
Share conversion, pseudorandom secret-sharing

and applications to secure distributed computing

Ronald Cramer1, Ivan Damg̊ard2?, and Yuval Ishai3??

1 CWI, Amsterdam and Mathematical Institute, Leiden University (cramer@cwi.nl)
2 Aarhus University (ivan@daimi.au.dk)

3 Technion, Haifa (yuvali@cs.technion.ac.il)

Abstract. We present a method for converting shares of a secret into
shares of the same secret in a different secret-sharing scheme using only
local computation and no communication between players. In particular,
shares in a replicated scheme based on a CNF representation of the
access structure can be converted into shares from any linear scheme for
the same structure.
We show how this can be combined with any pseudorandom function
to create, from initially distributed randomness, any number of Shamir
secret-sharings of (pseudo)random values without communication. We
apply this technique to obtain efficient non-interactive protocols for se-
cure computation of low-degree polynomials, which in turn give rise
to other applications in secure computation and threshold cryptogra-
phy. For instance, we can make the Cramer-Shoup threshold cryptosys-
tem by Canetti and Goldwasser fully non-interactive, or construct non-
interactive threshold signature schemes secure without random oracles.
The latter solutions are practical only for a relatively small number of
players. However, in our main applications the number of players is typi-
cally small, and furthermore it can be argued that no solution that makes
a black-box use of a pseudorandom function can be more efficient.

1 Introduction

A secret-sharing scheme enables a dealer to distribute a secret among n players,
such that only some predefined qualified subsets of the players can recover the
secret from their joint shares and others learn nothing about it. The collection
of qualified sets that can reconstruct the secret is called an access structure. One
useful type of secret-sharing schemes are threshold schemes, in which the access
structure includes all sets of more than t players, for some threshold t.

Secret-sharing schemes have found numerous applications in cryptography.
In most of these applications, one tries to use the “best” known scheme for the
access structure at hand. Indeed, in the most popular threshold case, applications

? Supported by BRICS, Basic research in Computer Science, Center of the Danish
National Research Foundation and FICS, Foundations in Cryptography and Security,
funded by the Danish Natural Sciences Research Council

?? Research supported by Israel Science Foundation grant 36/03.

typically rely on Shamir’s scheme [28], which is optimal with respect to its share
size. It turns out, however, that there are contexts where it is not desirable, or
even not at all possible, to use the most succinct available secret-sharing scheme.
(Some examples will be provided below.) In such contexts it may be beneficial
to share a secret using one secret-sharing scheme and later convert its shares
to a different representation, corresponding to another secret-sharing scheme,
enjoying the relative advantages of both schemes.

Non-interactive share conversion. Motivated by this general scenario, as
well as by the more concrete applications discussed below, we introduce and
study the following notion of local conversion between secret-sharing schemes.
For secret sharing schemes S,S ′, we say that S is locally convertible to S ′, if any
valid S-sharing of a secret s may be converted by means of local transformations
(performed by each player separately) to valid, though not necessarily random,
S ′-sharing of the same secret s. Before describing our results on share conver-
sion and their applications, we turn to describe a special class of secret-sharing
schemes that play a central role in these results.

Replicated secret-sharing. A very useful type of “inefficient” secret-sharing
scheme is the so-called replicated scheme [23].1 The replicated scheme for an ac-
cess structure Γ proceeds as follows. First, the dealer splits the secret s into
additive shares, where each additive share corresponds to some maximal unqual-
ified set T 6∈ Γ . That is, we view s as an element of some finite field K, and
write s =

∑

T∈T rT , where T is the collection of all maximal unqualified sets,
and where the additive shares rT are random subject to the restriction that they
add up to s. Then, the dealer distributes to each player Pj all additive shares
rT such that j 6∈ T .

Pseudorandom secret-sharing. In the threshold case, the replicated scheme
involves

(

n
t

)

additive shares and is thus far worse than Shamir’s scheme in terms
of share size. However, it enjoys the following key property: shares of a random
secret s ∈ K consist of replicated instances of random and independent elements
fromK. This property comes handy in applications which require a large number
of (pseudo-)random secret-shared values: viewing each replicated share rT as an
independent key to a pseudorandom function, we may get a virtually unlimited
supply of independent pseudorandom secrets, each shared using the replicated
scheme. Thus, we may use this method to obtain replication-shared secrets at a
very low amortized cost. The main difficulty is that these shared secrets cannot
be securely used in a higher level application without paying the

(

n
t

)

communi-
cation overhead for each secret being used. The goal of share conversion, in this
case, would be to locally convert replicated shares of each shared secret used by
the application into an equivalent Shamir representation. This would allow to
enjoy the best of both worlds, combining the share independence advantage of
the replicated scheme with the succinctness advantage of Shamir’s scheme.

1 This scheme can also be obtained from the formula-based construction of [6] by using
a CNF representation of the access structure. Hence, it is sometimes referred to in
the literature as a CNF-based scheme.

1.1 Our Results

Our contribution goes in two directions. First, we put forward the notion of
share conversion and obtain some results on the possibility and efficiency of
share conversion. Second, we present various applications of our share conversion
results, mainly within the domains of multiparty computation and threshold
cryptography. We now provide a more detailed account of these results.

Results on share conversion. Our main result is that shares from the repli-
cated scheme described above can be locally converted into shares of any linear
scheme2 for the same (or smaller) access structure. In particular, shares from the
replicated scheme for a threshold structure can be converted into Shamir-shares
for the same structure. We start by describing a simple conversion procedure
for the latter special case, and then generalize it to arbitrary linear schemes and
access structures. The general conversion result relies on a representation of the
access structure by a canonical span program [24].

The share convertibility relation induces a partial order on secret-sharing
schemes. Under this order, the replicated scheme is maximal in the class of all
linear schemes realizing a given access structure. We also identify a minimal
scheme in this class, and prove some negative results regarding the possibility
and efficiency of share conversion. In particular, we show that the

(

n
t

)

overhead
cannot be avoided when converting replicated shares to Shamir shares.

Applications. As discussed above, share conversion can be combined with any
pseudorandom function to securely create, from initially distributed randomness,
a virtually unlimited supply of Shamir secret sharings of (pseudo)random values
without further interaction. We present several applications of this idea in a
setting where the cost of pre-distributing

(

n
t

)

keys can be afforded.

Distributed PRFs. We obtain a communication-efficient variant of a dis-
tributed PRF construction of Naor, Pinkas, and Reingold [27] by converting its
replicated shares to Shamir shares. A natural application of distributed PRFs is
to distributing a key-distribution center.

Secure multiparty computation. We present efficient protocols for securely
evaluating low-degree polynomials, requiring only two rounds of interaction: a
round of broadcast messages followed by a round of point-to-point messages.
(If no setup is allowed, then this is provably impossible [19].) Using known
techniques, these results for low-degree polynomials can be extended to gen-
eral functions. In the case of functions which only take a random input (e.g., a
function dealing cards to poker players) the first round of broadcasts can be elim-
inated. Thus, we get efficient and fully non-interactive protocols for distributing
a trusted dealer in a wide array of applications.

