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Abstract. We study entropic security, an information-theoretic notion
of security introduced by Russell and Wang [24] in the context of en-
cryption and by Canetti et al. [5,6] in the context of hash functions.
Informally, a probabilitic map ¥ = £(X) (e.g., an encryption sheme or
a hash function) is entropically secure if knowledge of Y does not help
predicting any predicate of X, whenever X has high min-entropy from
the adversary’s point of view. On one hand, we strengthen the formula-
tion of [5,6,24] and show that entropic security in fact implies that Y
does not help predicting any function of X (as opposed to a predicate),
bringing this notion closer to the conventioonal notion of semantic se-
curity [10]. On the other hand, we also show that entropic security is
equivalent to indistinguishability on pairs of input distributions of suffi-
ciently high entropy, which is in turn related to randomness extraction
from non-uniform distributions [21].

We then use the equivalence above, and the connection to randomness
extraction, to prove several new results on entropically-secure encryption.
First, we give two general frameworks for constructing entropically secure
encryption schemes: one based on expander graphs and the other on
XOR-universal hash functions. These schemes generalize the schemes of
Russell and Wang, yielding simpler constructions and proofs, as well as
improved parameters. To encrypt an n-bit message of min-entropy ¢ while
allowing at most e-advantage to the adversary, our best schemes use a
shared secret key of length £k = n—t+2log (%) Second, we obtain lower
bounds on the key length k for entropic security and indistinguishability.
In particular, we show near tightness of our constructions: k£ > n —t. For
a large class of schemes — including all the schemes we study — the
bound can be strengthened to k > n —t +log (1) — O(1).

1 Introduction

If X and Y are random variables, the statement “Y leaks no information about
X7 is normally formalized by requiring that X and Y be almost statistically
independent. Equivalently, one can require that the Shannon mutual information
I(X,Y) be very small. In this work we study situations where information leakage

* A more complete version of this paper may be found on IACR Cryptology ePrint
Archive, report 2004/219, at http://eprint.iacr.org/2004/219/ [9].



is unavoidable — that is, I(X,Y") is large — yet we still want a guarantee that no
useful information about X is leaked by Y, even to a computationally unbounded
adversary.

Consider an alternative notion of security, inspired by semantic security of
encryptions [10]. We say Y hides all functions of X if for every function f, it
is nearly as hard to predict f(X) given Y as it is without Y, regardless of the
adversary’s computing power. If Y = £(X) for some probabilistic map &() (for
example, an encryption scheme), then we say the map £ is entropically secure if
E(X) hides all functions of X whenever X has sufficiently high entropy.

A seemingly weaker variant of this definition has produced surprising results
in at least two contexts so far: Canetti, Micciancio and Reingold [5, 6] constructed
hash functions whose outputs leak no partial information about the input. Rus-
sell and Wang [24] showed how one can construct entropically-secure symmetric
encryption schemes with keys much shorter than the length of the input, thus
circumventing Shannon’s famous lower bound on key length.

Our contributions can be divided into two areas.

e We elucidate the notion of entropic security. Our results apply to all entropically-
secure primitives, including encryption schemes and hash functions. We pro-
vide two new variants on entropic security, one closer in spirit to semantic
security of encryptions [10], and the other along the lines of indistinguishabil-
ity of encryptions. The proofs that these various notions are equivalent give
us new tools for handling entropic security and highlight a relationship with
“randomness extraction” from non-uniform distributions.

e We use the connection to randomness extraction to obtain new constructions
and lower bounds for encryption of high-entropy messages with a short key.
First, we give two general frameworks for constructing entropically secure
encryption schemes: one based on expander graphs and the other on XOR-
universal hash functions. These schemes generalize the schemes of Russell
and Wang, yielding simpler constructions and proofs, as well as improved
parameters. Second, we obtain nearly tight lower bounds on the key length &
for entropic security and indistinguishability.

1.1 Background

Although our general results apply to all entropically-secure primitives, we present
entropic security (and our results) in the context of symmetric-key one-time en-

cryption. Alice and Bob share a secret key K and Alice wants to securely send

some message X to Bob over a public channel. X is assumed to come from some

a-priori distribution on {0,1}" (e.g., uniform), and the goal is to compute a

ciphertext Y which: (a) allows Bob to extract X from Y using K; (b) reveals

“no information” about X to the adversary Eve beyond what she already knew.

Below, we write Y «— £(X, K) and X = D(Y, K).

Perfect and Computational Security. The first formalization of this problem
came in a fundamental work of Shannon [25], who defined “no information” by



requiring that X and Y be independent as random variables: using information
theoretic notation, I(X;Y") = 0, where I is the mutual information. He showed
a lower bound on key length for his definition: encrypting messages of length
n requires at least n bits of shared key (more formally, the Shannon entropy
of the key must be at least that of message distribution: Hyp (K) > Hyp(X)).
This bound is tight when the message is chosen uniformly from all strings of a
fixed length n, since one can use a one-time pad. The bound was extended to
the interactive setting by Maurer [19].

Goldwasser and Micali [10] relaxed the notion of perfect security to the com-
putational setting: namely, any efficient Eve can extract only negligible “infor-
mation” about X from Y. They had to properly redefine the notion of “informa-
tion”, since mutual information or conditional probabilities do not make much
sense in a computationally-bounded world. They suggested two now classical
definitions. Consider the following, equivalent version of Shannon’s definition:
for any two messages xo and x1, the two corresponding distributions on cipher-
texts should be identical, that is £(zg) = £(z1) (as distributions). The first
definition of Goldwasser and Micali, called computational indistinguishability of
encryptions, generalizes this version of perfect security: they require that no ef-
ficient (polynomial-time adversary) can distinguish the encryptions of g and x
with advantage more than e over random guessing, where € is some negligible
quantity. Their second notion is called semantic security: for any distribution on
messages X and any function f(), the adversary can predict f(X) given £(X)
with probability only negligibly better than she could without seeing £(X). The
first definition is easier to work with, but the second definition seems to capture
a stronger, more intuitive notion of security: for example, indistinguishability
is the special case of semantic security when the message distribution X is re-
stricted to uniform distributions over two points {zg,z1}. In fact, Goldwasser
and Micali showed that the two definitions are equivalent. Thus, distributions
with entropy 1 are in some sense the hardest to deal with for semantic security.

