
Comparing Two Notions of Simulatability

Dennis Hofheinz and Dominique Unruh

IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth,
Fakultät für Informatik, Universität Karlsruhe, Am Fasanengarten 5,

76 131 Karlsruhe, Germany

Abstract. In this work, relations between the security notions standard

simulatability and universal simulatability for cryptographic protocols
are investigated.
A simulatability-based notion of security considers a protocol π as secure
as an idealization τ of the protocol task, if and only if every attack on π

can be simulated by an attack on τ .
Two formalizations, which both provide secure composition of protocols,
are common: standard simulatability means that for every π-attack and
protocol user H, there is a τ -attack, such that H cannot distinguish π

from τ . Universal simulatability means that for every π-attack, there is
a τ -attack, such that no protocol user H can distinguish π from τ .
Trivially, universal simulatability implies standard simulatability. We
show: the converse is true with respect to perfect security, but not with
respect to computational or statistical security.
Besides, we give a formal definition of a time-lock puzzle, which may be
of independent interest. Although the described results do not depend
on any computational assumption, we show that the existence of a time-
lock puzzle gives an even stronger separation of standard and universal
simulatability with respect to computational security.
Keywords: Reactive simulatability, universal simulatability, protocol
composition.

1 Introduction

Recently, simulatability-based characterizations of security for cryptographic
protocols received a lot of attention. In particular, several modelings of multi-
party computation have been presented which allow for secure composition of
protocols, cf. [PW00,Can00,PW01,Can01,BPW04b]. All these models share the
idea of simulatability: a protocol is considered secure only relative to another
protocol. That is, a protocol π is as secure as another protocol τ (usually an ide-
alization of the respective protocol task), if every attack on π can be simulated
by an attack on τ .

A little more formally, this means that for every adversary Aπ attacking π,
there is an adversary Aτ (sometimes referred to as the simulator) that attacks
τ , such that from an outside view, both attacks and protocols “look the same.”
There are different interpretations of what “looking the same” means concretely.

Roughly, the interpretation of [Can01] is the following: π is as secure as τ , iff
for every Aπ, there is an Aτ such that no protocol user H (this entity is called the



environment Z in [Can01]) is able to distinguish running with π and Aπ from
running with τ and Aτ .

Although [PW00,PW01,BPW04b] provide this criterion as “universal sim-
ulatability,” the default notion of security in these works is that of “standard
simulatability.” Roughly, standard simulatability demands that for every Aπ and
every protocol user H, there is an Aτ such that H cannot distinguish π and Aπ

from τ and Aτ . So basically, the difference between these notions is that with
standard simulatability, the simulator Aτ may depend on the user H, whereas
universal simulatability requests the existence of “user-universal” simulators Aτ .

All presently known proofs (e.g., in [Can01,BPW04a]) that one can securely
compose a polynomial number of concurrent protocols depend on the fact that
the honest user/environment is chosen in dependence of the simulator. Conse-
quently, we do not know how to prove such a composition theorem in the case
of standard security.

1.1 Our Results

In this contribution, we study the relation between standard and universal sim-
ulatability. Therefore, we focus on the modeling of [BPW04b], which provides
both flavors of simulatability. For a relation to the framework [Can01,CLOS02]
of universal composability, see Section 1.2.

By definition, universal simulatability implies standard simulatability. We
show that even the converse is true when requiring perfect security (i.e., equal-
ity of user-views in the definitions). Apart from giving structural insights, this
result may be of practical interest: especially when dealing with idealized proto-
cols, often perfect simulatability can be achieved. Our result enables to conduct
a (potentially easier) proof of standard simulatability, and then to conclude uni-
versal simulatability using Theorem 1.

On the other hand, we can show that standard simulatability does not imply
universal simulatability with respect to statistical or computational security. For
this, we construct a protocol which is secure only with respect to standard simu-
latability (in the statistical or computational case). This result shows that proofs
of universal simulatability can be stronger than proofs of standard simulatability.

Unfortunately, the constructed protocol is not strictly polynomial-time. So in
the computational case, one may wish to have a stronger separation by means of
a strictly polynomial-time protocol. We provide such a protocol, and prove that
it separates standard and universal simulatability in the computational case.
As a technical tool, we need the computational assumption of time-lock puzzles,
cf. [RSW96]. So additionally, we provide a formal definition of a time-lock puzzle,
which may be of independent interest.

1.2 Connections to Universal Composability

Although the framework [Can01,CLOS02] of Universal Composability (UC) does
not directly provide an equivalent to the notion of standard simulatability, a



formulation of standard simulatability there would seem straightforward. As our
proofs below do not depend on specific model characteristics, we believe that our
proofs can then be adapted to that framework; this would show that standard
and universal simulatability can be separated there, too.

However, recently we have been told [Can04] by Ran Canetti, that in a
slightly modified UC setting with a different formulation of polynomial-time,
the two notions coincide. At a closer look, this is no contradiction to our re-
sults. Namely, Canetti proposes a different notion of standard simulatability
than used in, e.g., [BPW04b]: in Canetti’s formulation, the environment1 has a
runtime bounded polynomially in the length of its auxiliary input, which again is
chosen in dependence of the simulator. So effectively, the (polynomial) runtime
bound of the environment is chosen after the simulator, whence our proofs do
not apply in that case.

However, since we show that our separating examples also hold for the case
of honest users H with non-uniform auxiliary input (that does not affect H’s
runtime), they should be applicable to the notion of “Specialized-simulator UC”2

defined in [Lin03].

