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Abstract. Key dependent message (KDM) security is a security notion
that guarantees confidentiality of communication even if secret keys are
encrypted. KDM security has found a number of applications in practical
situations such as hard-disk encryption systems, anonymous credentials,
and bootstrapping of fully homomorphic encryption. Recently, it also
found an application in quantum delegation protocols as shown by Zhang
(TCC 2019).
In this work, we investigate the KDM security of existing practical public-
key encryption (PKE) schemes proposed in the quantum random oracle
model (QROM). Concretely, we study a PKE scheme whose KEM is con-
structed by using Fujisaki-Okamoto (FO) transformations in the QROM.
FO transformations are applied to IND-CPA secure PKE schemes and
yield IND-CCA secure key encapsulation mechanisms (KEM). Then, we
show the following results.

– We can reduce the KDM-CPA security in the QROM of a PKE
scheme whose KEM is derived from any of the FO transformations
proposed by Hofheinz et al. (TCC 2017) to the IND-CPA security of
the underlying PKE scheme, without square root security loss. For
this result, we use one-time-pad (OTP) as DEM to convert KEM
into PKE.

– We can reduce the KDM-CCA security in the QROM of a PKE
scheme whose KEM is derived from a single variant of the FO trans-
formation proposed by Hofheinz et al. (TCC 2017) to the IND-CPA
security of the underlying PKE scheme, without square root security
loss. For this result, we use OTP-then-MAC construction as DEM
to convert KEM into PKE. Also, we require a mild injectivity as-
sumption for the underlying IND-CPA secure PKE scheme.

In order to avoid square root security loss, we use a double-sided one-
way to hiding (O2H) lemma proposed by Kuchta et al. (EUROCRYPT
2020). In the context of KDM security, there is a technical hurdle for
using double-sided O2H lemma due to the circularity issue. Our main
technical contribution is to overcome the hurdle.

1 Introduction

1.1 Background

Post-quantum security is emerging as a de facto standard since quantum technol-
ogy has been making rapid progress. In particular, since the NIST post-quantum



cryptography standardization project started, IND-CCA security in the quantum
random oracle model (QROM) have been extensively studied to design practi-
cal and post-quantum secure public-key encryption (PKE) [BHH+19, AHU19,
HKSU20, JZM19a, HHK17, JZC+18, SXY18, TU16, KSS+20]. IND-CCA [RS92,
DDN00] is the gold standard security notion for PKE since chosen-ciphertext
attacks are realistic in many practical applications [Ble98]. The random oracle
model (ROM) [BR93] is an idealized model where hash functions are modeled
as ideal random functions in security proofs. This idealized model helps us to
design extremely efficient cryptographic primitives. In the QROM [BDF+11], a
random oracle query is a superposition query since adversaries are modeled as
quantum polynomial-time algorithms and hash functions are locally computable.

Although IND-CCA is suitable for many practical applications, a stronger
security goal than standard confidentiality is required in some settings. Key-
dependent message (KDM) security [BRS03] is such an example. KDM security
guarantees that adversaries cannot distinguish encryption of f0(sk) from encryp-
tion of f1(sk) where sk is a secret key and f0, f1 are arbitrary functions. The KDM
situation is realistic in hard disk encryption systems like BitLocker [BHHO08]
and bootstrapping fully homomorphic encryption [Gen09]. We also use KDM
secure encryption as a building block of cryptographic primitives and protocols
such as anonymous credentials [CL01]. In particular, (non-adaptive) KDM se-
cure secret-key encryption (SKE) against quantum adversaries is used to achieve
delegation of quantum computation [Zha19]. The KDM situation also naturally
arises in formal verification of cryptographic protocols [AR02].

Thus, a natural question is:

Can we achieve practical KDM-CPA/CCA secure PKE in the QROM?
or

Do existing practical IND-CPA/CCA secure PKE satisfy KDM security in the
QROM?

The difficulty of this question depends on what level of security and efficiency
we achieve.

Security analysis in the QROM usually deviates from one in the classical
ROM. One significant issue is that, in the QROM, we cannot directly use the
observability of the classical ROM, which says reduction algorithms can observe
input points where adversaries make random oracle queries. In the QROM, re-
duction algorithms need to measure superposition queries to observe random ora-
cle queries, but this prevents reduction since adversaries can detect measurement.
Superposition queries also prevent us from straightforwardly applying the adap-
tive programming technique. These problems make it more challenging to achieve
CCA and KDM security in the QROM since each property is one of the crucial
properties in the proofs for CCA and KDM [FO13, KMHT16]. New techniques
have been proposed to solve the security-proof problems in the QROM. The one-
way to hiding (O2H) lemma [Unr15] and its variants [AHU19, BHH+19, KSS+20]
are the most well-known useful tools to solve the problem above and achieve se-
cure encryption in the QROM.

2



Roughly speaking, the (original) O2H lemma is as follows. A quantum distin-
guisher A is given oracle access to an oracle O, which is either a random function
H : X → Y or G : X → Y such that ∀x /∈ S, H(x) = G(x). Let z be a random
classical string or quantum state ((G, H, S, z) may have an arbitrary distribu-
tion). Let D be a quantum algorithm that is given input z and oracle access to H,
measures A’s query, and outputs the result. The distinguishing advantage of A,
ϵA , is bounded by the square root of the search advantage of D, ϵD , that finds an
element in S.1 All O2H lemmas except the variant by Kuchta, Sakzad, Stehlé,
Steinfeld, and Sun [KSS+20] incur a square root security loss. A square root
security loss significantly degrades the performance of cryptographic primitives
since we need to use much longer security parameters for building blocks to guar-
antee a reasonable security level, say, 128-bit security.2 Thus, to achieve practical
KDM secure PKE schemes, we should avoid a square root loss. When we focus
on tight security, both security advantages and the running time of reductions
are crucial factors. However, in most PKE schemes (and all our schemes), the
overhead of running time of reductions is only additive and is not a dominant
factor. Thus, we focus on security loss.

At first glance, the O2H lemma by Kuchta et al. [KSS+20] (denoted by O2H
with MRM) seems to immediately answer our question since it does not incur
a square root security loss. However, this is not the case. O2H with MRM is
a variation of the double-sided O2H lemma by Bindel, Hamburg, Hövelmanns,
Hülsing, and Persichetti [BHH+19], where D is given oracle access to both H and
G. Thus, in O2H with MRM, D is given oracle access to a random oracle H and
a modified random oracle G. This is not an issue for proving IND-CPA/CCA
security. However, it is a serious issue for proving KDM security because corre-
lated information about secret keys could remain in the modified random oracle
G in known proofs for KDM in the classical ROM. See Section 1.4 for the de-
tail. Kuchta et al. [KSS+20] left relaxing their double-sided O2H with MRM to a
single-sided variant as an open question. However, that question remains elusive.
In the KDM setting, we cannot directly apply a double-sided type O2H lemma.
Achieving KDM security with a double-sided O2H lemma is of independent in-
terest. Thus, our question is more precisely described as follows.

Can we achieve practical KDM-CPA/CCA secure PKE without a square root
security loss in the QROM?

or
Do existing practical IND-CPA/CCA secure PKE satisfy KDM security

without a square root security loss in the QROM?

1 Here, we ignore security loss by the number of queries and constants for simplicity.
2 Saito, Xagawa, and Yamakawa [SXY18] estimate that we need 376-bit security of

underlying trapdoor functions for 128-bit security of the IND-CCA KEM scheme by
Boneh et al. [BDF+11] if the number of queries is 260 due to a square root security
loss.
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1.2 Our Result

In this work, we affirmatively answer the question above. We prove the following.

– We can obtain KDM-CPA secure PKE without a square root security loss
by applying a Fujisaki-Okamoto transformation (denoted by FO) [FO13,
HHK17] to IND-CPA secure PKE and combining one-time pad (OTP) as
DEM.

– We can obtain KDM-CCA secure PKE without a square root security loss by
applying an FO [FO13, BHH+19] to IND-CPA secure PKE and combining
OTP and strong one-time MAC3 (that is, OTP-then-MAC) as DEM.

Note that our goal is PKE (not KEM) since we can consider the KDM set-
ting only in PKE. We need OTP to achieve PKE since FO yields KEM [FO13,
HHK17]. Our results are extremely versatile since we can convert IND-CPA
secure PKE to KDM-CPA/CCA secure PKE by the well-known general trans-
formations. FO yields practical KEM/PKE schemes and is employed in many
candidates of the NIST PQC standardization to achieve CCA security. Note that
we do not need the perfect correctness of the building block PKE. However, for
the result on KDM-CCA secure PKE, we require that a derandomized version
of the building block PKE is injective as in the CCA schemes in some previous
works [BHH+19, KSS+20]. Bindel et al. argue that injectivity is commonly sat-
isfied by many practical IND-CPA secure lattice based schemes [BHH+19]. We
also note that we use PKE in the multi-user setting [BBM00] as the building
block PKE in the transformation since the KDM setting is the multi-user setting
by default.4

To explain our result more precisely, we recall that an FO can be decomposed
into two transformations T and U. This was first observed by Hofheinz, Hövel-
manns, and Kiltz [HHK17]. In this work, we adopt variants of T and U defined
by Bindel et al. [BHH+19]. The only difference between the transformations by
Hofheinz et al. and those by Bindel et al. is that the validity check by encryption
in the decryption algorithm is performed as a part of T in the former while it
is performed as a part of U in the latter. Thus, the resulting FO is the same
regardless of which definitions of T and U we use.