2 In a linear secret-sharing scheme the secret is taken from a finite field, and each
player’s share is obtained by computing some linear function of the secret and the
dealer’s randomness. Essentially all known useful schemes are linear.

Threshold cryptography. The above results on multiparty computation can
be specialized to obtain non-interactive implementations of threshold cryptosys-
tems, taking advantage of their simple algebraic structure. For instance, we show
how to make the Cramer-Shoup threshold cryptosystem by Canetti and Gold-
wasser [11] fully non-interactive and how to construct non-interactive threshold
signature schemes secure without random oracles.

Towards assessing the practicality of these solutions, we note that many of
them, in particular the threshold cryptography applications, are designed for
a client-server model, where we would typically have a small number of quite
powerful servers and some number of (possibly less powerful) clients. Even the
application to general multiparty computation can be naturally set in a client-
server model, for instance when a large number of players provide input to a
computation, but where it is not practical to have them all participate in the
computation – this is then left to a small number of servers. Our solutions fit
nicely into such a scenario, since they only require the servers to handle the

(

n
t

)

overhead locally, and since here n is the number of servers which is typically
small.

It is important to understand that all our applications could have been re-
alized with the same functionality without using share conversion. Instead, the
players would work directly on the replicated shares. For instance, this is exactly
what was done for distributed PRF’s in [27] and could be done for threshold cryp-
tography and multiparty computation by adapting Maurer’s techniques [25] in a
straightforward way. However, such solutions would be much less practical. First,
the

(

n
t

)

overhead would now also apply to the communication, and hence also to
the local computation of the clients. Second, various possibilities for optimization
would be lost. For instance, the threshold cryptography applications typically
require servers to use shares of fresh (pseudo)random values every time they are
called by a client. Using share conversion, many sets of such (Shamir) shares can
be generated off-line and stored compactly, making the on-line work and storage
of servers efficient in n and t. Without share conversion, the

(

n
t

)

overhead would
apply to the entire storage generated off-line, destroying the on-line advantage.
Finally, share conversion also yields significant savings in the local computation
performed by the servers. Without share conversion, the servers’ computation

in our applications would increase (roughly) by a factor of either
(

n
t

)

or
(

n
t

)2
.

Conceptual contribution. All of the above applications are related to the
use of replicated secret-sharing in conjunction with pseudorandomness. But there
are also other types of applications which seem to benefit from the use of repli-
cated secret-sharing in different, and sometimes unexpected, ways. For instance,
replicated shares yield the most efficient information-theoretic private informa-
tion retrieval protocols and locally decodable codes [5], the best round complexity
for verifiable secret-sharing [18], and the simplest protocols for secure multiparty
computation with respect to generalized adversaries [3, 25]. Our results on share
conversion provide an explanation for the usefulness of the replicated scheme,
suggesting that anything that can be achieved using linear secret-sharing can
also be achieved (up to an

(

n
t

)

overhead) using this specific scheme. This may

also serve as a useful guideline for the design of cryptographic protocols (e.g.,
when attempting to improve [5]).

Related Work. The idea of distributing pseudorandom functions by replicating
independent keys has been previously used by Micali and Sidney [26] and by
Naor et al. [27]. However, without the tool of share conversion, their protocols are
either very expensive in communication or lose some of their appealing features.
We note that an alternative number-theoretic construction of distributed PRFs,
suggested in [27], is not suitable for our applications due to the “multiplicative”
representation of the output.

Most relevant to the current work is the work on compressing cryptographic
resources by Gilboa and Ishai [20]. The problem considered there is that of
using replicated pseudorandom sources to securely “compress” useful correlation
patterns. In particular, a conversion from replicated shares of a random secret
to Shamir shares of a random secret (though not necessarily the same secret) is
implicit in their results. The results of [20] do not explicitly refer to the access
structure associated with a given correlation pattern, and do not imply our
general results on share conversion.

2 Preliminaries

We define an n-player secret sharing scheme by a tuple S = (K, (S1, . . . , Sn), R,D),
where K is a finite secret-domain (typically a finite field), each Sj is a finite share
domain from which Pj ’s share is picked (typically Sj = Kaj for some aj), R is a
probability distribution from which the dealer’s random input is picked, and D
is a share distribution function mapping a secret s and a random input r to an
n-tuple of shares from S1 × · · · × Sn. We say that S realizes an access structure
Γ ⊆ 2[n] if it satisfies the following.

– Correctness: For any qualified set Q = {j1, . . . , jm} ∈ Γ there exists a
reconstruction function recQ : Sj1×· · ·×Sjm

→ K such that for every secret
s ∈ K, Pr[recQ(D(s,R)Q) = s] = 1, where D(s,R)Q denotes a restriction of
D(s,R) to its Q-entries.

– Privacy: for any unqualified set U 6∈ Γ and secrets s, s′ ∈ K the random
variables D(s,R)U and D(s

′, R)U are identically distributed.

In a linear secret-sharing scheme (LSSS) the secret-domain K is a finite field,
and the randomness R is a uniformly random m-tuple (r1, . . . , rm) ∈ K

m. The
share distribution function D is a linear function of s, r1, . . . , rm.

In this work we will refer to the following specific LSSS:

1. Shamir’s secret-sharing [28]. Let K be a finite field such that |K| > n.
Each player Pj is assigned a unique non-zero element from K, which we
denote j (by abuse of notation if K is not a prime field). In the t-private
Shamir scheme, the dealer picks t random and independent field elements
r1, . . . , rt, which define the univariate polynomial f(y) = s + r1y + r2y

2 +
. . .+ rty

t, and distributes to each player Pj the share sj = f(j).

2. Replicated secret-sharing [23]. Let Γ⊆2[n] be a (monotone) access
structure, and let T include all maximal unqualified sets of Γ . The replicated
scheme for Γ , denoted RΓ , proceeds as follows. To share a secret s ∈ K
the dealer first additively share s into |T | shares, each labelled by a different
set from T ; that is, it lets s =

∑

T∈T rT where the shares rT are otherwise-
random field elements. Then, the dealer distributes to each player Pj all
shares rT such that j 6∈ T ; that is, Pj ’s share vector is (rT)T 63j . Privacy
follows from the fact that members of every maximal unqualified set T ∈ T
jointly miss exactly one additive share, namely the share rT (hence members
of any unqualified set miss at least one share). On the other hand, since Γ is
monotone, a qualified set Q ∈ Γ cannot be contained in any unqualified set;
hence, members of Q jointly view all shares rT and can thus reconstruct s.

