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Abstract. Ring signatures enable a signer to sign a message on be-
half of a group anonymously, without revealing her identity. Similarly,
threshold ring signatures allow several signers to sign the same message
on behalf of a group; while the combined signature reveals that some
threshold ¢ of the group members signed the message, it does not leak
anything else about the signers’ identities. Anonymity is a central feature
in threshold ring signature applications, such as whistleblowing, e-voting
and privacy-preserving cryptocurrencies: it is often crucial for signers to
remain anonymous even from their fellow signers. When the generation
of a signature requires interaction, this is difficult to achieve. There exist
threshold ring signatures with non-interactive signing — where signers
locally produce partial signatures which can then be aggregated — but
a limitation of existing threshold ring signature constructions is that all
of the signers must agree on the group on whose behalf they are signing,
which implicitly assumes some coordination amongst them. The need to
agree on a group before generating a signature also prevents others —
from outside that group — from endorsing a message by adding their
signature to the statement post-factum.

We overcome this limitation by introducing extendability for ring signa-
tures, same-message linkable ring signatures, and threshold ring signa-
tures. Extendability allows an untrusted third party to take a signature,
and extend it by enlarging the anonymity set to a larger set. In the ex-
tendable threshold ring signature, two signatures on the same message
which have been extended to the same anonymity set can then be com-
bined into one signature with a higher threshold. This enhances signers’
anonymity, and enables new signers to anonymously support a statement
already made by others.

For each of those primitives, we formalize the syntax and provide a mean-
ingful security model which includes different flavors of anonymous ex-
tendability. In addition, we present concrete realizations of each primi-
tive and formally prove their security relying on signatures of knowledge
and the hardness of the discrete logarithm problem. We also describe
a generic transformation to obtain extendable threshold ring signatures
from same-message-linkable extendable ring signatures. Finally, we im-
plement and benchmark our constructions.
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1 Introduction

Anonymity has become a requirement in many real-world implementa-
tions of cryptographic systems and privacy-enhancing technologies, in-
cluding electronic voting [24], direct anonymous attestation [9], and pri-
vate cryptocurrencies [27]. Another compelling scenario is whistleblow-
ing of organizational wrongdoing. In this case, an insider publishes a
secret in a manner that convinces the public of its authenticity, while
having his/her identity protected [25]. In all of these applications, a large
anonymity set, i.e., set of users who may have performed a certain action,
is crucial in order to not reveal who exactly is behind it.

Group signatures enable any member of a given group to sign a mes-
sage, without revealing which member signed. However, group signatures
suffer from the drawback that they require trusted setup for every group.
Ring signatures are a manager-free variant of group signatures. They
enable individual users to sign messages anonymously on behalf of a dy-
namically chosen group of users, while hiding the exact identity of the
signer(s) [25]. Traditionally, this is enabled by including a “ring” R of
public keys (belonging to all possible signers, including the actual signer)
as an input to the signing algorithm; a ring signature does not reveal
which of the corresponding secret keys was used to produce it. There are
many ways to construct ring signatures using different building blocks:
classic RSA [13], bilinear pairings [30/5/12], composite-order groups [26//7],
non-interactive zero knowledge [6/20], and, most recently, quantum-safe
isogenies and lattices [T4UT9/I84].

Threshold ring signatures are a threshold variant of this primitive [§],
which allow some t signers to sign a message on behalf of a ring R of size
larger than t. The signature reveals that ¢ members of the ring signed the
message, but not the identities of those members. Some threshold ring
signature schemes are flexible [23], meaning that even after the threshold
ring signature has been produced for a given ring R, another signer from
that ring can participate, resulting in a threshold ring signature for the
same ring R but with a threshold of t4+1. However, if a signer from outside
the ring wants to participate, existing constructions do not support this.
All existing constructions of ring and threshold ring signatures have a
common limitation: the ring of potential signers is fixed at the time of
signature generation. In particular, it is not possible to have the added
flexibility of publicly “adjusting” the ring, i.e., to extend the initial ring
to a larger one, increasing the anonymity set. Increasing the size of the
set of potential signers not only increases the anonymity provided by the
signature, but also makes threshold systems easier to realize in practice.



To work in practice, standard threshold ring signatures need all of the
signers to independently sign the same message p with the same ring R,
which must include the public keys of all ¢ signers. We are interested in
relaxing this implicit synchronization requirement.

1.1 Owur Contributions

In this paper, we introduce a new property of (threshold) ring signatures
which we call eztendability. A (threshold) ring signature scheme is ex-
tendable if it allows anyone to enlarge the set of potential signers of a
given signature. Extendable threshold ring signatures are fundamental
for whistleblowing, where one party may want to “join the cause” after it
becomes public. Extendability, together with flexibility, enables a signer A
to join a threshold ring signature which was produced using an anonymity
ring R that does not contain A. This can be done by first extending the
existing signature to a new ring R’ O R U {A} which contains both the
ring used by previous signers as well as the new signer. Then, thanks to
flexibility, the new signer can add their own signature with respect to the
new ring R’ (using sk4). (Of course, an observer who has seen signatures
under the old ring R and under the new ring R’ will be able to deter-
mine R'\R; this is inherent — since an observer can always tell which
ring a signature is meant for by attempting verification — and can help
that observer narrow down possibilities for the identity of A. However,
an observer who has not seen a signature under the old ring R will learn
nothing additional about the identity of A.)

In addition to drawing formal models, we give the first constructions
of extendable ring signatures, same-message linkable extendable ring sig-
natures and extendable threshold ring signatures. We provide a proof of
concept implementation of our construction, benchmark the signing and
verification running times as well as the signature size.

Constructions from Signatures of Knowledge and Discrete Log
We build extendable ring signatures and same-message linkable extend-
able ring signatures using signatures of knowledge. Each signature will
include several elements of a group, with the property that all of their dis-
crete logs cannot be known. (This is because the product of the elements
gives a discrete log challenge which is part of the public parameters.) A
signer signs the message with a signature of knowledge that proves that
she knows either her own secret key, or the discrete log of one of the ele-
ments. The signer uses her secret key for this (and so can use the element
for which the discrete log is unknown), but for each of the other signers’



public keys in the ring, she includes a signature of knowledge using the
discrete log of one of the elements. Because all of the element discrete
logs cannot be known, a verifier is convinced that at least one signature
of knowledge is produced using a secret key, and that therefore the overall
signature was produced by one of the members of the ring.

We build extendable threshold ring signatures similarly, but by choos-
ing the elements in such a way that at least t of their discrete logs cannot
be known without revealing the discrete log of a challenge element in the
public parameters. We enforce this by placing the elements on a polyno-
mial of appropriate degree.

A Generic Transformation One might hope to build extendable thresh-
old ring signatures by concatenating ¢ extendable ring signatures; how-
ever, we would need to additionally prove to the verifier that the ¢ signa-
tures were produced by t different signers. Building such a proof would
require interaction between the signers, and it would be challenging to
maintain the proof as the ring is expanded. Instead, we solve this prob-
lem using a primitive which we call a same-message linkable extendable
ring signatures, where, given two signatures on the same message, it is im-
mediately clear whether they were produced by the same signer. Our real-
izations of this primitive provide linkability without revealing the signer’s
identity or resorting to additional zero knowledge proofs and can be used
to construct extendable threshold ring signatures in a generic way.

Implementation We provide an implementation that demonstrates the
concrete efficiency of our schemes. The benchmarks place our construc-
tions firmly within the realm of practicality: an extendable ring signature
for a ring with 2048 members can be created in 0.45s.

