
Cryptography in Subgroups of Z∗

n

Jens Groth?

jg@brics.dk

Abstract. We demonstrate the cryptographic usefulness of a small sub-
group of Z

∗

n
of hidden order. Cryptographic schemes for integer commit-

ment and digital signatures have been suggested over large subgroups of
Z

∗

n
, by reducing the order of the groups we obtain quite similar but more

efficient schemes. The underlying cryptographic assumption resembles
the strong RSA assumption.
We analyze a signature scheme known to be secure against known mes-
sage attack and prove that it is secure against adaptive chosen message
attack. This result does not necessarily rely on the use of a small sub-
group, but the small subgroup can make the security reduction tighter.
We also investigate the case where Z

∗

n
has semi-smooth order. Using a

new decisional assumption, related to high residuosity assumptions, we
suggest a homomorphic public-key cryptosystem.

Keywords: RSA modulus, digital signature, homomorphic encryption,
integer commitment.

1 Introduction

Consider an RSA-modulus n = pq, where p and q are large primes.
Many cryptographic primitives take place in the multiplicative group Z∗

n

and use the assumption that even if n is public, the order of the group
ϕ(n) = (p − 1)(q − 1) is still unknown. Concrete examples of such primitives
are homomorphic integer commitments [FO97,DF02], public key encryption
[RSA78,Rab79,Pai99,CF85,KKOT90,NS98] and digital signatures that do not
use the random oracle model [BR93] in their security proofs [CS00,CL02,Fis03].

In order to speed up cryptographic computations it is of interest to find as
small groups of hidden order as possible. We suggest using a small subgroup
of Z∗

n. More precisely, if we have primes p′|p − 1, q′|q − 1, then we look at the
unique subgroup G ≤ Z∗

n of order p′q′. We make a strong root assumption for
this group, which roughly states that it is hard to find a non-trivial root of a
random element in G. We call this the strong RSA subgroup assumption.

Following Cramer and Shoup [CS00] several very similar signature schemes
have been suggested. One variation is the following: We publish n and elements
a, g, h ∈ QRn. To sign a 160-bit message m, select at random a 161-bit random-
izer r and a 162-bit prime e. Compute y so ye = agmhr mod n. The signature is

? Work done while at Cryptomathic, Denmark and BRICS, Dept. of Computer Sci-
ence, University of Aarhus, Denmark

(y, e, r). A natural question to ask is whether we really need the randomizer r.
We analyze this question and show that indeed it is not needed provided we are
willing to accept a weaker security reduction.

Restricting ourselves to an even more specialized group, we look at n =
pq = (2p′rp + 1)(2q′rq + 1), where rp, rq consists of distinct odd prime fac-
tors smaller than some low bound B. We can form a new cryptosystem us-
ing modular arithmetic in Z∗

n. Let g have order p′q′rg and h have order p′q′.
Assuming random elements of G are indistinguishable from random elements
of QRn we can encrypt m as c = gmhr mod n. To decrypt we compute
cp′q′

= gp′q′mhp′q′r = (gp′q′

)m mod n. Since gp′q′

has order rg |rprq , which only
has small prime factors, it is now possible to extract m mod rg . This cryptosys-

tem is homomorphic, has a low expansion rate |c|
|m| and fast encryption. The

decryption process is slow, yet as we shall see, there are applications of this kind
of cryptosystem. A nice property of the cryptosystem is that under the strong
RSA assumption it serves at the same time as a homomorphic integer commit-
ment scheme. This comes in handy in verifiable encryption where we want to
prove that the plaintext satisfies some specified property.

2 Subgroup Assumptions

As mentioned in the introduction, it is of interest to find a small group, where
some sort of strong root assumption holds. Obviously, a prerequisite for a strong
root assumption is that the order of the group is hidden. Otherwise we have for
any g ∈ G that g = g1+ord(G) giving us a non-trivial root. We suggest using a
subgroup of Z∗

n, where n is some suitable RSA modulus.

A small RSA subgroup of unknown order. Throughout the paper we shall work
with RSA moduli on the form n = pq, where p, q are primes. We choose these
moduli in a manner such that p = 2p′rp +1, q = 2q′rq +1, where p′, q′ are primes
so there is a unique subgroup G ≤ Z

∗
n of order p′q′. Let g be a random generator

for this group. We call (n, g) an RSA subgroup pair.

Definition 1 (Strong RSA subgroup assumption). Let K be a key gen-

eration algorithm that produces an RSA subgroup pair (n, g). The strong RSA

subgroup assumption for this key generation algorithm is that it is infeasible to

find u ∈ Z∗
n, w ∈ G and d, e > 1 such that g = uwe mod n and ud = 1 mod n.

In comparison with the strong RSA assumption [BP97] we have weakened the
assumption by only worrying about non-trivial roots of elements from G. On the
other hand, we have strengthened the assumption by generating the RSA mod-
ulus in a special way and publicizing a random generator g of a small subgroup
of Z

∗
n.
We write `p′ , `q′ for the bit-length of the primes p′, q′. The order of G then

has bit-length `G = `p′ + `q′ . A possible choice of parameters is `p′ = `q′ = 100.
We shall also use a statistical hiding parameter `s. Given some number a and a

random |a|+ `s-bit integer r, the idea is that a + r and r should be statistically
indistinguishable. A reasonable choice is `s = 60.

Lemma 1. Consider a subgroup pair (n, g) generated in a way such that the

strong RSA subgroup assumption holds. Let g1, . . . , gk be randomly chosen gen-

erators of G. Give (n, g1, . . . , gk) as input to an adversary A and let it produce

(y, e, e1, . . . , ek) such that ye = ge1
1 · · · gek

k mod n. If e = 0, then e1, . . . , ek = 0.