1.3 Organisation

Section 2 establishes the equality of standard and universal simulatability for the
case of perfect security; in Section 3, a separation of these notions for statistical
and computational security is presented. The discussed stronger separation by
means of a strictly polynomial-time protocol using time-lock puzzles is investi-
gated in Section 4. This work ends with a conclusion in Section 5. In Appendix A,
we briefly review the modeling of [BPW04b].

2 The Perfect Case

We start by relating standard and universal simulatability for the case of perfect
security. Perfect security demands that the respective user-views in the compared
protocol situations are completely equal. We show that with respect to perfect
security, standard and universal simulatability are equivalent notions. For this,
we only need to show that standard simulatability already implies universal
simulatability—the other direction is trivial from the definitions.

The idea of our proof is to construct a “universal” protocol user Hu, that
simply chooses all of its outputs at random, such that any finite sequence of
outputs occurs with nonzero probability. In a sense, Hu incorporates all possible
protocol users H.

Now standard simulatability implies that there is a simulator which is “good”
with respect to this user Hu. But informally, anything H could do will be done by
Hu with nonzero probability. Since Hu’s views are completely identical in both

1 i.e., the UC counterpart of the honest user H
2 This notion is identical to standard simulatability, except that a possible non-uniform
auxiliary input for the environment is chosen after the simulator.



protocols, this allows to conclude that this simulator is not only “good” with
respect to Hu, but with respect to all possible users H.

Theorem 1. With respect to perfect security, standard simulatability implies
universal simulatability.

Proof. As a prerequisite, let D be a probability distribution over Σ∗ which sat-
isfies Pr [s← D] > 0 for all s ∈ Σ∗. (As in [PW01,BPW04b], Σ denotes the
(finite) message alphabet over which messages sent by machines are formed.)
Such a D necessarily exists, since Σ∗ is countable.

Let (M̂1, S) and (M̂2, S) be structures with (M̂1, S) ≥
perf
sec (M̂2, S). Then, let

further (M̂1, S,H,A1) ∈ ConfM̂2(M̂1, S). That is, let H,A1 be a valid pair of user
and adversary for protocol M̂1. Without loss of generality, we assume H to have
exactly one self-clocked self-connection (i.e., a connection from H to itself) with
name loop, and to have its ports ordered lexicographically.3 Then the sequence
of ports of H only depends on A1.

Let Hu be a machine with the same port sequence as H, but with a state set
Σ∗ and initial states {1}∗. Hu’s transition function makes Hu switch as follows:
independent of state and input, Hu’s next state and all of its outputs, including
outputs on clock ports, are drawn (independently) from D.

Intuitively, Hu is universal in the following sense: for a fixed A1, Hu is inde-
pendent of H. Hu’s construction guarantees that every finite prefix of Hu-outputs
and -states has non-zero probability.

Clearly we have (M̂1, S,Hu,A1) ∈ ConfM̂2(M̂1, S), which means that Hu,A1

is a valid pair of user and adversary for protocol M̂1. Then the standard security
(M̂1, S) ≥

perf
sec (M̂2, S) which we assumed ensures the existence of an A2 with

view (M̂1,S,Hu,A1)
(Hu) = view (M̂2,S,Hu,A2)

(Hu). (1)

We will show
view (M̂1,S,H,A1)

(H) = view (M̂2,S,H,A2)
(H), (2)

which suffices to prove (M̂1, S) ≥
uni,perf
sec (M̂2, S), since A2 does not depend on H.

So let k ∈ be an arbitrary security parameter.4 The following notation for
views of H in protocol runs with A1 and M̂1, resp. A2 and M̂2 will simplify the

presentation: let tr
(1)
H := view (M̂1,S,H,A1),k

(H), and tr
(2)
H := view (M̂2,S,H,A2),k

(H).

Analogously, we define tr
(1)
u and tr

(2)
u for views of Hu. For n ∈ , let (tr)n denote

the n-th step in a view tr ; (tr)1..n is the n-step prefix of tr . When it is clear that
I ∈ Σ∗ is a vector of inputs, we write I ∈ st to denote the event that in a step
st , the machine input vector is I.

We prove the following two statements simultaneously by induction over
n ∈ :

A(n) :
(

tr
(1)
H

)

1..n
=

(

tr
(2)
H

)

1..n
,

3 Every H can be turned into an H′ of this form, so that there is a probability-respecting
identification of H-views and H′-views.

4 Note that this already determines the initial state 1k for both H and Hu



and

B(n) : ∀s : Pr
[(

tr
(1)
H

)

1..n
= s

]

> 0 ⇒ Pr
[(

tr (1)
u

)

1..n
= s

]

> 0.

A(0) and B(0) hold trivially. So assume that A(n) and B(n) hold. Let an
arbitrary (n+ 1)-step prefix (st)1..n+1 with

α := Pr

[

(

tr
(1)
H

)

1..n+1
= (st)1..n+1

]

> 0 (3)

be given. To show A(n+ 1), it suffices to prove

Pr

[

(

tr
(2)
H

)

1..n+1
= (st)1..n+1

]

= α. (4)

To see (4), we first remark that for the machine input vector In+1 in (st)n+1,
(1) implies

Pr

[

In+1 ∈
(

tr (1)
u

)

n+1
|
(

tr (1)
u

)

1..n
= (st)1..n

]

= Pr

[

In+1 ∈
(

tr (2)
u

)

n+1
|
(

tr (2)
u

)

1..n
= (st)1..n

]

.

