I(A : B|Ē)ρ̄ccc ≤ min
{|k̄}〉

∑
k̄

pk̄S(A)|ψk̄〉 .

The assertion then follows from (7). ut

Because the intrinsic information is additive (i.e., it is equal to its regularised
version), Theorem 9 also holds if the entanglement of formation EF is replaced
by the entanglement cost EC .

The discussion above suggests that classical key distillation from ccc states
can indeed by analysed by considering the corresponding qqq embedding of the
state, but the original ccc state has to satisfy certain properties. This relation
might be particularly useful for the study of bound information as discussed at
the beginning of this section. In fact, there exist bound entangled states which
satisfy the property required by Theorem 8 above [41].

5 On locking and pre-shared keys

In [30] it was observed that, by adding one bit of information to Eve, the (clas-
sical) intrinsic information can decrease by an arbitrarily large amount. In [16]
it was shown that classical correlation measures of quantum states can exhibit a
similar behaviour; more precisely, the accessible information can drop by an ar-
bitrarily large amount when a single bit of information is lost. This phenomenon
has been named locking of information or just locking. For tripartite states ρABE ,
locking comes in two flavours: i) locking caused by removing information from
Eve, ii) locking caused by removing information from Alice and/or Bob (and
possibly giving it to Eve). Let us call those variants E-locking and AB-locking,
respectively.

In [33] it was shown that entanglement cost as well as many other entangle-
ment measures can be AB-locked. Further results show that squashed entangle-
ment and entanglement of purification are also AB-lockable [34, 42]. So far the
only known non-lockable entanglement measure is relative entropy of entangle-
ment.

It was shown in [30] that distillable key is not E-lockable for classical states.
In the sequel we extend this result and prove that the distillable key for quantum
states ρABE is not E-lockable, either. The proof proceeds along the lines of [30],
replacing the bound of Csiszár and Körner by its quantum generalisations due to
[10] (see also [11]). Let us emphasise that we leave open the question on whether
distillable key is AB-lockable (even for ccc states).



Theorem 10. Consider a state ρABEE′ and let P be a key distillation protocol
for ρABE with rate RP . Then there exists another protocol P ′ for ρABEE′ with
rate RP′ ≥ RP−2S(ρE′). If, in addition, E′ is classical then RP′ ≥ RP−S(ρE′).

Proof. For any fixed ε > 0 there exists n ∈ N such that the protocol P transforms
ρ⊗nABE into a ccq state σABE which satisfies the following inequalities:

‖σABE − τ `‖ ≤ ε,
`

n
≥ RP − ε. (8)

Suppose that Alice and Bob apply this map to the state ρ⊗nABEE′ (i.e., they try
to distil key, as if the system E′ was not present). The state ρ⊗nABEE′ is then
transformed into some state σABEE′ which traced out over E′ is equal to the
ccq state σABE . Repeating this protocol m times results in σ⊗mABEE′ , from which
Alice and Bob can draw at least m(I(A : B) − I(A : EE′)) − o(m) bits of key
by error correction and privacy amplification [10]. This defines a protocol P ′. To
evaluate its rate, we use subadditivity of entropy which gives the estimate

I(A : EE′)σ ≤ I(A : E)σ + I(AE : E′)σ .

From (8) and Fannes’ inequality we know that11

I(A : B)σ ≥ `− 8ε`−H(ε)
I(A : E)σ ≤ 8ε`+H(ε) .

This together with (2) implies

KD(σABEE′) ≥ I(A : B)σ − I(A : EE′)σ ≥ (1− 16ε)`− 2H(ε)− I(AE : E′)σ .

To get the key rate of P ′, we divide the above by n and use (8),

RP′ ≥ 1
n
KD(σABEE′) ≥ (1− 16ε)(RP − ε)− 1

n
2H(ε)− 1

n
I(AE : E′)σ .

Because this holds for any ε > 0, the assertion follows from I(AE : E′)σ ≤
2S(E′)σ = 2nS(E′)ρ and, if E′ is classical, I(AE : E′)σ ≤ S(E′)σ = nS(E′)ρ.

ut

Applying the above theorem to an optimal protocol leads to the statement
that the key rate KD is not E-lockable.