Else we have e|e1, . . . , e|ek and y = u
∏k

i=1 g
ei/e
i mod n, where ue = 1 mod n.

Proof. Pick γ1, . . . , γk ← {0, 1}`G+`s and set gi = gγi mod n. We give
(n, g1, . . . , gk) to A that with noticeable probability produces (y, e, e1, . . . , ek).

We have ye = g
∑k

i=1 γiei mod n. If e = 0 then g = g1+
∑k

i=1 γiei . Unless
e1, . . . , ek = 0 this is likely to be a breach of the strong RSA subgroup as-
sumption.

Assume from now on e 6= 0. Let d = gcd(e,
∑k

i=1 γiei) and choose α, β such

that d = αe + β
∑k

i=1 γiei. We have gd = gαe+β
∑k

i=1 γiei = (gαyβ)e mod n. If
p′q′|d then g = g1+e and a breach of the strong RSA subgroup assumption has
been found. If 1 < gcd(d, p′q′) < p′q′, then we have 1 < gcd(gd − 1, n) < n
giving us a non-trivial factorization of n, and indirectly a breach of the strong
RSA subgroup assumption. Therefore, d is invertible modulo p′q′ and we have
g = u(gαyβ)e/d mod n, where ud = 1 mod n. Unless d = ±e, this breaks the
strong RSA subgroup assumption.

So e|∑k
i=1 γiei. Write γi = κip

′q′ +λi. We have e|p′q′ ∑k
i=1 κiei +

∑k
i=1 λiei.

Since κi is completely hidden to the adversary and randomly chosen this implies

e|ei for all i. We now have y = u
∏k

i=1 g
ei/e
i mod n, where ue = 1 mod n. ut

Definition 2 (Decisional RSA subgroup assumption). Let K be a key

generation algorithm that produces an RSA subgroup pair (n, g). The decisional

RSA subgroup assumption for this key generation algorithm K is that it is hard

to distinguish elements drawn at random from G and elements drawn at random

from QRn.

The assumption is related to high-residuosity assumptions made by other
authors [GM84,CF85,KKOT90,NS98]. These assumptions are on the form: Given
(n, r), where r|rprq , it is hard to distinguish a random element and a random
element on the form zr mod n. In comparison, the decisional RSA subgroup
assumption is weaker in the sense that we do not publish r = rprq . On the other
hand, it is stronger in the sense that we may have a much smaller group G.

Under the decisional RSA subgroup assumption, the strong RSA subgroup
assumption implies the standard strong RSA assumption. To see this, consider
choosing r ← {0, 1}`G+`s at random and feeding gr to the strong RSA assump-
tion adversary. Under the decisional RSA subgroup assumption this looks like
a random element and the SRSA assumption adversary might return w, e > 1
so gr = we. Write r = κp′q′ + λ, then κ is perfectly hidden from the adversary.
There is at least 50% chance of gcd(e, κp′q′ + λ) 6= e. This contradicts Lemma
1, which states e|r.

2.1 RSA with Semi-smooth Order.

In Section 7, we restrict the way we generate the RSA subgroup pair. Con-
sider choosing p, q so p = 2p′p1 · · · ptp + 1, q = 2q′q1 · · · qtq + 1, where
p1, . . . , ptp , q1, . . . , qtq are distinct odd primes smaller than some small bound
B. We call (n, g) a semi-smooth RSA subgroup pair.

Define PB =
∏

1<p<B,p is prime p. Choosing h at random and setting g = hPB

we have overwhelming probability of g generating G. In other words, given n it
is easy for anybody to find a generator for G. We can therefore save specifying
g and just make n public.

Typical parameters would be `p′ = `q′ = 160 and B = 215. Setting `pi = 15,
we choose t = tp + tq distinct odd primes p1, . . . , ptp , q1, . . . , qtq such that p =
2p′p1 · · · ptp + 1, q = 2q′q1 · · · qtq + 1 are primes.

Lemma 2. Let n be a semi-smooth RSA subgroup modulus generated with pa-

rameters as described above. Pick g at random from QRn and let d be an arbitrary

non-negative integer smaller than t. With probability at least 1 − 1/p′ − 1/q′ −
(t21−`pi)d+1

(1−t21−`pi)(d+1)!
the order of g is greater than p′q′2(t−d)(`pi

−1).

Proof. Consider a generator h of QRn. Pick at random x ∈ Zp′q′rprq . Then
g = hx is uniformly distributed in QRn. Consider the prime factors p1, . . . , pt

of rprq . We will consider the probability that x = 0 mod pi for more than d of
these prime factors. Each event is independent of the others and has at most
probability 21−`pi of occurring. Therefore, from Lemma 3 we get a probability

lower than (t21−`pi)d+1

(1−t21−`pi)(d+1)!
. Combine this with the probabilities 1/p′ and 1/q′

for respectively x = 0 mod p′ and x = 0 mod q′ to conclude the proof. ut

Lemma 3. Consider n independent Bernoulli-trials with probability p, where

np < 1. The probability of having at least k successes out of n trials is lower

than
(np)k

(1−np)k! .

Proof.

n
∑

i=k

(

n

i

)

pi(1− p)n−i ≤
n

∑

i=k

(

n

i

)

pi ≤
n

∑

i=k

ni

i!
pi ≤ 1

k!

n
∑

i=k

(np)i

=
1

k!

(np)k − (np)n+1

1− np
≤ (np)k

(1− np)k!
.

ut

3 Factorization Attacks

If we can factor n we know p− 1, q − 1 and it is easy to break the strong RSA
subgroup assumption. In the case of a semi-smooth RSA subgroup modulus, the
factorization would also tell us the factors p′, q′ and we can break the decisional

RSA subgroup assumption. We do not know of any non-factorization attacks
that could be used to break either the strong RSA subgroup assumption or the
decisional RSA subgroup assumption, therefore we will focus on the possibility
of factoring n.