T transformation transforms an IND-CPA secure PKE scheme into an OW-
CPA secure deterministic PKE scheme. U transformation transforms an OW-
CPA secure deterministic PKE scheme into an IND-CCA secure KEM. Regard-
ing U, there are six variants, U⊥, U̸⊥, U⊥,keyconf, U⊥m, U ̸⊥m, and U⊥,keyconf

m . Here,
⊥ and ̸⊥ mean explicit and implicit rejection in decryption, respectively, and no
subscript and subscript m mean a hash function takes a ciphertext as a part of
the input or not. Superscript keyconf (key confirmation) means that we add a
hash value of a plaintext to a ciphertext and check the hash value in decryption.
Bindel et al. [BHH+19] prove that U⊥, U̸⊥, and U⊥,keyconf yield IND-CCA KEM
3 Strong one-time MAC unconditionally exists.
4 We can achieve PKE in the ℓ-user setting with advantage ϵ′ from standard PKE

with advantage ϵ such that ϵ′ ≈ ℓ · ϵ.
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if and only if U⊥m, U̸⊥m, and U⊥,keyconf
m yield IND-CCA KEM, respectively. It does

not matter whether a hash function takes a ciphertext as the input or not. This
is also the case in the context of KDM security since the prove can be done via
simple mappings between random functions. Thus, in this work, we focus on U⊥m,
U̸⊥m, and U⊥,keyconf

m .
To solve the correlated information problem above, we introduce a new se-

curity notion called seed-dependent message one-wayness against related seed
attacks (SDM-OW-RSA). This notion is a technical contribution and plays a
crucial role in this work (defined in Section 2.3). Then, we show that if we ap-
ply the U⊥m transformation to SDM-OW-RSA deterministic PKE, the resulting
scheme is KDM-CPA secure by combining OTP as DEM. We also show that if
we apply U⊥,keyconf

m to SDM-OW-RSA secure deterministic PKE with injectiv-
ity, the resulting scheme is KDM-CCA secure by combining OTP-then-MAC as
DEM. Although we need O2H with MRM in this part to avoid a square root se-
curity loss, we can overcome the double-sided oracle issue due to SDM-OW-RSA
security.

In order to complete the proof for the KDM security of FO transformations,
we go to the following path. We first introduce a variant of T that we call T
transformation with hash key generation THKG, and show that if we apply THKG
to IND-CPA PKE, the resulting deterministic PKE scheme satisfies SDM-OW-
RSA without square root security loss. Combined with the above, we see that
U⊥m (resp. U⊥,keyconf

m ) together with THKG can be used to obtain a KDM-CPA
(resp. KDM-CCA) secure PKE scheme from an IND-CPA secure PKE scheme
without square root loss. Finally, we show that THKG in those constructions can
be replaced with T, thus prove the KDM security of FO transformations.

Although we omit in this paper, we can see that we can prove the KDM-
CPA security without a square root security loss even if we use U ̸⊥m instead of
U⊥m. Interestingly, if we use U̸⊥m instead of U⊥,keyconf

m , it is not clear whether we
can prove the KDM-CCA security without a square root loss. In the IND-CCA
case, U̸⊥m provides us with IND-CCA security without a square root security
loss [KSS+20, BHH+19]. See Section 1.4 for the detail. We summarize these
results in Table 1.

1.3 Related Work

Our work is the first study on KDM secure PKE in the QROM. Our work also
focuses on tighter reductions. Zhang constructs a non-adaptive KDM-CPA SKE
scheme in the QROM to achieve delegation of quantum computation [Zha19].

Backes, Dürmuth, and Unruh [BDU08] study the KDM security of the OAEP
transformation [BR95] in the classical ROM. They prove that OAEP is KDM-
secure in the classical ROM if the underlying trapdoor permutation is partial-
domain one-way. Note that there is no post-quantum secure trapdoor permuta-
tion so far. Davies and Stam [DS14] study the KDM security in the KEM/DEM
framework. They prove that if a key derivation function (KDF) is used in be-
tween the KEM and DEM part and the KDF function is modelled as a classical
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Table 1: Summary of our results. Here, U⊥
m,OTP and U⊥,keyconf

m,OTP+MAC denote U⊥
m with OTP and

U⊥,keyconf
m with OTP-then-MAC, respectively. Let ϵΣ and dF be the attacker advantage

in scheme Σ and the query depth of queries to random oracle F , respectively. Note that
dF ≤ qF where qF is the number of random oracle queries. We use PKE in the multi-
user setting for the building block PKE (denoted by PKE). Open Q. means that it is
an open question whether we can achieve KDM-CCA security by using U ̸⊥

m,OTP[PKE1, H]
transfromation.

Transformation Security implication Security bound Condition

PKE1 := THKG[PKE, G] (§ 5) IND-CPA ⇒ SDM-OW-RSA O(dG · ϵPKE) none
U⊥

m,OTP[PKE1, H] (§ 4) SDM-OW-RSA ⇒ KDM-CPA O(dH · ϵPKE1 ) none
U⊥

m,OTP[T [PKE, G], H] (§ 6) IND-CPA ⇒ KDM-CPA O(dH · dG · ϵPKE)a none
U ̸⊥

m,OTP[T [PKE, G], H] IND-CPA ⇒ KDM-CPA O(dH · dG · ϵPKE)a none
U⊥,keyconf

m,OTP+MAC[PKE1, H] ([KN21]) SDM-OW-RSA ⇒ KDM-CCA O(dH · ϵPKE1 ) injectivity
U⊥,keyconf

m,OTP+MAC[T [PKE, G], H] ([KN21]) IND-CPA ⇒ KDM-CCA O(dH · dG · ϵPKE)a injectivity
U ̸⊥

m,OTP[PKE1, H] open Q. ⇒ KDM-CCA open Q. open Q.

a This is a simplified bound. See Section 6 for the detail.

random oracle, the resulting PKE scheme is KDM-secure. See the reference for
security requirements. Kitagawa, Matsuda, Hanaoka, and Tanaka [KMHT16]
prove that the FO transformation [FO13] satisfies KDM-CCA security in the
classical ROM.5 These works studied KDM security in the classical ROM basi-
cally prove KDM security by eliminating key dependency of plaintexts by random
oracle programming.

We also briefly introduce previous works on IND-CCA secure PKE/KEM
in the QROM. Let ϵ and ϵbb be the advantages of IND-CCA PKE/KEM and
the building block, respectively. Let qH be the number of random oracle queries
(and we set dH := qH for simplicity). Below, we omit “IND-CCA” and “in the
QROM” since all results are about them. We also ignore the differences between
FO and FO variants.

Boneh et al. [BDF+11] use a KEM variant of Bellare-Rogaway transforma-
tion [BR93] to obtain their KEM from trapdoor functions and ϵ ≈ qH

√
ϵbb.

Targhi and Unruh [TU16] use FO to obtain their PKE from OW-CPA PKE
and ϵ ≈ q1.5

H
4
√

ϵbb. They also use an OAEP variant to obtain their PKE from
partial domain trapdoor injective OWFs and ϵ ≈ poly(qH) 8

√
ϵbb. Hofheinz et

al. [HHK17] present modular analysis for FO, but their KEM does not improve
the construction by Targhi and Unruh. Saito et al. [SXY18] use FO to obtain
their KEM from disjoint simulatable deterministic PKE and ϵ ≈ ϵbb. They also
obtain their KEM from IND-CPA PKE with perfect correctness and ϵ ≈ qH

√
ϵbb.

Jiang, Zhang, Chen, Wang, and Ma [JZC+18] use FO and obtain their KEM
from OW-CPA PKE and ϵ ≈ qH

√
ϵbb. Jiang, Zhang, and Ma [JZM19a] achieve

the same bound as those by Jiang et al. [JZC+18] and Saito et al. [SXY18]

5 Precisely speaking, the FO transformations studied in the context of QROM are
somewhat different from the original FO transformation [FO13].
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by using the same assumptions and FO with explicit rejection. Ambainis, Ham-
burg, and Unruh [AHU19] prove an improved variant of the original O2H lemma
(semi-classical O2H lemma) and its bound is ϵA ≈

√
qH
√

ϵD (the query loss is
improved). The semi-classical O2H lemma leads to KEM with improved bounds
in the query part [AHU19, HKSU20, JZM19b]. Bindel et al. [BHH+19] prove
the double-sided O2H lemma whose bound is ϵA ≈

√
ϵD . They use FO to obtain

their KEM from IND-CPA PKE with injectivity, but its bound is essentially
the same as that of schemes using the semi-classical O2H lemma. Kuchta et
al. [KSS+20] prove O2H with MRM and obtain their KEM from IND-CPA PKE
with injectivity via FO, and ϵ ≈ q2

Hϵbb.

1.4 Technical Overview

We provide the technical overview of this work. Our goal here is to show that the
KDM security in the QROM of the PKE scheme U⊥m,OTP(T(PKE, Genc), H)6 can
be reduced to the IND-CPA security of the underlying PKE without square root
security loss. Roughly speaking, the difficulty is that in the setting of KDM secu-
rity, double-sided O2H lemmas [BHH+19, KSS+20] cannot be applied straight-
forwardly, which is currently the only tool that enables us to circumvent square
root security loss in the QROM.