1.2 Related Work

Ring signatures were first introduced by Rivest, Shamir, and Tauman in
[25] as a mechanism to leak secrets anonymously. This initial construc-
tion was based on trapdoor permutations, but other schemes quickly fol-
lowed. A threshold version of their scheme was proposed the following
year by Bresson et al. [§], together with a revised security analysis for
the original scheme. By using RSA accumulators and the Fiat-Shamir
transform, a ring signature scheme with signature sizes independent of
the ring size was later constructed by Dodis et al. [13]. (A similar scheme
in the threshold setting was described by Munch-Hansen et al. [22].) In



addition to the hardness of integer factorization, pairing groups were used
in early constructions to obtain ring signatures in the conventional [5] and
identity-based [30] settings.

The first ring signature constructions were all based on the random
oracle model, but alternatives proven secure in the common reference
string model were later proposed [12J26], including constructions with
sublinear [10] and constant signature size [7]. In the standard model, early
constructions were based on 2-round public coin witness-indistinguishable
protocols [I], but more recent constructions rely on non-interactive zero-
knowledge proofs [6/20].

Threshold ring signature schemes come in many flavors, with many
constructions based on RSA and bilinear maps and security based on
number-theoretic assumptions [I7J28/29]; and post-quantum schemes based
both on lattices [3] and coding theory [2I]. The post-quantum schemes
have traditionally relied on the Fiat-Shamir transform, the quantum se-
curity of which is not fully determined. Recent work in threshold ring
signatures has provided both improved security definitions [22] and con-
structions based on the quantum-safe Unruh’s transform [15].

2 Background and Preliminaries

Notation We denote the set of natural numbers by N and let the compu-
tational security parameter of our schemes to be A € N. We say that a
function is negligible (in A), and we denote it by negl, if negl(A) = 2(A7°)
for any fixed constant ¢ > 1. We also say that a probability is overwhelm-
ing (in A) if it is greater than or equal to 1 — negl. Given two values
a < b, we denote the list of integer numbers between a and b as [a, ..., b].
For compactness, when a = 1, we simply write [b] for [1,...,b]. We de-
note empty strings as e. Unless otherwise specified, all the algorithms
defined throughout this work are assumed to be probabilistic Turing ma-
chines that run in polynomial time (abbreviated as PPT). When sampling
the value a uniformly at random from a set X, we employ the notation
a < X. In our constructions, we denote by GroupGen(1*) the algorithm
that, given in input the security parameter, outputs the tuple (p,g,G),
where p is a 2\-bit prime; g is a group generator and G is a description of
a group of order p, G = (g). Through out the paper, we assume solving
the Discrete Logarithm Problem in G is computationally hard.

2.1 Main Primitives

Ring Signatures A ring signature scheme is defined as a tuple of four
probabilistic polynomial time algorithms RS = (Setup, KeyGen, Sign, Verify):



Setu p(l/\) — pp: Takes a security parameter A and outputs a set of pub-
lic parameters pp. The public parameters are implicitly input to all
subsequent algorithms.

KeyGen() — (pk, sk): Produces a key pair (pk, sk).

Sign(u, {Pk; }jer,ski) — o: Takes a message 1 € {0, 1}* to be signed, the
set of public keys of the users within the ring of identifiers R, and the
secret key sk; of the signer i € R (i.e., the signer’s public key must
appear in the set {pk;};er). Outputs a signature o.

Verify(u, {pk; }icr,0) — accept/reject: Takes a message, a set of public
keys of the users within a ring, and a signature o. Outputs accept
or reject, reflecting the validity of the signature o on the message p
with respect to the ring R.

Naturally, a ring signature scheme should satisfy correctness, meaning

that any signature generated by Sign should verify (against the signed
message and the original ring). A secure ring signature scheme RS must
additionally satisfy (a) unforgeability, meaning that no adversary should
be able to produce a verifying signature without knowledge of at least
one signing key corresponding to a public verification key in the ring, and
(b) anonymity, meaning that no adversary should be able to tell from a
signature which ring member produced it. We refer to prior work for the
formal definitions of a ring signature scheme [8/I3|[16].
Threshold Ring Signatures There are many different ways to for-
malize the threshold ring signature syntax, which force varying degrees
of interaction between the t signers. A non-interactive threshold ring
signature scheme is defined as a tuple of five probabilistic polynomial
time algorithms (Setup, KeyGen, Sign, Combisign, Verify). The algorithms
Setup, KeyGen, Sign and Verify are syntactically the same as in a ring sig-
nature scheme, with the exceptions that (1) Sign now outputs a partial
signature o; for signer i, and (2) Verify now additionally takes the thresh-
old t as input. The algorithm Combisign, described below, combines ¢
partial signatures into a single threshold signature. It may be run by any
third party, as it does not require any signers’ secrets.

Combisign({0; }icscr) — o: Takes partial signatures {o; };es from |S| =t
signers, and outputs a combined signature o.

There are also interactive threshold ring signature schemes. In this
case Sign (which in this case also subsumes Combisign) is an interactive
protocol run between the signers, which implicitly requires the signers to
be aware of one another’s identities.



Finally, there is a solution in between, where one signer produces
the initial signature, and then the remaining signers pass the signature
around, and each “joins” the signature before passing it on. In such a
syntax, each signer must only receive (at most) one message from one
other signer, and send (at most) one message to one other signer. Instead
of Combisign, in such a syntax we have a Join algorithm, described below.

Join(u, {pk;}jer,sk,0) — o'+ Takes a message u, a set of public keys
{pkj}jgg, which includes the public key of the new signer, the new
signer’s secret key sk, and a signature ¢ produced by a subset of R
(with threshold level ¢). Outputs a modified threshold ring signature
o’ with threshold ¢ + 1.

2.2 Main Building Blocks

Signatures of Knowledge Signatures of Knowledge (SoKs) [11] gen-
eralise digital signatures by replacing the public key with an instance, or
statement, in a NP language. A signer can generate a valid signature for
a message only if she has a valid witness for the statement.

Syntax A SoK for an efficiently decidable binary relation Z is defined as
a tuple of PPT algorithms SoK = (Setup, Sign, Verify, SimSetup, SimSign):

Setup(1*, #) — pp: Takes a security parameter A and a binary relation
Z and returns public parameters pp. The input pp is implicit to al
subsequent algorithms.

Sign(p, ¢, w) — o: Takes as input a message p € {0,1}*, a statement ¢,
and a witness w. Outputs a signature o.

Verify(u, ¢, 0) — accept/reject: Takes as input a message p, a state-
ment ¢, and a signature o. Outputs accept if the the signature is
valid, reject otherwise.

SimSetup(1*, %) — (pp,td): A simulated setup which takes as input a
relation Z and returns public parameters pp and a trapdoor td.
SimSign(td, i, ) — o’ A simulated signing algorithm that takes as input
a trapdoor td, a message u and a statement ¢ and returns a simulated

signature o’.

A SoK scheme should satisfy correctness, simulatability and extractability
as formally defined in the full version of this paper.



3 Extendable Ring Signatures

Ring signatures enable a signer to generate a signature while hiding her
identity within a ring of potential signers. Even though the ring of po-
tential signers R can be arbitraryE] — realizing ad-hoc anonymity sets
— existing constructions do not let a third party increase the size of R
after the signature is produced. Once a signature is generated, it is not
possible to “extend” it to a larger anonymity set; in other words, ring
signatures do not allow one to modify a signature and obtain a new sig-
nature for the same message but with a wider set of potential signers.
Our notion of extendability aims to allow exactly this, while preserving
signer anonymity.

3.1 Syntax

An extendable ring signature scheme (ERS) is a ring signature scheme
that has an additional algorithm, Extend, that allows any third party to
enlarge the ring of potential signers of a given signature:

Extend(u, {pk; }ier, 0, {Pk; }jer’) — o'+ Takes a message, a set of public
keys (indexed by the ring R), a signature o, and a second ring of
public keys (indexed by R'). It outputs a modified signature ¢’ which
verifies under R UR/.