Pollard’s rho method. Consider a semi-smooth RSA subgroup pair (n, g). We
can use the following variation of Pollard’s ρ-method [Pol75] to factor n. We
define f by f(0) = g and f(i + 1) = (f(i) + 1)PB mod n. Intuitively this cor-
responds to taking a random walk on G starting in g. Actually, modulo p, it
corresponds to taking a random walk on a group of size p′, and modulo q, it
corresponds to taking a random walk on a group of size q′. We now hope to
find points i, j such that f(i) = f(j) mod p or f(i) = f(j) mod q. This would
give us gcd(n, f(i) − f(j)) > 1 and most likely a non-trivial factor of n. Us-
ing Brent’s [Bre80] cycle finding method we expect to find a factorization using
O(min(

√
p′,
√

q′) log(PB)) = O(2`p′/2B) modular multiplications.
In case (n, g) is simply a normal RSA subgroup modulus it seems hard to

find a function f that always ends up inside G. It therefore seems like Pollard’s
ρ-method is of little use.

Other factorization methods. Other methods such as the baby-step giant-step
algorithm of Shanks [Sha71], Pollard’s λ-method [Pol78] or Pollard’s p−1 method
[Pol74] seem to use at least 2`p′ modular multiplications.

While the above mentioned algorithms take advantage of a special structure
of the divisors of n, other algorithms such as the elliptic curve method (ECM)
[Len87] or the general number field sieve (GNFS) [CP01] do not. We therefore
believe that the best one can do here is to run the general number field sieve
with heuristic running time exp((1.92 + o(1)) ln(n)1/3 ln ln(n)2/3).

Dangers. It is of course important not to give away too much information about
the factorization of p − 1 and q − 1. An adversary knowing p′ could compute
gcd(n, gp′ − 1) = p. For this reason, we do not release p′q′.1

Likewise, if we were to release σ|(p− 1)(q− 1) with |σ| > |n|/4 then we may
risk the factorization attack described in [NS98]. Therefore, we must make sure
that there is enough entropy in the primes pi|(p− 1)(q − 1) that the adversary
cannot guess a significant portion of them. Unlike other high-residuosity schemes,
we cannot publicize the value

∏

pi|(p−1)/2 pi

∏

qi|(q−1)/2 qi.

4 Signature

Cramer and Shoup [CS00] suggest an efficient signature scheme based on the
strong RSA assumption where security can be proved in the standard model

1 Actually, such a factorization attack is possible on scheme 3 of the Paillier cryptosys-
tem [Pai99], since it uses an element g = 1 mod q. In a subsequent variant [PP99]
this has been corrected and they work in a subgroup of the same nature as we do.

without using random oracles. Subsequently, Fischlin [Fis02] has proposed ef-
ficient schemes for both the case of a statefull signer and a stateless signer.
Koprowski [Kop03] points out a minor flaw in the statefull signature scheme
and an easy correction of it. Camenisch and Lysyanskaya [CL02] have suggested
a variant that is more suitable as a building block in larger protocols such as
group signatures. Finally, Zhu [Zhu03] suggests a variation that combines the
efficiency of the stateless version of Fischlin’s scheme with the suitability of the
Camenisch and Lysyanskaya signature scheme. All these signature schemes use
safe-prime product moduli. We will suggest similar looking signature schemes
for both the statefull and the stateless case and prove security under the strong
RSA subgroup assumption. We are not the first to use RSA moduli that are not
safe-prime products, Damg̊ard and Koprowski [DK02,Kop03] have generalized
the Cramer-Shoup signature approach to basing signature schemes on general
groups with a strong root assumption. RSA subgroups as we suggest using can
be seen as an example of such a group.

Key generation: We generate an RSA subgroup G and pick a, g, h← G. The
private key is p′q′, the order of G. We select a positive integer t so t(`e −
1) + 1 > `m.

Public verification key vk = (n, a, g, h, t). Private signature key sk = p′q′.
Signature: To sign a message m ∈ {0, 1}`m, choose an `e-bit prime e that

has not been used before. Choose at random r ∈ Zet . Compute y =
(agmhr)e−t mod p′q′

mod n.

The signature on m is (y, e, r).

Verification: Given a purported signature (y, e, r) on m ∈ {0, 1}`m, check that
e is an `e-bit number and r ∈ Zet . It is not necessary to check specifically
that e is a prime. Accept if yet

= agmhr mod n.

For a stateless signature scheme it would be reasonable to choose `m = 160, `e =
161 and t = 1. We can use the method from [CS00] to pick the primes e, this
way it is still unlikely that we run into a collision where we use the same prime
in two different signatures. For a statefull signature scheme we can pick `m =
160, `e = 28 and t = 6 and keep track of the last prime we used. Whenever we
wish to sign, we pick the subsequent prime and use that in the signature. For so
small primes, the exponentiation is the dominant computational cost.

Theorem 1. If the strong RSA subgroup assumption holds for the key genera-

tion algorithm, then the signature scheme described above is secure against ex-

istential forgery under adaptive chosen message attack.

Proof. There are three cases to consider. The first case is where the adversary
forges a signature using a prime e that it has not seen before. The second case
is where the adversary reuses a prime, i.e., e = ei, where ei is the prime from
query i but r 6= ri. The third case is where the adversary reuses both ei and ri

for some i.