3. DNF-based secret-sharing [23]. In the DNF-based scheme, the secret is
additively shared between the members of each minimal qualified set, where
each additive sharing uses independent randomness. This scheme can be
obtained by applying the construction of [6] to the monotone DNF repre-
sentation of Γ .

In the case of threshold access structures, the latter two schemes may be
practical only in contexts where

(

n
t

)

is not too large. Their asymptotic complexity
is polynomial in n when t = O(1) or n− t = O(1).

3 Share Conversion

In this section we present our main results on local share conversion. We start
by defining this notion, which induces a partial order on secret-sharing schemes.

Definition 1 (Share conversion). Let S,S ′ be two secret-sharing scheme over
the same secret-domain K. We say that S is locally convertible to S ′ if there exist
local conversion functions g1, . . . , gn such that the following holds. If (s1, . . . , sn)
are valid shares of a secret s in S (i.e., Pr[D(s,R) = (s1, . . . , sn)] > 0), then
(g1(s1), . . . , gn(sn)) are valid shares of the same secret s in S ′. We denote by
g the concatenation of all gi, namely g(s1, . . . , sn) = (g1(s1), . . . , gn(sn)), and
refer to g as a share conversion function.

Note that the above definition does not require that random shares of a
secret s in S will be converted into random shares of s in S ′. However, due
to the locality feature of the conversion, converted shares cannot reveal more
information about s than the original shares. Moreover, in typical applications
of our technique the converted shares S ′ will indeed be random.

3.1 From Replicated Shares to Shamir

We first address the important special case of threshold structures. Suppose that
a secret s has been shared according to the t-private replicated scheme. Thus,
we may write:

s =
∑

A⊆[n] : |A|=n−t

rA

where rA has been given to all players in A.
To locally convert these shares into shares of s according to the t-private

Shamir scheme, we assign to player Pi the point i in the field. Now, for each set
A⊆[n] of cardinality n− t, let fA be the (unique) degree-t polynomial such that:

1. fA(0) = 1 and
2. fA(i) = 0 for all i ∈ [n] \A.

Each player Pj can compute a share sj as follows:

sj =
∑

A⊆[n] : |A|=n−t,j∈A

rA · fA(j).

We claim that this results in a set of shares from Shamir’s scheme, consistent
with the original secret s. To see this, define a polynomial

f =
∑

A⊆[n] : |A|=n−t

rA · fA.

Clearly, f has degree (at most) t, and it is straightforward to verify that condition
1 above on the fA’s implies f(0) = s and condition 2 implies f(j) = sj .

3.2 Conversion in General

We now generalize the previous conversion result to non-threshold structures.
Specifically, we show that shares of the replicated scheme for an arbitrary access
structure Γ can be locally converted into shares of any other LSSS for Γ (in
fact, even for any Γ ′ ⊂ Γ).

To this end, it will be useful to rely on a representation of LSSS via span
programs, a linear algebra based model of computation introduced by Karchmer
and Wigderson [24]. A span program over the variables {x1, . . . , xn} assigns
to each literal xi or x̄i some subspace of a linear space V . The span program
accepts an assignment z ∈ {0, 1}n if the n subspaces assigned to the satisfied
literals span some fixed nonzero vector in V , referred to as the target vector. We
will be interested in the monotone version of this model, formalized below.

Definition 2 (MSP). A monotone span program (MSP) is a triple M =
(K,M, ρ), where K is a finite field,M is an a×b matrix over K, and ρ : [a]→ [n]
labels the rows of M by player indices. The size of M is the number of rows a.
For any set A⊆[n] let MA denote the submatrix obtained by restricting M to its
rows with labels from A (and similarly for any other matrix with a rows). We
say that M accepts A if the rows of MA span the all-ones vector 1. We denote
by ΓM the collection of all sets in 2[n] that are accepted by M, and by TM the
collection of maximal sets not accepted by M.

Note that for any MSPM, the structure ΓM is monotone. We also note that
any nonzero vector could have been used as a target vector; however, the specific
choice of 1 will be convenient in what follows. We now associate with any MSP
M a corresponding LSSS in which the total number of field elements distributed
by the dealer is equal to the size ofM.

Definition 3 (LSSS induced by MSP). Let M = (K,M, ρ) be an MSP,
where M is an a× b matrix. The LSSS induced byM, denoted by SM, proceeds
as follows. To share a secret s ∈ K:

– Additively share s into r = (r1, . . . , rb).
– Evaluate s = Mr, and distribute to each player Pj the entries s{j} (i.e.,
those corresponding to rows labelled by j).

It is easy to verify that the induced scheme SM is indeed linear and, in fact,
that any LSSS is induced by some corresponding MSPM. Finally, the following
claim from [24] establishes the expected link between the MSP semantics and
the secret-sharing semantics.

Claim. [24] The scheme SM realizes the access structure ΓM.

Towards proving the main result of this section, it will be convenient to use
the notion of canonic span programs, introduced in [24]. We use the following
monotone version of their construction.

Definition 4 (Canonic MSP). Let M = (K,M, ρ) be an MSP, where M is
an a×b matrix. We define a canonic MSP M̂ = (K, M̂, ρ) as follows. M̂ has the
same size and row labeling asM, but possibly a different number of columns. Let
T = TM be the collection of maximal unqualified sets of ΓM. For every T ∈ T ,
let wT be a length-b column vector satisfying MT ·w

T = 0 and 1 ·wT = 1.3 For
each maximal unqualified set T ∈ T , the matrix M̂ will include a corresponding

column cT
def

=M ·wT (so that altogether M̂ has as many columns as sets in TM).

It can be shown that ΓM̂ = ΓM [24]. (This can also be derived as a corollary
of the next two lemmas.) The scheme SM̂ induced by the canonic program

M̂ may be viewed as a randomness-inefficient implementation of SM. We will
use SM̂ as an intermediate scheme in the process of converting shares of the
replicated scheme for ΓM into shares of SM.

Lemma 1. The scheme SM̂ is locally convertible to SM via the identity function
g(s) = s.

Proof. We need to show that any valid shares in SM̂ could have also been ob-
tained in SM under the same secret s. Let r̂ ∈ Kb be some additive sharing of
s = 1 · r̂ induced by the dealer’s randomness in SM̂. Let r = W r̂ where W is

a concatenation of all column vectors wT in the order used for constructing M̂ .
By the construction of M̂ we have M̂ =MW and so M̂ r̂ =MW r̂ =Mr. Thus,
r produces the same shares in SM as r̂ produces in SM̂. Finally, since every w

T

must satisfy 1 ·wT = 1, we have 1 · r = 1 ·W r̂ = 1 · r̂, and thus r is consistent
with the same secret s. ut

3 The existence of such w
T may be argued as follows: Since M does not accept T , the

linear system (MT)
T

· x = 1 has no solution (where (MT)
T is the transpose of MT);

hence there must be a way to linearly combine the equations so that a contradiction
of the form 0 · x = 1 is obtained.