We first explain how we circumvent square root security loss and prove the
KDM security in the QROM of the PKE scheme U⊥m,OTP = U⊥m,OTP(dPKE, H)
whose ciphertext is described as

(dEnc(pk, s), H(s)⊕m),

where dEnc is the encryption algorithm of a deterministic PKE scheme dPKE
with the message space M, s ← M, and H is a random oracle. We iden-
tify that the KDM security in the QROM of U⊥m,OTP can be reduced without
square root loss to the security notion of dPKE that we call seed-dependent
message one-wayness (SDM-OW security). Then, we explain that the SDM-OW
security in the QROM of a tweaked version of T = T(PKE, Genc) can be re-
duced to the IND-CPA security of the underlying PKE scheme PKE without
square root security loss. We call the tweaked version T transformation with
hash key generation THKG = THKG(PKE, (Gkg, Genc)) where Gkg and Genc are ran-
dom oracles. From these facts, we see that the KDM security in the QROM of
U⊥m,OTP(THKG(PKE, (Genc, Gkg)), H) can be reduced to the IND-CPA security of
PKE without square root security loss. Finally, we state that the KDM secu-
rity of U⊥m,OTP(T(PKE, Genc), H) immediately follows from the KDM security of
U⊥m,OTP(THKG(PKE, (Genc, Gkg)), H).

Below, we start with how to prove the KDM security of U⊥m,OTP in the classical
ROM. For simplicity, in this overview, we consider the following simplified KDM
security. Given a ciphertext of fb(sk), any adversary cannot predict b correctly
6 We again note that we use variants of T and U transformations defined by [BHH+19]

in this work.
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better than random guessing, where b ← {0, 1} is the challenge bit and f0
and f1 are any a-priori fixed two functions. The actual KDM security requires
indistinguishability holds for multiple pairs of functions adaptively chosen by an
adversary under multiple public and secret key pairs.

KDM security of U⊥m,OTP in the classical ROM. Let A be an adversary. A is given
the challenge ciphertext and the random oracle access, which are described as

CT : (dEnc(pk, s), H(s)⊕ fb(sk)) and RO : H(x).

We first make a conceptual change to the security game so that the challenge
ciphertext and the random oracle are described as

CT : (dEnc(pk, s), u) and RO : V (x) =

{
u⊕ fb(sk) (if x = s)
H(x) (otherwise),

where u is a uniformly chosen value independent of H and fb(sk). We can con-
firm that this is a purely conceptual change since V behaves as a random func-
tion and the challenge ciphertext is computed as (dEnc(pk, s), V (s) ⊕ fb(sk)) =
(dEnc(pk, s), u). Therefore, it does not change A’s advantage. Then, we further
change the security game so that A gets access to H instead of V , but the chal-
lenge ciphertext is still generated using V . Thus, the challenge ciphertext is not
changed from (dEnc(pk, s), u). In other words, except for the generation of the
challenge ciphertext, we program the output value of the random oracle at point
s from V (s) = u⊕ fb(sk) into H(s). The view of A is now

CT = (dEnc(pk, s), u) and RO : H(x).

We see that in the final game, the challenge bit b is completely hidden from
the view of A, and thus A’s advantage is 0. Therefore, we must estimate how
much the advantage of A is changed by the above programming of the random
oracle. From the difference lemma7, this can be bounded by the probability
that A queries s to H in the final security game. In the final game, information
of fb(sk) is completely eliminated from the view of A. Thus, we can use the
security of dPKE in order to estimate the probability. Concretely, the probability
is estimated by using the OW-CPA security of dPKE. This completes the proof.
Of course, square root security loss does not occur in this proof.

KDM security of U⊥m,OTP in the QROM? When we try to prove KDM security of
U⊥m,OTP in the QROM, we need a different tool from the difference lemma. This
is because “the probability that A queries s to H” is not well-defined in this
case since A can make a query to the random oracle in super-position. In the
QROM, in many cases, we can use one-way to hiding (O2H) lemma [Unr15] and
7 The lemma states that if Pr[A ∧ ¬C] = Pr[B ∧ ¬C], |Pr[A]− Pr[B]| ≤ Pr[C] holds

for any events A,B, and C.
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its variants [AHU19, BHH+19, KSS+20] as drop-in replacements of the differ-
ence lemma in the security proof done in the classical ROM. Roughly speaking,
the O2H lemma guarantees that there exists an extractor D such that the distin-
guishing gap caused by a programming of a quantumly-accessible random oracle
can be bounded by the probability that D extracts the programmed point. O2H
lemma is classified into two categories. The first one is a single-sided O2H lemma
where D gets access to either pre-programmed or post-programmed random ora-
cles. The other one is a double-sided O2H lemma where D gets access to both of
them. In order to circumvent the square root security loss, we currently need to
use double-sided O2H lemma proposed in [KSS+20] called O2H with measure-
rewind-measure (MRM) lemma.

Suppose to prove KDM security of U⊥m,OTP in the QROM, we follow the same
strategy as the case of the classical ROM (i.e., make a conceptual change and
program V into H) and use O2H lemma instead of the difference lemma. Since
our goal here is to prove the KDM security of U⊥m,OTP in the QROM without
square root security loss, we use O2H lemma with MRM. By doing so, we can
say that there exists a QPT extractor D such that∣∣∣Pr

[
1← A |V ⟩(z)

]
− Pr

[
1← A |H⟩(z)

]∣∣∣ ≤ 4d · Pr
[
s← D|V,H⟩(z)

]
,

where z = (dEnc(pk, s), u) and d is the query depth of A to the random oracle.8
Thus, if we can in turn bound the probability Pr

[
s← D|V,H⟩(z)

]
by using the

security of the underlying dPKE, we can complete the entire security proof.
However, it turns out that it cannot be done straightforwardly using the OW-
CPA security of dPKE as before. The reason is that since D has access to not
only H but also V that has information of fb(sk), it is not clear whether we
can use the OW-CPA security of dPKE. Recall that in the proof in the classical
ROM case, when estimating “the probability that A queries s to H” using the
OW-CPA security of dPKE, information of fb(sk) is eliminated from the view of
A since A does not have access to V .

In summary, in the proof in the classical ROM, we can successfully reduce
the KDM security of U⊥m,OTP to the OW-CPA security of dPKE by eliminating
information of fb(sk) using programming of the random oracle. However, in
the case of the QROM, if we use O2H with MRM lemma, it seems difficult to
eliminate the information of fb(sk) by programming the random oracle. This
is because we finally need to handle the extractor D who gets access to both
pre-programmed and post-programmed random oracles.

Note that even if V does not have information of fb(sk), it might not be clear
whether an OW-CPA adversary can simulate two random oracles V and H at
the same time for D. The reason is that the differing point s of the two random
oracles is the solution of the OW-CPA game itself. This problem can be handled
by using the correctness of dPKE. As shown by [LW21], the correctness of dPKE
implies that under a randomly generated key (pk, sk), a randomly generated
8 The notation A |O⟩ indicates that A is allowed to make a query to O in super-position.

Also, for the definition of query depth, see Section 3.
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message m does not have a collision, that is another message m′ such that
dEnc(pk, m) = dEnc(pk, m′), with overwhelming probability. If ct = dEnc(pk, s)
has unique pre-image s, the OW-CPA adversary can check the condition “if
x = s” by checking “if dEnc(pk, x) = ct” (in super-position), thus can simulate
V and H at the same time if V does not have information of fb(sk).

Reduction to SDM-OW security. Although it seems difficult to bound the prob-
ability Pr

[
s← D|V,H⟩(z)

]
using the OW-CPA security of dPKE, we show that

it can be bounded if dPKE satisfies SDM-OW security introduced in this work.
Hereafter, we assume that the message space M of dPKE is an abelian group
with the operation “+” and the random coin space of the key generation algo-
rithm dKG of dPKE is contained in M. Then, SDM-OW security is a security
notion that guarantees that given (s, dEnc(pk, r + s)), an adversary cannot com-
pute r + s, where s ← M, and r ∈ M is the random coin used to generate
(pk, sk) (i.e., (pk, sk)← dKG(1λ; r)).

The estimation is done after adding the following changes to z and V that
do not affect the view of D. First, we replace s in z and V with r + s, where
r ∈ M is the random coin used to generate (pk, sk). Namely, we change z and
V as

z = (dEnc(pk, r + s), u) and V (x) =

{
u⊕ fb(sk) (if x = r + s)
H(x) (otherwise).

(1)

This change does not affect the view of D since s is chosen uniformly at random
and independently of r. Then, we further replace V with the following

V (x) =

{
u⊕ f̂b(x) (if x = r + s)
H(x) (otherwise),

(2)

where f̂b is a function that is given x as an input, computes (pk, sk)← KG(1λ; x−
s), and outputs fb(sk). We can check that V in Equation (1) and V in Equa-
tion (2) are functionally equivalent. Thus, this change also does not affect the
view of D. Moreover, we finally replace the condition “if x = s + r” in V with
“if dEnc(pk, x) = dEnc(pk, r + s)”. As noted before, this can be justified from the
correctness of dPKE.

We see that by the above changes, z and V (i.e., the entire view of D) can now
be simulated by an SDM-OW adversary B who is given (s, dEnc(pk, r+s)). More-
over, B can break the SDM-OW security if the simulated D successfully extracts
the differing point of V and H, that is, r+s. This means that Pr

[
s← D|V,H⟩(z)

]
can be bounded by using the SDM-OW security of dPKE.