Case 1: e 6= ei. With non-negligible probability, we can guess the number k of
signing queries the adversary is going to make. Choose according to the signature
algorithm distinct `e-bit primes e1, . . . , ek. Set E =

∏k
j=1 et

j . Given random

elements α, γ, η ∈ G we set a = αE , g = γE , h = ηE . We give (n, a, g, h) to the
adversary. We can answer the ith query since we know et

i-roots of a, g, h. Consider

now the adversary’s signature (y, e, r). We have yet

= agmhr = αEγEmηEr so
by Lemma 1 we have et|E. This means, e = ei for some i, i.e., the first case only
occurs with negligible probability.

Case 2: e = ei, r 6= ri. Consider next the case of an adversary that reuses ei.
We guess the query i, where the adversary is going to make the forgery. We
pick ri at random and set up a = αEh−ri , g = γE , h = ηE/et

i . We can easily
answer queries j 6= i, and for query i we return the answer (yi, ei, ri), where

yi = αE/et
i γmiE/et

i . Consider now the adversary’s signature (y, ei, r) on message

m. We have (y/yi)
et

i = gm−mihr−ri = γ(m−mi)Eη(r−ri)E/et
i . By Lemma 1, we

have et
i|(r − ri)E/et

i. Since ei does not divide E/et
i and |r − ri| < et

i this means
r = ri, so the second case occurs with negligible probability.

Case 3: e = ei, r = ri. Consider finally the case where the adversary reuses
both ei and ri. We make the following setup. Pick at random rm ∈ Zet

i+2`m .

Set a = αEg−rm , g = γE/et
i , h = gηE . On query mi we pick ri = rm − mi,

which enables us to compute yi. ri is uniformly distributed over Zet
i+2`m −mi

and has more than 50% chance of being inside Zet
i
. Conditioned on ri ∈ Zet

i
, we

have a correctly distributed signature. Suppose now the adversary forms a new
signature (y, ei, ri) on message m. We get (y/yi)

et
i = gm−mi = γ(m−mi)E/et

i . By
Lemma 1 we have et

i|(m−mi)E/et
i so m = mi. ut

To form a signature we make an exponentiation with e−t mod p′q′. In com-
parison, the other schemes use an exponent of size `n. Especially for the statefull
signature scheme, we obtain a significant reduction in computation.

Strong signature. A signature scheme is strong if it impossible to form a new
signature on a message m, even if we have already seen many signatures on this
message under the chosen message attack. If we ensure that no `e-bit primes
divide ϕ(n), then it is impossible to find a non-trivial u such that ue = 1, where e
is an `e-bit prime. Generating the modulus like this makes the signature scheme
strong, since this way the adversary can only use y belonging to G because
((agmhr)e−t

y−1)et

= 1.

Applications. An advantage of the signature scheme is that it allows us to sign
a committed message without knowing the content. The receiver creates a com-
mitment c = ugmhr mod n and proves knowledge of an opening (m, (u, e, r)) of

c. We then choose a prime e and return (y, e) where y = (ac)e−t mod p′q′

mod n.
The receiver now has a signature (y, e, r mod et) on m.

This kind of committed signature can be set up in a safe-prime product
modulus as suggested in [CL02]. To hide m this requires a large r. We gain an

advantage by working in a small group and thus needing a much shorter r. One
application of this is to speed up group signatures such as [CG04].

5 Simplified Signature

It is well known that if a signature scheme secure against known message attack
suffices, then we can drop the r in the scheme described in the previous section.
I.e., a stateless signature can look like (y, e), where ye = agm mod n. The public
key is also shorter since we do not need h any more. We shall investigate whether
this signature scheme is actually secure against adaptive chosen message attack.

Key generation: We generate an RSA subgroup G and pick a, g ← G.
Public verification key vk = (n, a, g). Private signature key sk = p′q′.

Signature: To sign a message m ∈ {0, 1}`m choose a random `e-bit prime e.

Compute y = (agm)e−1 mod p′q′

mod n.
The signature on m is (y, e).

Verification: Given a purported signature (y, e) on m ∈ {0, 1}`m check that e
is an `e-bit number. It is not necessary to check specifically that e is a prime.
Accept if ye = agm mod n.

In practice, there may be more convenient ways to choose the prime e than
completely at random. Consider for instance the method of Cramer and Shoup
for generating 161-bit primes [CS00]. It is important for the proof of Theorem 2
that the primes have a distribution that is somewhat close to uniform though.

Choosing parameters for the signature scheme is not straightforward. We do
certainly need `e > `m, as well as `n to be large enough to make factoring n
hard. We also want the group G to be large enough to make it hard to break
the strong RSA subgroup assumption. To simplify notation we will assume p′, q′

both are `p′-bit primes, i.e., `G = 2`p′ . On the other hand, for reasons that will
become apparent in the proof of Theorem 2 we must be able to factor `e +`p′-bit
numbers.

Consider a rigorous factorization algorithm such as the class-group-relations
method. Lenstra and Pomerance [LP92] prove that it takes time L(2`) = exp((1+
o(1))

√

ln(2`) ln ln(2`)) to factor an `-bit number. We want L(`) < `d
n for some

degree d, i.e., a running time that is polynomial in the security parameter. This
is satisfied if ` is chosen such that ` ln(2) ln(` ln(2)) ≤ (d ln(`n)/(1+o(1)))2. With

this choice of ` we also have ` ≤ ln2(`n)
ln(2)

d2

(1+o(1))2 ln(` ln(2)) . Letting ` = `e + `p′ we

have an upper bound on the length of `p′ = `− `e.
For the strong RSA subgroup assumption to hold, we need that it is hard to

guess the order of the group G. Known algorithms that compute this order use
at least time 2`p′ . We therefore want 2`p′ to be superpolynomial in the security
parameter. Suppose we choose the parameters so `/3 ≤ `p′ , then we want to
choose ` as large as possible so 2`/3 is superpolynomial. To see whether there is

room for that consider choosing ` so ` = ln2(`n)
ln(2)

d2

(1+o(1))2 ln(` ln(2)) . We then have

2`/3 = `
ln(`n)

ln(` ln(2))
d2

3(1+o(1))2

n ≥ `
ln(`n)

ln((d ln(`n)/(1+o(1)))2)
d2

3(1+o(1))2

n .