Remark 1. Consider an ERS scheme where Extend can be repeatedly ap-
plied to extend a signature a polynomial number of times. In this case,
we can have a very simple instantiation where Sign always produces a sig-
nature for the singleton ring {pk} containing only the signer’s public key
pk, and Extend is called only on singleton extension rings, i.e., |[R'| = 1.
A signature for the singleton ring can be extended to any ring by having
the signer iteratively apply Extend with a single additional public key.

For the following definitions, we use ladders of rings, i.e., tuples lad =
(1, RO R .. R(l)), where i is a signer identity, and the rings RL RE),
..., RW are all sets of signer identifiers. In addition, we make use of an al-
gorithm Process(fs, Leys, 1ad), that we describe in Figure|ll As the name
suggests, this algorithm processes a ladder 1ad on a given message p us-
ing keys from Lyeys (the list of generated keys). Process signs p using sk;
under the ring R, and extends the signature to all the subsequent rings
(using keys stored in the list Lyeys). Process returns an extendable ring
signature o, which is the output of the last operation.

For correctness, we require that any — possibly extended — signature o
output by Process verifies for the given message, under the final ring R(".

4 The ring R should of course contain the signer’s identity.



ERS.Process(t, Lieys, 1ad)

1: Parse lad as (i,R(l),R(2>, e 7R(l))

2: ifid RWreturn L // make sure all public keys are in Ligys

3: forje RO U...URWY :if (4, Pk;, ) & Likeys return L

// make sure the signer’s secret key is available in Lygys

4: if sky=1: return L  // make sure sk; is not corrupted

// process the instructions in the ladder

5: oM« ERS.Sign(u, {Pk,}jer, ki)

6: forl' €[2,...,1]:

7: R« R YR D // enforce rings form an increasing chain
8 o)« ERS Extend(u, {pk;}, -1 0 VoK, can)
@

©

g <40

10: return o

Fig. 1: The Process algorithm for extendable ring signatures.

Definition 1 (Correctness for ERS). An extendable ring signature
scheme ERS is said to be correct if, for all security parameters A € N, for
any message 1 € {0,1}*, for any ladder 1ad = (i, R, RP) ... RWY)
where i € RY and | > 0, it must hold that:

R=ROLyU...uURW®
ERS Verify(u, {pk, }jer,0) |pp + ERS.Setup(1*)
=accept OR 0 = L | Lieys < {(pk;, sk;) +~ ERS.KeyGen()};er
o < ERS.Process(u, Lieys, 1ad)

Pr =1

3.2 Security Model

Definition 2 (Secure ERS). An extendable ring signature scheme is
secure if it satisfies correctness (Deﬁnition, unforgeability (Deﬁm’tz’on@,
anonymity (Definition , and some notion of anonymous extendability
(described below).

Unforgeability Extendable ring signatures inherit their unforgeability
requirement from regular ring signatures: no adversary should be able to
produce a signature unless they know at least one secret key belonging
to a party in the ring. Notably, the unforgeability experiment for ERS
(cmEUF, detailed in Figure [2)) needs to take into account that the adver-
sary can arbitrarily expand the ring associated to a signature. To rule out
trivial attacks derived with this strategy, the adversary does not break
unforgeability if the candidate forgery could be generated by extending



the outcome of a signing query (line [5[in Expff}%}{g()\)). Additionally, to
account for the key duplication attack (where an adversary registers an
existing public key to a new identity), instead of simply checking if the
identities in the output ring are among the corrupted ones, the experi-
ment checks if the public keys belonging to the parties involved in the
adversary’s output ring are among the corrupted ones (line E Figure .

Exp XErs (M) OKeyGen(i, pk)

1: I—key57 LCO", I—sign — O // standard key generation for a new identifier ¢
2: pp « ERS.Setup(1?) 1: ifpk=1

3: O « {OSign, OKeyGen, OCorrupt} 2: (pk;, sk;) < ERS.KeyGen()

4 (1 R, o) AO(PP) 3: Lkeys < Lkeys U {(4, pk;, ski)}

// rule out trivial wins due to ring expansion 4: else

5. if 3 (,U/*, R, ) c I—sign s.t. // A over-writes an identifier with malicious keys

{pk;}ier C {pk;}ier~ 5: e = Lear Ui}
6: return lose 6 Pk; < pk
// rule out trivial wins due to key duplication & Lkeys « Lkeys U {(’L7 pkz’ J_)}
. 8 return pk,
71 if {pk;}jer- N {Pk;}jcle # D P%i
8: return lose OSign(u, R, 1)

9: if Verify(u",{pk. }jer~,0") = reject
Y {pk; }er ) J 1: if (1 €LonrVi¢gR): return L

10 : return lose
// check that all keys in the query are initialized
11: i .
return win 9 for all j € R
OCorrupt(i) 3 if (4,Pk;s ") & Lieys
) if (i, pk,, ski) € L dsk £ L 4: return L
if (2 ., 8k;) € Likeys and sk; .
P 85 e ’ 5: o+ ERS.Sign(u, {pk,}jer,ski)
2 Leorr <= Leorr U {7»} L L R
6 ien < Lsi
3: return (pk,, sk;) S sion U {2, R, )}
t
4 return L // if i has not been initialized. 7 returnvo

Fig. 2: Existential Unforgeability under Chosen Message Attack for (Extendable) Ring
Signatures (security experiment and oracles). Our key generation oracle allows A to
register signers with arbitrary public keys (i.e., it also acts as a registration oracle).

Definition 3 (Unforgeability for ERS). An eztendable ring signa-
ture scheme ERS is said to be unforgeable if for all PPT adversaries A
taking part in the unforgeability experiment (cmEUF in Figure @), the
success probability is negligible, i.e.: Pr [Expi?}%f[{g()\) = Win] < negl.

10



Anonymous Extendability For extendability, we consider security no-
tions related to anonymity (thus the name anonymous extendability). We
define an experiment that supports two flavors of anonymous extendabil-
ity: the standard anonymity notion, where no extension happens; and
strong extendability, where it is not possible to tell what sequence of ex-
tensions a signature has undergone.

Exp ABrs (A) Chaly(u*, 1ad}, 1ad})

1: b+gr{0,1} 1: parse ladj = (io,Rél), . ,RE)ZO))
2:  Lieys, Leorr, Lsign < @ 2: parse lad] = (il,Rgl), .. ,Rgll))
3: pp« ERS.Setup(1") // challenge signing keys should not be corrupted
// handle of oracles, for compact notation 3: if 99,91 € Leor return L

4: O « {OSign, OKeyGen, OCorrupt}
5:  (u*,1lady,lad}) «+ A°(pp)

6: &« Chaly(u*,ladg, lady)

7: b+ A%@5)

// sign and extend following the instructions
// in both ladders

*
4: 0o < Process(, Lieys, Ladg)

5: o1 < Process(p, Lieys, Lad])

// make sure A did not corrupt the challenge 6: ifog=_1Lor oy =1 return L
// keys during the second query phase // check that ladders end with the same ring
8: if 4o € Leow Vi1 € Leonr 70 i RPUURI 2RM U URW
9: return lose 8 : return |
10 : if b* 7& b // set the challenge signature according to b
11 return lose 9: G0
12: return win 10: return &

Fig. 3: Anonymity and Anonymous Extendability for Extendable Ring Signatures. The
oracles OSign, OKeyGen and OCorrupt are defined in Figure@

For standard anonymity we consider adversaries that output ladders
(ladf, lad] in line |5 of Expﬁ%Ef){(sT in Figure |3|) each containing only one
ring. To avoid making the game trivial to win, the two rings need to be
identical (line [7]of Chaly). Moreover since the extension algorithm is never
called (lp = {3 = 1 in this case), it is clear that — with this restriction on
the adversary’s input to the challenger — our ANEXT experiment is the
same as the standard anonymity one.