From the above arguments, we see that the KDM security of U⊥m,OTP in the
QROM can be reduced to the SDM-OW security of dPKE without square root
security loss.

SDM-OW security of a variant of T. We next explain the SDM-OW security of
THKG = THKG(PKE, (Gkg, Genc)) can be reduced to the IND-CPA security of the

10



underlying PKE scheme PKE without square roof security loss, where Gkg and
Genc are random oracles. THKG is a tweaked version of T = T (PKE, Genc) transfor-
mation. T transformation converts a (randomized) IND-CPA secure PKE scheme
into an OW-CPA secure deterministic PKE scheme. The encryption algorithm of
T is described as Enc(pk, m; Genc(m)), where Enc is the encryption algorithm of
the underlying PKE. The key generation and decryption algorithms of T are those
of PKE themselves. In THKG, we also generate a key pair (pk, sk) by using a ran-
dom coin generated by the random oracle Gkg, that is, (pk, sk)← KG(1λ; Gkg(r)),
where r ←M.

Bindel et al. [BHH+19] showed that the OW-CPA security of T can be re-
duced to the IND-CPA security of PKE without square root security loss. The
important thing is that the target security notion is one-wayness (not indistin-
guishability) here. Essentially, Bindel et al. avoided the square root security loss
by relying on the fact that if the target security notion is one-wayness and the
starting security notion is indistinguishability, we can avoid square root security
loss by using single-sided O2H lemma called semi-classical O2H lemma [AHU19].
In this work, we show that such a reduction to IND-CPA security without square
root loss is possible even when we prove THKG’s SDM-OW security, which can be
seen as one-wayness for a kind of key dependent messages. In fact, there is no
difficulty based on the circularity issue as before since we use single-sided O2H
lemma in this step, not double-sided one. Roughly speaking, when we use single-
sided O2H lemma, we can eliminate correlations between keys, encryption ran-
dom coins, and plaintexts by random oracle programming in the security proof
even in the context of QROM. We give the overview of this proof in Section 5.2.
More specifically, we provide a high-level idea of how to solve the correlations
after we describe a few hybrid games for the proof, and complete the proof.

The KDM security of U⊥m,OTP(T(PKE, Genc), H). From the discussions so far, we
see that the KDM security of U⊥m,OTP(THKG(PKE, (Gkg, Genc)), H) can be reduced
to the IND-CPA security of PKE without square root security loss. This im-
mediately implies the same holds for U⊥m,OTP(T(PKE, Genc), H). This is because
adversaries cannot detect whether the public and secret key pair is generated
using a random oracle or not. The KDM security of U⊥m,OTP(T(PKE, Genc), H)
can be reduced to that of U⊥m,OTP(THKG(PKE, (Gkg, Genc)), H).

Remarks.

– In the actual security game of KDM security, an adversary can choose a pair
of functions (f0, f1) adaptively and obtain a ciphertext of fb(sk) multiple
times under the existence of multiple key pairs. Also, to capture a wide range
of usage scenarios, we allow those functions to get access to random oracles.
We handle these issues by using the adaptive reprogramming technique for
QROM [Unr14] and introducing a security notion we call SDM-OW-RSA
security which is an extension of SDM-OW security.

– Our proof technique is also compatible with KDM-CCA security. Concretely,
we can prove the KDM-CCA security of a PKE scheme constructed by using

11



U⊥,keyconf
m = U⊥,keyconf

m (dPKE, H) [BHH+19] as KEM and OTP-then-MAC
as DEM without square root security loss. We assume the underlying dPKE
is SDM-OW-RSA secure and additionally satisfies injectivity. The security
proof is a combination of our proof for the KDM security of U⊥m,OTP and the
proof for the IND-CCA security of U⊥,keyconf

m by [BHH+19, KSS+20]. Thus,
we mainly focus on KDM-CPA security in this version, and we provide the
results on KDM-CCA security in [KN21].
As shown by [BHH+19], U⊥,keyconf

m and U̸⊥m are IND-CCA secure KEMs
that are compatible with double-sided O2H lemma such as O2H lemma with
MRM. To use U⊥,keyconf

m as the KEM part in the above construction is essen-
tial. If we use U̸⊥m as the KEM part, it seems difficult to prove the KDM-CCA
security of the construction. U̸⊥m returns a random value generated by using
pseudo-random functions (PRF) if the decryption algorithm detects a given
ciphertext is not valid to make it possible to simulate the decryption oracle
without using secret keys. In the KDM-CCA security game of a PKE scheme
whose KEM part is U ̸⊥m, the keys of PRF are also encrypted. In that case, we
cannot use the security of PRF and cannot simulate the decryption oracle.
It is an interesting open problem to prove KDM-CCA security of a PKE
scheme whose KEM part is U̸⊥m without square root security loss.

– Our proof strategy explained so far can be realized more easily for SKE where
the secret key is used for encryption. A ciphertext of a simple SKE scheme
is (s, H(sk∥s) ⊕ m), where H is a random oracle. The simple scheme has
a good structure to apply our proof strategy because the secret key sk can
be recovered from the differing point sk∥s when programming the random
oracle in the security proof. Zhang [Zha19] showed the non-adaptive KDM
security of the SKE scheme with security bound

√
poly(q,qkdm,qf ,ℓ)

2λ , where q is
the number of random oracle queries, qkdm is the number of KDM queries, qf

is the number of random oracle queries by KDM functions, ℓ is the number of
secret keys, and λ is the length of sk. Using our proof strategy, we can prove
the non-adaptive KDM security of the SKE scheme with security bound
roughly poly(q,qkdm,qf ,ℓ)

2λ . We formally prove it in [KN21]. The proof of this is
much easier than the proof of our main construction U⊥m,OTP. The former can
be a warming-up for the latter.

– We do not directly prove the KDM security of U⊥m,OTP(T(PKE, Genc), H), and
first prove that of U⊥m,OTP(THKG(PKE, (Gkg, Genc)), H). If we directly prove
the former in a modular way, we think we would need to introduce a more
complicated security notion for deterministic PKE schemes. We believe that
the introduction of THKG makes our presentation simpler and more modular.

– In this work, we focus on PKE schemes whose DEM is OTP for a technical
reason. As we saw above, for our strategy, it is important that DEM has
a non-committing property in the sense that we can move an encrypted
plaintext from the ciphertext to the key. Although our technique can be
used to not only OTP but also any DEM with non-committing property, it
is an interesting open question to prove KDM security of FO transformation
with any DEM without square root security loss.
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2 Preliminaries

2.1 Notations

In this paper, for a finite set X and a distribution D, x ← X denotes selecting
an element from X uniformly at random, x← D denotes sampling an element x
according to D. Let y ← A(x) denotes assigning to y the output of a probabilistic
or deterministic algorithm A on an input x. When we explicitly show that A uses
randomness r, we write y ← A(x; r). When A is allowed to get access to an oracle
O, we write y ← AO(x). Let [a] and [a, b] denote the sets of integers {1, · · · , a}
and {a, · · · , b}, respectively. λ denote a security parameter. PPT and QPT algo-
rithms stand for probabilistic polynomial-time algorithms and polynomial-time
quantum algorithms, respectively. Let negl denote a negligible function.

2.2 Public-Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG, Enc, Dec) of
PPT algorithms. LetM be the message space of PKE. The key generation algo-
rithm KG, given a security parameter 1λ, outputs a public key pk and a secret key
sk. The encryption algorithm Enc, given a public key pk and message m ∈ M,
outputs a ciphertext CT. The decryption algorithm Dec, given a secret key sk
and ciphertext CT, outputs a message m̃ ∈ {⊥} ∪M.

Definition 2.1 (Correctness of PKE). We say that PKE is δ-correct if

E
[

max
m∈M

Pr[Dec(sk, Enc(pk, m; r)) ≠ m]
∣∣∣∣(pk, sk)← KG(1λ), r ←R

]
≤ δ ,

where R is the random coin space of Enc. If PKE is constructed in the random
oracle model, the expectation is taken over the choice of (pk, sk) ← KG(1λ) and
the random oracle.

We say that PKE is deterministic PKE if Enc(pk, ·) is a deterministic func-
tion. We introduce the correctness notion that is specific to deterministic PKE.
In addition to the ordinary correctness above, it requires that under a randomly
generated key (pk, sk), a randomly generated message m does not have a collision,
that is another message m′ such that dEnc(pk, m) = dEnc(pk, m′). This correct-
ness notion is useful when we use double-sided O2H lemmas [BHH+19, KSS+20].

Definition 2.2 (Correctness of deterministic PKE). We say that a de-
terministic PKE scheme dPKE = (dKG, dEnc, dDec) with the message space M
is (δ1, δ2)-correct if it is δ1-correct and it holds that

Pr
[
∃m′ ∈M : dEnc(pk, m′) = dEnc(pk, m)|(pk, sk)← dKG(1λ), m←M

]
≤ δ2 .

If dPKE is constructed in the random oracle model, the probability is taken
over the choice of (pk, sk)← dKG(1λ), m←M, and the random oracle.
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We introduce a multi-instance and multi-challenge version of IND-CPA se-
curity for PKE that we denote as IND-m-CPA security.

