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Abstract. We present a lower bound on the round complexity of a natural class
of black-box constructions of statistically hiding commitments from one-way
permutations. This implies a Ω( n

log n
) lower bound on the round complexity of

a computational form of interactive hashing, which has been used to construct
statistically hiding commitments (and related primitives) from various classes of
one-way functions, starting with the work of Naor, Ostrovsky, Venkatesan and
Yung (J. Cryptology, 1998). Our lower bound matches the round complexity of
the protocol studied by Naor et al.
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1 Introduction

A zero-knowledge proof is a protocol wherein one party, the prover, convinces
another party, the verifier, of the validity of an assertion while revealing no ad-
ditional knowledge. Introduced by Goldwasser, Micali and Rackoff in the 1980s
[GMR89], zero-knowledge proofs have played a central role in the design and study
of cryptographic protocols. In these applications, it is important to construct constant-
round zero-knowledge protocols for NP under minimal assumptions. In many cases,
a computational zero-knowledge argument system suffices, and we know how to
construct such protocols for NP under the (essentially) minimal assumption of one-
way functions [BJY97,OW93]. On the other hand, there are cases wherein we need
stronger guarantees, namely a computational zero-knowledge proof system, or a
statistical zero-knowledge argument system.1 Surprisingly, the main bottleneck to
reducing the assumptions for known constructions of both constant-round computa-
tional zero-knowledge proof systems and statistical zero-knowledge argument systems
[BCY91,GK96a] is statistically hiding commitments.2

? Work done while visiting Tsinghua University, Beijing; IBM T.J. Watson Research Center;
and IPAM, Los Angeles.

1 It is unlikely that every language in NP has a statistical zero-knowledge proof system
[F89,AH91,BHZ87].

2 It is not surprising that we need statistically hiding commitments for statistical zero-knowledge
arguments; what is surprising is that the only known approach for constructing constant-round



We know how to construct constant-round statistically-hiding commitments from
collision-resistant hash functions [DPP98,NY89] and from claw-free permutations
[GK96a]. In 1992, Naor, Ostrovsky, Venkatesan and Yung [NOVY98] showed that one-
way permutations are sufficient for statistically hiding commitments wherein the round
complexity is linear in the security parameter. This was very recently extended to one-
way functions by Haitner and Reingold [HR06b]. Both works use the powerful tool of
interactive hashing [OVY93], a 2-party protocol for choosing a small set of strings, with
binding and hiding requirements similar to those in commitment schemes. An intriguing
open problem (posed in [NOVY98] and reiterated in [DHRS04,KS06,HR06a]) is whether
some variant of interactive hashing could yield a constant-round statistically hiding
commitment from one-way permutations. In fact, even a no(1)-round commitment
would be interesting. The restriction to interactive hashing may seem limiting, but it
is the only technique that we presently know of. Moreover, Ding, et al. [DHRS04]
exhibited a constant-round interactive hashing protocol satisfying a weaker binding
guarantee, which indicates that interactive hashing may not be the bottleneck.

1.1 Our contributions and techniques

We study a natural class of black-box constructions of statistically hiding commitments
from one-way permutations that include several generalizations of the NOVY construc-
tion, and show that any such construction yields a commitment scheme with at least
Ω(n/ log n) rounds. This matches the round complexity of a variant of the main NOVY
construction ([KS06,HR06a]). Specifically, our lower bound holds for constructions
wherein the sender (in the commitment scheme) evaluates the one-way permutation
only at the start of the commit phase, and does so on independent random inputs. The
sender then uses the output values, her private input to the commitment scheme, and
possibly additional randomness in the rest of the commit phase and does not use the
inputs to the one-way permutation until the reveal phase.

We derive as a corollary, a Ω(n/ log n) lower bound on a computational form of
interactive hashing presented in [NOV06,HR06a], based on an abstraction of the way
interactive hashing is used in the NOVY construction and the subsequent works of
Haitner et al. [HHK+05,NOV06,HR06b]. The same abstraction also applies to the use of
interactive hashing in the transformation of honest-verifier zero-knowledge arguments
into cheating-verifier zero-knowledge arguments [D93,OVY93]. The lower bound tells
us that we need to avoid the standard notion of interactive hashing if we want round-
efficient versions of these applications.