(5)

Here we also need B(n) to be sure that the probabilities of the conditions are
not only equal, but also positive. Furthermore, we have for i ∈ {1, 2}:

Pr

[

In+1 ∈
(

tr
(i)
H

)

n+1
|
(

tr
(i)
H

)

1..n
= (st)1..n

]

= Pr

[

In+1 ∈
(

tr (i)
u

)

n+1
|
(

tr (i)
u

)

1..n
= (st)1..n

]

> 0,

(6)

because the distribution on the next user-inputs is completely determined by the
history over all preceding user-outputs. The probabilities for the conditions are
positive by (3), A(n), and the construction of Hu. From here, B(n + 1) follows
from the construction of Hu.

We continue proving A(n+ 1). Combining (5) and (6) yields

Pr

[

In+1 ∈
(

tr
(1)
H

)

n+1
|
(

tr
(1)
H

)

1..n
= (st)1..n

]

= Pr

[

In+1 ∈
(

tr
(2)
H

)

n+1
|
(

tr
(2)
H

)

1..n
= (st)1..n

]

.

But since input and current state already determine the distribution on outputs
and next states, we have

Pr

[

(

tr
(1)
H

)

n+1
= (st)n+1 |

(

tr
(1)
H

)

1..n
= (st)1..n

]

= Pr

[

(

tr
(2)
H

)

n+1
= (st)n+1 |

(

tr
(2)
H

)

1..n
= (st)1..n

]

.

(7)



Because the probabilities for the respective conditions in (7) are positive and
equal by A(n) and 3, this shows (4), and thus A(n+ 1).

Summarising, A(n) holds for all n, which in particular implies (2), and thus
shows the theorem. ut

This proof idea does not work in the computational or statistical case. Very
informally, Hu behaves like a given user H too seldom; the resulting success to
distinguish protocols would be much smaller than that of H.

So one may ask whether Theorem 1 also holds for computational or statistical
security. The next section shows that this is not the case.

3 The Statistical and the Computational Case

Recall that simulatability with respect to statistical security demands that poly-
nomial prefixes of the user-views in the real, resp. ideal model must be of “small”
statistical distance. Here, “small” may denote a negligible or even exponentially
small function in k. The following proof deals with negligible functions as those
“small” functions. However, the proof carries over to other classes of “small”
functions.

On the other hand, for simulatability with respect to computational security,
users and adversaries are restricted to (strict) polynomial-time. In this case,
the user-views in the real, resp. ideal model only need to be computationally
indistinguishable.

Here we give a real and an ideal protocol such that the real protocol is as
secure as the ideal one with respect to standard simulatability, but not with
respect to universal simulatability. Roughly, the ideal protocol asks adversary
and user for bitstrings and then outputs who of them gave the longest bitstring.
The real protocol does the same, but always outputs “adversary”.

A successful simulator must hence be able to give a longer input than the
user with overwhelming probability. We show that such a simulator exists for
any given user; we also show that there can be no such simulator which gives
longer inputs than every user.

Theorem 2. With respect to computational and statistical security, standard
simulatability does not imply universal simulatability. This holds also if we allow
non-uniform polynomial-time honest users for the case of computational security.

Proof. Let (M̂1, S) be a structure with machines M̂1 = {M1} and service ports
S, where Sc = {user!, user/!, out?}. The machine M1 is depicted in Figure 1. M1

waits for an input h on port user?, and an input a on port adv?; only the first
respective input is considered. When having received both such inputs h and a,
M1 outputs and clocks the value b = 0 on out!.

Let (M̂2, S) be a structure with M̂2 = {M2}. The machine M2 is identical
to M1, except that the value b that is eventually output on out! is determined
as b = 1 if |h| > |a|, and b = 0 otherwise. So intuitively, b = 1 (resp. b = 0)
indicates that the user (resp. the simulator) delivered the longest bitstring.



6
?

¾

out

M1 A1

user

H

adv

Fig. 1. Machines in the real case.

We claim (M̂1, S) ≥
NEGL
sec (M̂2, S). So let a real configuration (M̂1, S,H,A1) ∈

ConfM̂2(M̂1, S) be given. Denote by hk the random variable that describes M1’s
first user?-input in runs with security parameter k, or ⊥, if there is no user?-
input. Since H and A1 are fixed, there is a function f : → for which

Pr [hk < f(k) ∨ hk = ⊥] > 1− 2−k. (8)

Thus, let A2 be the combination of A1 and a special machine S, cf. Figure 2.
In this combination, the adv! and adv/! ports of A1 are renamed to adv! and
adv

/
!, respectively. The special machine S converts every adv?-input into an

adv!-output 1f(k), which is clocked by S immediately. If we restrict to runs in

6
?

¾ ¾

outuser

H

adv
A1

adv
SM2

Fig. 2. The simulator for standard simulatability.

which either hk = ⊥ or hk < f(k), then we get exactly the same distribution on
H-views as in the real configuration. Using (8), we get

view (M̂1,S,H,A1)
(H) ≈NEGL view (M̂2,S,H,A2)

(H).

This implies in particular (M̂1, S) ≥
NEGL
sec (M̂2, S).

On the other hand, we claim (M̂1, S) 6≥
uni,NEGL
sec (M̂2, S). For this, consider

the following real adversary A1, which is master scheduler and has an additional
token connection to the honest user. In its first activation, A1 outputs and clocks
the value a(1) = 1 on adv!. In its second activation, it activates H by outputting
and clocking 1 on port token!.

Furthermore, for a function g : → , let Hg be the machine which writes
and clocks h = 1g(k) onto out! in its first activation. The remaining ports of Hg

are chosen to close the collection {M1,Hg,A1}.
We show that for every simulator A2, there is a function g for which Hg

distinguishes M1 and A1 from M2 and A2. So let A2 be a simulator for which
(M̂2, S,H1,A2) ∈ Conf(M̂2, S). (Then (M̂2, S,Hg,A2) ∈ Conf(M̂2, S) for all g.)