Definition 2.3 (IND-m-CPA security for PKE). Let PKE = (KG, Enc, Dec)
be a PKE scheme. We define Expind-m-cpa

PKE,ℓ,A (1λ) for an adversary A as follows.

Initialize: First, the challenger chooses a challenge bit b ← {0, 1}. Next, the
challenger generates (pkk, skk) ← KG(1λ) for every k ∈ [ℓ]. The challenger
executes b′ ← AOIND((pkk)k∈[ℓ]).

OIND: On the i-th call with input (ki, mi,0, mi,1), where ki ∈ [ℓ] and |mi,0| =
|mi,1|, it returns cti ← Enc(pkki , mi,b).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

We say that PKE is IND-m-CPA secure if for any polynomial ℓ = ℓ(λ) and
QPT adversary A, we have Advind-m-cpa

PKE,ℓ,A (λ) =
∣∣∣Pr
[
1← Expind-m-cpa

PKE,ℓ,A (1λ)
]
− 1

2

∣∣∣ =
negl(λ).

We introduce the definition of KDM-CPA security for PKE.

Definition 2.4 (KDM-CPA security for PKE). Let PKE = (KG, Enc, Dec)
be a PKE scheme. We define Expkdm-cpa

PKE,ℓ,A (1λ) for an adversary A as follows.

Initialize: First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the

challenger generates (pkk, skk) ← KG(1λ) for every k ∈ [ℓ]. The challenger
sets sk := (sk1, . . . , skℓ), and executes b′ ← AOKDM((pkk)k∈[ℓ]).

OKDM: On the i-th call with input (ki, fi,0, fi,1), where ki ∈ [ℓ] and fi,0 and fi,1
are efficiently computable functions with the same output length, it returns
cti ← Enc(pkki , fi,b(sk)).

Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

We say that PKE is KDM-CPA secure if for any polynomial ℓ = ℓ(λ) and
QPT adversary A, we have

Advkdm-cpa
PKE,ℓ,A (λ) =

∣∣∣∣Pr
[
1← Expkdm-cpa

PKE,ℓ,A (1λ)
]
− 1

2

∣∣∣∣ = negl(λ).

Remark 2.1 (KDM security in QROM). In order to capture a wide variety of
situations, we allow KDM functions to get access to random oracles if the scheme
is constructed in the (quantum) random oracle model. We allow only classical
access random oracles for KDM functions, while adversaries get access to ran-
dom oracles in super-position. This setting is sufficient when honest entities are
classical.
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2.3 SDM-OW-RSA Security

We introduce a new security notion seed-dependent message one-wayness against
related seed attacks (SDM-OW-RSA security). This notion plays a crucial role
in achieving KDM security from IND-m-CPA security in the QROM without
square roof security loss.

Definition 2.5 (SDM-OW-RSA security for PKE). Let PKE = (KG, Enc, Dec)
be a PKE scheme such that the message spaceM is an abelian group with the op-
eration +, and the random coin space of KG is M. We define Expsdm-ow-rsa

PKE,ℓ,qsdm,A(1λ)
for an adversary A as follows.

Initialize: The challenger first generates r ← M. The challenger then gener-
ates ∆k ← M and (pkk, skk) ← KG(1λ; r + ∆k) for every k ∈ [ℓ]. Next,
for every k ∈ [ℓ] and i ∈ [qsdm], the challenger generates si,k ← M and
computes cti,k ← Enc

(
pkk, r + si,k

)
. Finally, the challenger executes T ←

A((pkk, ∆k)k∈[ℓ], (si,k, cti,k)i∈[qsdm],k∈[ℓ]).
Finalize: The challenger outputs 1 if and only if T contains r′ such that r′ =

r + si,k holds for some i ∈ [qsdm] and k ∈ [ℓ].

We say that PKE is SDM-OW-RSA secure if for any polynomial ℓ = ℓ(λ)
and qsdm = qsdm(λ) and QPT adversary A, we have

Advsdm-ow-rsa
PKE,ℓ,A (λ) = Pr

[
1← Expsdm-ow-rsa

PKE,ℓ,A (1λ)
]

= negl(λ).

3 Quantum Random Oracle and Useful Lemmas

Given a function H : X → Y , a quantum-accessible oracle O of H is modeled
by a unitary transformation UH operating on two registers in and out, in which
|x⟩ |y⟩ is mapped to |x⟩ |y ⊕H(x)⟩, where ⊕ denotes XOR group operation on
Y . Following [AHU19, BHH+19, KSS+20], we model a quantum algorithm A

making parallel queries to a quantum oracle O as a quantum algorithm making
d ≤ q queries to an oracle O⊗n consisting of n = q/d parallel copies of oracle
O. Given an input state of n pairs of in/out registers |x1⟩ |y1⟩ · · · |xn⟩ |yn⟩, the
oracle O⊗n maps it to the state |x1⟩ |y1 ⊕H(x1)⟩ · · · |xn⟩ |yn ⊕H(xn)⟩. We call
d the algorithm’s query depth, n the parallelization factor, and q = n · d the
total number of oracle queries. We write A |O⟩ to denote that the algorithm A’s
oracle O is a quantum-accessible oracle.

Simulation of quantum random oracles. In this paper, following many previ-
ous works in the QROM, we give quantum-accessible random oracles to reduc-
tion algorithms if needed. This is just a convention. We can efficiently simulate
quantum-accessible random oracles perfectly by using 2q-wise independent hash
function [Zha12], where q is the number of queries to the quantum-accessible
random oracles by an adversary.
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3.1 One-Way to Hiding (O2H) Lemma

Definition 3.1 (Punctured oracle). Let F : X → Y be any function, and
S ⊂ X be a set. The oracle F \ S(“F punctured by S”) takes as input a value
x ∈ X. It first computes whether x ∈ S into an auxiliary register and measures
it. Then it computes F (x) and returns the result. Let Find be the event that any
of the measurements returns 1.

Lemma 3.1 (Semi-classical O2H [AHU19, Theorem 1]). Let G, H : X →
Y be random functions, z be a random value, and S ⊆ X be a random set such
that G(x) = H(x) for every x /∈ S. The tuple (G, H, S, z) may have arbitrary
joint distribution. Furthermore, let A be a quantum oracle algorithm. Let Ev be
any classical event. Then we have∣∣∣∣√Pr

[
Ev : A |G⟩(z)

]
−
√

Pr
[
Ev ∧ ¬Find : A |H\S⟩(z)

]∣∣∣∣ ≤√(d + 1) · Pr
[
Find : A |H\S⟩(z)

]
,

where d is the query depth of A for G and H \ S.

Lemma 3.2 (Search in semi-classical oracle [AHU19, Theorem 2]). Let
H : X → Y be a random function, let z be a random value, and let S ⊂ X be a
random set. (H, S, z) may have arbitrary joint distribution. Let A be a quantum
oracle algorithm. If for each x ∈ X, Pr[x ∈ S] ≤ ϵ (conditioned on H and z),
then we have

Pr
[
Find : A |H\S⟩(z)

]
≤ 4qϵ ,

where q is the number of queries to H \ S by A.

Note that the above lemma is originally introduced in [AHU19], but we use
a variant that is closer to Lemma 4 in [BHH+19].

Lemma 3.3 (Adapted version of O2H with MRM [KSS+20, Lemma
3.3]). Let G, H : X → Y be functions, and S ⊆ X be a set such that G(x) =
H(x) for every x /∈ S. Also, let z be a value and Oaux be a function. The tuple
(G, H, S, z, Oaux) may have arbitrary joint distribution. Furthermore, let A be a
quantum oracle algorithm. Then we can construct an algorithm D such that

– The running time of D is roughly three times longer than that of A. Moreover,
if A makes at most q queries to G and H with query depth d, D makes at most
O(q) queries to each of those oracles with query depth O(d), and outputs a
list T ⊆ X of size at most O(q).

– It holds that ∣∣∣Pr
[
1← A |G,Oaux⟩(z)

]
− Pr

[
1← A |H,Oaux⟩(z)

]∣∣∣
≤4d · Pr

[
T ∩ S ̸= ∅ : T ← D|G,H,Oaux⟩(z)

]
,

where d is the query depth of A for the first oracle.
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Remark 3.1 (On the difference from the original version). There are some dif-
ferences between Lemma 3.3 and the original O2H lemma with MRM [KSS+20,
Lemma 3.3]. First, in Lemma 3.3, we allow the algorithm A to get access to an
additional oracle Oaux, which is not explicitly appeared in the original version.
Second, in Lemma 3.3, we explicitly state the size of D’s output T is at most
O(q) while the original lemma does not refer to the size of T . For the first one,
it is easy to see that even if we introduce such an additional oracle, the lemma
still holds. (This extension is used in also [LW21].) For the second, the concrete
extractor D constructed in [KSS+20] satisfies this condition. Since we need the
upper bound on the size of T in order to estimate the security bound in our
proof, we place the requirement.

3.2 Additional Lemma

The following lemma is a multi-point version of adaptive reprogramming of QRO
used in the proof of adaptive O2H lemma [Unr14, Lemma 14 in the eprint ver-
sion]. We need it to handle KDM queries that are adaptively made. We provide
the proof of it in [KN21].

Lemma 3.4 (Adaptive reprogramming of QRO). We consider the follow-
ing Expadp-prog

qprog,A (1λ).

Initialization The challenger first generates the challenge bit b ← {0, 1} and
a fresh random oracle V0 : X → Y . Then, the challenger executes b′ ←
A |V0⟩,Oprog(1λ), where Oprog is defined as follows.