Definition 4 (Anonymity for ERS). An extendable ring signature
scheme is said to be anonymous if for all PPT adversaries A taking part
in the anonymous extendability experiment (ANEXT in Figure @ and
submitting to the challenger ladders of the type ladf = (ip,R),lad] =

11




(i1, R), it holds that the success probability of A is negligibly close to
random guessing. i.e.,: Pr [Expj%E%sT(/\) = win| < 1 + negl.

For strong anonymous extendability, we consider adversaries that output
any type of ladders that culminate in the same ring. In particular, we
could have [y # [1. Notice that strong anonymous extendability implies
standard anonymity.

Definition 5 (Strong Anonymous Extendability for ERS). An ex-
tendable ring signature scheme is said to be strongly anonymous extend-
able if for all PPT adversaries A taking part in the anonymous extendabil-
ity experiment (Figure @, it holds that: Pr [Expﬁ%Eﬁ(sT()\) = win] < % +
negl.

We remark that strong extendability implies that the act of extending
a ring signature is seamless, i.e., an adversary is not able to distinguish
between a fresh ring signature (returned by Sign), and an extension of it
(returned by Extend). This is covered in the strong extendability game
for lp =1 and [; > 1.

3.3 ERS from Signatures of Knowledge and Discrete Log

In what follows, we exhibit an efficient realization of extendable ring sig-
nature scheme from prime order groups and signatures of knowledge.

Our Construction in a Nutshell The setup generates a prime-order
group G = (g), a random group element H < G and public parameters
for a SoK scheme for the relation

%G(qﬁ:(h,pk),wzx):{gw:h\/gx:pk}.

Intuitively, Zg requires that the witness be either the discrete log of pk
(which is the corresponding secret key), or the element h. The signing
procedure simply samples a random value td <-r Z,, creates an element
h := H-g~* (which implies that h-g*® = H), and computes a signature of
knowledge 7 for (h, pk) using her secret key sk. The signature o contains
td, and a set P = {(h,pk,)}. Extending works essentially like signing,
except that the extender uses the other kind of witness. Concretely, the
extender samples a new td’, computes b’ = ¢*¢ and a signature of knowl-
edge 7’ for the pk’ she wishes to add to the ring, using td’ as the witness.
The tuple (A, pk’, 7’') is added to P, and td is replaced by td — td’. The
verification checks that H = ¢g*¢ -] h; for all h; present in P, and that all

12



m; verify. This ensures that at least one of the 7; was produced using sk;
as a witness (otherwise we would be able to extract dlog(H)). A formal
description of this construction is given in Figure [4

ERS.Setup(1*) + pp ERS.Verify(u, {pk; } jer, o) > accept/reject

1: (p,g,G) « Groquen(lx) 1: parse o = (nonce,td, P = {(hs,pk;, ™) }icr’)
2: SoK.pp + SoK.Setup(lA,gfe) 2: if H+# g™ H h; : return reject

3: H+RgrG ieR/

4: return pp := (SoK.pp, g, H) 3: if {pk;}jer # {Pk;}ier’ :

return reject

ERS.KeyGen() — (pk,sk) 4: foric TR -

1: sk<+Z, ¢i := (hi, pk;)

2: pk:i=g™ if SoK . Verify((nonce, p), Z, ¢i,m:) = reject :
3: return (sk,pk) return reject

5: return accept

ERS.Sign(p, sk) — o

ERS.Extend(y, {pk, }jer, 0, pk) — o’

1: td<rZ,

2: h:=H-g ™ 1: ifpke {pkj}ng :return L
// signer does not know dlog(h) 2: parse o = (nonce, td, P = {(hi, pk;, ™) }icr’)
// compute the signature 3: td <R Z, // vick a trapdoor

nonce + {0,1}* 4: td<td—td (mod p)

¢ = (h, pk) 5 h = gtd/ // to simulate using the trapdoor
w := sk 6: ¢:=(h,pk),w:=td
7 < SoK.Sign((nonce, p), #Z,¢,w)  7: 7+ SoK.Sign((nonce, 1), %, ¢, w)
P :={(h,pk,m)} 8

9

return o := (nonce, td, P)

o N O Ot ks W

return ¢’ := (nonce, td, P)

add (h,pk,7) to P // update the signature

Fig. 4: Extendable Ring  Signatures from  Signature of Knowledge
and Discrete Log. The relation used by the SoK scheme is % =
{(¢,w) = (h,pk,z) € GX G X Z,:g” =hVg®° =pk}.

Theorem 1. Assuming that SoK is a secure signature of knowledge
scheme, and that the discrete log problem is hard in the group G, then
the scheme ERS = (Setup, KeyGen, Sign, Verify, Extend) described in Fig-
ure [ is an extendable ring signature scheme that satisfies correctness
(Definition , unforgeability (Definition @), and strong anonymous ex-
tendability (Definition @

Proof. The correctness of the construction follows by inspection.
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Unforgeability To prove unforgeability, we present a sequence of hybrid
games at the end of which the reduction is able to extract a solution to
a discrete logarithm challenge from A’s forgery with high-enough prob-
ability. Essentially this involves: embedding a discrete logarithm into H;
moving to the simulatable setup for the SoK; replacing all signatures of
knowledge with simulated ones; and using the witness extracted from 7*
to learn dlog(H). Due to space limitation all details are deferred to the
full version of this paper.

Anonymous Extendability To prove the strong anonymous extend-
ability of our construction it suffices to show that if an adversary A can
successfully break anonymous extendability, we can build a reduction B
that breaks the security of the signature of knowledge. Imagine that B,
playing the role of the challenger, runs the simulated setup for the sig-
nature of knowledge, instead of the real setup. This gives BB a trapdoor
that allows it to simulate signatures without knowledge of a witness. B
uses this trapdoor to simulate all signatures of knowledge in response to
signing queries from A. BB generates the challenge signature with no ref-
erence to the ladders. It simply chooses td at random, generates the h;’s
as random values such that g*@-[[ h; = H, and uses the trapdoor to sim-
ulate all signatures of knowledge. If A can distinguish B from an honest
challenger, BB can use A to break the simulatability property of the signa-
ture of knowledge. If A cannot distinguish B from an honest challenger,
since B’s behavior does not depend on choice of b, A cannot possibly win
the anonymous extendability game with probability non-negligibly more
than half. O

4 Same-Message Linkable Extendable Ring Signatures

A same-message linkable ring signature scheme (SMLRS) is a ring signa-
ture scheme that additionally allows any third party to publicly identify
(link) whether two signatures were generated by the same signer for the
same message. This means that if the same party signs the same message
twice, even for different rings, the two signatures can be linked by any
third party. In what follows, we introduce the notion of extendable same-
message linkable ring signatures (SMLERS). We give a security model for
this new primitive, and describe an instantiation that builds on our ERS
construction from Section [3.3l
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4.1 Syntax

A same-message linkable extendable ring signature scheme is a tuple of six
algorithms SMLERS = (Setup, KeyGen, Sign, Verify, Extend, Link). The
first five algorithms are inherited from extendable ring signatures. The
Link algorithm (described below) allows any verifier to determine whether
two signatures on a particular message were produced by the same signer.

Link(, (00, {Pk; }jero)s (01, {Pk;}jer,)) — {linked,unlinked}: An algo-
rithm that takes a message u, two signatures (og,01) and two sets of
public keys belonging to members of the rings Rg, Ri. It outputs
linked if 0g and o1 were produced by the same signer, and unlinked
otherwise.

We remark that Link does not necessarily reveal the identity of the com-
mon signer if signatures are linked. Next we discuss correctness for ex-
tendable same-message linkable ring signature schemes, which encom-
passes two statements: extended signatures verify, which is inherited from
correctness for extendable ring signatures (Definition ; and extended
signatures from different signers are unlinked, which we formalize in the
following definition.