Denote by a
(2)
k the random variable that describes the first adv?-input that M2

gets in runs with security parameter k, or ⊥, if there is no adv? input. Since A2

is fixed, there is a function g for which

Pr
[

a
(2)
k < g(k) ∨ a

(2)
k = ⊥

]

> 1− 2−k. (9)

In the configuration (M̂1, S,Hg,A1), H’s view in its second activation contains

out?-input 0. But by (9), and since the distribution of a
(2)
k is independent of g,

Hg’s view in (M̂2, S,Hg,A2) contains out?-input 0 with only negligible proba-

bility. So (M̂1, S) 6≥
uni,NEGL
sec (M̂2, S), and the theorem follows for the statistical

case.
The proof above carries over literally to the computational case (with respect

to uniform as well as non-uniform honest users), because for polynomial-time H

and A, there are polynomials f and g fulfilling (8) and (9). ut

4 A Stronger Separation

The proof from the preceding section does not work, if we restrict to protocol
machines (i.e., structures) that are strictly polynomial-time. Although the ma-
chines M1 and M2 used in the proof above are weakly polynomial-time (i.e.,
they are polynomial-time in the overall length of their inputs and the security
parameter, cf. [BPW04b]), at least M2 needs to accept arbitrarily long inputs.5

For a separation of the computational simulatability notions by means of strictly
polynomial-time structures, we have to work a little harder. As a technical tool,
we use time-lock puzzles (see [RSW96]).

Definition 1. A PPT-algorithm6 G (called the problem generator) together with
a PPT-algorithm V (the solution verifier) is called a time-lock puzzle iff the
following holds:

– sufficiently hard puzzles: for every PPT-algorithm B and every e ∈ , there
is some c ∈ with

sup
t≥kc,|h|≤ke

Pr
[

(q, a)← G(1k, t) : V(1k, a, B(1k, q, h)) = 1
]

(10)

negligible in k.
– sufficiently good solvers: there is some b ∈ such that for every d ∈ there
is a PPT-algorithm C such that

min
t≤kd

Pr
[

(q, a)← G(1k, t); c← C(1k, q) : V(1k, a, c) = 1 ∧ |c| ≤ kb
]

(11)

is overwhelming in k.

5 However, intuitively, nothing “superpolynomial” happens: M2 determines the length
of its inputs.

6 Probabilistic polynomial time algorithm



Intuitively, G(1k, t) generates a puzzle q of hardness t, and a description a of
valid solutions for q. V(1k, a, b) verifies if b is a valid solution as specified by a.

First, we require that any given PPT-algorithm B can’t solve sufficiently
hard puzzles. Formally, we want B to be unable to solve puzzles which are of
hardness t, t ≥ kc for some c depending on B.

We add an auxiliary input h (of polynomial length) to prevent the following
scenario: Bob (B) wants to show to Alice, that he is able to perform calculations
of some hardness t, therefore he chooses t, and then Alice (G) chooses the puzzle.
It is now imaginable, that Bob may choose some auxiliary information h and
the hardness t simultaneously, s.t. using h one can solve time-lock puzzles of
hardness t.7 This is prevented by our definition, since (10) is negligible even in
presence of polynomially length-bounded auxiliary inputs h.8

Second, we demand that for every polynomial hardness value, there is an
algorithm C solving puzzles of this hardness. It is sensible here to ask for short
solutions (i.e., |c| ≤ kb): otherwise, the definition allows time-lock puzzles in
which the solution of every t-hard puzzle is deterministically 1t.9

[RSW96] promotes the following family of puzzles as candidates for time-

lock puzzles. A puzzle of hardness t consists of the task to compute 22t′

mod n

where t′ := min{t, 2k} and n = pq is a Blum integer.10 In our notation, this is
denoted by G(1k, t) = ((n,min{t, 2k}), (p, q,min{t, 2k})), where n is a random
k-bit Blum integer with factorisation n = pq, and V(1k, (p, q, t′), c) = 1 if and

only if c ≡ 22t′

mod pq. (Note that 2t
′

mod ϕ(pq) can be efficiently computed
with knowledge of p and q.)

We return to the problem of separating standard and universal simulatability
by means of strictly polynomial-time structures. The idea is very similar to the
one used in the proof of Theorem 2. In the ideal setting, we let a machine
M2 check and output whether H has more “computational power” than the
adversary A2. The corresponding real machine M1 always outputs “no”. Here we
have standard simulatability, since A2 can be chosen in dependence of H (and
thus more powerful). On the other hand, the simulatability is not universal, since
an A2-dependent user H can be chosen so powerful that M2 outputs “yes”.

Now time-lock puzzles are exactly what M2 needs to check the computational
power of A2 and H. Concretely, M2 simply picks a puzzle for both A2 and H and
outputs “yes” if H is the only one to solve that puzzle. Our definition of time-lock

7 Imagine that, e.g., being able to find the pre-image of t under some function would
already solve the puzzle.

8 Note that for the proof of Theorem 3, this additional constraint is not necessary.
9 In fact, using such a “degenerate” puzzle would yield a proof for Theorem 2, very
similar to that given in Section 3.

10 One might wonder why our formulation uses t′ = min{t, 2k} instead of t (in contrast
to the original formulation in [RSW96]). It can be shown that for t := (2k)! + 1

it is 22t

≡ 4 mod n for all k-bit Blum integers. Therefore (10) would be violated
(consider B(1k, q, h) = 4). For practical purposes, this does not pose a threat, since
the length of t = (2k)! + 1 is not polynomial in k.



puzzles guarantees that puzzles can be generated and solutions can be checked
by a strictly polynomially bounded M2.