Oprog: On the i-th call, it first generates si ← X. If b = 0, it just returns
(si, V0(si)). Otherwise, it generates ui ← Y , updates the random oracle A

gets access into Vi defined as

Vi(x) =

{
uj (if x = sj holds for some j ≤ i)
H(x) (otherwise),

and returns (si, Vi(si)) = (si, ui).
Finalization The challenger outputs 1 if b = b′ and 0 otherwise.

Then, for any integer qprog and an oracle algorithm A that makes at most q

queries to Ob, we have
∣∣∣Pr
[
1← Expadp-prog

qprog,A (1λ)
]
− 1

2

∣∣∣ ≤ 2q·qprog√
|X|

.

4 KDM-CPA Security of U⊥
m with OTP as DEM

In this section, we show that the KDM-CPA security in the QROM of a PKE
scheme U⊥m,OTP = U⊥m,OTP(dPKE, H) can be reduced to the SDM-OW-RSA security
of the underlying dPKE without square root security loss. U⊥m,OTP is constructed
by using U⊥m(dPKE, H) [BHH+19] as KEM and OTP as DEM. Since we focus
on KDM-CPA security here, U⊥m,OTP omits the ciphertext validity check by re-
encryption in the decryption algorithm, which is performed in U⊥m.
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4.1 Construction

Construction 4.1. Let dPKE = (dKG, dEnc, dDec) be a deterministic PKE scheme
whose message space is M. We assume that M is an abelian group and denote
the operation inM as +. Let H :M→ {0, 1}∗ be a hash function. We construct
U⊥m,OTP = (KG, Enc, Dec) as follows.

KG(1λ): Return (pk, sk)← dKG(1λ).
Enc(pk, m): Generate s←M and compute ct← dEnc(pk, s) and t = H(s)⊕m.

Return CT = (ct, t).
Dec(sk, CT′): Parse CT′ = (ct′, t′), compute s′ ← dDec(sk, ct′), and return ⊥ if

s′ = ⊥. Otherwise, return t′ ⊕H(s′).

We see that if dPKE is (δ1, δ2)-correct, then U⊥m,OTP is δ1-correct for any δ1.

4.2 Security Proof

We prove the following theorem.

Theorem 4.2. Let ℓ = ℓ(λ) be a polynomial and dPKE be a (δ1, δ2)-correct
deterministic PKE. Let A be a QPT adversary against the KDM-CPA security
of U⊥m,OTP = U⊥m,OTP(dPKE, H) making q (superposition) random oracle queries
to H with query depth d and qkdm (classical) queries to OKDM. Also, let qf be the
upper bound of the total number of (classical) random oracle queries made by
KDM functions. Then, there exists a QPT adversary B such that

Advkdm-cpa
U⊥

m,OTP,ℓ,A
(1λ) ≤ 4d · Advsdm-ow-rsa

dPKE,ℓ,qkdm,B(1λ) + 4(q + qf )qkdm√
|M|

+ (4d + 1) · qkdm · δ2 .

(3)

Proof. We complete the proof using hybrid games. Let SUCX be the event that
the final output is 1 in Game X. We assume that A makes at least one KDM
query before the first set of random oracle queries and between d∗-th set of
random oracle queries and (d∗ + 1)-th set of random oracle queries for every
d∗ ∈ [d− 1]. This assumption is without loss of generality in the sense that any
adversary can be transformed into one satisfying this condition without changing
the number and depth of random oracle queries.

Game 1: This is Expkdm-cpa
U⊥

m,OTP,ℓ,A
(1λ).

Initialize: First, the challenger chooses a challenge bit b← {0, 1}. The chal-
lenger also generates a fresh random oracle H. Next, the challenger gen-
erates (pkk, skk)← dKG(1λ) for every k ∈ [ℓ]. The challenger sets sk :=
(sk1, . . . , skℓ) and pk := (pk1, . . . , pkℓ), and executes b′ ← A |H⟩,OKDM(pk).
OKDM behaves as follows.

OKDM: On the i-th call with input (ki, fi,0, fi,1), it returns CTi generated as
follows.
1. Generate si ←M and compute cti ← dEnc(pkki , si).
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2. Compute ti = H(si)⊕ fH
i,b(sk).

3. Set CTi ← (cti, ti).
Finalize: The challenger outputs 1 if b = b′ and 0 otherwise.

Game 2: This is the same as Game 1 except the behavior of OKDM. In this
game, OKDM adaptively reprograms the random oracle that A (and functions
queried by A) gets access every time it is invoked. The detailed description
is as follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Generate si ←M and compute cti ← dEnc(pkki , si).
2. Generate ui ← {0, 1}∗ and compute ti = ui ⊕ f

Vi−1
i,b (sk).

3. Set CTi ← (cti, ti).
Also, it updates the random oracle into

Vi(x) =

{
uj (if ∃j ≤ i : x = sj)
H(x) (otherwise),

From Lemma 3.4, we have |Pr[SUC1]− Pr[SUC2]| = 4(q+qf )qkdm√
M .

Game 3: This game is the same as Game 2 except that ui is replaced with
ui ⊕ f

Vi−1
i,b (sk) for every i ∈ [qkdm]. More concretely, the behavior of OKDM is

changed as follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Generate si ←M and compute cti ← dEnc(pkki , si).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Also, it updates the random oracle into

Vi(x) =

{
uj ⊕ f

Vj−1
j,b (sk) (if ∃j ≤ i : x = sj)

H(x) (otherwise),

This change does not affect the view of A since ui is chosen uniformly at
random and independently of f

Vi−1
i,b (sk) for every i ∈ [qkdm]. Thus, we have

|Pr[SUC2]− Pr[SUC3]| = 0.

Game 4: This game is the same as Game 3 except for the following. The chal-
lenger first generates r ←M. The challenger then generates ∆1, . . . , ∆ℓ ←
M and generates (pkk, skk)← dKG(1λ; r + ∆k) for every k ∈ [ℓ].

The above change does not affect the view of A since the distribution of
(pkk, skk)k∈[ℓ] does not change. Thus, we have |Pr[SUC3]− Pr[SUC4]| = 0.

Game 5: This game is the same as Game 4 except that si is replaced with r+si.
More concretely, the challenger generates cti as cti ← dEnc(pkki , r + si) for
every i ∈ [qkdm]. Also, the challenger sets Vi as

Vi(x) =

{
uj ⊕ f

Vj−1
j,b (sk) (if ∃j ≤ i : x = r + sj)

H(x) (otherwise)

for every i ∈ [qkdm].
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f̂H
i,b

[
(sj , uj , fj,b)j∈[i], (∆k)k∈[ℓ]

]
(x) :

Hardwired: (sj , uj , fj,b)j∈[i], (∆k)k∈[ℓ].
Oracle H.
Input: x ∈M.

1. Compute w = x − si and (pkk, skk) ← dKG(1λ; w + ∆k) for every k ∈ [ℓ],
and set sk = (sk1, . . . , skℓ).

2. Repeat the following from j = 1 to i− 1, where V̂0 = H.
(a) Compute vj = uj ⊕ f

V̂j−1
j,b (sk).

(b) Set V̂j as

V̂j(x′) =
{

vj′ (if ∃j′ ∈ [qkdm] : j′ ≤ j and x′ = w + sj′ )
H(x′) (otherwise).

3. Return f
V̂i−1
i,b (sk).

Fig. 1: The description of f̂H
i,b.

We have |Pr[SUC4]− Pr[SUC5]| = 0 since this change also does not affect the
view of A.

From the next game, we use the function f̂i,b described in Figure 1. f̂i,b is
designed so that it computes f

Vi−1
i,b (sk) if it has oracle access to H and is given

r+si as an input. For this aim, f̂H
i,b sequentially computes Vj from V1, V2, ..., Vi−1

using H. They are denoted as V̂j in the description of f̂H
i,b. Here, the computation

of V̂j by f̂H
j,b is local, and thus f̂H

j,b does not perform the updates of the random
oracle that A gets access.

Game 6: For every i ∈ [qkdm], we define a function . Then, Game 6 is the same
as Game 5 except that the challenger sets Vi as

Vi(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i : x = r + sj)
H(x) (otherwise)

for every i ∈ [qkdm].

Since f̂i,b correctly computes f
Vi−1
i,b (sk) if it has oracle access to H and

is given r + si as an input for every i ∈ [qkdm], the functionality of Vi does
not change between Game 5 and 6 for every i ∈ [qkdm]. Therefore, we have
|Pr[SUC5]− Pr[SUC6]| = 0.
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Game 7: This game is the same as Game 6 except that for every i ∈ [qkdm], Vi

is defined as

Vi(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i : dEnc(pkkj , x) = ctj)
H(x) (otherwise).

If cti has a unique pre-image r + si under pkki for every i ∈ [qkdm], the
functionality of Vi does not change for every i ∈ [qkdm] between Game 6 and 7.
Thus, from the correctness of dPKE, we have |Pr[SUC6]− Pr[SUC7]| ≤ qkdm · δ2.

At Game 7, A can obtain information of the challenge bit b only through d
sets of random oracle queries. Below, we use d more hybrid games and remove
information of b from those d sets of random oracle queries one by one.