Statistical Security? A natural intermediate notion of security between perfect
and computational security would be some kind of statistical security: Eve is
computationally unbounded, as in the perfect setting, but can potentially recover
some negligible amount of “information”, as in the computational setting. At
first glance, it seems like there is no gain in this notion, no matter how we
interpret “information”. For example, following Shannon’s approach we could
require that I(X;Y) < € instead of being 0. Unfortunately, Shannon’s proof still
implies that Hgp(K) > Hgp(X) — €. Similarly for indistinguishability: since the
distribution &(x) should look almost the same for any fixed z, one can argue
that I(Y; X) = Hsp(E(X)) — Exp,, [Hen(E(z))] still has to be negligible, and so
the key must again have entropy almost Hgp, (X).

In his original work Shannon envisioned applications where Eve has a lot of
uncertainty about the message. To get a pessimistic bound that Hg, (K) > n,
one only has to take X to be uniformly distributed in {0,1}". In fact, in the
perfect setting, security against the uniform distribution implies security against
any distribution on messages. On the other hand, the notions of indistinguisha-



bility and semantic security primarily deal with entropy 1 distributions, and the
straightforward extension of Shannon’s bound to the statistical versions of these
notions crucially uses this fact. Thus, it is natural to ask if we can meaningfully
define (statistical) semantic security and/or indistinguishability for high entropy
distributions (say, uniform), similar in spirit to the original work of Shannon.
And if yes,

1. How do these notions relate to Shannon’s (statistical) notion, I(X;Y) < €?
Most importantly, does the pessimistic bound on the key length still extend
to these notions?

2. How do these notions relate to each other? Are semantic security and indis-
tinguishability still equivalent when the message is guaranteed to have high
entropy?

1.2 Entropic Security

Russell and Wang [24] introduced the idea of statistical security for encryption of
high-entropy message spaces. They considered the first question above, though
they focused on a weakened version of semantic security. Their definition, en-
tropic security of encryptions for predicates, is natural: for any distribution X of
min-entropy’ at least t and any predicate g : {0,1}" — {0,1}, Eve can predict
g(X) using Y only negligibly better than she could without Y (here n is the
message length and ¢ is a parameter). Russell and Wang showed that Shannon’s
lower bound does not extend to this new notion: they presented two schemes
beating Shannon’s bound on key length, which we describe further below. En-
tropic security also arose earlier in work of Canetti [5] and Canetti, Micciancio
and Reingold [6]. They constructed probabilistic hash functions whose output
reveals no partial information about their input as long as it had sufficiently
high entropy.

We discuss a stronger version of the definition of [5,6,24], which requires
that the adversary gain no significant advantage at predicting any function of
the input (as opposed to a predicate). One of our results is the equivalence of
their notion of security to the one described here.

Definition 1 (Entropic Security). The probabilistic map Y hides all func-
tions of X with leakage € if for every adversary A, there erists some adversary
A" such that for all functions f,

| PrlA(Y (X)) = f(X)] = Pr[A'() = f(X)]| < e

The map Y () is called (t,€)-entropically secure if Y () hides all functions of X,
whenever the min-entropy of X is at least t.

! The min-entropy of a random variable A is a measure of the uncertainty of its
outcome. It is the negative logarithm of the probability that one can predict A
ahead of time: Hoo (A) = — log(max, Pr(A = a)).



One gets some insight about this definition by thinking of it as an information-
theoretic reformulation of semantic security of encryptions [10], although re-
stricted to high-entropy message spaces. Alternatively, it might be instructive
to view this definition as saying that Y leaks no a-priori information about X.
Here “a-priori” refers to the fact that the function f has to be specified before
the pair (X,Y) is sampled. In other words, although f is arbitrary, it cannot
depend on the outcome of Y. This should be contrasted with a-posteriori in-
formation, where first the pair (X,Y) is sampled, then the adversary is given
the outcome y of Y, and can choose a function f, which is supposedly easier
to predict when given y. In this latter case it is not very hard to see that Y
leaks almost no a-posteriori information about X if and only if X and Y are
essentially independent, i.e. the quantity I(X;Y) is “low”. Thus, the results of
[24, 5, 6] could be interpreted by saying that leakage of no a-priori information —
although for the moment restricted to predicates rather than general functions
— can be achieved in situations where it is impossible to leak no a-posteriori
information.

1.3 Contributions of This Paper

This paper carefully studies and eludicates the notion of entropic security, obtain-
ing several new insights into this notions, as well as simplifying and improving
previous results of [24, 5, 6].

A Strong Definition of Security. As we mentioned, the definition we propose
(Definition 1) is seemingly stronger than previously studied formulations of en-
tropic security [5, 6,24], which only considered the adversary’s ability to predict
predicates instead of all possible functions of the secret input. This definition
may not be quite satisfying from several points of view. First, it states only that
no predicate of the input is leaked, and provides no explicit guarantees about
other functions. In contrast, the original semantic security definition of Gold-
wasser and Micali held for all functions. Second, there is no guarantee that the
new adversary A’() is polynomial time, even in the case where, say, A runs poly-
nomial time and X is samplable in polynomial time. We show that (a) entropic
security for predicates does imply that for arbitrary functions (see Lemma 2),
and (b) in the definition of entropic security one can always set A’() to be A(U,,),
where U, is the uniform distribution on n bits.

The equivalence between predicates and functions is not trivial. Consider,
for example, the special case where f is the identity function. One might hope
that a good predictor for X must imply a good predictor for some bit X; of X.
However, this is false. As a counterexample, assume X is equal to U,, and Y is
equal to X with probability 1/2, and to the bit-wise complement of X otherwise.
Clearly, Y reveals X with probability at least 1/2 (which is much larger than
27™), although no physical bit of X can be predicted with probability better
than its natural probability 1/2. Of course, in this case one can predict any
even parity of the bits of X with probability 1, but this shows that a more
sophisticated approach is needed. As we show in Proposition 1, for this function



we can choose a “Goldreich-Levin” predicate at random, that is we can use the
predicate g.(x) = r ©®  where r is a random n-bit string and ® is the binary
inner product r®x = ), 7;2; mod 2. For general functions, a more complicated
construction is required (Lemma 2). This general equivalence between predicting
predicates and predicting arbitrary functions could be of independent interest,
as it provides an information-theoretic converse to the Goldreich-Levin hardcore
bit construction.

An Equivalence to Indistinguishability. We also define a new indistinguishabil-
ity notion, analogous to indistinguishability of (computationally secure) encryp-
tions [10]. Namely, we say that the map Y() is t-indistinguishable, if for any
distributions X; and Xs of min-entropy at least ¢, the distribution Y (X;) is
statistically close to Y (X5). A bit more formally, indistinguishability is stated
in terms of the statistical difference SD (A, B) between a pair of random vari-
ables A, B. This is half the L; distance between the distributions, SD (4, B) =
23 |Pr[A = z] — Pr[B = £]|. It also has an operational meaning: given a sam-
ple from either A or B (at random), the optimal adversary’s chance of correctly
guessing which distribution the sample came from is exactly % + %SD (A, B).
This distance measure satisfies the triangle inequality, and so all the distribu-
tions Y (X)) must actually be close to a single distribution G = Y (U,,), where U,
is the uniform distribution. We arrive at the following:

Definition 2. A randomized map Y () is (t,e€)-indistinguishable if there is a
random variable G such that for every distribution on messages X over {0,1}"
with min-entropy at least t, we have

SD (Y(X), G) <e.