This is a superpolynomial function of `n. So we do have reasonable hope to
have wriggle-room for choosing `e, `p′ so that the strong RSA subgroup assump-
tion holds and at the same time, it takes polynomial time to factor `e + `p′ -bit
numbers.

Theorem 2. If the strong RSA subgroup assumption holds for the key genera-

tion algorithm and factoring of `e + `p′-bit numbers can be done in polynomial

time then the signature scheme described above is a strong signature scheme

secure against existential forgery under adaptive chosen message attack.

Proof. We consider two cases. In the first case the adversary forges a signature
using a prime e that it has not seen before in an adaptive chosen message attack.
In the second case the adversary reuses a prime ei that it has received in an
answer to query i.

Case 1: e 6= ei. Consider first a variation where we choose α, γ at random from G.
We guess the number of signature queries the adversary will make and choose at
random corresponding primes e1, . . . , ek. Let E =

∏k
i=1 ei. Then a = αE , g = γE

look like random elements from G and we can answer the k queries. After having
asked the queries the adversary must produce a message m and a signature (y, e)
so ye = agm. I.e., ye = αEγmE, which by Lemma 1 implies that e|E. Since e
must be an `e-bit number this means e = ei for some i. Case 1 occurs with
negligible probability, a successful forger must reuse a prime ei from one of the
oracle queries.

Case 2: e = ei. Consider a different way to set up the signature scheme. We
choose z at random from G, and α ← {0, 1}`p′ , γ ← {0, 1}`p′ , η ← {0, 1}`e. We
guess the number of signing queries k that the adversary will make and an index i

for which it will make a forgery. Set E =
∏

i6=j ej . We set a = zE(α2`e+η), g = zEγ

and give the public key (n, a, g) to the adversary.
The probability of α < p′, γ < q′ is at least 25%. Conditioned on α <

p′, γ < q′ our key looks like a real public key. If we work modulo p, then we

have a = (zEη)(zE2`e
)α mod p, which is distributed as a random element. If

we work modulo q, then we have g = (zE)γ mod q, which is distributed as a
random element too. Overall, it therefore looks like the discrete logarithm x so
a = gx is perfectly random. Since z is chosen at random from G we also have g is
randomly distributed. So a, g are perfectly indistinguishable from two randomly
chosen elements from G.

It is easy to answer signature queries j 6= i by returning y =

z(α2`e+η+γmj)E/ej together with ej . Remaining is the question of answer-
ing query i. Suppose signature query i ask for a signature on mi. Consider
α2`e + η + γmi. Since η is statistically hidden to the adversary, it must choose
mi independently of η. α2`e + η + γmi mod 2`e therefore looks like a random
number. By assumption we can factor α2`e + η + γmi in polynomial time. With
some luck it contains an `e-bit prime factor ei, if not we give up in the simulation.

We can now return yi = zE(α2`e+η+γmi)/ei .

With the method presented above a given `e-bit prime has either proba-
bility 21−`e or probability 22−`e of being chosen. In the real signature scheme,
the distribution of primes may be different. Consider for instance the method
of Cramer and Shoup [CS00] for picking primes, this distribution is very dif-
ferent from what we have. However, we can consider our distribution of primes
as a weighted sum of two distributions: The correct distribution and a resid-
ual distribution. We include in the residual distribution all the cases where
we simply do not find any prime-factor of α2`e + η + γmi. I.e., we have
Distour = wDistcorrect + (1 − w)Distresidual. In [CS00] they suggest using 161-
bit primes and get a distribution where none of the possible primes has more
than probability 2−144 of being chosen. In our distribution each prime, and thus
each of those primes, has at least probability 2−160 of being chosen. Thus, w can
be chosen to be at least 2−16.

With probability w, we end up in a case where we give the adversary a
signature that is statistically indistinguishable from a real signature. Consider
now a signature (y, ei) on message m produced by this adversary. We have
yei = agm so (y/yi)

ei = gm−mi = zγ(m−mi)E/ei . By Lemma 1 it must be the
case that ei|(γ(m−mi)E/ei). However, ei is a prime and ei > γ, ei > |m−mi|
and ei does not divide E/ei. Therefore, m = mi. We can therefore not produce
a signature on a new message if w is non-negligible.

Strongness. We still need to argue that the signature scheme is strong. Consider
the adversary’s signature (y, ei) on m = mi, where the signature oracle returned
(yi, ei). We then have yei = yei

i = agm. This means y = uyi, where uei = 1.
However, with overwhelming probability gcd(ei, p

′q′rprq) = 1 so u = 1. ut

In the proof we need to factor α2`e + η + γmi. We discussed the class-group-
relations method earlier since this has a rigorously proved run-time. Other pos-
sible choices include the GNFS, which is not relevant for practical parameters
but gives good asymptotics, and the QS [CP01], which works better than the
class-group-relations method in practice. The best option would probably be to

use the ECM, which has a heuristic run-time of L(p)
√

2+o(1), with p being the
smallest prime factor. This prime factor should be no larger than `p′ bit in our
case.

If we use the ECM we can also consider tackling the original safe-prime
setting of this type of signature schemes, where p = 2p′ + 1, q = 2q′ + 1. In this
case α, η, γ are so large that we cannot reasonably hope to factor α2`e +η+γmi,
however, all we need is an `e-bit prime factor. As long as `e is small enough, it
is feasible to get out such a small prime factor using the ECM.