Our lower bound for statistically hiding commitments only holds for fully black-
box reductions [RTV04], namely, we require not only that the construction treats the
one-way permutation as a black-box, but also that the reduction in the proof of security
uses black-box access to a cheating sender that breaks the binding property to invert
the permutation with noticeable probability. At a high level, our lower bound follows

zero-knowledge proof systems [GK96a] requires statistically hiding commitments to guarantee
soundness, because the verifier begins by committing to her challenges.



the paradigm of Gennaro and Trevisan [GT00] for proving lower bounds on efficiency
of black-box cryptographic constructions, which is in turn based on the Impagliazzo-
Rudich framework [IR89] for separating cryptographic primitives. The proof techniques
and ideas are otherwise largely inspired by lower bounds for black-box zero-knowledge
from the work of Goldreich and Krawczyk [GK96b].

Roughly speaking, a fully black-box reduction guarantees an efficient procedure
that by interacting and rewinding the cheating sender, produces transcripts of the
commitment scheme with a certain outcome. Using the repeated sampling technique
from [IR89], we can ensure that the probability that a partial transcript has the outcome
is exponentially small in the length of the sender’s last message. This means that the
sender sends O(log n) bits in each round of protocol. On the other hand, the sender
must send a total of Ω(n) bits in the protocol (so that there is a different transcript
for every possible challenge for the one-way permutation), which means the protocol
must have Ω(n/ log n) rounds. This simplified and slightly inaccurate sketch overlooks
several technical difficulties.

1.2 Perspective

Notions and limitations of interactive hashing. The last few years has witnessed
a lot of work on the use of interactive hashing protocols in cryptography with
two main notions of security: computationally binding, and binding for static sets
[NOV06]. The latter is used in building and studying oblivious transfer protocols
in the bounded storage model and over noisy channels [CCM98,DHRS04,CS06], in
constructing variants of statistically binding commitments [NV06], and in transforming
honest-verifier zero-knowledge proofs into cheating-verifier zero-knowledge proofs
[D93,DGOW95,GSV98]. It was noted in [NOV06,CCM98] that the computational
binding implies binding for static sets; our lower bound implies that the converse
is not true. Specifically, the constant-round protocol of [DHRS04] does not satisfy
the computational formulation (which answers an open problem in [DHRS04] in the
negative).

Efficiency of cryptographic reductions. Previous work establishing lower bounds for
efficiency of black-box cryptographic reductions has focused on the query complex-
ity and randomness complexity of these reductions [KST99,GGKT05,LTW05,HK05]
whereas our work focuses on round complexity. Upon closer inspection, our work is
also qualitatively very different (apart from studying a different computational resource)
as the works of [GGKT05,LTW05,HK05] rule out weakly black-box reductions (unless
P = NP), wherein the proof of security may exploit the code of the adversary (in a non-
black-box manner). As mentioned earlier, our main result only rules out fully black-box
reductions and uses fairly different techniques. We stress that all known reductions
between cryptographic primitives - with the exception of the non-black-box techniques
used in zero-knowledge and multi-party protocols, e.g. [B01], but including the non-
black-box constructions in [AIK04] - do not exploit the code of the adversary in the



proof of security. As such, ruling out fully black-box reductions is almost as meaningful
as ruling weakly black-box reductions.

Information-theoretic analogues. Many black-box cryptographic constructions apart
from interactive hashing-based commitments have an information-theoretic analogue
which is easier to achieve, in that it does not have some kind of “simulateable”
requirement, namely, an efficient procedure for simulating random transcripts with
a certain outcome. This was articulated in [DGW95], using random selection as a
case study. Such connections been exploited in both directions, the most remarkable
being the construction of extractors from Nisan-Wigderson pseudo-random generators
[T01]. In [LTW05], the connection between hardness amplification and combinatorial
hitters was used to derive lower bounds on query and randomness complexity of the
former. While the resulting lower bounds on query complexity are tight, those for
randomness complexity are far from the best-known constructions. The information-
theoretic analogue for computational interactive hashing would be interactive hashing
with binding for static sets, for which we cannot expect to prove a super-constant lower
bound (again, due to the constant-round protocol in [DHRS04]). Indeed, we exploit the
“simulateable” requirement for our main result.