As we can see, the notion of entropic security seems to be well motivated,
but hard to work with. On the other hand, indistinguishability seems to be a
much easier definition to work with, but might be less intuitively meaningful.
Our main result is that the definitions are in fact equivalent:

Theorem 1. Let Y be a randomized map with inputs of length n. Then
1. (t,€)-entropic security for predicates implies (t — 1, 4¢)-indistinguishability.

2. (t — 2, €)-indistinguishability implies (t, e/8)-entropic security for all func-

tions when t > 2log (%) + 1.

In particular, since entropic security with respect to predicates is trivially
implied by entropic security for all functions, Theorem 1 states that all three
notions of security discussed above are equivalent up to small changes in the
parameters. Although this result is inspired by a similar looking result of Gold-
wasser and Micali [10] (for computational encryption), our proof is considerably
different and does not seem to follow from the techniques in [10].

The equivalence not only reconciles two natural definitions, but has several
nice implications. First, in Definition 1 we can always take A’() to be A(Y (U,,)),



where U, is the uniform distribution on {0, 1}". Thus, the “simulated” adversary
is as efficient as the original.

Second, the equivalence provides a new application of randommness extrac-
tors [21] to cryptography. Recall that an extractor takes as input an arbitrary,
high entropy random source and a tiny random seed, and outputs uniformly
random bits. The output bits are guaranteed to be almost uniformly distributed
as long as the min-entropy of the input is above some threshold ¢. In other
words, an extractor Y is precisely a t-indistinguishable map — in the sense of
Definition 2 — with G being the uniform distribution. Thus, Theorem 1 implies
that an extractor for ¢-sources hides all a-priori information about sources of
min-entropy at least ¢ + 2. From the constructive point of view, it also suggests
that to design an appropriate entropically secure scheme for a given task, such as
encryption, it is sufficient to design a “special purpose” randomness extractor.
In the case of encryption the extractor should be invertible when given the seed,
since the seed corresponds to the shared secret key.

Finally, and most importantly, our equivalence simplifies the design and anal-
ysis of entropically secure schemes, yielding improvements over known schemes,
new lower bounds, simpler proofs, and a stronger security guarantee. We illus-
trate these points for the case of entropically secure encryption.

Encryption of High-Entropy Messages. As we mentioned, Russell and Wang [24]
provided two constructions of entropically-secure encryption schemes which use
short keys. Let € denote the leakage — that is, the advantage which we allow
the adversary. First, [24] give a deterministic scheme of the form £(X, K) =
X @ p(K), which is secure only when X is uniformly distributed on {0,1}",
where K has length only & = 2logn + 3log (%) + O(1) and p(K) is a random
point in a d-biased spaces [20] (where [24] used § = ¢3/2). Thus, p(K) could
be viewed as a very sparse one-time pad which nevertheless hides any a-priori
specified function f(X). Second, for general min-entropy ¢, Russell and Wang
gave a randomized scheme of the form (¢, ¢ (X) + K) «— £(X, K), where 9 is
chosen at random from a family of 3-wise independent permutations (and the
addition is defined over some appropriate space). The analysis in [24] shows that
this second scheme needs key length n—t+3log (%) +0O(1). While less than n for
nontrivial settings of ¢, this key length again becomes 2(n) when n —t = 2(n).
[24] left it open whether such dependence on n — t is necessary.

We obtain the following new results:

1. Lower bounds on the key length k for entropic security and indistinguisha-
bility. In particular, we show near tightness of Russell-Wang constructions:
k >n —t. (In fact, for a large class of schemes k > n — ¢+ log (1).)

2. Two general frameworks for designing entropically secure encryption schemes:
one based on expander graphs and the other on XOR-universal hash func-
tions. These schemes generalize the schemes of Russell and Wang, yielding
simpler constructions and proofs, as well as improved parameters. Namely,
both constructions can yield keys of size k =n —t + 2log (%)



Our Techniques. All our results critically use the equivalence between entropic
security and indistinguishability.

On one hand, we use it to show that the general construction of Russell and
Wang is nearly optimal: any entropically secure scheme must have k& > n — ¢.
In fact, for a special case of public-coin schemes, where the ciphertext con-
tains the randomness used for encryption, we get an even stronger bound:
k>n—t+log (%) — O(1). The latter result is proven by relating the notion of
indistinguishability to that of randomness extractors [21]: namely, any indistin-
guishable public-coin scheme almost immediately yields a corresponding extrac-
tor. Using the optimal lower bounds on extractors [23], we get our stronger bound
as well. In fact, if the ciphertext is statistically close to uniform (i.e., G = U,
meaning that the encryption is actually a randomness extractor), we get a lower
bound which ezactly matches our upper bounds: k > n—t+2log (%) —O(1). The
schemes in [24] and this work are all public-coin and have random ciphertexts.

On the other hand, the indistinguishability view allows us to give a general
framework for constructing entropically secure encryption schemes. Specifically,
assume we have a d-regular expander G on 2™ vertices V' with the property that
for any subset T of 2¢ vertices, picking a random vertex v of T and taking a
random neighbor w, we obtain an almost uniform distribution on V. Then, we
almost immediately get an encryption scheme with key length k = logd which
is indistinguishable for message spaces of min-entropy ¢. Looking at this from
another perspective, the above encryption scheme corresponds to a randomness
extractor which takes a source X of length n and min-entropy ¢, invests logd
extra random bits K, and extracts n almost random bits Y (with the additional
property that the source X is recoverable from Y and K). From this description,
it is clear that the key length of this paradigm must be at least n — ¢ (which we
show is required in any entropically secure encryption scheme). However, using
optimal expanders we can (essentially) achieve this bound, and in several ways.
First, using Ramanujan expanders [17], we get the best known construction
with key length &k = n — ¢t + 2log (%) Second, using d-biased spaces [20] (for
appropriate § = d(e,n,t) explained later), we get a general construction with
slightly larger but still nearly optimal key length k =n —t + 2logn + 2log (%)
This last result generalizes (and slightly improves) to any value of ¢ the special
case of the uniform message distribution (n — ¢ = 0) obtained by Russell and
Wang [24]. Our approach also gives clearer insight as to why small-biased spaces
are actually useful for entropic security.