Lemma 2. Let RΓ be the replicated scheme realizing Γ over a finite field K,

M′ = (K,M ′, ρ′) an MSP such that Γ ′
def

= ΓM′ satisfies Γ ′⊆Γ , and M̂′ =
(K, M̂ ′, ρ′) a canonic MSP of M′. Then, RΓ is locally convertible to SM̂′ .

Proof. Suppose first that Γ ′ = Γ . Let T be the collection of maximal unqualified

sets of Γ . The RΓ -shares viewed by a player Pi are si
def

= (rT)T 63i, where r is an
additive sharing of the secret s. Define the i-th local conversion function to be

gi(si) =
∑

T 63i

rT · c
T
{i}.

Since each column cT of M̂ ′ has only zeros in its T -entries, the above functions
gi jointly define the conversion function g which maps RΓ -shares s, obtained
by replicating additive shares r = (rT)T∈T , into the SM̂′ -shares s′ = M̂ ′r. The
correctness of this conversion is witnessed by letting r′ = r, namely the same
additive sharing of s producing s in RΓ will also produce g(s) in SM̂′ .

The general case, where Γ ′ may be a proper subset of Γ , is only slightly more
involved. Let T ′ denote the maximal unqualified sets in Γ ′, and assign to each
T ∈ T some set T ′ ∈ T ′ containing it. For each T ′ ∈ T ′, define rT ′ to be the sum
of all rT such that T is assigned to T

′ (or 0 if there is no T assigned to T ′). Then,
the local conversion functions may be defined by gi(si) =

∑

T ′ 63i rT ′cT
′

{i}, and the

correctness of the induced conversion g is witnessed by letting r′ = (rT ′)T ′∈T ′ .
ut

As a direct corollary of the last two lemmas (and using the transitivity of
local conversions) we get the main result of this section:

Theorem 1. The replicated scheme RΓ , realizing Γ over a field K, is locally
convertible to any LSSS over K realizing an access structure Γ ′⊆Γ .

The above proof in fact provides a constructive way for defining the local
conversion function from RΓ to any LSSS S realizing Γ (or a subset of Γ), given
an MSP for S.

Theorem 1 shows that the (CNF-based) replicated scheme RΓ is maximal
with respect to the convertibility relation among all LSSS realizing Γ . Turning
to the other extreme, we now argue that the DNF-based scheme (defined in
Section 2) is minimal with respect to convertibility.

Theorem 2. Any LSSS realizing Γ is convertible to the DNF-based scheme for
Γ .

Proof sketch. Suppose that s has been shared according to some LSSS S for Γ .
We need to show that each minimal qualified set Q ∈ Γ can locally compute an
additive sharing of s. This easily follows from the linearity of the reconstruction
function recQ. ut

3.3 Negative Results for Share Conversion

We now show some negative results related to the possibility and efficiency of
share conversion. We start by showing that the convertibility relation is non-
trivial, in the sense that not all schemes realizing the same access structure
are convertible to each other. In fact, we show that Shamir shares cannot be
generally converted to replicated shares.

Claim. Let S be the 1-private 3-player Shamir scheme over a field K (|K| > 3)
and S ′ be the replicated scheme with the same parameters. Then S is not locally
convertible to S ′.

Proof. By the correctness requirement, the value of g on any valid 3-tuple
(s1, s2, s3) of S-shares must take the form g(s1, s2, s3) = ((r

′
2, r

′
3), (r

′
1, r

′
3), (r

′
1, r

′
2)).

We now use the locality requirement to show that g must be a constant function,
contradicting the correctness requirement. Suppose that one of the local func-
tions gi is non-constant. Assume wlog that g1(0) 6= g1(1) and that they differ
in their first output r′2. Then, either g(0, s2, 0) outputs illegal S

′-shares for all
s2 ∈ K or g(1, s2, 0) outputs illegal S

′-shares for all s2 ∈ K (since in either of
these cases the first share of P1 is different from the second share of P3). Since
there exist both valid S-shares of the form (0, s2, 0) and of the form (1, s2, 0),
we obtain the desired contradiction. ut

Motivated by the following applications, it is natural to ask whether one can
reduce the amount of replication in the replicated scheme RΓ and still allow to
convert its shares to other useful LSSS for Γ . Specifically, let S be a secret-sharing
scheme for Γ with the property that a qualified set of players can reconstruct
not only the secret, but also the shares of all players. Note that Shamir’s scheme
enjoys this property. We show that the scheme RΓ cannot be replaced by a more
efficient replicated scheme which is still convertible to S and at the same time
is private with respect to all unqualified sets of S.

Definition 5. A generic conversion scheme from replicated shares to S consists
of a set of independently distributed random variables R1, . . . , Rm, an assignment
of a subset Bj of these to each player Pj, and local conversion functions gj such
that if each Pj applies gj to the variables in Bj, we obtain values (s1, ..., sn)
forming consistent S-shares of some secret s. Furthermore, given the information
accessible to any unqualified set of Γ , the uncertainty of s is non-zero.

Note that neither S nor the conversion functions gj are assumed to be linear.
Also note that the convertibility requirement formulated above is weaker than
our default requirement. However, we are about to show a negative result which
is only made stronger this way.

Proposition 1. For any generic conversion scheme for S as defined above, it
holds that m is at least the number of maximal unqualified sets.

Proof. Fix any maximal unqualified set T , and let BT be the set of Ri’s known
to T . We may assume that for each Ri ∈ Bj , it is the case that H(sj |Bj \Ri) > 0,
i.e., Ri is necessary for sj . If there was not the case, we could remove Ri from Bj

and get a more efficient scheme. For each player Pj 6 inT , we let Cj,T = Bj \ T ,
thus representing the information available to Pj but not to T . Each such set
must be non-empty, otherwise T could determine the value of s.

Now, the set T ∪Pj is qualified, and hence, for any other Pi 6∈ T , it is the case
that the share si = gi(Bi) is uniquely determined from BT ∪Bj – by assumption
on S. It follows that Bi ⊂ BT ∪Bj and therefore that Ci,T ⊂ Cj,T . If this was not
the case, then by independence of the Ri’s, si would not be uniquely determined
from BT ∪Bj . Since this argument works for any Pj 6∈ T , it follows that in fact
Ci,T = Cj,T , so we call this set CT for short.

Now, consider a different maximal unqualified set T ′. We will be done if we
show that CT ∩ CT ′ = ∅, since this and each CT being non-empty means that
there must be as many Ri’s as there are sets T .

So assume some Ri ∈ CT ∩ CT ′ , and consider a player Pj who is in T
′ \ T .

This means that Pj knows all variables in CT , in particular also Ri, but this is
a contradiction since Ri is also in CT ′ and BT ′ ∩ CT ′ = ∅ by construction. ut

4 Applications

The ability to convert replicated shares to Shamir shares allows to create, from
initially distributed randomness, any number of Shamir secret sharings of (pseudo)
random values without communication.4 In this section we present several ap-
plications of this idea.