An exact theorem statement and a proof follow:

Theorem 3. Assume that time-lock puzzles exist. Then for computational se-
curity, standard simulatability and universal simulatability can be separated by
two strictly polynomial-time structures. This holds also if we allow non-uniform
polynomial-time honest users.

Proof. First, let D denote a PPT-algorithm which, upon input 1k, returns a
uniformly chosen t from {21, 22, . . . , 2k}.

Let (G,V) be a time-lock puzzle. Let (M̂1, S) be a structure with machines
M̂1 = {M1} and service ports S, where Sc = {user!, user/!, puz user?, out?}.

The machine M1 is depicted in Figure 3. All indicated connections (not count-
ing the potential connections between A1 and H) are clocked by the sending
machine.

?
6

¾ -

-

M1

H

user

adv

puz adv
A1

out

puz user

Fig. 3. Machines in the real case.

Upon its first activation, M1 chooses t← D(1k). Then it computes (q, a) ←
G(1k, t).

Upon the first input via user?, M1 sends and clocks q via puz user to H. Upon
the first input via adv?, M1 sends and clocks q via puz adv to A1.

The second input via user? (called cH) is verified via vH ← V(1
k, a, cH), and

analogously we set vA ← V(1
k, a, cA) upon the second adv?-input cA.

At the time both vH and vA are determined, M1 outputs and clocks b = 0 on
out!.

Let (M̂2, S) be a structure with machines M̂2 = {M2}. The machine M2 is
identical to M1, except that the value b ∈ {0, 1} that is eventually output on
out! is determined as an evaluation of the predicate vH ∧ ¬vA. Intuitively, b = 1
happens (i.e., H can distinguish) if and only if H is able to successfully solve
harder puzzles than the adversary.

Note that by setting suitable length functions (i.e., l(user?) = l(adv?) = kb

for the b ∈ from (11), M1 and M2 can be made polynomial-time.
The rest of this proof follows an idea similar to that of the proof of Theo-

rem 2. For showing that (M̂1, S) ≥
poly
sec (M̂2, S), we construct a simulator A2 that

can solve any puzzle H can solve, and for showing (M̂1, S) ¤uni,poly
sec (M̂2, S) we

construct a H which can solve some puzzles A2 cannot solve.
For showing (M̂1, S) ≥

poly
sec (M̂2, S), let a real configuration (M̂1, S,H,A1) ∈

ConfM̂2(M̂1, S) be given.



We sketch how to view H as a PPT-algorithm B: B(1k, q′, h) simulates a run
of the collection [{H,A1,M1}] with security parameter k (auxiliary input h is
ignored); only a possible message q from M1 to H or A1 on user puz or adv puz

is substituted by q′. B outputs H’s answer aH (i.e., M1’s second user?-input), or
⊥, if M2 never receives such an aH.

Let f(k) = kc for the c ∈ that arises from (10) for this B. Let C be
the PPT-algorithm from (11) when setting d = c. So intuitively, C is able to
solve (except with negligible error) any puzzle that H can solve. Similar to the
construction of the simulator A2 in the proof of Theorem 2 (cf. also Figure 2),
let S be a machine which places itself between A1 and M1. A1’s ports puz adv?,
adv!, and adv/! are renamed to puz adv?, adv!, and adv

/
!, respectively. Finally,

A2 is the combination of A1 and this machine S.

The idea of S is simple: Whenever A1 sends a (possibly wrong) solution of a
puzzle of hardness f(k) to M2, S solves the puzzle and sends a correct solution
to M2. This will allow to show indistinguishability, since H will only notice that
it runs with the ideal protocol if A2 sends a wrong solution to M2 for a puzzle
H was able to solve.

More formally, S immediately forwards all messages from M2 to A2. However,
the first message q on adv puz is stored. When A1 sends the second message to M2

via adv, that message is replaced by a solution c← C(1k, q) and then forwarded
to M2.

Using a suitable length function, S can be made polynomial-time. Similar to
Figure 2, let A2 be the combination of S and A1 (with renamed ports). S only
substitutes messages between M1 and A1, and does not change the scheduling.

We can now observe the following: First, if we can show that for the output
b = vH ∧ ¬vA by M2, it is b = 1 with only negligible probability, then H’s views
when running with the real and the ideal protocol are indistinguishable, and
thus (M̂1, S) ≥

poly
sec (M̂2, S).

Second, consider the definition of B. We can define B ′ completely analogous,
using A2 and M2 instead of A1 and M1. By noticing that H’s answer to the puzzle
is chosen before M1 or M2 outputs b, we see that B and B′ have the same output
distributions.

Let vA and vH denote the corresponding predicates calculated by M2 in a
run of the ideal protocol, where we set vA = ⊥ and vH = ⊥ if the respective
variable predicate is never determined (this can happen only when no answer to
the respective puzzle is made).

By (10), the following is negligible:

sup
t≥kc,|h|≤ke

Pr
[

(q, a)← G(1k, t) : V(1k, a, B(1k, q, h)) = 1
]

≥ Pr
[

t← D(1k), (q, a)← G(1k, t) : V(1k, a, B(1k, q, 0)) = 1 ∧ t ≥ kc
]

(∗)
= Pr [vH = 1 ∧ t ≥ kc]

≥ Pr [vH = 1 ∧ vA = 0 ∧ t ≥ kc] . (12)



(Note that in the last two terms of (12), t denotes the t chosen by M2.) These
inequalities hold for all sufficiently large k. To see (∗), note that M2 chooses
t, q, a via t ← D(1k), (q, a) ← G(1k, t), and then calculates vH via V(1k, a, aH).
Further B(1k, q, 0) generates aH by simulating the ideal configuration for given
q, so (∗) follows.