While the deterministic constructions above are nearly optimal and quite
efficient, we also observe that one can get simpler constructions by allowing
the encryption scheme to be probabilistic. In our approach, this corresponds to
having a family of “average case” expanders {G;} with the property that for any
set T of size at least 2!, picking a random graph G;, a random v in T and taking
a random neigbor w of v in G;, we get that w is nearly uniform, even given the
graph index i. By using any family of pairwise independent hash functions h;
(resp. permutations 1);) and a new variant of the leftover hash lemma [15], we get
a probabilistic scheme of the form (i, X @ h;(K)) (resp. (i, ¢¥;(X) @ K)) with



a nearly optimal key length k = n —t + 2log (%) As a concrete example of this
approach, we get the following simple construction: £(X, K;i) = (i, X + i - K),
where the local randomness 4 is a random element in GF(2"), K € {0,1}* is
interpreted as belonging to GF(2%) C GF(2"), and addition and multiplication
are done in GF(2").

Once again, the above result (with permutations ;) improves and simplifies
the intuition behind the second scheme of Russell and Wang [24]. Indeed, the
latter work had to assume that the 1;’s come from a family of 3-wise indepen-
dent permutations — which are more compicated and less efficient than 2-wise
independent permutations (or functions) — and presented a significantly more
involved analysis of their scheme.

1.4 A Caveat: Composing Entropically-Secure Constructions

A desirable property of definitions of security of cryptographic primitives is
composability: once some protocol or algorithm has been proven secure, you
would like to be able to use it as a building block in other protocols with your
eyes closed—without having to worry about effects that violate the intuitive
notion of security, but which are not covered by the original definition.

Composability is difficult to guarantee, since it is not clear how to translate it
into a mathemetical property. There are various formalizations of composability,
most notably “Reactive Systems” [22], “Universal Composability” [7] and several
frameworks based on logic algebras for automated reasoning (see [14] and the
references therein). Finding protocols that are provably secure in these general
frameworks is difficult, and sometimes provably impossible. A more common
approach is to prove that a particular definition remains intact under a few
straightforward types of composition, say by proving that it is still secure to
encrypt the same message many times over.

The main weakness of entropic security, as defined above, is that it does
not ensure composability, even in this straightforward sense. If Y'() and Y”()
are independent versions of the same entropically-secure mapping, then the map
which outputs the pair Y (X),Y’(X) may be insecure to the point of revealing
X completely. In the case of encryption, this means that encrypting the same
message twice may be problematic. (Given the first value Y (X), the entropy of
X may be too low for the security guarantee of Y’() to hold).

For example, suppose that Y (z) consists of the pair (M, Mx), where M is
a random 22 x n binary matrix M and x € {0,1}". We will see later that Y()
is entropically secure whenever the entropy of X is close to n. However, the
pair Y (z),Y’(z) provides a set of 3* randomly chosen linear constraints on z.
With high probability, these determine x completely, and so the pair Y (),Y”()
is insecure under any reasonable definition.

Given these issues, entropically-secure primitives must be used with care: one
must ensure that the inputs truly have enough entropy for the security guarantee
to hold. Requiring entropy is natural in many situations (e.g. when the input
is a password), but the issue of composability nonetheless raises a number of
interesting open questions for future research.



The generality and intuitive appeal of entropic security, as well as the variety
of contexts in which it has arisen, make it an important concept to understand.
We hope that the present work provides a major step in this direction.

2 Entropic Security and Indistinguishability

In this section we sketch the proof of Theorem 1, that is of the equivalence
between entropic security for functions/predicates and indistinguishability.
First, some notation. Fix a distribution X on {0,1}". For a function f :
{0,1}" — {0,1}*, let pred; y be the maximum probability of any particular
outcome, that is the maximum probability of predicting f(X) without having

any information about X: pred; y = max, Pr[f(X) = z].

(When X is clear from the context, we may simply write pred f.) We may rephrase
entropic security as follows: for every function f and adversary A, the probability
of A predicting f(X) given Y (X) is at most pred; + e:

PI[A(Y (X)) = f(X)] < pred; y + .

2.1 From Entropic Security to Indistinguishability

The first statement of Theorem 1 is the easier of the two to prove, and we give
the intuition here: given two distributions Xy, X;, we can define a predicate
g(x) which captures the question “is 2 more likely to have come from X, or
X17” If X is a equal mixture of Xy and X7, then the adversary which makes the
maximum likelihood guess at g(X) given Y (X) will have success probability 3 +
1SD (Y (Xo), Y (X1)). On the other hand, with no access to Y (X), the adversary
can succeed with probability at most predp = % Entropic security implies that
the advantage over random guessing, and hence the statistical distance, must be
small. The formal proof is more involved, and is given below.

Proof. 1t is sufficient to prove indistinguishability for all distributions which are
uniform on some set of 2! points. To see why, recall that any distribution of
min-entropy at least ¢ — 1 can be written as a convex combination of such flat
distributions. If XO = E)\O,iXO,i and X1 = Z] )\l,le,ja where the XO,@' and
X, ; are all flat distributions, then the statistical distance SD (Y (Xy),Y (X1))
is bounded above by >, - Ao,iA1,;8D (Y (Xo,:), Y (X1,5)) (by the triangle inequal-
ity). If each of the pairs Y (Xo;),Y (X ;) has distance at most €, then the entire
sum will be bounded by e.

Now let X, X; be any two flat distributions over disjoint sets of 2°~1 points
each (we will deal with non-disjoint sets below), and let X be an equal mixture
of the two. That is, to sample from X, flip a fair coin B, and sample from X g.
Take g to be any predicate which is 0 for any sample from X, and 1 for any
sample from X;. A good predictor for g will be the adversary A who, given a
string y as input, guesses as follows:

Aly) = {0 if y is more likely under the distribution Y (Xy) than under Y (X;)

1 otherwise



By the definition of statistical difference, this adversary guesses the predicate
with probability exactly:

Pr [A(Y (X)) = B = g(X)] = 1 + 18D (¥ (Xo), Y(X1)). (1)

We can now apply the assumption that Y() is (¢, €)-entropically secure to
bound SD (Y (Xy), Y (X1)). First, for any random variable G over {0,1} which
is independent of X, the probability that G = g(X) is exactly % The distribution
X has min-entropy ¢ by construction, and so by entropic security the probability
that A(y) can guess g(X) is bounded:

PrlA(Y (X)) = g(X)] < maxg {Pr[G =g(X)]} +e= 1 +e (2)

Combining the last two equations, the statistical difference SD (Y (Xy), Y (X1))
is at most 2¢. This takes care of the case where X and X; have disjoint supports.