Applications. Consider a tag-based simulation sound trapdoor commitment
scheme as defined by MacKenzie and Yang [MY04]. It takes as input a mes-
sage and a tag and forms a commitment. With the trapdoor, it is possible to
open the commitment with this tag to any message. The hiding property is de-
fined as usual, however, the binding property is strengthened in the following
way: Even if we have seen arbitrary trapdoor openings of commitments with

various tags, it is still hard to open a commitment to two different messages
using a tag for which no commitment has been equivocated.

[MY04] construct a simulation sound trapdoor commitment scheme based on
the Cramer-Shoup signature scheme. Essentially, a commitment to message m
using tag tag is a simulated honest verifier zero-knowledge argument of knowl-
edge of a signature on tag using challenge m. We can simplify this trapdoor
simulation sound commitment scheme by instead simulating an honest verifier
zero-knowledge argument of a signature on tag using challenge m, where we
use the simplified signature scheme. I.e., we pick a prime e, pick at random r
and set c = re(agtag)−m mod n. The commitment is (c, e, tag), while the open-
ing is (r, m). A double opening would give us (r/r′)e = (agtag)m′−m. Since
gcd(e, m′ −m) = 1, this gives us an e-root of agtag, i.e., a signature on tag.

[MY04] use 5 exponentiations to form their simulation sound trapdoor com-
mitment and remark that using the Fischlin signature scheme it can be reduced
to 4 exponentiations. In comparison, we only use 3 exponentiations.

6 Commitment

Homomorphic integer commitments based on the strong RSA assumption were
first suggested by Fujisaki and Okamoto [FO97]. Later Damg̊ard and Fujisaki
[DF02] corrected a flaw in the security proof of the former paper and generalized
the commitment scheme to abelian groups satisfying some specific assumptions.
In this section, we suggest a similar integer commitment scheme based on the
strong RSA subgroup assumption.

Key generation: We generate an RSA subgroup G and choose at random two
generators g, h.
The public key is pk = (n, g, h).

Commitment: To commit to integer m using randomizer (u, e, r), where ue =
1 mod n, e > 0 and r ∈ Z we compute

c = commit(n,g,h)(m; (u, e, r)) = ugmhr mod n.

When making a commitment from scratch we choose r ← {0, 1}`G+`s and
use the randomizer (1, 1, r).

Opening: To open commitment c we reveal (m, (u, e, r)) such that c =
ugmhr mod n, where ue = 1 mod n, e > 0 .

Theorem 3. The commitment scheme is statistically hiding and if the strong

RSA subgroup assumption holds for the key generation algorithm then it is com-

putationally binding.

Proof. It is easy to see that the commitment is statistically hiding since hr is
almost uniformly distributed on G.

To see that the commitment scheme is binding consider a commitment c and
two openings (m, (u, e, r)) and (m′, (u′, e′, r′)) produced by the adversary. We

have c = ugmhr = u′gm′

hr′

, ue = 1, (u′)e′

= 1. We must have gcd(e, p′q′) =
gcd(e′, p′q′) = 1, since otherwise we can as in the proof of Lemma 1 break
the strong RSA subgroup assumption. This means u, u′ ∈ Z

∗
n/G and therefore

u = u′. We then have 10 = gm−m′

hr−r′

. By Lemma 1 we get m = m′. ut

The commitment scheme has several nice properties. It is homomorphic in
the sense that for all (m, (u, e, r)), (m, (u′, e′, r′)) we have commit(n,g,h)(m +
m′; (uu′, ee′, r + r′)) = commit(n,g,h)(m; (u, e, r))commit(n,g,h)(m

′; (u′, e′, r′)).
It is a trapdoor commitment scheme, if we know both p′q′ and x such that
g = hx and an opening (m, (u, e, r)) of c, then we can open c to m′ by re-
vealing (m′, (u, e, r′)), where r′ is picked at random from {0, 1}`G+`s such that
r′ = (m−m′)x+r mod p′q′. Finally, it has the following root extraction property:
Consider an adversary that produces (c, m, (u, e, r), d) so ce = ugmhr, ud = 1,
then we can find a valid opening of c. Notably, we have cde = gdmhdr so from
Lemma 1 we get e|m, e|r and c = (u′)g

m
e h

r
e , where (u′)ed = 1. The homomor-

phic property combined with the root extraction property means that we can
form efficient honest verifier zero-knowledge arguments (Σ-protocols [CDS94])
for many interesting properties of the message inside the commitment.

The commitment schemes of [FO97,DF02] pick the randomness from
{0, 1}`n+`s while we pick the randomness from {0, 1}`G+`s . This means that
we have a much shorter exponentiation when computing the commitment.

7 Encryption

Recall that a semi-smooth RSA subgroup modulus n = (2p′rp + 1)(2q′rq + 1)
has B-smooth rp, rq . Suppose we have h ∈ G and g has order p′q′rg . Given

c = gmhr we can compute cp′q′

= gp′q′mhp′q′r = (gp′q′

)m mod rg . Since rg is
B-smooth, we can from this compute m mod rg . This is the main idea in the
following cryptosystem.

Key generation: Generate an RSA subgroup modulus n = pq = (2p′rp +
1)(2q′rq + 1), where rp, rq are B-smooth and all prime factors are distinct.
Select g ← QRn and h← G.
The public key is (n, g, h). The secret key is the factorization of ϕ(n).

Encryption: We wish to encrypt a message m ∈ {0, 1}`m using randomness
(u, r) ∈ {−1, 1}× Z. The ciphertext is

c = E(n,g,h)(m; (u, r)) = ugmhr mod n.