Definition 6 (Cross-Signer Correctness for SMLERS). For all se-
curity parameters X € N, for any message p € {0,1}*, for any two ladders

ladg = (io,R(()l), . ,R(()lo)), lad; = (il,Rgl), . ,Rglo)) where ig € R(()l),
ir e RW 1o >0, 1, >0 and i # i1, it must hold that:

Ro=RM U UR
_ R =R U URM
Pr Link(y, (o0, {ij}jeR9)v pp + Setup(1*)
(01, {pPk;}jer,)) — unlinked ||, < {KeyGen()}jerouRy
0o < Process(p, Lieys, 1ad)
o1 + Process(, Lieys, Lad1)

=1 —negl

where Process is the algorithm described in Figure |1l except that the ERS
algorithms are replaced with the corresponding SMLERS ones.

Remark 2. To build some intuition that may come in handy for under-
standing the security model, the reader might consider the following nat-
ural strategy for constructing an extendable same-message linkable ring
signature scheme: ensuring that (part of) the signature is unique for ev-
ery public key and message pair. In other words, the signer’s public key
and the signed message uniquely determine a part of the ring signature;
we will refer to this part as the linkability tag. This tag is not modified
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by ring extensions and can be used to identify if two ring signatures, on
the same message, were produced by the same signer simply by checking
whether they share the same tag.

4.2 Security Model
A same-message linkable extendable ring signature scheme is an extend-
able ring signature that additionally satisfies the following properties:

Same-Message One-More Linkability: no set of (f—1) corrupt sign-
ers can produce t signatures for the same message which appear pair-
wise unlinked. (We present this property in Definition .

Cross-Message Unlinkability: no adversary can determine whether
two signatures for different messages were produced by the same
signer. (We present this property in Definition [9).

link

EXP?L\I?SIK/ILERS ()‘)

1 pp < Setup(1*)

2 Lkey57 Lcorr» Lsign — 9

3: O <« {OSign, OKeyGen, OCorrupt}

(@]

4: (p" {(ok, Ri)}tren....n) < A" (pp)

// A has never seen a signature for the message and a subring of the forgery rings

5: if 3 (u",R,-) € Lsign s.t. R C R}, for some k € [1,...,t] return lose
// A holds at most t 1 secret keys, among the keys identified by the forgery rings

6: if (RIU---UR{)NLer| >t return lose

// all the signatures in the forgery verify (for the same message)

7: if 3k € [l...,1] s.t. Verify(u", {pk;}jer;,0%) = reject return lose
// all signatures in the forgery are unlinked (here k,1 € [1,...,t])

8: if 3k #1s.t. Link(u", (0%, {Pk; }jer; ), (01, {Pk, }jery)) = linked

9: return lose
10: return win

Fig. 5: Security experiment for same-message one-more linkability. The signing, key
generation and corruption oracles are as defined in Figure except that the algorithms
for ERS are replaced with the corresponding algorithms for SMLERS. We recall that
the list Lggn of sign-queries contains elements of the form (u, R,1%).

Definition 7 (Secure SMLERS). A same-message linkable extend-
able ring signature scheme (SMLERS) is secure if it satisfies correctness,
same-message one-more linkability (Definition @ which implies unforge-
ability), and cross-message unlinkability (Definition @
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Definition 8 (Same-Message One-more Linkability for SMLERS).
A same-message linkable extendable ring signature scheme SMLERS is
said to be one-more linkable if for all PPT adversaries A taking part
in the same-message one-more linkability experiment (Exp%‘slil{‘/}{LERs()\)
depicted in Figure @, it holds that: Pr[Exp%lshf\lfLERs()\) = win| < negl.

Definition 9 (Cross-Message Unlinkability for SMLERS). A same-
message linkable extendable ring signature scheme SMLERS is said to
be cross-message unlinkable if for all PPT adversaries A taking part in
the cross-message unlinkability experiment (Exp%“sllr\l}fflﬁRs()\) depicted in
Figure @, it holds that the success probability of A is negligibly close to

random guessing, i.e.,: Pr[Expj?é‘f\l}[iﬂlﬁRs()\) = win] < 1 4 negl.

Exp TLRSS(N) Chaly ({0, Ro, 0}, {11, R1,41})

1 b<r {0,1}, Lieys, Leorrs Lsign < & // the challenge identities must be uncorrupted

2: pp « Setup(1™) 1: if ip € Leow Vi1 € Leorr

3 O + {OSign, OKeyGen, OCorrupt} 2: return L

4: ({po,Ro,io}, {1, Ri,i1}) « A (pp) // one identity needs to be in both rings

5 (60,01) < Chaly({p0, Ro, %0}, {pt1, R1,i1}) 3: ifio & RoNR1Vii ¢ Ry

6 b «— Ao(éo,él) 4: return |

// Rule out corruption of challenge identities // signing keys must exist

7: if 19 € Leorr V 71 € Leor return lose 5: if B (io,pki07 sKiy) € Likeys return L
// Rule out trivial attacks using Link 6: if P (i1, Pk;, , Ski; ) € Lieys return L
8: if po = p1 return lose // generate a signature

// Rule out trivial attacks using Link 7: 0o < LRS.Sign(po, {pk, }ier,, skiy)
9: if (uo,,%0) € Lsign V (10, -, 1) € Lsign // generate the second signature according to

V (p1,,%0) € Lsign V (111, ,%1) € Lsign // the experiment’s bit b

10 : return lose 8: &1 < LRS.Sign(u1, {pk; }ier,,ski,)
11: if b" #b return lose 9: return (Go,51)
12: return win

Fig. 6: Cross-message unlinkability. The signing, key generation and corruption oracles
are as defined in Figure [2] except that the ERS algorithms are substituted with the
respective SMLERS variants.

4.3 SMLERS from Signatures of Knowledge and Discrete Log

Our SMLERS construction builds on the ERS construction in Figure [
Since the nuance is limited, we only briefly describe the tweaks needed to
transform our ERS into an SMLERS.

First, we adopt a slightly different relation ZsmLERS:

Zsmiers (¢ = (h,pk,g',7),w =1z) = {g" =hV (¢" =pk A ()" = 7)}
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Notably, the last AND not only requires a signer to prove knowledge of
the secret key, but it also enforces that the same secret key is used to
generate the linkability tag 7. The signatures of knowledge for SMLERS
are with respect to the new relation ZsMLERS.-

Second, we modify the Sign algorithm of our ERS in Figure[]so that it
additionally computes ¢’ := H(u) and 7 := (¢')%* for some hash function
H, and it includes the linkability tag 7 as part of the signature. Finally, the
algorithm Link simply compares the linkability tags in the two signatures.
It returns linked if they are equal, and unlinked otherwise.

This scheme can be shown to be same-message one-more linkable
(resp. cross-message unlinkable) with only minor modifications to the
proof of unforgeability (resp. anonymous extendability) of the extendable
ring signature scheme.

5 Extendable Threshold Ring Signatures

Like a traditional threshold ring signature scheme, an extendable thresh-
old ring signature scheme enables parties to produce a signature on a
message 4 for a ring R showing that at least ¢ of the |R| potential signers
in the ring participated, without revealing which. An extendable thresh-
old ring signature scheme additionally has the following properties:

Flexibility: Given any two threshold signatures g and o; that verify
for the same message p and for the same ring R, anyone can non-
interactively combine the signatures to obtain o. The new signature o
is also a threshold ring signature and its threshold is equal to the total
number of unique signers who contributed to at least one of the two
signatures. This functionality is provided by the Combine algorithm
(below).

Extendability: Given a signature ¢ on a message p for the ring R with
threshold ¢, anyone can non-interactively transform o into a signature
o’ on the same message with the same threshold, but for a larger ring
R’ O R. This functionality is provided by Extend (see below).