Trade-offs between interaction and assumptions. The NOVY construction demonstrated
the feasibility of trading off higher interaction costs in order to build a cryptographic
primitive under weaker cryptographic assumptions (specifically, perfectly hiding com-
mitments with a linear number of rounds assuming one-way permutations, versus a
constant number of rounds assuming claw-free permutations). Rudich’s work [R91]
shows that this trade-off is necessary in relation to secret key agreement and trapdoor
functions. Our main result shows that the trade-off is also necessary for the NOVY
construction. While the trade-off is an additive constant in Rudich’s work, our lower
bound yields a gap between constant and almost-linear number of rounds.

Implications for protocol design. One could view this work quite broadly as providing
a simple informal criterion for reasoning about the round complexity of classes of
fully-black-box constructions (of protocols with a “simulatable” requirement) and
formal techniques towards establishing a lower bound. The former is especially
useful for protocol design in identifying and ruling out inefficient constructions. We
stress here that our lower bounds do not apply to the black-box constructions of
commitments from various classes of one-way functions in the works of Haitner et al.
[HHK+05,NOV06,HR06b], in two different ways. One is the use of one-way functions
in [HHK+05] to implement coin-tossing and zero-knowledge proofs to transform
commitments that are hiding against honest receivers into commitments that are hiding
against arbitrary receivers. We note that our lower bound holds assuming merely hiding
against honest receivers. The second is that the inputs to the one-way functions are used
again in the commit phase. This is only needed to handle the lack of structure in general
one-way functions. In particular, all the constructions are much simpler and requires
fewer rounds when optimized for one-way permutations - they “collapse” to the NOVY



construction. In short, the ways in which these constructions bypass our lower bounds
do not provide much insight into how we may bypass the lower bounds for one-way
permutations.

1.3 Additional related work

Fischlin [F02] showed that there is no black-box construction of 2-message statistically
hiding from one-way permutations (or even trapdoor permutations). The result follows
quite readily from Simon’s oracle separating collision-resistant hash functions and
one-way permutations [S98]. On the other hand, Harnik and Naor [HN06] gave a
non-black-box construction of a 2-message statistically hiding commitment from one-
way functions under a non-standard assumption on compressibility of NP instances.
From what we understand, there is no strong evidence either supporting or refuting the
assumption.

2 Definitions and Preliminaries

We use PPT to denote both probabilistic polynomial-time Turing machines and
probabilistic polynomial-time interactive Turing machines. The round complexity of
a 2-party protocol is number of pairs of messages exchanged by both parties (in both
directions). Unless otherwise stated, we use 1n as the security parameter.

2.1 One-way permutations

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is a s(n)-secure one-way function if f
is computable in polynomial time and for every nonuniform PPT A,

Pr
x∈{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))] < 1/s(n)

A function f is a one-way permutation if for every n, f restricted to {0, 1}n is a
permutation, and for all polynomials s(n) and all sufficiently large n, f is s(n)-secure.

A random permutation π is exponentially one-way even if the adversary is given
access to a π−1 oracle, as long as it cannot query π−1 on the challenge. Here, π−1

6=y is an
oracle that on input y′, returns π−1(y′) if y′ 6= y, and ⊥ otherwise.

Lemma 1 (implicit in [GT00]). Fix s(n) = 2n/5. For all sufficiently large n, there
exists a permutation π on {0, 1}n such that for all circuits A of size s(n),

Pr
y∈{0,1}n

[Aπ,π−1
6=y (y) = π−1(y)] <

1
s(n)

Moreover, the statement relativizes.



2.2 Statistically hiding commitments

We present the definition for bit commitment. To commit to multiple bits, we may
simply run a bit commitment scheme in parallel.

Definition 2. A (bit) commitment scheme (S,R) is an efficient two-party protocol
consisting of two stages. Throughout, both parties receive the security parameter 1n

as input.

COMMIT. The sender S has a private input b ∈ {0, 1}, which she wishes to
commit to the receiver R, and a sequence of coin tosses σ. At the end of this
stage, both parties receive as common output a commitment z.

REVEAL. Both parties receive as input a commitment z. S also receives the
private input b and coin tosses σ for z. This stage is non-interactive: S sends a
single message to R, and R either outputs a bit and accepts or rejects.

Definition 3. A commitment scheme (S,R) is perfectly hiding if

COMPLETENESS. If both parties are honest, then for any input bit b ∈ {0, 1}
that S gets, R outputs b and accepts at the end of the decommit stage.

STATISTICALLY HIDING. For every unbounded deterministic strategyR∗, the
distributions of the view of R∗ in the commit stage while interacting with an
honest S are identical for b = 0 and b = 1. If the distributions are statistically
indistinguishable, we obtain a statistically hiding commitment.