To get the general indistinguishability condition, fix any X as above (flat on
2t—1 points). For any other flat distribution X 1, there is some third flat distribu-
tion X’ which is disjoint from both Xo and X;. By the previous reasoning, both

SD (Y(XO), Y(X’)) and SD (Y(X’),Y(Xl)) are less than 2e. By the triangle
inequality SD (Y(Xy),Y (X1)) < 4e. A more careful proof avoids the triangle
inequality and gives distance 2¢ even when the supports of X, X7 overlap. O

2.2 From Indistinguishability to Entropic Security

Proving that indistinguishability implies entropic security is considerably more
delicate. We begin with an overview of the main ideas and notation.

The Case of Balanced Predicates. We say a function f is balanced (w.r.t. X) if it

takes on all its possible values with equal probability, i.e. there are ﬁ possible

values and each occurs with probability pred;. The reductions we consider are
much easier for balanced functions. In fact, we start with balanced predicates.

Namely, suppose that g() is a balanced predicate for distribution X, that is
Pr[g(X) = 0] = Pr[g(X) = 1] = 3, and that that A is an adversary contradicting
entropic security for min-entropy ¢ = H,(X), that is Pr[A(Y (X)) = g(X)] =
2+ € For b € {0,1}, let X, be the distribution of X conditioned on g(X) = b.
The adversary’s advantage over random guessing in distinguishing Y (Xy) from
Y (X;) is e. However, that same advantage is also a lower bound for the statistical
difference. We get:

Lt e = PrA(Y(X)) = g(X)]
= Prfp — {0,1} : A(Y(Xp)) =] < I+ 1SD (Y(X0), Y(X1)).

and so the distance between Y (Xj) and Y (X;) is at least €/2. To see that this
contradicts indistinguishability, note that since g(X) is balanced, we obtain X
and X7 by conditioning on events of probability at least % Probabilities are
at most doubled, and so the min-entropies of both Xy and X; are at most

Ho(X) — 1.



Balancing Predicates. If the predicate g() is not balanced on X, then the previous
strategy yields a poor reduction. For example, Pr[g(X) = 0] may be very small
(potentially as small as €). The probabilities in the distribution Xy would then be
a factor of 1/e bigger than their original values, leading to a loss of min-entropy
of log(1/€). This argument therefore proves a weak version of Theorem 1: (¢, €)
indistinguishability implies (¢ 4 log (1) ,2¢) entropic security for predicates.

This entropy loss is not necessary. We give a better reduction in Lemma 1
below. The idea is that to change the predicate ¢g() into a balanced predicate by
flipping the value of the predicate on points on which the original adversary A
performed poorly. By greedily choosing a set of points in g~1(0) of the right size,
we show that there exists a balanced predicate ¢'() on which the same adversary
as before has advantage at least €/2, if the adversary had advantage € for the
original predicate.

Lemma 1. (t—2,2¢)-indistinguishability implies (t, €)-entropic security for pred-
icates fort > 2.

Proof. Suppose that the scheme is not (¢, €)-entropically secure. That is, there
is a message distribution X with min-entropy at least ¢, a predicate g and an
adversary A such that

PHLA(Y (X)) = g(X)] > € + max {Prlg(X) = 1]} (3)

We wish to choose two distributions of min-entropy ¢ — 2 and use the adver-
sary to distinguish them, thus contradicting indistinguishability. It’s tempting
to choose the sets g=1(0) and g~1(1), since we know the adversary can predict g
reasonably well. That attempt fails because one of the pre-images ¢ ~*(0), g~ *(1)
might be quite small, leading to distributions of low min-entropy. Instead, we
partition the support of X into sets of (almost) equal measure, making sure that
the smaller of g=1(0) and g—!(1) is entirely contained in one partition.

Now let:

p=Prlh(X) = 1]
40 = PrLA(Y (X)) = 1]g(X) = 0]
a1 = PrA(Y (X)) = 1]g(X) = 1]

Suppose without loss of generality that p > 1/2, i.e. that g(X) = 1 is more likely
than, or as likely as, g(X) =0 (if p < 1/2, we can just reverse the roles of 0 and
1). The violation of entropic security (Eq. 3) can be re-written:

pg1+(1—=p)(1—qo) >p+e
In particular, p — pg1 > 0 so we get:
(1=p)(ar —qo) > € (4)

Now we wish to choose two distributions A, B, each of min-entropy ¢t — 2.
For now, fix any set S C g~ !(1), where g=1(1) = {z € {0,1}"|g(z) = 1}. We



make the choice of § more specific below. Let Ag be the conditional distribution
of X conditioned on X € S, and let Bs be distributed as X conditioned on
X € {0,1}"\ S. That is, As and Bgs have disjoint supports and the support of
Bs covers g~1(0) entirely.

The first property we will need from S is that it split the mass of X some-
what evenly. If the probability mass p’ of S under X was exactly 1/2, then the
min-entropies of As and Bs would both be exactly ¢ — 1. Depending on the
distribution X, it may not be possible to have such an even split. Nonetheless,
we can certainly get % <p < % + 27t simply by adding points one at a time
to § until it gets just below 1/2. The order in which we add the points is not
important. For ¢t > 2 (which is a hypothesis of this proof), we get % >p > %.
Hence, we can choose S so that the min-entropies of As and Bgs are both at
least t — 2.

We will also need that S have other properties. For every point x in the
support of X, we define ¢, = Pr[A(Y(z)) = 1]. The average over z «— X,
restricted to g~1(1), of ¢, is exactly q;, that is

Exp,_x [¢z] =@

If we now the choose the set S greedily, always adding points which maximize
Gz, we are guaranteed that the average over X, conditioned on X € S, is at least
q1. That is, there exists a choice of S with mass p’ € [%, %] such that

PrlA(Y (As)) = 1] = Expyaq [02] = @1
We can also now compute the probability that A(Y (Bs)) is 1:

l-p p—7
P Y(Bs))=1] =
(A (Bs) = 1] = ;S + 7=
Now PrlA(Y (X)) = 1|X ¢ S and ¢g(X) = 0] is at most ¢; (since by the greedy
construction of S, this is the average over elements in g~1(1) with the lowest
values of ¢;). Using A as a distinguisher for the distributions Y (As) and Y (Bs),
we get:

PriAY (X)) =1|X ¢ S and g(X) = 0]

| PrA(Y (As) = 1] —=Pr[A(Y(Bs)) =1] | > q1 — 11_‘;’, o — Yf:z: @
1-p
= 11—y (a1 — q0)

Since entropic security is violated (Eq. 4), we have (1 — p)(¢1 — qo0)/(1 —p') >
€/(1 —p'). By construction, we have p’ > 1 so the advantage of the predictor is
at least 2e, that is:

SD (Y (4s),Y(Bs)) > | Pr[A(Y(As)) = 1] = Pr[A(Y(Bs)) = 1] | > 2¢

Since A and B each have min-entropy at least ¢ —2, this contradicts (t—2, 2¢)-
indistinguishability, completing the proof. g



From Predicates to Arbitary Functions. In order to complete the proof of The-
orem 1, we need to show that entropic security for predicates implies entropic
security for all functions. The reduction is captured by the following lemma,
which states that for every function with a good predictor (i.e. a predictor with
advantage at least €), there exists a predicate for which nearly the same predictor
does equally well. This is the main technical result of this section.