5.1 Syntax

A non-interactive extendable threshold ring signature scheme (ETRS)
is defined as a tuple of six PPT algorithms ETRS = (Setup, KeyGen,
Sign, Verify, Combine, Extend), where the public parameters pp produced
by Setup are implicitly available to all other algorithms:

Setup(1?) — pp: Takes a security parameter A and outputs a set of public
parameters pp.
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KeyGen() — (pk, sk): Generates a new public and secret key pair.

Sign(p, {pk, }icr, sk) — o: Returns a signature with threshold ¢ = 1 us-
ing the secret key sk corresponding to a public key pk; with ¢ € R.

Verify(t, i1, {pk, }icr,0) — accept/reject: Verifies a signature o for the
message p against the public keys {pk; }ier with threshold ¢.

Combine(u, 00, 01, {pPk; }icr) — o't Combines two signatures oy, o1 for
the same ring R into a signature ¢’ with threshold ¢t = Sy U 5|
where Sp, 51 is the set of (hidden) signers for oy and o} respectively.

Extend(u, o, {pk; }icr, {Pk, }icr’) > 0’: Extends the signature o with thresh-
old ¢ for the ring R into a new signature o’ with threshold ¢ for the
larger ring R UR'.

For a somewhat more interactive syntax, we can replace ‘Sign&Combine’
executions with a Join operation (described in Section[2.1). For the sake of
formalism, we present our security model only for schemes with Combine
and defer the discussion on how to handle Join operations to the Sec-
tion [5.4] where we present a construction that uses the Join operation
from signatures of knowledge and the discrete log problem.

For the following definitions, we use ladders lad in a slightly different
way than we did in the context of extendable ring signatures (Section .
We generalize lad to support arbitrary sequences of actions that could
lead to a valid threshold ring signature (on some fixed message). lad
will contain a sequence of tuples of the form (action,input). The first
component, action, can take on the values Sign, Combine, or Extend. If
action = Sign, we expect input = (R,4), where R and 7 are the ring and
signer identity with which the signature should be produced. If action =
Combine, we expect input = (l1,l2,R), where [; and Iy are indices of
two signatures under the same ring R. If action = Extend, we expect
input = (I, R), where !’ is the index of an existing signature which we
will extended to R.

For use in our definitions, we define an algorithm Process(js, Lieys, 1ad),
which processes all of the operations in 1ad on the message p (using keys
stored in the list Lyeys) and returns (o,¢,R): the signature returned by
the last operation of 1ad, the corresponding threshold, and the ring that
o verifies under. We define lad.sr to be the union of all identities and
rings in lad. (sr stands for super-ring.) We give a formal description of
Process in the full version of this paper.

Definition 10 (Correctness for ETRS). For correctness, we require
that for all ladders lad, the signature returned by Process(lad) verifies.
Formally: for all security parameters A € N, for any message p € {0,1}*,
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for any ladder 1ad of polynomial size identifying a ring R := lad.sr of
public-key identifiers, for any chosen threshold value 1 < t < |R|, it holds:

PP Setup(l’\)
Lkeys < {KeyGen()}jeraa.sr
(0,t,R) < Process(i, Lieys, Lad)

].:)r Verif}’(tv My {Pki}iG'Ra U)
=accept ORo =1

I
—

5.2 Security Model

Our security definitions are loosely based on the ones given for threshold
ring signatures by Munch-Hansen et al. [22].

Definition 11 (Secure ETRS). An extendable threshold ring signature
scheme is secure if it satisfies correctness (Definition @), unforgeability
(Definition @), anonymity (Definition , and some notion of anony-
mous extendability.

ExpmrRs (V)

1 Lieys; Leorr, Lsign < @

2:  pp « Setup(1t)

3: O « {OSign, OKeyGen, OCorrupt}

4: (", p" R, 0") « A°(pp)

5 g+ {(g",R,") € Lsign s.t. RCR")}|

// rule out attacks if A knows too many sk:s or honestly generated signatures for pu”
. *

6: if [R"NLleww|+g>1t return lose

// rule out outputs that do not verify

71 if Verify(t, u", {pk,}jer+,0") = reject return lose

8: return win

Fig. 7: Existential Unforgeability under Chosen Message Attack for (Extendable)
Threshold Ring Signatures . The key generation, corruption and signing oracles are
as in Figure [2] with the difference that the ERS algorithms are substituted with the
ETRS variants, and the signing oracle now returns partial signatures.

Definition 12 (Unforgeability for ETRS). An extendable threshold
ring signature scheme ETRS is said to be unforgeable if for all thresh-
olds t, for all PPT adversaries A the success probability in the cmEUF
experiment in Figure @ is Pr [Expi{’f&%ﬁs()\) = win| < negl.

Just like for extendable ring signatures, the notion of anonymity for
extendable threshold ring signatures captures scenarios where the adver-
sary distinguishes fresh (not-extended) signatures, i.e., the challenge will
be a threshold ring signature which has not be extended.
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Exp ﬁ{\g%(gs()\) Chaly(u*, 1adg, 1ady)

1: b<+r{0,1} 1 if ladj or ladj is not well-formed

2: Lkey57 Lcorr, Lsign — J 2 return L

3: pp <+ ETRS.Setup(1’) 3: if 3i € ladg.signers s.t. i € Leonr

4: O + {OSign, OKeyGen, OCorrupt} 4: return L

5 - (N*v lad}, ladf) - .AO (pp) 5 if 37 € ladf.signers s.t. 1 € Leorr

6: &<« Chaly(p*,1ladg, lad]) 6 return L

7. b* . AO(a_) // make sure the pl:)li(: keys are known /

8: if Ji € ladj.signers s.t. i € Leonr 7: if 3i € ladg.st st (pk;; ) € Lueys
8: return L

9: return lose N

10: if Ji € lad].signers s.t. i € Leon 9: if 30 € ladi.st 5.t (pk;, ) & Lieys
10 : return |

11: return lose )

12: if I(u",-,4) € Lgn for ¢ € ladj.signers 11: (0, t0,Ro) Process(,u*, Lieys, Lado)

13 : return lose 12:  (o1,t1,R1) < Process(p”, Lieys, Lad1)

14 - if 3(/1/*7 ,Z) c Lsign fOr i c ladI.signers // rule out trivial attacks

15: return lose 131 if Ro# Riorto#t

16: ifb"#£b 14 : return |

17 : return lose 15: 040

. 16 : return o
18: return win

Fig. 8: Anonymity and Anonymous Extendability for Extendable Threshold Ring Sig-
natures. The key generation, corruption and signing oracles are exactly as described in
the unforgeability experiment (Figure E[)

Definition 13 (Anonymity for ETRS). An extendable threshold ring
signature scheme is said to be anonymous if for all PPT adversaries A
taking part in the anonymous extendability experiment (ANEXT in Fig-
ure @) and submitting to the challenger two ladders with the structure
explained below, it holds that the success probability of A is negligibly

close to random guessing, i.e.: Pr [Expﬁ%@%ﬁ—f{s()\) = win| < % + negl.

For anonymity, the ladders submitted by the adversary to the chal-
lenger have the following structure (here t denotes the threshold of the
scheme): the first t instructions are of the type (Sign, (R,7)), where R is
the same for all instructions in both ladders, and the signer indezxes i are
all distinct within the same ladder; the last (t — 1) instructions are of the
type (Combine, (11,12, R)), where R is the same for all instructions in both
ladders, 1 =1,2,...,t — 1, and Iy =t,t +1,...,2t — 2.
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Our notion of anonymous extendability follows the gist of strong
anonymity introduced in Section for extendable ring signatures, but
adapted to the threshold setting.