COMPUTATIONALLY BINDING. For every nonuniform PPT S∗, S∗ succeeds
in the following game (breaks the commitment) with negligible probability:

– S∗ interacts with an honest R and outputs a commitment z.
– S∗ outputs two messages τ0, τ1 such that for both b = 0 and b = 1, R on

input (z, τb) accepts and outputs b.

3 Constructing Commitments from One-Way Permutations

In this section, we provide formal definitions of the various classes of constructions of
commitments from one-way permutations we consider in this paper.

3.1 Fully black-box constructions

Definition 4. A fully black-box construction of a statistically hiding commitment
scheme from one-way permutations is a triplet of polynomial time computable oracle
procedures (S,R,M) for which there exists a polynomial T and a constant c satisfying
the following properties:



EFFICIENCY. The running times of S,R,M are bounded by T .

FUNCTIONALITY. For every family of permutations π, (Sπ,Rπ) is a statisti-
cally hiding commitment scheme.

SECURITY. For every ε = 1/ poly(n), for all sufficiently large n, every
permutation π : {0, 1}n → {0, 1}n and every adversary S∗, if S∗ breaks
(Sπ,Rπ) with probability ε, then

Pr
y∈{0,1}n

[MS∗,π(y) = π−1(y)] ≥
( ε

T

)c

3.2 Interactive hashing

Interactive hashing is a 2-party protocol between a sender and a receiver, similar
to a commitment scheme. The sender begins with a private input y ∈ {0, 1}q and
goal is for both parties to select a set of 2k strings in {0, 1}q (specified by a circuit
C : {0, 1}k → {0, 1}q) containing y. The hiding property stipulates that the receiver
does not learn which of the 2k strings equals y, and the binding property stipulates that
the sender can “control” at most one of the 2k strings. The computational formulation
(introduced explicitly in [NOV06] along with selecting many instead of merely 2
outputs) guarantees an efficient reduction from breaking the binding property to solving
some computational problem on random instances.

Definition 5 ([NOV06]). A computational interactive hashing scheme (with multiple
outputs) is an efficient protocol (SIH,RIH) where both parties receive common inputs
(1q, 1k), SIH receives a private input y ∈ {0, 1}q, with the common output being a
circuit C : {0, 1}k → {0, 1}q and the private output of SIH being a string z ∈ {0, 1}k.
The protocol satisfies the following properties:

CORRECTNESS. For all R∗ and all y ∈ {0, 1}q, let C, z be the common and
private output of SIH in the protocol (SIH, R∗)(1q, 1k). Then, C(z) = y.

PERFECTLY HIDING. For all R∗, (V,Z) is distributed identically to (V,Uk),
where V = viewR∗(SIH(Uq, ),R∗).

COMPUTATIONALLY BINDING. There exists an oracle PPT A such that for
every S∗ and any relation W , letting C, ((x0, z0), (x1, z1) be the common and
private output of SIH in the protocol (SIH, R∗)(1q, 1k), if it holds that

Pr[(x0, C(z0)) ∈ W ∧ (x1, C(z1)) ∈ W ∧ z0 6= z1] > ε,

where the above probability is over the coin tosses ofRIH and S∗, then we have
that

Pr
y∈{0,1}q

[(AS∗(y, 1q, 1k, ε), y) ∈ W ] > 2−k · (ε/q)O(1).



Nguyen et al. [NOV06] presented a protocol satisfying the above definition with q − k
rounds, obtained by ending the NOVY protocol k−1 rounds earlier. The protocol is very
simple: the receiver chooses q−k linearly independent vectors v1, . . . , vk over {0, 1}q.
In round i, the receiver sends vi and the sender responds with bit-wise dot product vi ·y.
We may reduce the round complexity by a factor of O(log q) by having the receiver send
a pairwise independent hash function hi : {0, 1}q → {0, 1}O(log q) in round i and the
sender responding with hi(y) [HR06a]. Note that the sender is deterministic, and the
protocol is public-coin. Our lower bound shows that using a randomized sender or a
private-coin protocol or q-wise independent hash functions will not further improve the
round complexity (beyond constant factors).