The reduction uses the predictor A(Y (X)) as a black box, and so we will
simply use the random variable A = A(Y (X)).

Lemma 2 (Main Lemma). Let X be any distribution on {0,1}™ of min-
entropy t > %log (%), and let A be any random variable (possibly correlated
to X ). Suppose there exists a function f : {0,1}" — {0,1}* such that Pr[A =
f(X)] > pred; + €. Then there exists a predicate g : {0,1}" — {0,1} and an
algorithm B(-) such that

Pr[B(A) = g(X)] > pred, +¢/4.

Due to space limitations, the proof is only given in the full version [9]. We
mention only that there are two main steps to proving the lemma:

e If Ais a good predictor for an (arbitrary) function f(-), then there is a (almost)
balanced function f'(-) and a good predictor A’ of the form g(A).

o If f(-) is a balanced (or almost balanced) function and A is a good predictor
for f(X), then there is a predicate g(-) of the form ¢’(f(-)) such that ¢’(A) is
a good predictor for g(X).

A More Efficient Reduction. Lemma 2 completes the proof of Theorem 1. How-
ever, it says nothing about the running time of B(-)—in general, the reduction
may yield a large circuit. Nonetheless, we may indeed obtain a polynomial-time
reduction for certain functions f. If no value of f occurs with probability more
than €2, then inner product with a random vector provides a good predicate.
The idea behind the following proof has appeared in other contexts, e.g. [11].

Proposition 1. Let X be any random variable distributed in {0,1}™. Let f :
{0,1}" — {0,1}" be a function such that pred; x < €*/4, and let A be a random
variable with advantage € at guessing f(X). Forr € {0,1}V, let g.(x) = r© f(z).
If r is drawn uniformly from {0,1}~, then

Exp, [Pr[r ® A = g,(X)] —pred, | > €/4.

In particular, there exists a value r and a O(N)-time circuit B which satisfy
Pr[B(A) = g.(X)] > pred, +¢/4.

Proof. We can calculate the expected advantage almost directly. Note that con-
ditioned on the event A = f(X), the predictor r ©® A always agrees with g,(X).
When A # f(X), they agree with probability exactly % Hence, we have

Exp, [Prlr © A = g.(X)]] = 5

+ %Pr[A: F(X)] > (1 + pred; +¢)

N =



We must still bound the expected value of pred, . Let r, = (—1)*®". For any
particular, r, we can compute pred,, as %—i—% [>, p2r2|. Using the fact Exp [|Z]] <
v/ Exp [Z?2] for any random variable Z, we get:

2
1 1
] < 5 + 5 Expr (szrz>

By pairwise independence of the variables r,, we have Exp [r,r,] is 1 if z = a
and 0 otherwise.

1 /
Exp,. [pred 5 sz < - + pred .

The last mequahty holds since pred; is the maximum of the values p., and the
expression ) p? is maximized when p, = pred g forall z (note that this sum is
the collision probability of f(X)). Combining the two calculations we have

1
Exp, [Pr[r ® A = g,(X)] — predgr] > 3 (predf +e— ,/predf)

Using the hypothesis that pred, < €2 /4, we see that the expected advantage is
at least €/4. O

Exp, [predgT] = l + lExpT l

3 Encryption of High-Entropy Sources

In this section, we discuss the results on entropic security to the encryption
of mesages which are guaranteed to come from a high-entropy distribution.
Roughly: if the adversary has only a small chance of guessing the message ahead
of time, then one can design information-theoretically secure encryption (in the
sense of hiding all functions, Definition 1) using a much shorter key than is
usually possible—making up for the small entropy of the key using the entropy
inherent in the message.

3.1 Using Expander Graphs for Encryption

Formally, a symmetric encryption scheme is a pair of randomized maps (€, D).
The encryption takes three inputs, an n-bit message x, a k-bit key s and r
random bits i, and produces a N-bit ciphertext y = £(z, k; 7). Note that the key
and the random bits are expected to be uniform random bits, and when it is
not necessary to denote the random bits or key explicitly we use either £(z, k)
or £(x). The decryption takes a key x and ciphertext y € {0,1}V, and produces
the plaintext ' = D(y, k). The only condition we impose for (£,D) to be called
an encryption scheme is completeness: for all keys k, D(E(z, k), k) = = with
probability 1.

In this section, we discuss graph-based encryption schemes and show that
graph expansion corresponds to entropically secure encryption schemes.



Graph-based Encryption Schemes. Let G = (V, E) be a d-regular graph, and let
N(v,7) denote the j-th neighbor of vertex v under some particular labeling of
the edges. We'll say the labeling is invertible if there exists a map N’ such that
N(v,j) = w implies N'(w, j) = v.

By Hall’s theorem, every d-regular graph has an invertible labeling.? However,
there is a large class of graphs for which this invertibility is much easier to see.
The Cayley graph G = (V, E) associated with a group G and a set of generators
{91, ---, ga} consists of vertices labeled by elements of G which are connected when
they differ by a generator: F = {(u,u - gi)}uev,ie[d]' When the set of generators
contains all its inverses, the graph is undirected. For such a graph, the natural
labeling is indeed invertible, since N (v,j) = v-j and N'(w,j) = w-j~1. All the
graphs we discuss in this paper are in fact Cayley graphs, and hence invertibly
labeled.

Now suppose the vertex set is V = {0,1}" and the degree is d = 2*, so
that the neighbor function N takes inputs in {0,1}" x {0,1}*. Consider the
encryption scheme:

E(x, k) = N(x, k). (5)

Notice, £ is a proper encryption scheme if and only if the labeling is invertible.
In that case, D(y, k) = N'(y, k) = x. For efficiency, we should be able to compute
N and N’ in polynomial time. We will show that this encryption scheme is secure
when the graph G is a sufficiently good expander. The following definition is
standard:

Definition 3. A graph G = (V, E) is a (t,€)-extractor if, for every set S of 2¢
vertices, taking a random step in the graph from a random vertex of S leads to a
nearly uniform distribution on the whole graph. That is, let Ug be uniform on S,
J be uniform on {1,...,d} and Uy be uniform on the entire vertex set V.. Then
for all sets S of size at least 2¢, we require that:

SD( N({Us,J), Uy ) <e.