Definition 14 (Strong Anonymous Extendability for ETRS). An
extendable threshold ring signature scheme ETRS is said to be strongly
anonymous extendable if for all PPT adversaries A taking part in the
anonymous extendability experiment (ANEXT in Figure @) and submit-
ting to the challenger ladders with the structure specified below, it holds
that the success probability of A is negligibly close to random guessing,
i.e.: Pr [ExpﬁiEni?ERs()\) =win| < 1+ negl.

For strong anonymous extendability the adversary submits ladders that
have the with the following structure: the first t instructions are of the
type (Sign, (i, R)), where the signer identities are pairwise distinct within
a ladder, and the ring R is the same within the ladder (but possibly dif-
ferent for each ladder); the subsequent t — 1 instructions are of the form
(Combine, (11,12, R)) or (Extend, (I',R")) , where l1,la and I' denote in-
dexes. Notably, in strong anonymous extendability each ladder may con-
tain an arbitrary (polynomial, and possibly different for each ladder) num-
ber of subsequent Extend instructions, so long the final one of each ladder
culminates in the same ring.

5.3 A Generic Compiler for ETRS from SMLERS

In what follows, we formalize the intuition given in Remark [2| (Sec-
tion on how to generically derive an extendable threshold ring signa-
ture scheme from any given same-message linkable extendable ring signa-
ture scheme. The compiler is detailed in Figure [9}

Theorem 2. Assuming that SMILERS is a secure same-message link-
able extendable ring signature scheme, then the scheme ETRS = (Setup,
KeyGen, Sign, Verify, Extend, Combine) described in Figure[9 is an extend-
able threshold ring signature scheme that satisfies correctness (Defini-

tion @), unforgeability (Definition @), and anonymity (Definition .
We prove Theorem [2]in the full version of this paper.

5.4 ETRS from Signatures of Knowledge and Discrete Log

In what follows we present a somewhat more interactive Extendable
Threshold Ring Signature Scheme that supports Join operations and en-
joys more compact signatures. Concretely, the size of extended threshold
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Setup(1*) + pp KeyGen() — (pk,sk)

return SMLERS Setup(1™) return SMLERS.KeyGen()

Sign(u, sk, {pk, }ier) — o

return SMLERS.Sign(y, sk, {pk; }icr)

EXthd(u, g, {pki}iERU: {pkz‘}iGRl ; ) o

return {SMLERS.Extend({pk;}icr:, {Pk;}jeRs; 0i) }oico

Combine(y, 00, 01, {pk; tier) — o’

1: ap+ {so € g0 |Vs1 € a1 : Link(s, (s0, {pk; }ier), (51, {Pk; }icr)) = unlinked}

/
2: return oyUo;

Verify(t, i, {pk, }ier,0) > accept/reject

1 Parse o = {so, ..., S¢} as a set of signatures // removing duplicates
2: if |o| <t return reject
3: if 3 s; € o : Verify(u, {pk, }ier, si) = reject return reject
4: if 3 (s;,85) EoxoisiF# s A
Link(g, (si, {pk; }ier), (s, {Pk;}ier)) = linked return reject

5: return accept

Fig. 9: Generic Compiler for Extendable Threshold Ring Signatures from Extendable
Same-Message Linkable Ring Signatures.

signatures is independent of the threshold ¢, instead it grows linearly with
n’ (an upper bound on the ring size). This is an improvement compared
to the compiler presented in Figure [9] which if instantiated using our
SMLERS from Signatures of Knowledge and Discrete Log of Section
returns signatures of size linear in ¢ - |R/|.

Our Construction in a Nutshell Similarly to the ERS construction of
Figure |4, we work with a prime order group G, with two public elements
g, H € G and a signature of knowledge for a relation % for knowledge of
the discrete logarithm either of a given value h or of a pk.

Let n’ € N be an upper bound on the ring size. We achieve the thresh-
old functionality by leveraging features of polynomials in a similar way
to Shamir secret sharing. Intuitively, the signer samples n’ > 0 pairs of
values (x;,td;) € Z, xG. These pairs of values define a unique polynomial
f(x) of degree n' such that f(0) = dlog,(H) and f(z;) = td; for every
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PolySign(P, T, &, w, pk, 1) — (yz,)
// compute values for the Lagrange interpolation
td
1o Z2:={(0,H)}U{(z,9)}@raer U{(®,9)}@ypremer
// compute evaluation points for the Lagrange interpolation
2: X ={z}@yez
// evaluate the polynomial on the input point &
L .
3: Yz | | Yy (x,z) () // note: dlog(yz) is unknown because dlog(H) is
(z,y)e2
4: ¢ = (Q’Pks) // include new poly. value in the statement
// Lagrange interpolation in the exponent over the standard set {1,..., n' }
. / L i
5: forien]: Vi« || ylxm @
(z,y)eZ
6: ﬂ = (,LI,, {‘/;«}ZE[TL/]) // include a ‘commitment’ to the polynomial in the message
7: w <+ SoK.Sign(ji, Zs, ¢, w)
// note: w is given in input to the algorithm,w = sk for Sign & Join, otherwise w = td
8: return (g,m)

Fig. 10: Subroutine used in our ETRS construction depicted in Figure

i € [n']. Of course, since dlog,(H) is unknown, our signers don’t know
the coeflicients of this polynomial. However, since polynomial interpo-
lation involves only linear operations (when the z-coordinates are fixed
and known), the signers can interpolate this polynomial in the exponent to
learn additional points (Z,y = gf (5”)) for any given . In order to sign, and
later to endorse a statement (Join a signature), the signer is required to
produce a signature of knowledge for % for a random point (z,y = g/(*))
on the polynomial such that & ¢ {:ci}l-e[n/]. Crucially, the signer does not
know the discrete log of y (i.e., (&, y) is not among the ‘trapdoored’ values
(x;,g%*%)), and thus must satisfy the second clause of the relation (proving
knowledge of their secret key). On the other hand, to extend a signature,
anyone can pick one of the (remaining) ‘trapdoored’ points (z;,td;), and
generate a proof for Zg by satisfying the first clause (proving knowledge
of td;), to include any pk in the ring. The pair (z;,td;) is then removed
from the list of trapdoors. (In case the owner of pk later wants to join the
signature, the Extend algorithm encrypts td; to pk; later, the owner of pk
can recover td; and return it to the list of trapdoors before producing a
fresh signature of knowledge using her secret key.)

The key idea of our construction is detailed in Figure [10| (the PolySign
subroutine employed in Sign and Join—where this is called using the signer’s
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secret key as w and on a random value Z— and in Extend—where an eval-
uation point and its corresponding trapdoor are used as Zand w respec-
tively).

For any field F (often implicit) and X C F, j € X, define the degree
|| — 1 Lagrange polynomial Ly j)(X) = [L,cax\(j} 5om € FIXI]-

Theorem 3. Assuming that SoK is a secure signature of knowledge
scheme, and that the discrete log problem is hard in the group G, then the
scheme ETRS = (Setup, KeyGen, Sign, Verify, Extend, Join) described in
Figure is an extendable threshold ring signature scheme that satisfies
correctness (Definition @), unforgeability (Definition @), and strong
anonymous extendability (Definition .

We give a proof of Theorem [3]in the full version of this paper. We also
describe how we modify the security model to account for Join there.

Remark 3. Note that a malicious extender can prevent the newly added
members of the ring from later joining a signature, simply by not encrypt-
ing the correct trapdoor under that new member’s public key. This is not
captured by our security definitions, but precluding such attacks would
be an interesting and valuable extension. We can modify our construc-
tion to disallow this by adding a zero knowledge proof that the encrypted
value is in fact the discrete log of the h in question.