We usually choose u = 1 and r ← {0, 1}`G+`s .
Decryption: Given a ciphertext c ∈ Z∗

n we compute Cp = cp′

= (gp′

)mp mod p.

Since the order of gp′

in Z∗
p is smooth, we can now find mp mod pi for all

pi|rp, pi|ord(g). Similarly, we can find mq mod qi for qi|rq , qi|ord(g). Using
the Chinese remainder theorem, we end up with m mod gcd(rprq , ord(g)). If
m ∈ {0, 1}`m we output m, otherwise we output invalid.

Theorem 4. If the decisional RSA subgroup assumption holds for the key gen-

eration algorithm then the cryptosystem is semantically secure against chosen

plaintext attack.

Proof. By the decisional RSA subgroup assumption, we can replace g in the pub-
lic key with a randomly chosen element from G without the adversary noticing
it. This leaves us with a statistically hiding commitment, which of course does
not allow the adversary to distinguish plaintexts. ut

It is worthwhile to observe that given a semi-smooth RSA subgroup modulus
n an adversary can only produce trivial (u, e) so ue = 1, e > 1. It is with
overwhelming probability the case that u = ±1. To see this first note as in
the proof of Lemma 1 that if gcd(e, p′q′) > 1, then we can break the strong
RSA subgroup assumption. If there is a prime pi < B so pi| gcd(e, ord(u)) then
we can find s so U = ue/ps

i 6= 1 mod n and Upi = 1 mod n. This means U =
1 mod p, U 6= 1 mod q or the other way around. I.e., 1 < gcd(n, U − 1) < n gives
us a factorization of n.

The cryptosystem looks just like the integer commitment scheme, where we
always choose u = ±1 and e = 2. As we argued above it is not possible for an
adversary to find u 6= ±1 so this is not a problem. Since we cannot distinguish
between a random g from QRn and a random g from G we actually have all the
nice properties of the commitment scheme we presented before. In particular, the
cryptosystem is homomorphic as long as we are careful to avoid overflows where
the messages are longer than `m bits. It also has the root extraction property
that is useful in zero-knowledge arguments.

Let us consider the length of the messages `m. The ciphertext has length `n,
however, `G bits are used for the randomization. Suppose d is chosen such that
there is negligible probability that more than d of the primes pi, qi do not divide
the order of g. We are then left with `m ≤ (t− d)(`pi − 1).

In comparison with other cryptosystems such as [Pai99,NS98,OU98] the
present scheme offers a better expansion rate. Generalized Paillier encryption
[DJ01] has expansion rate |c|/|m| = 1+1/s, where s is some small positive inte-
ger. Their scheme, however, requires a modulus of size ns+1. Okamoto-Uchiyama
encryption uses a modulus n of about the same size as we do, however, the ex-
pansion rate is around 3. Our cryptosystem has an expansion rate as low as
`n/`m = `n/((t − d)(`pi − 1)). With the parameters `n = 1280, `p′ = `q′ =
160, B = 215, t = 64, d = 7 we get from Lemma 2 that the order of g has bit-
length no smaller than 320 + (64 − 7)14 = 1118 with probability higher than
1− 2−80, giving us an expansion rate of 1280/798≈ 1.6.

Applications. Strengthening the decisional RSA subgroup assumption a little,
we could get away with picking g of full order p′q′rprq . This way, we can increase
the message space {0, 1}`m slightly. According to Lemma 2 a random g does have
high order so the difference is not that big though.

The reason we prefer a random g is that part of the public key can be picked
by coin-flipping. This property can be useful. Consider as an example the univer-
sally composable commitment scheme of Damg̊ard and Nielsen [DN02,Nie03]. In

their scheme, they first carry out a 2-move coin-flipping protocol to determine
the key for what they call a mixed-commitment scheme. If a corrupt party is
making a commitment, the coin-flipping protocol makes the key be a so-called
X-key. The setup is such that a simulator knows the corresponding secret key,
and thus can extract what the corrupt party committed to. On the other hand, if
an honest party is making a commitment we can tweak the coin-flipping protocol
to produce a so-called E-key. A commitment under an E-key is equivocable. The
simulator can therefore make the commitment now, and later when learning the
real value it can equivocate the commitment to this value.

Damg̊ard and Nielsen suggest universally composable commitments based
on the subgroup-p assumption [OU98] and based on the decisional composite
residuosity assumption [Pai99]. Our cryptosystem provides an efficient alterna-
tive to these variations. We generate a (n, h) as in the key generation of the
cryptosystem. The corresponding trapdoor is the factorization of ϕ(n). Running
a coin-flipping protocol we get a random element g. Using this g we can commit
to m ∈ {0, 1}`m as gmhr. If g is random, then it is a ciphertext and we can
extract m with our knowledge of the factorization. On the other hand, we could
also select x ← {0, 1}`G+`s , g = hx, which would make g an E-key. With this g
we have set up the statistically hiding commitment scheme and with knowledge
of the trapdoor x we can form commitments that can be opened to our liking.

Notice, we only use the decryption property in the simulation in the security
proof. In a real run of the universally composable commitment protocol we never
decrypt anything. Therefore, it does not hurt us that the decryption process is
slow.

Consider further the universally composable threshold cryptosystem of
Damg̊ard and Nielsen [DN03]. Here the sender encrypts his message and at
the same time makes a universally composable commitment to it. He also proves
that the two messages are identical.

The cryptosystem itself needs to be a threshold cryptosystem. They suggest
using a variation over the Paillier cryptosystem, which gives us a message space
on the form Zn, with known n. However, the UC commitment scheme does not
need to be a threshold scheme. Actually, it is only used in the security proof
where the simulator can extract the message from the UC commitment rather
than the ciphertext itself. Using our universally composable commitment scheme,
we have the additional advantage that it serves as an integer commitment. This
means, it is easy to make an efficient zero-knowledge argument of the ciphertext
and the commitment containing the same message, even though the message
spaces are different.