We begin by describing some useful sub-protocols that are common to most
of these applications. The first protocol provides precisely the functionality de-
scribed above: secure generation of (pseudo)random Shamir-shared secrets with-
out communication. Recall the share conversion procedure described in Sec-
tion 3.1. A secret s has been shared according to the t-private replicated scheme,
namely s =

∑

A⊆[n] : |A|=n−t rA where rA has been given to all players in A. To
locally convert these shares into Shamir shares, each player Pj computes its share
as sj =

∑

|A|=n−t,j∈A rA · fA(j), where fA is a degree-t polynomial determined
by A.

The main observation is that when the secret s is random, all replicated shares
rA will be random and independent. Hence we may use the initially distributed
rA as keys to a PRF ψ·(·), and as long as players agree on a common input a
to the function, all players in A can compute ψrA

(a) and use it in the above
construction in place of rA. Concretely, we get the following.

Protocol Pseudorandom Secret-Sharing (PRSS)
Common inputs: a value a and independent keys {rA} that have been predis-

4 While we focus the attention on Shamir-based schemes for threshold access struc-
tures, the results of this section can be extended to linear schemes realizing general
access structures.

tributed as above. Each player Pj computes his share sj as:

sj =
∑

A⊆[n] : |A|=n−t,j∈A

ψrA
(a) · fA(j) (1)

Note that if we choose K to be of characteristic 2, we can modify the PRSS
protocol so that the shared value is guaranteed to be 0 or 1 by simply using a PRF
that always outputs 0 or 1. We call this Binary Pseudorandom Secret-Sharing
(BPRSS). Assuming that t < n/3 it is easy to turn this into a non-interactive
verifiable secret-sharing scheme, in a model where a broadcast primitive is avail-
able: we simply arrange it such that a Dealer knows all the involved keys. This
allows him to compute the pseudorandom shared value and correct it into the
value he wants to share:

Protocol Non-Interactive Verifiable Secret-Sharing (NIVSS)
Common inputs: a value a and keys {rA} as above. A dealer D holds all keys as
well as an input value v ∈ K. Each player Pj computes a preliminary share s̃i as
in Eq. 1. Using his knowledge of the keys, D computes the secret s determined
by the preliminary shares. D then broadcasts (v − s). Each Pj computes his
share as s̃j + (v − s).

It is straightforward to verify that this creates a valid Shamir sharing of v
if D is honest, and will create a valid sharing of some value no matter how D
acts. Furthermore, since t < n/3, this value can be reconstructed using standard
error correction techniques as long as at most t of the shares are wrong. Finally,
for the privacy, we have the following.

Lemma 3. Consider an adversary Adv that corrupts up to t of the players, but
not D. Adv may invoke the protocol NIVSS multiple times, (adaptively) choosing
a secret vj and a distinct evaluation point aj at each invocation. The adversary
gets to see the executions of NIVSS where in the j-th invocation aj is used as the
common input and either (case 0) vj or (case 1) a random independent value is
given as input to D. Assuming the underlying PRF is secure, cases 0 and 1 are
computationally indistinguishable.

Proof. Assume that some Adv can distinguish case 0 and 1, and make the (worst
case) assumption that Adv corrupts t players. This means that only one key rA
is unknown to Adv, where A consists of the n− t uncorrupted players. We build
an algorithm Alg that breaks the PRF. It gets oracle access to either ψrA

() or
a random oracle and must tell the two apart. Alg gets the inputs aj , vj from
Adv and at each invocation simply invokes the NIVSS protocol on these inputs,
except that it calls the oracle whenever it needs to compute ψrA

(). It is now
straightforward to verify that if Alg’s oracle is random, Adv will see an exact
emulation of case 1: in this case the value of s computed at each invocation will
be uniformly random and independent of previous values (by uniqueness of aj)
and so will vj − sj . On the other hand, if Alg talks to ψrA

() we emulate exactly

case 0. Thus Adv’s ability to distinguish case 0 and 1 translates to breaking the
PRF with the same advantage. ut

It is easy to adapt the NIVSS protocol such that we are guaranteed that
the shared value is 0 or 1, along the same lines as the BPRSS protocol. We
will refer to this as BNIVSS. Note also that if we just want to create a shared
random value known to the dealer, we can simply omit the broadcast step and
use the preliminary shares as final shares. We will refer to this as NIVSS without
broadcast.

The technique for pseudo-random secret-sharing can be generalized to create
sharings of a particular value, such as zero. We explain how this is done for
the same threshold t access structure as before, but for polynomials of degree
2t, since this is what we need in the following. Generalizations to other degrees
follow easily. Consider a set A of size n− t and consider the set of polynomials

FA = {f | deg(f) ≤ 2t, f(0) = 0, j 6∈ A⇒ f(j) = 0}.

If we think of the set of all degree-(2t) polynomials as a vector space over K, it
is easy to see that FA is a subspace of dimension 2t+1− t− 1 = t. So we choose
for each A, once and for all, a basis for FA consisting of t polynomials f

1
A, ..., f

t
A.

Finally, we distribute initially t keys r1A, ..., r
t
A to every player in A. This leads

to the following protocol:

Protocol Pseudorandom Zero-Sharing (PRZS)
Common input: a value a, keys {riA|i = 1..t, |A| = n− 1} that have been predis-
tributed as above. Each player Pj computes his share sj as:

sj =
∑

A⊆[n] : |A|=n−t,j∈A

t
∑

i=1

ψri
A
(a) · f iA(j)

It is straightforward to verify that this results in shares consistent with the
polynomial f0 =

∑

A,|A|=n−t,Pj∈A

∑t
i=1 ψsi

A
(a) · f iA, that deg(f0) ≤ 2t and that

f0(0) = 0.

The above ideas for “non-interactive random secret-sharing” are less efficient
if the number of sets A is large.5 On the other hand, the pseudo-random function
is used as a black-box and hence any pseudo-random function can be used. By
Proposition 1, our solution is optimal among a class of generic schemes making
a black-box use of a PRF.

5 Note that when t is constant, the number of sets A is polynomial in n. Thus, share
conversion allows to efficiently achieve a constant level of privacy with an arbitrarily
high level of robustness.

Distributed PRFs An immediate application of the basic PRSS protocol de-
scribed above is to the problem of distributing pseudorandom functions (or
KDCs), studied by Naor, Pinkas and Reingold [27]. A distributed PRF should
allow a client to query its value on any chosen input a by contacting n servers,
where the output should remain private from any collusion of t servers. More-
over, even if t servers are actively corrupted, the client should still learn the right
output. A simple solution to this problem is to use the PRSS protocol, where the
client sends a to each server Pj and receives sj , the corresponding Shamir-share
of the output, in return. A similar scheme that was suggested in [27] relies on
replicated PRFs but does not use share conversion. Thus, the communication
complexity of the scheme from [27] is very high, as servers are required to send
all replicated shares to the client.