The usual way to obtain extractors as above is to use good expanders. This
is captured by the following fact.

Fact 1 (Expander smoothing lemma [12]). A graph G with second largest
(normalized) eigenvalue \ < €2~ ("=9/2 s q (t, €)-extractor.

The equivalence between entropic security and indistinguishability (Theo-
rem 1) gives us the following result:

Proposition 2. For a 2F-regular, invertible graph G as above, the encryption
scheme (€,D) given by N, N’ is (t,€)-entropically secure if G is a (t — 2,2¢)-
extractor (in particular, if G has second eigenvalue \ < e -2~ ("=t=2)/2 )

2 We thank Noga Alon for pointing out this fact. If G = (V, E) is a d-regular undirected
graph, consider the bipartite graph with |V vertices on each side and where each
edge in F is replaced by the corresponding pair of edges in the bipartite graph. By
Hall’s theorem, there exist d disjoint matchings in the bipartite graph. These induce
an invertible labeling on the original graph.



Proof. By Theorem 1, it suffices to show that (¢t — 2, €)-indistinguishability. And
this immediately follows from the lemma above and the fact that any min-
entropy (t — 2) distribution is a mixture of flat distributions. O

We apply this in two ways. First, using optimal expanders (Ramanujan
graphs) we obtain the best known construction of entropically-secure encryption
schemes (Corollary 1). Second, we give a simpler and much stronger analysis of
the original scheme of Russell and Wang (Corollary 2).

Corollary 1. There exists an efficient deterministic (t,e)-entropically secure
. _ 1

scheme with k =n —t + 2log (g) + 2.

Proof. We apply Proposition 2 to Ramanugjan graphs. These graphs are optimal

for this particular construction: they achieve optimal eigenvalue A = 2v/d — 1

for degree d [17]. The bound on k now follows. O

The main drawback of Ramanujan graphs is that explicit constructions are
not known for all sizes of graphs and degrees. However, large families exist (e.g.
graphs with ¢ + 1 vertices and degree p + 1, where p and ¢ are primes congruent
to 1 mod 4). Below we show why the construction from Russell and Wang [24]
using small-biased spaces is actually a special case of Proposition 2.

Using Small-biased Sets. A set S in {0,1}" is d-biased if for all nonzero o €

{0,1}", the binary inner product a® s is nearly balanced for s drawn uniformly
in S:

1—-6 1456
Prs[a®s =0] € [T, %] or, equivalently,

Exp.s [(-1)*°%] < 4. (6)

Alon et al. [1] gave explicit constructions of d-biased sets in {0, 1}" with size
O(n?/6?). Now suppose the d-biased set is indexed {s,|x € {0,1}*}. Consider
the encryption scheme: £(x,k) = x @ s,. Russell and Wang introduced this
scheme and showed that it is (n, €)-entropically secure when § = €3/2, yielding
a key length of k = 2logn + 3log (%) However, their analysis works only when
the message is drawn uniformly from {0,1}".

We propose a different analysis: consider the Cayley graph for ZZ5 with
generators S, where S is §-biased. This graph has second eigenvalue A < § [20,
2]. Hence, by Proposition 2 the scheme above is (¢, €)-entropically secure as long
as 0 < €2~ (»=t=2)/2 This gives a version of the Vernam one-time pad for high-
entropy message spaces, with key length £k = n — ¢ 4+ 2logn + 2log (%) + O(1).
Unlike [24], this works for all settings of ¢, and also improves the parameters in
[24] for n =t.

Corollary 2. If {s,{\n € {0, 1}}“} is a 0-biased set, then the encryption scheme
E(x,k) = © @ s, is (t,€) indistinguishable when ¢ = 62"~t=2)/2 Using the
costruction of [1], this yields a scheme with key length k = n —t + 2log (%) +
2log(n) + O(1) (for any value of t).



3.2 A Random Hashing Construction

This section presents a simpler construction of entropically secure encryption
based on pairwise independent hashing. Our result generalizes the construction
of Russell and Wang [24] for nonuniform sources, and introduces a new variant
of the leftover-hash/privacy-amplification lemma [3, 15].

The idea behind the construction is that indistinguishability is the same as
extraction from a weak source, except that the extractor must in some sense be
invertible: given the key, one must be able to recover the message.

Let {h;},c; be some family of functions h; : {0,1}* — {0,1}", indexed over
the set I = {0,1}". We consider encryption schemes of the form

E(x,k314) = (i, @ hi(k) ) (for general functions h;), or (7)
E'(x, ki) = (4, hi(r) Dk ) (when the functions h; are permutations) (8)

These schemes can be thought of as low-entropy, probabilistic one-time pads.
Decryption is obviously possible, since the description of the function h; is public.
For the scheme to be (¢, €)-secure, we will see that it is enough to have k =
n—t+2log (%) +2, and for the function family to be pairwise independent. (This
matches the result in Corollary 1.) In fact, a slightly weaker condition is sufficient:
The following definition was introduced in the context of authentication [16]:

Definition 4 (XOR-universal function families). A collection of functions
{hi}ser from n bits to n bits is XOR-universal if: Va,z,y € {0,1}", 2 # y :
Prir[hi(z) ® hi(y) = a] < ﬁ

It is easy to construct XOR~universal families. Any (ordinary) pairwise in-
dependent hash family will do, or one can save some randomness by avoiding
the “offset” part of constructions of the form h(xz) = ax + b. Specifically, view
{0,1}™ as F = GF(2"), and embed the key set {0,1}* as a subset of . For any
i € F, let hiy(k) = ix, with multiplication in F. This yields a family of linear
maps {h;} with 2" members. Now fix any a € F, and any z,y € F with x # y.
When i is chosen uniformly from {0,1}", we have h;(z) ® hi(y) =i(z —y) = a
with probability exactly 27". If we restrict ¢ to be nonzero, then we get a family
of permutations, and we get h;(z) ® h;(y) = a with probability at most ﬁ

Proposition 3. If the family {h;} is XOR-universal, then the encryption schemes
E(x,k31) = (l,z ® hi(k)) and E'(x,k;1) = (i,hi(x) ® K)

are (t, €)-entropically secure, for t = n — k + 2log (%) + 2. (However, &£ is a
proper encryption scheme only when {h;} is a family of permutations.)

This proposition proves, as a special case, the security of the Russell-Wang
construction, with slightly better parameters (their argument gives a key length
of n —t+ 3log (%) since they used 3-wise independent permutations, which are
also harder to construct). It also proves the security of the simple construction
E(x, k1) = (i,z + ik), with operations in GF(2").