Corollary 4. For any state ρABEE′ , KD(ρABEE′) ≥ KD(ρABE)−2S(ρE′) and,
if E′ is classical, KD(ρABEE′) ≥ KD(ρABE)− S(ρ′E).

Consider now a situation where Alice and Bob have some pre-shared key U
which is not known to Eve.

A major consequence of Theorem 10 is that a pre-shared key cannot be used
as a catalyst to increase the key rate. More precisely, the corollary below implies
that, for any protocol P that uses a pre-shared key held by Alice and Bob, there
is another protocol P ′ which is as efficient as P ′ (with respect to the net key
rate), but does not need a pre-shared key.
11 H(ε) denotes the binary entropy, i.e., the Shannon entropy of the distribu-

tion [ε, 1− ε].



Corollary 5. Let P be a key distillation protocol for ρABE⊗τ ` where τ ` is some
additional `-bit key shared by Alice and Bob. Then there exists another protocol
P ′ for ρABE with rate RP′ ≥ RP − `.

Proof. Consider the state ρA′B′EE′ where E′ is a system containing the value
U of a uniformly distributed `-bit key, A′ := (A,U), and B′ := (B,U). Note
that ρA′B′E is equivalent to ρABE ⊗ τ `. The assertion then follows from the ob-
servation that any protocol which produces a secure key starting from ρA′B′EE′

can easily be transformed into an (equally efficient) protocol which starts from
ρABE , because Alice and Bob can always generate public shared randomness.

ut

The following example shows that the factor 2 in Theorem 10 and Corollary 4
is strictly necessary. Let

ρABEE′ =
4∑
i=1

|i〉〈i|A ⊗ |i〉〈i|B ⊗ |ψi〉〈ψi|EE′

where |ψi〉 are the four Bell states on the bipartite system EE′. Then, obviously,
KD(ρABEE′) = 0, but if E′ (which is only one qubit) is lost, thenKD(ρABE) = 2,
since E is then maximally mixed conditioned on i. One recognises here the effect
of superdense coding.

6 Classical and quantum adversaries in QKD

Up to now, we have considered an adversary with unbounded resources. Of
course, if one limits the adversary’s capabilities, certain cryptographic tasks
might become easier. In the following, we will examine a situation where the
adversary cannot store quantum states and, hence, is forced to apply a mea-
surement, turning them into classical data. We will exhibit an example of a
2d-dimensional ccq state which only has key rate 1, but if Eve is forced to mea-
sure her system, the key rate raises up to roughly 1

2 log d.
Note that upper bounds on the key rate which are defined in terms of an

optimal measurement on Eve’s system (see, e.g., [26, 19] and Section 3) are also
upper bounds on the key rate in a setting where Eve has no quantum memory.
Hence, our result implies that these upper bounds are generally only rough
estimates for the key rate in the unbounded scenario.

Consider the state

ρAA′BB′E =
1
2d

d∑
k=1

|00〉〈00|AB(|kk〉〈kk|A′B′ ⊗ |k〉〈k|E)

+ |11〉〈11|AB(|kk〉〈kk|A′B′ ⊗ U |k〉〈k|E |U†)

where U is the quantum Fourier transform on d dimensions. (Such a state has
been proposed in [16] to exhibit a locking effect of the accessible information. It
also corresponds to the flower state of [33].)



It is easy to see that the bit in the system AB is uncorrelated to Eve’s
information and, hence, completely secret, i.e., KD(ρAA′BB′E) = KD(ρAB) ≥ 1.
On the other hand, if this bit is known to Eve then she has full knowledge on
the state in A′B′, i.e., KD(ρAA′BB′EE′) ≤ I(AA′ : BB′ ↓ EE′)ρ = 0, where E′

is a classical system carrying the value of the bit in AB (see Theorem 2). From
this and Corollary 4 (or, alternatively, Theorem 4), we conclude that the key
rate (relative to an unbounded adversary) is given by

KD(ρAA′BB′E) = KD(ρAB) = 1 .