Game 7 + d∗ (d∗ = 1, . . . , d): This is the same game as Game 7 except OKDM
defers updating the random oracle. Concretely, OKDM does not update the
random oracle until A makes the d∗-th set of random oracle queries. The
detailed description of OKDM is as follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Generate si ←M and compute cti ← dEnc(pkki , r + si).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Also, if A already makes d∗-th set of queries to the random oracle, it up-
dates the random oracle into

Vi(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i : dEnc(pkkj , x) = ctj)
H(x) (otherwise).

We have
∣∣Pr[SUC7+d]− 1

2
∣∣ = 0 since in Game 7+d, the view of A is completely

independent of b. In order to estimate |Pr[SUC7+d∗−1]− Pr[SUC7+d∗ ]| for every
d∗ ∈ [d], we consider the following procedure Setupd∗ .

Setupd∗ : First, the challenger chooses a challenge bit b ← {0, 1}. The chal-
lenger also generates a fresh random oracle H. Next, the challenger gener-
ates (pkk, skk) ← dKG(1λ; r + ∆k), where r ← M and ∆k ← M for every
k ∈ [ℓ]. The challenger sets pk := (pk1, . . . , pkℓ), and executes A |H⟩,OKDM(pk)
just before A makes the d∗-th set of random oracle queries. OKDM behaves as
follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Generate si ←M and compute cti ← dEnc(pkki , r + si).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Let A makes i∗ KDM queries before d∗-th set of random oracle queries. Then,
the challenger sets Vi∗ as

Vi∗(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i∗ : dEnc(pkkj , x) = ctj)
H(x) (otherwise)
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and Si∗ = {x|∃j ∈ [i∗] : dEnc(pkkj , x) = ctj}. The challenger also generates
si,k ←M and generates cti,k ← dEnc(pkk, r + si,k) for every i ∈ [i∗+ 1, qkdm]
and k ∈ [ℓ]. The challenger then sets

z = (|st⟩ , b, pk, (∆k)k∈[ℓ], (ki, fi,b, si, cti, ui)i∈[i∗], (si,k, cti,k)i∈[i∗+1,qkdm],k∈[ℓ]) ,
(4)

where |st⟩ is the internal state of A at this point. The challenger outputs
(Vi∗ , H, Si∗ , z, Oaux = H).

Also, we consider the following QPT algorithm Ad∗ that has oracle access to
O ∈ {Vi∗ , H} and Oaux = H.

Ad∗ : Given an input z, Ad∗ parse it as Equation (4) and executes A |O⟩,OKDM from
A’s d∗-th set of random oracle queries using |st⟩ as the internal state of A at
that point. Ad∗ simulates OKDM as follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Set cti ← cti,ki
(and set si ← si,ki

).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Also, it updates the random oracle that A gets access into

Vi(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i : dEnc(pkkj , x) = ctj)
H(x) (otherwise).

When A terminates with output b′, Ad∗ outputs 1 if b = b′ and 0 otherwise.

Suppose we execute Setupd∗ and Ad∗ successively. They simulate the view of
A in Game 7 + d∗ − 1 (resp. Game 7 + d∗) if O = Vi∗ (resp. O = H). Also,
Ad∗ outputs 1 if and only if the output of the simulated games is 1. Thus, we
have Pr[SUC7+d∗−1] = Pr

[
1← A

|O=Vi∗ ,Oaux=H⟩
d∗ (z) : Setupd∗

]
and Pr[SUC7+d∗ ] =

Pr
[
1← A

|O=H,Oaux=H⟩
d∗ (z) : Setupd∗

]
. From Lemma 3.3, there exists a QPT al-

gorithm Dd∗ such that

|Pr[SUC7+d∗−1]− Pr[SUC7+d∗ ]| ≤ 4 · Pr
[
T ∩ Si∗ ̸= ∅

∣∣∣ T ← D
|Vi∗ ,H,Oaux=H⟩
d∗ (z), Setupd∗

]
.

Note that Ad∗ makes queries to O ∈ {Vi∗ , H} with depth 1 by the following
reason. Ad∗ is supposed to simulate Game 7 + d∗ − 1 (resp. Game 7 + d∗) for A

from the point that A makes d∗-th set of random oracle queries when Ad∗ gets
access to O = Vi∗ (resp. O = H). The answers to A’s (d∗ + 1) to d-th set of
random oracle queries are identical between Game 7+d∗−1 and 7+d∗. (Here, A

makes at least one KDM query between the d∗-th and (d∗+ 1)-th set of random
oracle queries due to the assumption. Thus, they are answered using an updated
random oracle.) Ad∗ can simulate them by using Oaux = H and information
included in z. Therefore, Ad∗ uses its oracle O only for answering to A’s d∗-th
set of random oracle queries, and thus Ad∗ ’s query depth to O is 1.

We bound the right-hand side probability. Using Dd∗ , we construct the fol-
lowing adversary Bd∗ against the SDM-OW-RSA security of dPKE.
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Bd∗ : Given pk = (pk1, . . . , pkℓ), (∆k)k, and (si,k, cti,k)i∈[qkdm],k∈[ℓ], Bd∗ first sim-
ulates Setupd∗ . Bd∗ chooses a challenge bit b ← {0, 1} and prepares a fresh
random oracle H. Bd∗ then executes A |H⟩,OKDM(pk) just before A makes the
d∗-th set of random oracle queries, where OKDM is simulated as follows.
OKDM: On input (ki, fi,0, fi,1), it returns CTi generated as follows.

1. Set cti ← cti,ki
(and set si ← si,ki

).
2. Generate ui ← {0, 1}∗ and set ti ← ui.
3. Set CTi ← (cti, ti).

Let A makes i∗ KDM queries before d∗-th set of random oracle queries. Then,
Bd∗ sets Vi∗ as

Vi∗(x) =

{
uj ⊕ f̂H

j,b(x) (if ∃j ≤ i∗ : dEnc(pkkj , x) = ctj)
H(x) (otherwise).

Bd∗ also sets

z = (|st⟩ , b, pk, (∆k)k∈[ℓ], (ki, fi,b, si, cti, ui)i∈[i∗], (si,k, cti,k)i∈[i∗+1,qkdm],k∈[ℓ]) ,

where |st⟩ is the internal state of A at this point. Finally, Bd∗ outputs T ←
D
|Vi∗ ,H,Oaux=H⟩
d∗ (z).

Bd∗ perfectly simulates a successive execution of Setupd∗ and Dd∗ . Also, in
the simulated execution, if T ∩ Si∗ ̸= ∅ occurs and cti has a unique pre-image
r + si under pkki for every i ∈ [qkdm], Bd∗ wins. Thus, we have

Pr[T∩Si∗ ̸= ∅ : T ← D
|Vi∗ ,H,Oaux=H⟩
d∗ (z), Setupd∗ ] ≤ Advsdm-ow-rsa

dPKE,ℓ,qkdm,Bd∗ (1λ)+qkdm·δ2.

By setting B as Bd∗ such that Advsdm-ow-rsa
dPKE,ℓ,qkdm,Bd∗ (1λ) ≤ Advsdm-ow-rsa

dPKE,ℓ,qkdm,B(1λ) for
every d∗ ∈ [d], we see that there exists a QPT B that satisfies Equation (3). □
(Theorem 4.2)

5 SDM-OW-RSA Secure Deterministic PKE

In this section, we show that the SDM-OW-RSA security in the QROM of a
tweaked version of T transformation [BHH+19] can be reduced to the IND-CPA
security of the underlying PKE scheme.

5.1 Construction

Construction 5.1. Let PKE = (KG, Enc, Dec) be a PKE scheme whose message
space is an abelian groupM with the operation +. We also let the random coin
space of KG and Enc be Rkg and Renc, respectively. Let G = (Gkg, Genc) be a
pair of hash functions, where Gkg : M → Rkg and Genc : M → Renc . We
construct T transformation with hash key generation THKG = THKG(PKE, G) =
(dKG, dEnc, dDec) as follows.
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dKG(1λ; r): Return (pk, sk)← KG(1λ; Gkg(r)).
dEnc(pk, m): Return ct← Enc(pk, m; Genc(m)).
dDec(sk, CT): Return m← Dec(sk, ct).

Recall that we define a deterministic PKE scheme is (δ1, δ2)-correct if it is δ1-
correct, and under a randomly generated key (pk, sk), the probability that a
randomly generated message m has a collision, that is, another message m′ such
that dEnc(pk, m) = dEnc(pk, m′) is bounded by δ2. Under this definition, as
shown by [LW21, Lemma 4], T (PKE, Genc) is (δ, 2δ)-correct if PKE is δ-correct
for any δ. We can easily see that the correctness of THKG(PKE, G) can be reduced
to that of T(PKE, Genc), and thus THKG(PKE, G) is (δ, 2δ)-correct if PKE is δ-
correct for any δ.

5.2 Security Proof

We prove the following theorem.

Theorem 5.2. Let ℓ = ℓ(λ) and qsdm = qsdm(λ) be polynomials and PKE be
a PKE scheme. Let A be a QPT adversary against SDM-OW-RSA security of
THKG = THKG(PKE, G) making total q (superposition) random oracle queries to
Gkg and Genc with query depth d, and outputs a list of size at most t as the final
output. Then, there exists a QPT adversary B such that

Advsdm-ow-rsa
THKG,ℓ,qsdm,A(λ) ≤ (d + 2) ·

(
2 · Advind-m-cpa

PKE,ℓ,B (1λ) + 4(q + t)ℓ(qsdm + 1)
|M|

)
+ ℓqsdm(ℓqsdm − 1)

2|M|
.