Returning to the above definition, note that it refers to general relations W that
may not be polynomial-time computable, and it does not give A oracle access to the
relation W , which strengthens the security guarantee of the [NOV06] protocol. Our
lower bound holds even if A has oracle access to the relation W , which is a weaker
guarantee and thus a stronger lower bound. We also note that we may use the techniques
in [LTW05] to show that this weaker guarantee also implies binding for static sets,
thereby strengthening an observation made in [NOV06].

Naor et al. [NOVY98] showed that any computational interactive hashing scheme
(SIH,RIH) yields a fully black-box construction of a perfectly hiding commitment
scheme (S,R) from any one-way permutation π with essentially the same round
complexity.3 The construction is as follows:

COMMIT. To commit to a bit b, S chooses a random σ ∈ {0, 1}n,
where n is the security parameter. Then, S and R run as a sub-protocol
(SIH(π(σ),RIH)(1n, 11), playing the roles SIH,RIH respectively. Let C, z be
the common and private outputs of S in the sub-protocol. S then sends
b′ = b⊕ z.

DECOMMIT. S sends (b, σ). R accepts and outputs b if C(b ⊕ b′) = π(σ),
and rejects otherwise.

We stress that in the construction, S queries π exactly once, to compute π(σ), and does
not need σ again except for decommitment.

As noted in the introduction, Damgård [D93] showed how any computational inter-
active hashing scheme can be used to transform constant-round honest-verifier public-
coin zero-knowledge arguments into cheating-verifier public-coin zero-knowledge
arguments unconditionally. The transformation may also be made more efficient by
exploiting interactive hashing with multiple outputs so that a single application of
interactive hashing yields a cheating-verifier zero-knowledge argument with soundness
to 1/ poly(n) (instead of 1/2).

3 More precisely, Naor et al. showed how to construct a perfectly hiding commitment scheme
from any one-way permutation using the interactive hashing protocol in [OVY93]. Implicit in
the proof of correctness and security is a proof that the [OVY93] protocol satisfies Definition 5
for k = 1.



3.3 π-oblivious constructions

We describe the syntactic constraints on the class of fully black-box constructions
for which we prove a lower bound. We consider constructions wherein the sender
evaluates the one-way permutation only at the start of the commit phase, and does so on
independent random inputs. The sender then uses the values (and not the inputs to the
permutation), its input bit and possibly additional randomness in the rest of the commit
phase. To decommit, the sender sends its input bit and its random tape, including the
inputs to the permutation. We allow the receiver to query the permutation at any point
in the protocol.

More formally,

Definition 6. A fully black-box construction (S,R,M) of a statistically hiding com-
mitments from one-way permutations is π-oblivious if there exists some interactive PPT
Sob such that for any permutation π on {0, 1}n, to commit to a bit b with coin tosses σ,
S parses σ = (z, σ̃), where z = (z1, . . . , zt) ∈ ({0, 1}n)t, and proceeds according to
Sob(b, σ′), where σ′ = (z′, σ̃) and z′ = π(z) = (π(z1), . . . , π(zt)). In particular, Sob

never queries π. To decommit, S sends a single message (b, σ).

Clearly, the NOVY construction is a π-oblivious; there, t = 1 and Sob = SIH gets
input π(z1), and σ̃ is the empty string since SIH is deterministic. Other candidates of
π-oblivious constructions include variants of the NOVY construction wherein we run n2

copies of some variant of interactive hashing in parallel either on the same t = 1 input
π(z1) or on t = n2 independent inputs π(z1), . . . , π(zt), or a single copy of interactive
hashing on the tn-bit string π(z1), . . . , π(zt).

On the other hand, the construction of statistically hiding commitments from one-
way functions in [HR06b] is not π-oblivious. This is because the sender will query π at
some point z1 and send both h1(π(z1)) and h2(z1) during the commit phase, for some
hash functions h1, h2.

4 Main Result: Lower Bound for Commitments

Now, we state and prove our main result:

Theorem 1. Any π-oblivious fully black-box construction of a statistically hiding
commitment scheme from one-way permutations yields a commitment scheme with
Ω( n

log n ) rounds. This holds even if the hiding property for commitment scheme only
holds for the honest receiver. More generally, if we assume that permutation is s-secure
one-way, then we have an Ω( n

log s ) lower bound.

Our lower bound is tight:



Theorem 2 ([NOVY98,KS06,HR06a]). There is a π-oblivious fully black-box construc-
tion of a perfectly hiding commitment scheme from s-secure one-way permutations with
O( n

log s ) rounds.