Let us now assume that Eve applies a measurement on her system E, trans-
forming the state defined above into a ccc state σAA′BB′E . Because the values
of Alice and Bob are maximally correlated, it is easy to see that the key rate of
this state satisfies KD(σAA′BB′E) = S(A|E)σ = S(A)σ − I(A : E)σ. Note that
S(A)σ = 1 + log d. Moreover, the mutual information I(A : E)σ for an optimal
measurement on E corresponds to the so-called accessible information, which
equals 1

2 log d, as shown in [16]. We thus conclude that

KD(σAA′BB′E) = 1 +
1
2

log d .

Note that the accessible information is additive, so even if the measurements are
applied to blocks of states, the amount of key that can be generated is given by
this expression.

The above result gives some insights into the strength of attacks considered
in the context of quantum key distribution (QKD). A so-called individual attack
corresponds to a situation where the adversary transforms his information into
classical values. In contrast, a collective attack is more general and allows the
storage of quantum states.

As shown in [18], for most QKD protocols, security against collective attacks
implies security against any attack allowed by the laws of quantum physics. The
above result implies that the same is not true for individual attacks, i.e., these
might be arbitrarily weaker than collective (and, hence, also general) attacks.

Acknowledgment

We are grateful to Karol Horodecki and Norbert Lütkenhaus for their valu-
able input and many enlightening discussions. We would also like to thank the
anonymous reviewers for their helpful comments and suggestions. This work
was supported by the European Commission through the FP6-FET Integrated
Projects SCALA CT-015714 and QAP, and through SECOQC. MC acknowl-
edges the support of an EPSRC Postdoctoral Fellowship and a Nevile Research
Fellowship, which he holds at Magdalene College Cambridge. RR is supported
by HP Labs Bristol.



References

1. Shannon, C.E.: Communication theory of secrecy systems. Bell Systems Technical
Journal 28 (1949) 656–715

2. Maurer, U.M.: Secret key agreement by public discussion from common informa-
tion. IEEE Transactions on Information Theory 39(3) (1993) 733–742

3. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans.
Inf. Theory 24 (1978) 339–348

4. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryp-
tography. IEEE Transactions on Information Theory 39(4) (1993) 1121–1132

5. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proceedings of the IEEE International Conference on Computers,
Systems and Signal Processing, Bangalore, India, December 1984, IEEE Computer
Society Press, New York (1984) 175–179

6. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett 67
(1991) 661–663

7. Renner, R., Wolf, S.: New bounds in secret-key agreement: the gap between for-
mation and secrecy extraction. In: Proceedings of EUROCRYPT 2003. Lecture
Notes in Computer Science, Springer (2003) 562–577

8. Wyner, A.D.: The wire-tap channel. Bell System Technical Journal 54(8) (1975)
1355–1387

9. Gisin, N., Wolf, S.: Linking classical and quantum key agreement: is there ‘bound
information’. In: Advances in Cryptology — CRYPTO 2000. Lecture Notes in
Computer Science, Springer (2000) 482–500

10. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum
states. Proc. Roy. Soc. Lond. Ser. A 461 (2004) 207–235

11. Renner, R., König, R.: Universally composable privacy amplification against quan-
tum adversaries. In: Second Theory of Cryptography Conference, TCC 2005.
Volume 3378 of Lecture Notes in Computer Science., Springer (February 2005)
407–425

12. Cerf, N.J., Massar, S., Schneider, S.: Multipartite classical and quantum secrecy
monotones. Phys. Rev. A 66 (2002) 042309

13. Maurer, U., Wolf, S.: The intrinsic conditional mutual information and perfect
secrecy. In: Proceedings of the 1997 IEEE Symposium on Information Theory.
(1997) 88

14. Horodecki, M.: Entanglement measures. Quantum Inf. Comp. 1 (2001) 3–26
15. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Secure key from

bound entanglement. Phys. Rev. Lett 94 (2005) 160502
16. DiVincenzo, D., Horodecki, M., Leung, D., Smolin, J., Terhal, B.: Locking classical

correlation in quantum states. Phys. Rev. Lett 92 (2004) 067902
17. Maurer, U., Wolf, S.: Information-theoretic key agreement: From weak to strong

secrecy for free. In: Advances in Cryptology — EUROCRYPT 2000. Volume 1807
of Lecture Notes in Computer Science., Springer (2000) 351–368

18. Renner, R.: Security of Quantum Key Distribution. PhD thesis, Swiss Federal
Institute of Technology (ETH) Zurich (2005) quant-ph/0512258.