4.1 Applications to Secure Multiparty Computation

We show how the pseudorandom secret-sharing approach can be used to securely
compute low-degree polynomials via an efficient two-round protocol. We then
discuss an extension of this result to general functions.

It will be convenient to use the following model for secure computation:
the input will be supplied by m input clients I1, ..., Im. The computation will
be performed by n servers P1, .., Pn. The outputs are to be distributed to v
output clients O1, ..., Ov. Since one player can play several of these roles, this is
a generalization of the standard model, which fits well with the applications we
give later. We will assume that input clients can broadcast information to the
servers and we also assume secure point to point channels between servers and
output clients. A typical protocol will have the following two-round structure: in
Round 1 each input client broadcasts values to the servers (one value for each
input) and in Round 2 each server sends (over a secure channel) a message to
each output client. For some applications Round 1 will not be necessary, in which
case we get fully non-interactive protocols.

We assume an adversary that can corrupt any number of clients and up to
t servers. We consider both the case of a passive and an active adversary. The
adversary is for now assumed to be static (non-adaptive).

We will make the following set-up assumptions: sets of keys for a pseudoran-
dom function have been distributed to input clients and servers, such that each
input client can act as the dealer in the NIVSS protocol and the servers can
execute the PRSS and PRZS protocols.

Secure computation of low-degree polynomials. We show how to securely
compute the value of a degree d multivariate polynomial Q() in m variables,
where Ij supplies the j-th variable xj . We assume that the output value Q(x) is
to become known to all output clients. Generalizations to more input variables,
more polynomials and different polynomials for different output clients follow
easily. For a passive adversary, we assume dt < n, while for an active adversary
we assume (d+ 2)t < n. The protocol proceeds as follows:

1. In round 1, each input client Ij acts as the dealer in the NIVSS protocol using
xj as his private input. (If the inputs xi should be restricted to take binary
values, BNIVSS is used instead of NIVSS.) Let xj,i be the share obtained
by server Pi. We execute the PRZS protocol adapted such that we create
shares of a degree dt polynomial that evaluates to 0 on 0. Let zi be the share
obtained by Pi. Each Pi now computes Q(x1,i, ..., xm,i) + zi.

2. In round 2, each server sends Q(x1,i, ..., xm,i) + zi to all output clients.
3. Each output client considers the values it receives as values of a degree dt
polynomial f - where up to t values may be wrong if the adversary is active.
He reconstructs the value f(0) (using standard error correction in the active
adversary case) and defines this to be his output.

Note that if we only wanted to compute shares of the value Q(x1, ..., xm) we
could do this by simply omitting steps 2 and 3. Using Canetti’s definition of
secure function evaluation from [9], we get:

Theorem 3. The above protocol computes the function Q(x1, ..., xm) securely
against a passive, static adversary if dt < n and against an active, static adver-
sary if (d+ 2)t < n.

Proof sketch. For some adversary Adv, the required Ideal model adversary, or
simulator, works as follows: it simulates the broadcast of honest input clients by
broadcasting random values. Since it knows the keys that corrupt input clients
use in the NIVSS protocols, it can compute the values that these clients are
sharing, and send them to the ideal functionality. Note that it also knows the keys
held by corrupt servers so it can compute the share shj = Q(x1,i, ..., xm,i) + zi
that each corrupt Pj holds of the result. When given the output value y, it
therefore chooses a random polynomial f such that f(0) = y and f(j) = sj for
each corrupt Pj . And for each honest Pi, it sends f(i) to corrupt output clients
in round 2, to simulate the contributions of honest servers to the result.

To argue that the simulation works, we can argue along the same lines as
for Lemma 3. If for some adversary Adv and some set of inputs x1, ..., xm, the
output from the real process could be distinguished from that of the ideal process,
we could build an algorithm Alg for breaking the pseudorandom function. Alg
will have oracle access to ψs() for all keys s not known to Adv, or to a set
of random oracles. Alg will now use the given inputs x1, ..., xm and keys for
the corrupt players that it chooses itself, to execute the protocol with Adv.
It emulates the honest players according to the protocol, except that it calls its
oracles whenever an honest player would have used a key not known to Adv. One
can now verify that if the oracles contain pseudorandom functions, we produce
output distributed exactly as in the real process, whereas of they are random, we
produce output according to the ideal process. It is in this last part that we need
dt < n ((d+ 2)t < n) since this ensures that the polynomial f reconstructed by
the honest output clients will determine the correct output value y, regardless
of whether f was constructed by the simulator or by Alg.

Thus the ability to distinguish between the real and the ideal process trans-
lates to breaking the pseudorandom function with the same advantage. ut

Note that this result extends easily to computing polynomials where some of
the inputs are to be chosen at random: we just use the PRSS protocol to create
shares of these inputs.

General MPC in 2 rounds. Using known techniques, one can reduce the secure
computation of general functions to that of degree-3 polynomials. In case of
functions that can be efficiently represented by (boolean or arithmetic) branching
programs, such a reduction is given by constructions of randomizing polynomials
from [21, 22]. A similar reduction for arbitrary (polynomial-time computable)
functions is possible under standard intractability assumptions [1]. Alternatively,
it is possible to modify the garbled circuit technique of Yao [31] and Beaver,
Micali and Rogaway [2] to obtain 2-round protocols for arbitrary functions using
our protocol for degree-3 polynomials. Using either approach, one can get 2-
round general MPC protocols with security threshold t < n/3 (t < n/5) in the
passive (active) case.

Distributing a trusted dealer. An important class of multi-party functionalities
are those that distribute correlated random resources to output clients (without
taking any inputs). For such functionalities, we can distribute a trusted dealer
via a totally non-interactive protocol in which each server send a single message
to each output client. Applications of such functionalities range from emulating
a trusted poker dealer to providing players with correlated resources for general
MPC protocols (e.g., [14, 16]). For the applications to threshold cryptography,
discussed next, we use a similar approach but rely on the special structure of
the relevant functionalities to gain better efficiency.

4.2 Applications to Threshold Cryptography

As mentioned above, low-degree polynomials that take only random inputs, pos-
sibly along with other inputs that have been pre-shared, can be securely com-
puted in only one round using our techniques. In this section, we show that
this efficiently extends to functions defined over finite groups of prime order,
involving exponents that are low degree polynomials. It will later become clear
how such functions can be used to handle problems in threshold cryptography
without interaction.

We will assume that we work in a fixed finite groupG of prime order q, such as
a subgroup of Z∗p , where q divides p−1. Furthermore, we assume we have an ideal
implementation of a function that chooses a vector X = (x1, ..., xu) ∈ Z

u
q , secret-

shares these values according to Shamir’s scheme with polynomials of degree
≤ t, and outputs shares xi,j , j = 1..u, to each server Pi. Finally, the function
chooses and distributes seeds as required for the PRSS and PRZS protocols we
described earlier. This corresponds to the key generation phase in a threshold
cryptosystem.