6 Implementation Results

We have implemented the ERS, SMLERS and ETRS constructions, re-
spectively from Sections and [5] at the 128-bit security level within
the RELIC E| library. The choice of underlying group is the conservative
edwards25519 elliptic curve used in the Ed25519 signature scheme [2].
The benchmarking platform is an Intel Core i7-6700K Skylake @ 4GHz,
with HyperThreading and TurboBoost disabled. Each operation was ex-
ecuted 10* times for the smaller rings and 10? times for the larger ones.
The average times for signature generation and verification, and signature
sizes (without point compression) are shown in Figures and re-
spectively. For ease of exposition, we combined the wall time for the initial
signature generation and subsequent joinings or extensions in the plots.
A specific binary built by running make in relic/demo/ers-etrs|allows
to reproduce our results.

5 https://github.com/relic-toolkit/relic
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KeyGen() — (pk, sk) Extend(u, {pk,}jer, 0, pk) — o’

1: (pk,,sks) < ERS.KeyGen() 1: if pk € {pk;}jer : return L
2: (pkea Ske) — PKEKeyGen() 2: (i‘, tAd) <R T // Pick eval-point and trapdoor
3: return (Pk = (PkS,Pke)7 sk = (Sk37 Ske)) 3: C/ < Enc(pke, tAd) // enable future endorsing

// interpolate a unique representation of the polynomial

Sign(u, sk) — o

4: (¢ ,7") < PolySign(P, T, &, w = &, pk, i)
5: T+ T \ {(i’, tAd)} // erase used trapdoor
// Add simulated signature to the set of proofs

~ / / /
6: P+ PU{(Z,y,pk,,m,c)}
td <R Zp // generate trapdoors for poly. values 7.

T+ TU {(IE, td)} // populate trapdoor set
¢ < Enc(pk,, L) // noinfo to pass on

z*
X <R (nllj) // pick n’ distinct evaluation points
T:=9;, P=0

forx € X

Randomly permute P
8: return ¢’ = (T, P)

T <R Z; \ X // pick a new evaluation point Ve”f)’(ta 122 {pk] }j€R7 G) — accept/reject

(v, m) <_A PolySign(P, T, &, w := sk, pk, 1) 1o if {pk;}ier # {PK;}, ok, 0ep
P ={(Z,y,pk,,m )} 9.
return o = (T, P)

© 00 N O U R W N

return reject

—_
o

// check y’s are consistent with a degree n’ polynomial
2 :={(0,H)} U{(z,9")} @carer
2« ZU{(z,9)}@ypxemep
Pick ZC Z s.t. |Z| =n'+ 1

Join(u, {pk; }jer, sk, 0) = o’ i
5
6: X = {x}(z,y)ez; X = {x}(z,y)Ez
7
8

// check if current signer’s pk, is in P

1: if 3 (z,y,pk, 7, c) € P s.t. pk = pk,

// remove simulated proof for the signer who wants to join
2: P« P\ {(z,y,pk,, 7, )}
// retrieve trapdoor value

3: td < Dec(ske,c)

for (z,y) € Z:
if y # [1isg)ez QL@’G"E)(Z) : return reject
// Interpolation over the standard set {1,...,n" }
Vi< H(z,y)GZ yheen®
100 = (u, {Vitiepn)
11: for (z,y,pk,,m,c) € P // check proofs individually
12: ¢ = (y,pk,)

©

for i € [n] :

// add eval. point and td to the set of available trapdoors
4: T+« TU{(z,td)}

5: ¢ < Enc(pk,, L) // noinfoto pass on

6 : T <R Z; \X // pick a new evaluation point

// interpolate a unique representation of the polynomial
7: (y',7') < PolySign(P, T, &, w = sk, pk, 1)
8: P+« PU{(#,v, pk,,7,c)}

9: Randomly permute P
10: return o = (T, P)

13 : if SoK.Verify(fi, Zg, ¢, ) = reject
14 : return reject
5: if |T|+|P| > t+n' return accept

16 : else return reject

Fig.11: Extendable Threshold Ring Signatures from Signature of Knowledge and
Hardness of Discrete Log. The Setup algorithm is the same as in the ERS construction
of Figure [4] (with Ze = {(¢,w) = (h,pk,z) € G x G x Z, : g¢* = hV g* = pk}). In the
description, n’ > 0 denotes the maximum amount of times a signature can be extended
(it can be set in pp, or chosen upon signing). We always let pk denote the public key
corresponding to sk; any algorithm that is given sk as input implicitly has access to
pk. The parsing of pk into (pk,,pk,) (or of pk; into (pk, ;, pk, ;)), of sk into (sks, ske)

and of o into (7, P) is done implicitly.
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Sign SMLERS (ex1) Signature Generation Time

104; —e— Sign SMLERS (ex2) e
 —e— Sign SMLERS (ex4) Y sy
: Rt
—e— Sign SMLERS (ex8) R

. Sign ETRS (ex1)
10%=" e~ Sign ETRS (ex2)
- —-e- Sign ETRS (ex4)
© -e- Sign ETRS (ex8)

g 102~ Sign ERS
= :
E :
T 10t
100’5
101 ;i

20 71 22 23 24 25 26 27 28 29 210 511
Ring Size (Keys)

Fig. 12: Clock time for Sign in the three implemented schemes for different thresholds.
The signature generation time includes the initial signature generation and subsequent
joinings/extensions.

Signature Verification Time

Verify SMLERS (ex1)
. —e— Verify SMLERS (ex2)
103- —e— Verify SMLERS (ex4)
: —e— Verify SMLERS (ex8)
. Verify ETRS (ex1)
- —e- Verify ETRS (ex2)
102 —®- Verify ETRS (ex4)
: -e- Verify ETRS (ex8)

m :
£ © —— Verify ERS
g :
1._
£ 10
10°-
101

20 51 22 23 24 25 26 27 28 29 210 511
Ring Size (Keys)

Fig. 13: Clock time for Verify in the three implemented schemes for different thresholds.
The verification time is that of verifying the final extended signature.

ERS Benchmark We benchmark our ERS implementation for ring sizes
of 1 to 2. The performance depends on the ring size only, so the number
of extensions is always the number of keys. We instantiate the SoK for
the relation ZgRrs as a non-interactive Sigma protocol combining an OR-
proof with proof of knowledge of the discrete logarithm embedding the
message to be signed in the challenge computation.
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ETRS Benchmark We benchmark our ETRS implementation for thresh-
olds of 1,2, 4,8 and ring sizes of 1 to 2!''. For the ETRS construction, the
quadratic cost of interpolation clearly dominates the signing, joining and
verification steps; and explains the additional computational overhead in
comparison to the ERS scheme.

ETRS from SMLERS Benchmark Finally, we include the bench-
marks of our generic compiler applied to our SMLERS scheme. We instan-
tiate the SoK for the relation ZsmLers as another non-interactive Sigma
protocol combining OR-proofs and discrete logarithm proofs by slightly
rewriting the statement as {(¢* =hVg* =pk) A (¢* =hV (¢)* =71)},
which allows us to share code with the ERS implementation. In compar-
ison with the ETRS scheme, the signature sizes are much larger; but the
signature and verification times are more efficient for larger rings due to
the cost of interpolation in the ETRS scheme.

107 Size SMLERS (ex1) Signature Size
. —e— Size SMLERS (ex2)

- —e— Size SMLERS (ex4)
—e— Size SMLERS (ex8)

10°- Size ETRS (ex1)
- —e- Size ETRS (ex2)

- -®- Size ETRS (ex4)

" -e- Size ETRS (ex8)
105: —#— Size ERS

d e
103- ,//,A/

20 o1 22 23 24 25 26 27 28 29 210 Q11
Ring Size (Keys)

Fig. 14: Signature sizes for all the three implemented schemes, with varying thresh-
olds. In the ETRS scheme, the signature size is independent of the threshold, while in
SMLERS there is a linear dependence.
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