Since A2 solves the puzzle with overwhelming probability for t < kc (it uses C,
which again does so by (11)), the following is negligible:

Pr [vA = 0 ∧ t < kc]

≥ Pr [vH = 1 ∧ vA = 0 ∧ t < kc] . (13)

By (12,13), the probability Pr [vH = 1 ∧ vA = 0] is negligible, too, therefore
we can conclude (M̂1, S) ≥

poly
sec (M̂2, S).

If we allow non-uniform honest users, we have to modify the definition of
B as follows: B(1k, q′, h) runs a simulation as above, but now h is given to the
non-uniform honest user as auxiliary input. Then, for some function h̃ (map-
ping the security parameter to the auxiliary input), B(1k, q′, h̃(k)) simulates the
network containing the non-uniform honest user H. Replacing B(1k, q, 0) with
B(1k, q, h̃(k)) in (12) yields a valid proof for the non-uniform case.

Note that this construction even applies when the auxiliary input h̃ of the
honest user H is chosen in dependence of the simulator (as with the “Specialized-
simulator UC” formulation in [Lin03]).

The remaining statement (M̂1, S) 6≥
uni,poly
sec (M̂2, S) can be shown in a similar

way: We define a family of honest users Hd, such that no simulator will be able
to solve all puzzles these Hd can solve. Formally:

For any d, let Cd be the puzzle-solver C whose existence is guaranteed by (11)
for that d. Then Hd is the user having ports {user!, user/!, out?, puz user?, init?}
and running the following program: Upon the first activation via init?, send (and
schedule) a non-empty message to M1. When receiving q via puz user? from M1,
let c← Cd(1

k, q) and send (and schedule) c to M2.
The real adversary A1 has ports {adv!, adv/!, init!, init/!, puz adv?} and runs

the following program: Upon the first activation, activate Hd via init, and upon
any further activation send and schedule 1 to M2 via adv.

The resulting network is depicted in Figure 4.

?
6

¾ -

- ¾

user

adv

puz adv
A1

Hd

M1

init

out

puz user

Fig. 4. The configuration confd
1.

We now assume for contradiction that (M̂1, S) ≥
uni,poly
sec (M̂2, S). Because

then confd1 := (M̂1, S,Hd,A1) ∈ ConfM̂2(M̂1, S) for all d, there is a polynomial



simulator A2, s.t. for all d, confd2 := (M̂2, S,Hd,A2) ∈ Conf(M̂2, S) and

view confd
1
(Hd) ≈poly view confd

2
(Hd). (14)

Similar to the construction of B in the first part of this proof, let Bd(1
k, q′, h)

simulate a run of the collection [{Hd,A2,M2}] with security parameter k (aux-
iliary input h is ignored); only a possible message q from M2 to H or A1 on
user puz or adv puz is substituted by q′. Bd outputs A2’s answer aA (i.e., M2’s
second adv?-input), or ⊥, if M2 never receives aA.

It is easy to see that A2’s answers do not depend on Hd’s answers, therefore
Bd is independent of d.

Now, by (10), there is some c, s.t.

sup
t≥kc,|h|≤ke

Pr
[

(q, a)← G(1k, t) : V(1k, a, B0(1
k, q, h)) = 1

]

is negligible.
We will now examine the situation, where Hc+1 runs with A2,M2; that is, we

consider runconf
c+1
2

. Let as above vH and vA denote the corresponding variables

of M2, with vH = ⊥ or vA = ⊥ if the corresponding variable is not set.
First note, that by definition of D, it is

Pr
[

t← D(1k) : kc ≤ t ≤ kc+1
]

≥ 1
k

(15)

for sufficiently large k.
By definition of c and (10), the following is overwhelming:

min
kc≤t≤kc+1

Pr
[

(q, a)← G(1k, t) : V(1k, a, B0(1
k, q, 0)) 6= 1

]

≤ Pr
[

t← D(1k), (q, a)← G(1k, t) : V(1k, a, B0(1
k, q, 0)) 6= 1 | kc ≤ t ≤ kc+1

]

= Pr
[

t← D(1k), (q, a)← G(1k, t) : V(1k, a, Bc+1(1
k, q, 0)) 6= 1 | kc ≤ t ≤ kc+1

]

(∗∗)
= Pr

[

vA 6= 1 | kc ≤ t ≤ kc+1
]

. (16)

Here (∗∗) is shown like (∗) in the first part of the proof.
Note further that by definition of Hd (in the particular case d = c + 1) and

(11), and considering (15), we have that

Pr
[

vH 6= 0 | kc ≤ t ≤ kc+1
]

(17)

is overwhelming.
Combining (17) and (16), we conclude that

Pr
[

vH 6= 0 ∧ vA 6= 1 | kc ≤ t ≤ kc+1
]

≤ Pr
[

b = 1 ∨ b = ⊥ | kc ≤ t ≤ kc+1
]

are both overwhelming (consider that M2’s output is b = 0 only if vH and vA are
defined and ¬vH ∨ vA). Using (15), we finally have that

Pr [b = 1 ∨ b = ⊥]

is non-negligible. Since in the run of the real configuration confc+1
1 , it is b = 0

with overwhelming probability, and b shows up in Hc+1’s view, this is a contra-
diction to (14) and shows (M̂1, S) 6≥

uni,poly
sec (M̂2, S). ut



5 Conclusion

We have separated standard and universal simulatability in the case of computa-
tional and statistical security. This shows that these security notions are indeed
different. However, it would be nice to know whether there is a less “artificial”
separating example than ours. In particular, it is not clear whether there is a
more “cryptographic” example.