Proposition 3 follows from the following lemma of independent interest, which
is closely related to the to the leftover hash lemma [13] (also called privacy
amplification; see, e.g. [3,4]), and which conveniently handles both the £ and
the & variants.

Lemma 3. If A, B are independent random variables such that Ho (A)+H (B)
>n+2log (L) 41, and {h;} is a XOR-universal family, then

where Uy, and i are uniform on {0,1}™ and Z.

Proof. Consider the collision probability of (i, h;(A)@®B). A collision only occurs
if the same function h; is chosen both times. Conditioned on that, one obtains
a collision only if h;(A) @ h;(A’) = B@ B, for A’, B’ i.i.d. copies of A, B. We
can use the XOR-universality to bound this last term:

Pr[(i, hi(A) ® B) = (i, hi(A") ® B')]
= Prfi = i’](Pr[B = B']- Pr[hi(A) = hy(A)]

+ ZPr[B & B’ = a] - Prlhi(A) & hiy(A) = a]) ©)

a#0

Now let t, = Ha(A), t, = Ha(B). For a # 0, we have Pr[h;(4) & h;(A") =
a] <1/(2™—1), by the conditions on {h;}. On the other hand, by a union bound
we have

1 1
Prihi(A) = hi(A)] < Prld = A+ o <27% +

Hence, Eqn. 9 reduces to

1 1
—t —tq /
7 |2 b<2 +2n_1>+2n_1 S PiB® B =d
a#0

1 2
< 1 2n7ta7tb 27tb
_—|I|2n( + 2T

Now 2n~te=t < €2 /2 by assumption, and we also have 27" < 27 < ¢€2/2,
since tq,t, < nand t,+t, > n+2log (%) (similarly, n > 2log (%)) Hence Eqn. 9
reduces to (1 + 2¢?)/|Z|2". Any distribution on a finite set S with collision
probability (1 + 2€2)/|S| is at statistical distance at most € from the uniform
distribution [15]. Thus, (¢, h;(A) @ B) is e-far from uniform. a

Note that the lemma gives a special “extractor by XOR” which works for
product distributions A x B with at least n bits of min-entropy between them.



3.3 Lower Bounds on the Key Length

Proposition 4. Any encryption scheme which is (t,¢€)-entropically secure for
inputs of length n requires a key of length at least n —t.

Proof. We can reduce our entropic scheme to Shannon-secure encryption of
strings of length n — t + 1. Specifically, for every w € {0,1}"~**! let X, be
the uniform over strings with w as a prefix, that is the set {w} x {0,1}*~!. Since
X,, has min-entropy t — 1, any pair of distributions £(X,,), £(X,) are indistin-
guishable, and so we can use £() to encrypt strings of length n — ¢ + 1. When
€ < 1/2, we must have key length at least (n —t 4+ 1) — 1 = n — ¢ by the usual
Shannon-style bound (the loss of 1 comes from a relaxation of Shannon’s bounds
to statistical security). O

Bounds for Public-Coin Schemes via Extractors. In the constructions of Russell
and Wang and that of Section 3.1 and Section 3.2, the randomness used by the
encryption scheme (apart from the key) is sent in the clear as part of the ci-
phertext. That is, £(z, k;i) = (i,E'(x, k;1)). For these types of schemes, called
public-coin schemes, the intuitive connection between entropic security and ex-
traction from weak sources is pretty clear: encryption implies extraction. As a
result, lower bounds on extractors [23] apply, and show that our construction is
close to optimal.

Proposition 5. Any public-coin, (¢, €)-entropically secure encryption has key
length k >n —t+1log () — O(1) (as long as t > 2log (1) ).

To prove the result, we first reduce to the existence of extractors:

Lemma 4. Assume (€,D) is a public-coin, (t, €)-entropically secure encryption
scheme with message length n, key length k and r bits of extra randomness. Then
there exists an extractor with seed length k +r, input length n and output length
n +r — log (%), such that for any input distribution of min-entropy t + 1, the
output is within distance 3e of the uniform distribution.

Proof. We combine three observations. First, when U is uniform over all mes-
sages in {0,1}", the entropy of the distribution £(U) must be high. Specifically:
H. (E(U)) = n + r. To see this, notice that there is a function (D) which can
produce R, K,U from K,E(U, K;R). Since the triple (R, K,U) is uniform on
{0,1}7+**+7 it must be that (K,E(U, K)) also has min-entropy r + k + n, i.e.
that any pair (k,c) appears with probability at most 2= (n=k=7)  Summing over
all 2% values of , we see that any ciphertext value ¢ appears with probability at
most Y., 277"k = 27777 a5 desired.

The second observation is that there is a deterministic function ¢ which maps
ciphertexts into {0, 1}””710‘%(%) such that ¢(E(U)) is within distance € of the
uniform distribution. In general, any fized distribution of min-entropy ¢ can be
mapped into {0,1}¢71°8(1/€) 5o that the result is almost uniform (Simply assign
elements of the original distribution one by one to strings in {0, 1}t_1°g(1/€), SO



that at no time do two strings have difference of probability more than 2~¢. The
total variation from uniform will be at most 2¢71°8(1/¢) . 2=t — ¢). Note that ¢
need not be efficiently computable, even if both £ and D are straightforward.
This doesn’t matter, since we are after a combinatorial contradiction.

Finally, by Theorem 1, for all distributions of min-entropy ¢ — 1, we have
SD (E(U),E(X)) < 2, and so SD (¢(E(U)), p(E(X))) < 2e. By the triangle
inequality, ¢(€(X)) is within 3¢ of the uniform distribution on n + r — log (1)
bits, proving the lemma. O

We can now apply the lower bound of Radhakrishnan and Ta-Shma [23], who
showed that any extractor for distributions of min-entropy ¢ with error parameter
6 and d extra random bits can extract at most ¢ + d — 2log(1/§) + O(1) nearly
random bits. From Lemma 4, we get and extractor for min-entropy t+1, § = 3,
k+r extra random bits, and output length n+r—log(1/¢). Thus, n+r—log(1/€) is
at most t+1+k+r—2log(1/€)+0O(1), which immediately gives us Proposition 5.

Remark 1. We do not lose log(1/€) in the output length in Lemma 4 when
the encryption scheme in indistinguishable from the uniform distribution (i.e.,
ciphertexts look truly random). For such public-coin schemes, we get k > n—t+
2log (1) — O(1). Since all of our constructions are of this form, their parameters
cannot be improved at all. In fact, we conjecture that k > n—t+2log (1) —O(1)
for all entropically-secure schemes, public-coin or not.
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