References

[BP97] Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop
signature schemes without trees. In proceedings of EUROCRYPT ’97, LNCS
series, volume 1233, pages 480–494, 1997.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM CCS ’93, pages 62–73,
1993.

[Bre80] Richard P. Brent. An improved monte carlo factorization algorithm. BIT,
20:176–184, 1980.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In proceedings
of CRYPTO ’94, LNCS series, volume 893, pages 174–187, 1994.

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptograph-
ically secure election scheme. In proceedings of FOCS ’85, pages 372–382,
1985.

[CG04] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and
new theoretical aspects. In proceedings of SCN ’04, LNCS series, 2004.

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In SCN ’02, LNCS series, volume 2576, pages 268–289, 2002.

[CP01] Richard Crandall and Carl Pomerance. Prime Numbers - a Computational
Perspective. Springer Verlag, 2001.

[CS00] Ronald Cramer and Victor Shoup. Signature schemes based on the strong
rsa assumption. ACM Transactions on Information and System Security
(TISSEC), 3(3):161–185, 2000.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commit-
ment scheme based on groups with hidden order. In proceedings of ASI-
ACRYPT ’02, LNCS series, volume 2501, pages 125–142, 2002.

[DJ01] Ivan Damg̊ard and Mads J. Jurik. A generalisation, a simplification and
some applications of paillier’s probabilistic public-key system. In proceedings
of PKC ’01, LNCS series, volume 1992, 2001.

[DK02] Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root ex-
traction and signature schemes in general groups. In proceedings of EURO-
CRYPT ’02, LNCS series, volume 2332, pages 256–271, 2002.

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and per-
fect binding universally composable commitment schemes with con-
stant expansion factor. In proceedings of CRYPTO ’02, LNCS se-
ries, volume 2442, pages 581–596, 2002. Full paper available at
http://www.brics.dk/RS/01/41/index.html.

[DN03] Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient
multiparty computation from threshold homomorphic encryption. In pro-
ceedings of CRYPTO ’03, LNCS series, volume 2729, pages 247–264, 2003.

[Fis02] Marc Fischlin. On the impossibility of constructing non-interactive
statistically-secret protocols from any trapdoor one-way function. In pro-
ceedings of CT-RSA ’02, LNCS series, volume 2271, pages 79–95, 2002.

[Fis03] Marc Fischlin. The cramer-shoup strong-rsasignature scheme revisited. In
proceedings of PKC ’03, LNCS series, volume 2567, pages 116–129, 2003.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge proto-
cols to prove modular polynomial relations. In proceedings of CRYPTO ’97,
LNCS series, volume 1294, pages 16–30, 1997.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[KKOT90] Kaoru Kurosawa, Yutaka Katayama, Wakaha Ogata, and Shigeo Tsujii.
General public key residue cryptosystems and mental poker protocols. In
proceedings of EUROCRYPT ’90, LNCS series, volume 473, pages 374–388,
1990.

[Kop03] Maciej Koprowski. Cryptographic protocols based on root extracting. Dis-
sertation Series DS-03-11, BRICS, 2003. PhD thesis. xii+138 pp.

[Len87] Hendrik W. Lenstra. Factoring integers with elliptic curves. Ann. of Math.,
126:649–673, 1987.

[LP92] Hendrik W. Lenstra and Carl Pomerance. A rigourous time bound for
factoring integers. J. Amer. Math. Soc., 5:483–516, 1992.

[MY04] Philip D. MacKenzie and Ke Yang. On simulation-sound trap-
door commitments. In proceedings of EUROCRYPT ’04, LNCS se-
ries, volume 3027, pages 382–400, 2004. Full paper available at
http://eprint.iacr.org/2003/252.

[Nie03] Jesper Buus Nielsen. On protocol security in the cryptographic model.
Dissertation Series DS-03-8, BRICS, 2003. PhD thesis. xiv+341 pp.

[NS98] David Naccache and Jacques Stern. A new public key cryptosystem based
on higher residues. In ACM Conference on Computer and Communications
Security, pages 59–66, 1998.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem
as secure as factoring. In proceedings of EUROCRYPT ’98, LNCS series,
volume 1403, pages 308–318, 1998.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite residuosity
classes. In proceedings of EUROCRYPT ’99, LNCS series, volume 1592,
pages 223–239, 1999.

[Pol74] John M. Pollard. Theorems of factorization and primality testing. Proc.
Cambridge Phil. Soc., 76:521–528, 1974.

[Pol75] John M. Pollard. A monte carlo method for factorization. BIT, 15:331–334,
1975.

[Pol78] John M. Pollard. Monte carlo methods for index computation (mod p).
Math.Comp., 32(143):918–924, 1978.

[PP99] Pascal Paillier and David Pointcheval. Efficient public-key cryptosystems
provably secure against active adversaries. In proceedings of ASIACRYPT
’99, LNCS series, volume 1716, pages 165–179, 1999.

[Rab79] Michael O. Rabin. Digitalized signatures and public-key functions as in-
tractable as factorization. Technical Report MIT/LCS/TR-212, MIT Lab-
oratory for Computer Science, 1979.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera. In
1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State
Univ. New York, Stony Brook, N.Y., 1969), pages 415–440. Amer. Math.
Soc., Providence, R.I., 1971.

[Zhu03] Huafei Zhu. A formal proof of zhu’s signature scheme. Cryptology ePrint
Archive, Report 2003/155, 2003. http://eprint.iacr.org/.