We have also shown that for perfect security, standard and universal simu-
latability coincide. This result may ease security proofs—showing standard sim-
ulatability automatically shows universal simulatability.

Acknowledgements

We thank Ran Canetti, Jörn Müller-Quade, and Rainer Steinwandt for interest-
ing and valuable discussions. Furthermore, we thank the anonymous referees for
helpful comments.

References

[Bac04] Michael Backes. E-mail communication with the authors, June 2004.
[BPW04a] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general com-

position theorem for secure reactive systems. In Moni Naor, editor, The-

ory of Cryptography, Proceedings of TCC 2004, number 2951 in Lecture
Notes in Computer Science, pages 336–354. Springer-Verlag, 2004. Online
available at http://www.zurich.ibm.com/security/publications/2004/
BaPfWa2004MoreGeneralComposition.pdf.

[BPW04b] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Secure asyn-
chronous reactive systems. IACR ePrint Archive, March 2004. Online
available at http://eprint.iacr.org/2004/082.ps.

[Can00] Ran Canetti. Security and composition of multi-party cryptographic proto-
cols. Journal of Cryptology, 3(1):143–202, 2000. Full version online available
at http://eprint.iacr.org/1998/018.ps.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42th Annual Symposium on Foundations of Computer

Science, Proceedings of FOCS 2001, pages 136–145. IEEE Computer Soci-
ety, 2001. Full version online available at http://eprint.iacr.org/2000/
067.ps.

[Can04] Ran Canetti. Personal communication with one of the authors at TCC,
February 2004.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In 34th

Annual ACM Symposium on Theory of Computing, Proceedings of STOC

2002, pages 494–503. ACM Press, 2002. Extended abstract, full version
online available at http://eprint.iacr.org/2002/140.ps.

[Lin03] Yehuda Lindell. General composition and universal composability in secure
multi-party computation. In 44th Annual Symposium on Foundations of

Computer Science, Proceedings of FOCS 2003, pages 394–403. IEEE Com-
puter Society, 2003. Online available at http://www.research.ibm.com/

people/l/lindell/PAPERS/gc-uc.ps.gz.



[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preser-
vation of secure reactive systems. In 7th ACM Conference on Computer and

Communications Security, Proceedings of CCS 2000, pages 245–254. ACM
Press, 2000. Extended version online available at http://www.semper.org/
sirene/publ/PfWa_00CompInt.ps.gz.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous re-
active systems and its application to secure message transmission. In
IEEE Symposium on Security and Privacy, Proceedings of SSP 2001, pages
184–200. IEEE Computer Society, 2001. Full version online available at
http://eprint.iacr.org/2000/066.ps.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles
and timed-release crypto. Technical Report MIT/LCS/TR-684, Mas-
sachusetts Institute of Technology, February 1996. Online available at
http://theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.

ps.

A Review of Reactive Simulatability

In this section, we present the notion of reactive simulatability. This introduction
only very roughly sketches the definitions, and the reader is encouraged to read
[BPW04b] for more detailed information and formal definitions.

Reactive Simulatability is a definition of security which defines a protocol M̂1

(the real protocol) to be as secure as another protocol M̂2 (the ideal protocol, the
trusted host), if for any adversary A1 (also called the real adversary), and any
honest user H, there is a simulator A2 (also called the ideal adversary), s.t. the
view of H is indistinguishable in the following two scenarios:

– The honest user H runs together with the real adversary A1 and the real
protocol M̂1

– The honest user H runs together with the simulator A2 and the ideal protocol
M̂2.

Note that there is a security parameter k common to all machines, so that the
notion of indistinguishability makes sense.

This definition allows to specify some trusted host—which is defined to be
a secure implementation of some cryptographic task—as the ideal protocol, and
then to consider the question, whether a real protocol is as secure as the trusted
host (and thus also a secure implementation of that task). In order to under-
stand the above definitions in more detail, we have to specify what is meant by
machines “running together”. Consider a set of machines (called a collection).
Each machine has so-called simple in-ports (written p?), simple out-ports (writ-
ten p!), and clock out-ports (written p/!). Ports with the same name (p in our
example) are considered to belong together and are associated with a buffer p̃.
These are then interconnected as in Figure 5 (note that some or all ports may
originate from the same machine). Now, when a collection runs, the following
happens: At every time, exactly one machine is activated. It may now read its
simple in-ports (representing incoming network connections), do some work, and



p?- -
?Sending machine Receiving machine

Buffer p̃

p!

Scheduler for buffer p̃

p/!

Fig. 5. A connection

then write output to its simple out-ports. After such an activation the contents
of the simple out-ports p! are appended to the queue of messages stored in the
associated buffer p̃. However, since now all messages are stored in buffers and will
not be delivered by themselves, machines additionally have after each activation
the possibility to write a number n ≥ 1 to at most one clock out-port p/!. Then
the n-th undelivered message of buffer p̃ will be written to the simple in-port p?
and deleted from the buffer’s queue. The machine that has the simple in-port
p? will be activated next. So the clock out-ports control the scheduling. Usually,
a connection is clocked by (i.e., the corresponding clock out-port is part of) the
sender, or by the adversary. Since the most important use of a clock out-port is
to write a 1 onto it (deliver the oldest message in the buffer), we say a machine
clocks a connection or a message when a machine writes a 1 onto the clock port
of that connection.

At the start of a run, or when no machine is activated at some point, a
designated machine called the master scheduler is activated For this, the master
scheduler has a special port, called the master clock port clk/?.