19. Christandl, M., Renner, R.: On intrinsic information. In: Proceedings of the 2004
IEEE International Symposion on Information Theory. (2004) 135

20. Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The uni-
versal composable security of quantum key distribution. In: Second Theory of
Cryptography Conference, TCC 2005. Lecture Notes in Computer Science (2005)
386–406



21. König, R., Renner, R., Bariska, A., Maurer, U.: Locking of accessible information
and implications for the security of quantum cryptography. quant-ph/0512021

22. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: General paradigm
for distilling classical key from quantum states. quant-ph/0506189 (2005)

23. Horodecki, M., Horodecki, P., Horodecki, R.: Limits for entanglement measures.
Phys. Rev. Lett 84 (2000) 2014

24. Donald, M., Horodecki, M., Rudolph, O.: The uniqueness theorem for entanglement
measures. J. Math. Phys. 43 (2002) 4252–4272

25. Vidal, G., Werner, R.: A computable measure of entanglement. Phys. Rev. A 65
(2002) 032314

26. Moroder, T., Curty, M., Lütkenhaus, N.: Upper bound on the secret key rate
distillable from effective quantum correlations with imperfect detectors. Phys.
Rev. A 73 (2006) 012311

27. Christandl, M., Winter, A.: Squashed entanglement — an additive entanglement
measure. J. Math. Phys. 45(3) (2004) 829–840

28. Alicki, R., Fannes, M.: Continuity of conditional quantum mutual information. J.
Phys. A 37 (2003)

29. Christandl, M.: The Structure of Bipartite Quantum States: Insights from Group
Theory and Cryptography. PhD thesis, University of Cambridge (2006)

30. Renner, R., Wolf, S.: New bounds in secret-key agreement: The gap between
formation and secrecy extraction. In: Advances in Cryptology - EUROCRYPT
2003, Lecture Notes in Computer Science, Springer (2003)

31. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement.
Phys. Rev. Lett 78 (1997) 2275–2279

32. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures.
Phys. Rev. A 57 (1998) 1619–1633

33. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Locking entanglement
with a single qubit. Phys. Rev. Lett 94 (2005) 200501

34. Christandl, M., Winter, A.: Uncertainty, monogamy and locking of quantum corre-
lations. IEEE Transactions on Information Theory 51(9) (2005) 3159–3165 quant-
ph/0501090.

35. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W.,
Smolin, J., Wootters, W.K.: Quantum nonlocality without entanglement. Phys.
Rev. A 59 (1999) 1070

36. Badzia̧g, P., Horodecki, M., Sen(De), A., Sen, U.: Universal Holevo-like bound for
locally accesible information. Phys. Rev. Lett 91 (2003) 117901

37. Acin, A., Cirac, I., Massanes, L.: Multipartite bound information exists and can
be activated. Phys. Rev. Lett. 92 (2004) 107903

38. Bennett, C.H., DiVincenzo, D.P., Smolin, J., Wootters, W.K.: Mixed-state entan-
glement and quantum error correction. Phys. Rev. A 54 (1997) 3824–3851

39. Christandl, M.: The quantum analog to intrinsic information. Diploma Thesis,
Institute for Theoretical Computer Science, ETH Zurich (2002)

40. Renner, R.: Linking information theoretic secret-key agreement and quantum pu-
rification. Diploma Thesis, Institute for Theoretical Computer Science, ETH Zurich
(2000)

41. Horodecki, P., Lewenstein, M.: Bound entanglement and continuous variables.
Phys. Rev. Lett 85 (2000) 2657

42. Winter, A.: Secret, public and quantum correlation cost of triples of random vari-
ables. In: Proceedings of the 2005 IEEE International Symposium on Information
Theory. (2005) 2270–2274