4.1 Proof intuition

First, we point out at a high level how we exploit the fact that the construction is fully
black-box. We use as the one-way permutation the one guaranteed by Lemma 1, which
remains one-way even under a “chosen challenge” attack. This means that in order for
the reduction M to successfully invert a challenge y, it must get a cheating sender S∗
to invert π on y itself. However, M is only given black-box access to S∗, so it is limited
to sending S∗ different inputs and possibly rewinding S∗.

For concreteness, consider the NOVY construction of commitment schemes from
one-way permutation using computational interactive hashing as a subprotocol. When
trying to invert a challenge y, the reduction M tries to get the sender to generate a
commitment that is consistent with her input to interactive hashing protocol being y
(otherwise, the decommitments will not help to invert y). At each round of commit
phase, the honest SIH reveals some information about her input π(σ). At the end of the
commit phase, she should have revealed n−1 bits of information about her input (since
we’re using interactive hashing to choose 2 strings). We claim, at each round, she can
only reveal O(log n) bits of information about her input, which yields a Ω(n/ log n)
lower bound on the number of rounds. Suppose there is some round where SIH reveals
ω(log n) bits of information. This means that there are nω(1) inputs to the interactive
hashing protocol that are consistent with the partial transcript. Consider a cheating
sender that at each round samples a random input y′ that is consistent with the partial
transcript and responds as though her input to the interactive hashing protocol is y′,
then the probability that the reduction observes a transcript that is consistent with y is
negligible. It is important that SIH does not query π, so that we may sample consistent
partial transcripts using a PSPACE oracle. If SIH is deterministic, it is straight-forward
to quantify “information” about the sender’s input and turn this outline into a proof.

For general π-oblivious constructions, we construct the cheating sender in essen-
tially the same way: at each round (for both the commit and reveal phases), the sender
samples a random (b, σ′) that is consistent with the partial transcript and responds as
though her input to Sob is (b, σ′) (where σ′ = (z′, σ̃)). The main technical difficulty in
the analysis is in quantifying “information” about the sender’s input. Indeed, how much
information a message reveals about z depends on both b and σ̃. Also, for a fixed partial
transcript, the set (and number) of z′’s that are consistent with the given transcript may
vary with different choices of b, σ̃.

4.2 Proof of Theorem 1

We may assume that the commitment scheme (S,R) runs in r rounds, with R going
first. Let T, c be the polynomial and constant guaranteed by the fully black-box



reduction. We will show that r & n−log t
8c log T = Ω( n

log n ). Suppose otherwise, and take
π to be the permutation guaranteed by Lemma 1.

Conventions regarding M . Recall that the reduction M has oracle access to a sender
S∗ with which it inverts the permutation π. It can query S∗ on sequences of messages
of the form qi = (q1, . . . , qi) corresponding to the first i messages from R in the
commit phase, or a message of the form (qr, decommit), requesting for a decommit
to a previous commitment. M runs for at most T steps, and therefore makes at most T
queries to S∗. In addition, we may adopt WLOG the following simplifying assumptions
on M by modifying M appropriately (as is the case with lower bounds for black-box
zero-knowledge [GK96b]):

1. It never asks the same query twice.
2. If M queries the oracle with qi, it has queried the oracle with all proper prefixes of

qi (namely all sequences of the form (q1, . . . , qj) for j ≤ i.)

Notations. We introduce some notations:

– Sob(b, σ′,qi) denotes the Sob’s response with input b, σ′ and and the first i
messages from R being qi.

– Given a partial transcript (qi,ai) = (q1, . . . , qi, a1, . . . , ai) and y ∈ {0, 1}n,
Con(qi,ai) is the set of inputs (b, σ′) to Sob that would yield the transcript (qi,ai);
formally,

Con(qi,ai) = {(b, σ′) | Sob(b, σ′, q1, . . . , qj) = aj ,∀j = 1, 2, . . . , i}

and
Cony(qi,ai) = {(b, z′, σ̃) ∈ Con(qi,ai) | ∃j : z′j = y}

In particular, |Cony(ε)|/|Con(ε)| = 1− (1− 2−n)t ≤ t2−n, where ε is the empty
string (transcript).

Sender strategy S∗. Consider the following sender strategy S∗:

– Upon receiving a query of the form (qi−1, qi), look up previous replies ai−1.
(For i = 1, (qi−1,ai−1) = ε.) Sample uniformly at random4 (b, σ′) from the
set Con(qi−1,ai−1), and respond with ai = Sob(b, σ′,qi).