Note that not all collections can be executed, only so-called closed collections,
where all connections have their simple in-, simple out-, and clock out-port. If a
collection is not closed, we call the ports having no counterpart free ports.

In order to understand how this idea of networks relates to the above sketch
of reactive simulatability, one has to get an idea of what is meant by a protocol. A
protocol is represented by a so-called structure (M̂, S), consisting of a collection
M̂ of the protocol participants (parties, trusted hosts, etc.), and a subset of
the free ports of M̂ , the so-called service ports S. The service ports represent
the protocol’s interface (the connections to the protocol’s users). The honest
user can then only connect to the service ports (and to the adversary), all other
free ports of the protocol are intended for the communication with the adversary
(they may e.g. represent side channels, possibilities of attack, etc.). Since usually
a protocol does not explicitly communicate with an adversary, such free non-
service ports are more commonly found with trusted hosts, explicitly modelling
their imperfections.

With this information we can review the above “definition” of security.
Namely, the honest user H, the adversary, and the simulator are nothing else
but machines, and the protocols are structures. The view of H is then the re-
striction of the run (the transcripts of all states and in-/output of all machines
during the protocols execution, also called trace) to the ports and state of H.



The definition, as presented so far, still has one drawback. We have not in-
troduced the concept of a corruption. This can be accommodated by defining
so-called systems. A system is a set of structures, where to each “corruption sit-
uation” (set of machines, which are corrupted) one structure corresponds. That
is, when a machine is corrupted, it is not present anymore in the corresponding
structure, and the adversary takes its place. For a trusted host, the correspond-
ing system usually consists of structures for each corruption situation, too, where
those connections of the trusted host, that are associated with a corrupted party,
are under the control of the adversary.

We can now refine the definition of security as follows: A real system Sys1 is
as secure as an ideal system Sys2, if every structure in Sys1 is as secure as the
corresponding structure in Sys2.

A major advantage of a security definition by simulatability is the possibility
of composition. The notion of composition can be sketched as follows: If we have
on structure or system A (usually a protocol) implementing some other structure
or system B (usually some primitive), and we have some protocol XB (having
B as a sub-protocol, i.e. using the primitive), then by replacing B by A in XB ,
we get a protocol XA which is as secure as XB . This allows to modularly design
protocols: first we design a protocol XB , and then we find an implementation
for B.

A.1 Glossary

In this section we explain the technical terms used in this paper. Longer and
formal definitions can be found in [BPW04b].

[Ĉ][Ĉ][Ĉ]: Completion of the collection Ĉ. Results from adding all missing buffers

to Ĉ. Confx(M̂2, S)Confx(M̂2, S)Confx(M̂2, S): Set of ideal configurations that are possible for structure

(M̂2, S). ConfM̂2

x (M̂1, S)ConfM̂2

x (M̂1, S)ConfM̂2

x (M̂1, S): Set of real configurations possible for structure
(M̂1, S). ports(M)ports(M)ports(M): The set of all ports, a machine or collection M has.
to clock: To write 1 onto a clock out-port. EXPSMALL: The set
of exponentially small functions. NEGL: The set of negligible functions
(asymptotically smaller than the inverse of any polynomial). buffer: Stores
message sent from a simple out- to a simple in-port. Needs an input from a clock
port to deliver. clock out-port p/!p/!p/!: A port used to schedule connection.
closed collection: A collection is closed, if all ports have all their necessary
counterparts. collection: A set of machines. combination: The combination
of a set of machines is a new machine simulating the other machines. A set of
machines can be replaced by its combination without changing the view of any
machine. composition: Replacing sub-protocols by other sub-protocols.
computational security: When in the security definition, honest user and
adversary are restricted to machines running in polynomial time, and the views
are computationally indistinguishable. configuration: A structure together
with an honest user and an adversary. free ports: The free ports of a
collection are those missing their counterpart. honest user: Represents
the setting in which the protocol runs. Also called environment. intended



structure: A structure from which a system is derived making a structure for
every corruption situation. master clock port clk/?clk/?clk/?: A special port by which
the master scheduler is activated. master scheduler: The machine that gets
activated when no machine would get activated. perfect security: When
in the security definition, the real and ideal run have to be identical, not only
indistinguishable. Further the machines are completely unrestricted.11 run:
The transcript of everything that happens while a collection is run. Formally
a random variable over sequences. runconf,k,l is the random variable of the run
when running the configuration conf upon security parameter k, restricted to
its first l elements. If k is omitted, a family of random variables is meant. If l

is omitted, we mean the full run. service ports: The ports of a structure to
which the honest user may connect. They represent the interface of the protocol.
As service ports are most often ports of a buffer, they are sometimes specified
through the set Sc of their complementary ports; Sc consists of all ports which
directly connect to a service port. simple in-port p?p?p?: A port of a machine,
where it can receive messages from other machines. simple out-port p!p!p!: As
simple in-port, but for sending. statistical security: When in the security
definition the statistical distance of polynomial prefixes of the views have a
statistical distance which lies in a set of small functions SMALL (in the security
parameter k). Usually SMALL = NEGL. Further the machines are completely
unrestricted.11 structure: A collection together with a set of service ports,
represents a protocol. view: A subsequence of the run. The view(M) of some
collection or machine M consists of the run restricted to the ports and states of
M . Possible indices are as with runs.

11 In [BPW04b] a machine can in every activation for a given input and current state
only reach one of a finite number of states (this convention has been chosen for
simplicity [Bac04]). However, this cannot even model the simple Turing machine
that tosses (within one activation) coins until a 1 appears, and then stores the
number of coin tosses. Therefore we will here adopt the convention that each state
can have a countable number of potential successor states, from which one is chosen
following some distribution depending on the input and the current state.