We assume as usual an adversary that corrupts at most t servers. For simplic-
ity, we assume first that the adversary is static and passive. Consider a random-
ized function Φ(), which we will define using a fixed set of multivariate degree 2

polynomials Q1(X,R), ..., Qw(X,R) (the following extends trivially to small de-
grees larger than 2, but degree 2 is all we will need in the following). To compute
the function, all servers input the shares they received earlier, while an input
client broadcasts elements g1, ..., gw ∈ G to the servers. We need that the shares
supplied by servers uniquely determine X. This is always the case if the adver-
sary is passive, and is also the case for an active adversary, provided t < n/3.
The function outputs to all players the element

Φ(g1, ..., gw, {xi,j | i = 1..n, j = 1..u}) = g
Q1(X,R)
1 · · · gQw(X,R)

w

where R = (r1, ..., rv) ∈ Zv
q consists of v uniformly random numbers. We let

(λ1, ..., λn) be chosen as Lagrange interpolation coefficients such that f(0) =
∑n

i=1 λif(i) for any polynomial f with deg(f) < n.
To build a protocol for evaluating Φ(), we use a technique similar to what

we used before, but we now put everything “in the exponent”: assuming players
have shares of the xi’s and ri’s, they can compute the “same” expression as in
the definition of Φ, using their respective shares in place of the xi’s and ri’s.
When each local result is broadcast, one can find the answer using interpolation
“in the exponent”. And even though the shares of the ri’s are not predistributed,
we can create them non-interactively using PRSS. Also as previously, we need
to randomize the degree 2t polynomial that is (implicitly) revealed, using the
PRZS technique.

Protocol Compute Φ()

1. Each server Pi computes a share rj,i of a pseudorandom value rj , for j = 1..v,
as well as a share ti in a degree-(2t) sharing of 0, as described in protocols
PRSS and PRZS. Let Ri = (r1,i, ..., rv,i) and Xi = (x1,i, ..., xu,i). He sends
to the output client(s) the group element

Gi = g
Q1(Xi,Ri)
1 · · · gQw(Xi,Ri)

w gti1

2. The output client(s) compute the output as
∏n
i=1G

λi

i .

For the above protocol, one can prove the following:

Theorem 4. Assuming a passive, static adversary, t < n/2, and that ψ·(·)
(used in the pseudo-random secret-sharing) is a pseudo-random function, the
above protocol computes Φ() securely.

Proof sketch. Rewriting the definition of Φ() by expressing all group elements as
powers of some fixed generator g of G, it is clear that the output value is of form
gQ(X,R) for some multivariate degree 2 polynomial. Hence, from an information
theoretic point of view, we are in fact computing Q(X,R) using exactly the
protocol we saw earlier. Therefore, essentially the same proof as for the earlier
protocol applies here. ut

Note that since we need to assume that the number of servers is small in
order to use PRSS in the first place, the results from [10] imply that this same
protocol is also adaptively secure.

For the case of an active, static adversary, we can use the same protocol,
provided that t < n/4 and that we make a modification in the final step. In
the earlier protocol for computing low-degree polynomials, we could use stan-
dard error correction, but this will not work here. We are faced with elements
G1, ..., Gn and all we know is that all but t of them are of form Gi = gf(i) for
some polynomial f of degree at most 2t. Since we cannot expect to compute
discrete logs, direct error correction does not apply.

Since the number of servers is small, one option is to find the correct subset
by exhaustive search. But this may not be entirely satisfactory. We do have to
assume that servers have enough memory and computing power to handle such
a problem (in order to carry out the PRSS protocol). But in a real application,
we may not want to assume this about the clients.

We sketch a solution to this using results from [13]. We will assume two-level
sharings, that is the xj ’s have been shared and then the shares have themselves
been shared using degree t polynomials. If xj,i is Pi’s share, Pi also receives as
part of his share the polynomial used for sharing xj,i. We will use the same
type of two-level sharing for the random rj ’s and for the degree 2t sharing of 0.
This can all be done non-interactively by our results on general share conversion,
because such a two-level sharing is a linear scheme.

Hence, when Pi claims that the value Gi he contributes really satisfies Gi =

g
Q1(Xi,Ri)
1 · · · g

Qw(Xi,Ri)
w gti1 , we can assume that the exponents are shared among

the servers using degree-(2t) polynomials and Pi knows the polynomials that
have been used. Therefore the value can non-interactively be shown to be correct
using a straightforward generalization of the techniques from [13].

Theorem 5. Assuming an active, static adversary, t < n/4, and that ψ·(·)
(used in the pseudo-random secret-sharing) is a pseudo-random function, the
above protocol, modified as described for active adversaries, computes Φ() se-
curely (and non-interactively).

We expect that this general technique will be useful in many contexts. Below
we give a few examples for applications to some concrete threshold cryptosys-
tems.

Threshold Cramer-Shoup. Canetti and Goldwasser [11] proposed a threshold
version of the Cramer-Shoup cryptosystem, the first really efficient public-key
system that could proved secure under chosen ciphertext attacks, without as-
suming random oracles.

This scheme works in a group G of order q as we did above. The private
key is (x1, x2, y1, y2, z), all chosen at random in Zq. The public key consists of a
number of elements in G, namely g1, g2, c = gx1

1 gx2

2 , d = gy11 gy22 , h = gz1 .
A ciphertext is a 4-tuple of elements (u1, u2, e, v). To decrypt, one computes

a value α from the ciphertext using a public hash function. Then we set v′ =
ux1+y1α

1 ux2+y2α
2 . We choose r ∈ Zq at random and compute b = uz1(v

′v−1)r.
Finally, the output (which will be the decrypted message if the ciphertext was
valid) is eb−1.

The randomization introduced by r is a modification of the original scheme
suggested in [11] to maintain CCA security even if one defines the decryption
algorithm to output b always - instead of an error message in case the ciphertext
was invalid. Clearly, if one can securely compute b assuming that x1, x2, y1, y2, z
have been pre-shared, a secure threshold version of the scheme follows. In [11]
this was done non-interactively, essentially assuming that a number of random
values had been pre-shared, so they could play the role of r. This resource runs
out quickly since r-values cannot be reused, so this is not a satisfactory solu-
tion. Indeed Canetti and Goldwasser asked whether it was possible to create
shares of r pseudorandomly without interaction. This is exactly possible using
our techniques. Indeed by rewriting, the value we need to compute is

b = uz+x1r+αy1r
1 ux2r+αy2r

2 v−r

It should be clear that this expression is a special case of the (class of) function(s)
Φ(). Hence a protocol for computing b securely follows immediately from the
protocols for computing Φ, both in the passive and active adversary case. We
also obtain the same bounds on t as in [11] 6.