– Upon receiving a query of the form (qr, decommit), look up previous replies ar.
Sample uniformly and independently at random (b0, z0, σ̃0), (b1, z1, σ̃1) from the
set Con(qr,ar), and send (b0, π

−1(z0), σ̃0), (b1, π
−1(z1), σ̃1).

4 S∗ can be made stateless by using a rT -wise independent family of hash functions, namely
apply a hash function to the queries and use the output as randomness for uniform sampling
[GK96b].



Note that in an interaction with an honest receiver R, S∗ breaks the commitment with
probability 1/2−neg(n) > 1/4. This is because the hiding property of the commitment
scheme guarantees that a random decommitment is almost equally likely to be a 0 and
a 1. Hence,

Pr
y∈{0,1}n

[
MS∗,π(y) = π−1(y)

]
>

(
1

4T

)c

Analysis. Note that a PSPACE oracle suffices for simulating S∗ in the commit phase,
whereas a PSPACE oracle and a π−1 oracle suffice in the reveal phase. Fix an input y
to M . We want to show that with high probability, we may efficiently simulate the the
computation MS∗,π(y) given oracle access to PSPACE, π, π−1

6=y .

We say that a partial transcript (qi,ai) is heavy if

|Cony(qi,ai)|
|Con(qi,ai)|

> γr+1−i, where γ =
( t

2n

) 1
r+1

;

otherwise, we say that (qi,ai) is light. In particular, ε is light, since |Cony(ε)|
|Con(ε)| ≤ γr+1.

Informally, the quantity |Cony(·)|
|Con(·)| applied to a transcript (qi,ai) is the density of

“favorable” outcomes for the reduction M , wherein an outcome is favorable if in the
decommitment, S∗ inverts π on y. We want to show that with high probability, every
transcript generated by S∗ (in its interaction with M ) is light, that is, the density of
favorable outcomes is low.

Consider the queries M makes to S∗:

– A commit phase query of the form qi = (qi−1, qi). Let ai−1 be S∗’s answers to
the prefixes. Observe that

|Cony(qi−1,ai−1)|
|Con(qi−1,ai−1)|

=
∑
ai

|Con(qi,ai−1, ai)|
|Con(qi−1,ai−1)|

· |Cony(qi,ai−1, ai)|
|Con(qi,ai−1, ai)|

=
∑
ai

Pr[S∗(qi) = ai] ·
|Cony(qi,ai−1, ai|
|Con(qi,ai−1, ai)|

> Pr[S∗(qi) → ai; (qi,ai−1, ai) is heavy] · γr+1−i

This implies

Pr[S∗(qi) → ai; (qi,ai−1, ai) is heavy | (qi−1,ai−1) is light] < γ

– A reveal phase query of the form (qr, decommit). Let ar be S∗’s answers to qr.
If (qr,ar) is light, that is, |Cony(qr,ar)|

|Con(qr,ar)| ≤ γ, then with probability 1− 2γ, we can
generate two independent random decommitments without inverting π on y.

Applying a union bound over that rT commit phase queries that M makes to S∗, we
have: with probability at least 1 − rTγ, in every reveal phase query (qr, decommit)
that M makes to S∗, the transcript (qr,ar) is light. Taking another union bound, we



deduce that with probability 1−(r+2)Tγ, we may efficiently simulate MS∗,π on input
y with oracle access to PSPACE, π, π−1

6=y . Hence, there is an oracle PPT M̃ running in
time poly(T, n) such that

Pr
y∈{0,1}n

[
M̃PSPACE,π,π−1

6=y (y) = π−1(y)
]

>

(
1

4T

)c

− (r + 2)Tγ >
1
2

(
1

4T

)c

a contradiction to π being one-way. ut

4.3 Lower bounds for interactive hashing

Using the connection between commitment schemes and computational interactive
hashing described in Section 3.2, we derive a tight lower bound for the latter
[NOV06,HR06a]:

Theorem 3. Any computational interactive hashing scheme on common input (1n, 1k)
has Ω( n

log n ) rounds, for k = o(1).

We believe that our techniques and analysis extend readily to yield lower bounds
on efficiency of the security reduction for computational interactive hashing (an
open problem posed in [HR06a]) and the round complexity of random selection
[DGW95,DGOW95,GSV98]. We will explore these extensions in the full version of this
paper.
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