Threshold Signatures. It is known how to obtain efficient non-interactive
threshold signatures in the random oracle model based on RSA, see for instance
[29]. If we drop the random oracle assumption, things seem to be much more
difficult. We do know efficient secure signature schemes that need no random
oracles [15, 17], but it is not at all clear how one could design a non-interactive
threshold version of those schemes.

However, we can make use of the fact that Boneh and Boyen in [8] suggested
a fully secure ID based encryption scheme without random oracles. A more
efficient scheme was suggested by Waters in [30].

Briefly, an ID based encryption scheme has a public key pk, and a master
secret key sk. Each user has an identity ID, and using the master key one can
derive a secret key skID for this user. Knowing only the ID, it is possible to
encrypt a message such that only the user who knows skID can decrypt.

Our interest in this comes from the fact that any such scheme implies a
signature scheme, with public key pk and private key sk. To sign a string, one
thinks of it as an identity and uses sk to extract skID which now plays the role
of a signature. The security properties of the ID based scheme imply security of
the signature scheme in a natural way.

The scheme of [30] works in a prime order group G equipped with a bilinear
mapping (which we do not have to consider explicitly here). Keys are generated
as follows: fix a generator g of G, choose a random α ∈ Zq and set g1 = gα. Also
pick random elements g2, u

′, u1, ..., ul where l is the length of identities. Then
the public key is g, g1, g2, u

′, u1, ..., ul and the master secret key is g
α
2 . The secret

6 In the active case, it was claimed in [11] that their solutions work for t < n/3 non-
interactively and for t < n/2 with interaction, but this is not correct. The authors of
[11] have confirmed that the correct bounds are t < n/4 and t < n/3, respectively.

key corresponding to identity v where the i’th bit of v is vi is constructed by
choosing r at random and setting skID to be the pair

skID = (g
α
2 (u

′
∏

i∈V

ui)
r, gr)

where V is the set of indices such that vi = 1. Now, since u′
∏

i∈V ui is an
element all players can compute by themselves, also this expression is a special
case of our function Φ. It follows that the protocol for computing Φ can be used
to compute, non-interactively and securely, a signature in the scheme derived
from [7].

This is the first non-interactive threshold signature scheme that can be shown
secure without random oracles. We note that concurrently and independently
from our work, Boneh and Boyen have recently found a different technique for
distributing this signature scheme. This method is tailored to their scheme and
does not use share conversion based techniques. It scales better w.r.t. the number
of players than our method, but is less general. For instance, our technique also
applies directly to distribute non-interactively the recent signature scheme by
Camenisch and Lysyanskaya [12]. This leads to a distributed signature scheme
with a much smaller public key than starting from Waters’ scheme, and it also
implies a distributed implementation of the authorities issuing credentials in
their anonymous credential scheme.

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing
polynomials and their applications. Manuscript, 2004.

2. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In Proc. of 22nd STOC, pages 503–513, 1990.

3. D. Beaver and A. Wool. Quorum-based secure multi-party computation. In Proc.
of EUROCRYPT ’98, LNCS 1403, Springer Verlag, pages 375–390, 1998.

4. A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis,
Technion, 1996.

5. A. Beimel, Y. Ishai, E. Kushilevitz, and J. F. Raymond. Breaking the O(n1/(2k−1))
Barrier for Information-Theoretic Private Information Retrieval. In Proceedings of
the 43rd IEEE Conference on the Foundations of Computer Science (FOCS ’02),
pages 261–270, 2002.

6. J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions.
In Proc. of CRYPTO ’88, LNCS 403, Springer Verlag, pages 27–35, 1990.

7. D. Boneh and X. Boyen. Efficient Selective Identity-based Encryption. In Proc. of
Eurocrypt ’04.

8. D. Boneh and X. Boyen. Secure Identity-Based Encryption Without Random
Oracles. In Proc. of Crypto ’04.

9. R. Canetti. Security and composition of multiparty cryptographic protocols. In J.
of Cryptology, 13(1), 2000.

10. R. Canetti, I. Damg̊ard, S. Dziembowski, Y. Ishai, and T. Malkin. On Adaptive vs.
Non-adaptive Security of Multiparty Protocols. In J. of Cryptology, 17(3), 2004.
Preliminary version in Eurocrypt ’01.

11. R. Canetti and S. Goldwasser. An efficient threshold public-key cryptosystem
secure against adaptive chosen ciphertext attacks. In Proc. of Eurocrypt ’99.

12. J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials
from Bilinear Maps. In Proc. of Crypto 2004.

13. R. Cramer and I. Damg̊ard. Secret-Key Zero-Knowledge and Non-interactive Ver-
ifiable Exponentiation. In Proc. TCC ’04.

14. R. Cramer, I. Damg̊ard, and J. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Proc. of EUROCRYPT ’01 , LNCS 2045, pp. 280-299,
2001.

15. R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA Assump-
tion. In Proc. ACM Conference on Computer and Communications Security, 1999.

16. M. Fitzi, S. Wolf and J. Wullschleger. Pseudo-signatures, broadcast, and multi-
party computation from correlated randomness. In Proc. Crypto ’04.

17. R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures Without
Random Oracles. In Proc. of Eurocrypt ’99.

18. R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. The Round Complexity of
Verifiable Secret Sharing and Secure Multicast. In Proceedings of the 33rd ACM
Symp. on Theory of Computing (STOC ’01), pages 580-589, 2001.

19. R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. On 2-round secure multiparty
computation. In Proc. Crypto ’02.

20. N. Gilboa and Y. Ishai. Compressing cryptographic resources. In Proc. of CRYPTO
’99.

21. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In Proc. 41st FOCS, pp. 294–
304, 2000.

22. Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Proc. 29th ICALP, pp. 244–256, 2002.

23. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access
structures. In Proc. IEEE Global Telecommunication Conf., Globecom 87, pages
99–102, 1987.

24. M. Karchmer and A. Wigderson. On span programs. In Proc. of 8th IEEE Structure
in Complexity Theory, pages 102–111, 1993.

25. U. Maurer. Secure multi-party computation made simple. In Proc. of SCN ’02.
26. S. Micali and R. Sidney. A simple method for generating and sharing pseudo-

random functions with applications to clipper-like key escrow systems. In Proc. of
CRYPTO ’95, LNCS 963, Springer Verlag, pages 185–196, 1995.

27. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
KDCs. In Proc. of EUROCRYPT ’99, LNCS 1592, Springer Verlag, pages 327–346,
1999.

28. A. Shamir. How to share a secret. Commun. ACM, 22(6):612–613, June 1979.
29. V. Shoup. Practical Threshold Signatures. In Proc. of Eurocrypt ’00.
30. B. R. Waters. Efficient Identity-Based Encryption Without Random Oracles.

Eprint report 2004/180.
31. A. C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pp.

162–167, 1986.