(5)

Proof. Without loss of generality, we assume that A makes random oracle queries
to a single random oracle G = Gkg×Genc instead of separate two random oracles
Gkg and Genc in the security games. Let Â be a QPT adversary that runs in the
same way as A except that before it terminates, Â computes and discards G(r′)
for all r′ contained in A’s final output T. Then, Â makes at most q + t queries
to G with query depth d + 1, and we have Advsdm-ow-rsa

THKG,ℓ,qsdm,A(λ) = Advsdm-ow-rsa
THKG,ℓ,qsdmÂ

(λ).
We estimate the latter using hybrid games. Let SUCX be the event that the final
output is 1 in Game X.

Game 1: This is Expsdm-ow-rsa
THKG,ℓ,qsdm,Â

(1λ).

Initialize: The challenger generates r ← M and generates (pkk, skk) ←
KG(1λ; Gkg(r + ∆k)), where ∆k ←M for every k ∈ [ℓ]. Then, for every
k ∈ [ℓ] and i ∈ [qsdm], the challenger generates si,k ←M and computes
cti,k ← Enc(pkk, r + si,k; Genc(r + si,k)). The challenger executes T ←
Â |G⟩((pkk, ∆k)k∈[ℓ], (si,k, cti,k)i∈[qsdm],k∈[ℓ]).

Finalize: The challenger outputs 1 if and only if T contains r′ such that
r′ = r + si,k holds for some i ∈ [qsdm] and k ∈ [ℓ].

24



Game 2: This game is the same as Game 1 except the followings. First, if there
exists a pair (si,k, si′,k′) such that si,k = si′,k′ , the challenger immediately
outputs 0 as the final output of the game. Also, G = Gkg ×Genc is replaced
with

V (x) =


uk (if ∃k ∈ [ℓ] : x = r + ∆k)
vi,k (if ∃i ∈ [qkdm] and k ∈ [ℓ] : x = r + si,k)
G(x) (otherwise),

where uk, vi,k ←Rkg ×Renc for every k ∈ [ℓ] and i ∈ [qkdm].

We have |Pr[SUC1]− Pr[SUC2]| = ℓqsdm(ℓqsdm−1)
2|M| since Game 1 and 2 are identical

unless there exists a pair (si,k, si′,k′) such that si,k = si′,k′ . Below, we let S =
{r + ∆k}k∈[ℓ] ∪ {r + si,k}i∈[qsdm],k∈[ℓ].

Before proceeding the hybrid games, We provide the high level overview of
the rest of games. In Game 2, the key generation randomness Gkg(r + ∆k) and
encryption randomness Genc(r+si,k) correlate with the encrypted plaintexts r+
si,k. Thus, next, at transition from Game 2 to 3, we eliminate the correlation by
programming the random oracle. Concretely, in Game 3, the above randomnesses
are generated by using V , but Â gets access to only the punctured oracle G \ S,
not V . In order to justify the programming, we use semi-classical O2H lemma
(Lemma 3.1). By doing so, we can justify the programming without square root
security loss, and obtain Pr[SUC2] ≤ (d+2) Pr[Find3], where FindX be the event
that the punctured oracle G\S returns 1 in Game X. Thus, all we have to do is to
bound Pr[Find3]. At Game 3, from the view of A, the key generation randomness
and encryption randomness are uniformly random strings that are independent
of r, that is, uk and vi,k. Namely, the correlation issue above are solved. Thus,
at transition from Game 3 to 4, we use the IND-m-CPA security of PKE, and
eliminate information of r from cti,k. In Game 4, except the punctured oracle
G\S, r is completely hidden from the view of Â. Therefore, by using Lemma 3.2,
we can bound Pr[Find4] and complete the proof.

Game 3: This game is the same as Game 2 except that Â gets access to the
punctured oracle G \ S. (pkk, skk) and cti,k are still generated using V for
every k ∈ [ℓ] and i ∈ [qsdm].

Let FindX be the event that the punctured oracle G \ S returns 1 in Game
X. From the definition of Â, we have Pr [SUC3 ∧ ¬Find3] = 0. Thus, we have√

Pr[SUC2] =
∣∣∣√Pr[SUC2]−

√
Pr [SUC3 ∧ ¬Find3]

∣∣∣ .

By applying Lemma 3.1, we obtain∣∣∣√Pr[SUC2]−
√

Pr [SUC3 ∧ ¬Find3]
∣∣∣ ≤√(d + 2) · Pr[Find3] .

Therefore, we also obtain Pr[SUC2] ≤ (d + 2) Pr[Find3].
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Game 4: This game is the same as Game 3 except that cti,k is generated as
cti,k ← Enc(pkk, 0) for every k ∈ [ℓ] and i ∈ [qsdm].

In order to estimate |Pr[Find3]− Pr[Find4]|, using Â, we construct the fol-
lowing QPT adversary B against the IND-m-CPA security of PKE. In the de-
scription, a function Test takes a value x and a set X as inputs and outputs 1 if
x ∈ X and 0 otherwise.

Initialize: Given (pkk)k, B first generates r ←M. B then generates ∆k ←M
for every k ∈ [ℓ], si,k ← M for every i ∈ [qsdm] and k ∈ [ℓ], and a fresh
random oracle G. If there exists a pair (si,k, si′,k′) such that si,k = si′,k′ , B

outputs 0 and terminates. Next, for every i ∈ [qsdm] and k ∈ [ℓ], B queries
(k, r + si,k, 0) to its oracle OIND and obtains cti,k. Finally, B sets b′ = 0 and
executes T ← Â |G\S⟩((pkk, ∆k)k∈[ℓ], (si,k, cti,k)i∈[qsdm],k∈[ℓ]), where G \ S is
simulated as follows.

G \ S: When Â makes a (superposition) query |x⟩ |y⟩ to G \S, B first computes
|x⟩ |y⟩ |Test(x, S)⟩ and measures |Test(x, S)⟩. If the result is 0, B just re-
turns |x⟩ |y ⊕G(x)⟩ to Â. Otherwise, B set the value of b′ to 1, and returns
|x⟩ |y ⊕G(x)⟩ to Â.

Finalize: If Â terminates, B terminates with output b′.

Let the challenge bit in Expind-m-cpa
PKE,ℓ,B be b. B perfectly simulates Game 3 and

4 for A when b = 0 and b = 1, respectively. Also, B outputs b′ = 1 if and only if
Find3 and Find4 occur in the simulated Games. Thus, we have

Advind-m-cpa
PKE,ℓ,B (1λ) = 1

2
|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

= 1
2
|Pr[Find3]− Pr[Find4]| .

Finally, we bound Pr[Find4]. In Game 4, conditioned on (pkk, ∆k)k∈[ℓ] and
(si,k, cti,k)i∈[qsdm],k∈[ℓ], we have Prr←M[m ∈ S] ≤ ℓ(qsdm+1)

|M| for any m ∈M. Thus,
from Lemma 3.2, we obtain Pr[Find4] ≤ 4(q+t)ℓ(qsdm+1)

|M| .

Overall, we see that there exists a QPT B that satisfies Equation (5). □
(Theorem 5.2)

6 Conclusion: KDM Security of FO Transformations

In the conclusion, we show that the KDM security in the QROM of FO transfor-
mations can be reduced to the IND-CPA security of the underlying PKE scheme
without square root security loss.

We first provide the security bound for the KDM-CPA security of the PKE
scheme U⊥m,OTP(THKG(PKE, G), H) in terms of the IND-m-CPA security of the
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underlying PKE. In order to capture the most general setting, we allow adver-
saries for the KDM-CPA security of U⊥m,OTP(THKG(PKE, G), H) and KDM func-
tions queried by them to get access to not only H but also G. The access to G
by an adversary does not affect the security proof provided in Section 4.2 since
H and G are independent random oracles. Then, the following theorem holds.

Theorem 6.1. Let ℓ = ℓ(λ) be a polynomial and PKE be a δ-correct PKE
scheme. Let Akdm be an adversary for the KDM-CPA security of U⊥m,OTP(THKG(PKE, G), H)
making qkdm KDM queries. Suppose Akdm makes at most qG (resp. qH) super-
position random oracle queries to G (resp. H) with query depth dG (resp. dH).
Also, suppose KDM functions queried by Akdm makes at most qG

f (resp. qH
f ) clas-

sical random oracle queries to G (resp. H). Then, there exists a QPT adversary
Aind such that

Advkdm-cpa
U⊥

m,OTP(THKG(PKE,G),H),ℓ,Akdm
(1λ)

≤ 4dH ·O(dG + dH · qG
f )

(
2 · Advind-m-cpa

PKE,ℓ,Aind
(1λ) +

O(qG + qH · (ℓ + qG
f )) · ℓ · (qkdm + 1)

|M|

)

+ 2dHℓqkdm(ℓqkdm − 1)
|M|

+
4(qH + qH

f )qkdm√
|M|

+ 2(4dH + 1) · qkdm · δ . (6)

Proof. We estimate the number of queries to G made by Bd∗ appeared in the
proof of Theorem 4.2 when Akdm is used inside of it. First, Bd∗ make O(qG) queries
with depth O(dG) in order to simulate queries to G made by Dd∗ . Also, every
time Dd∗ makes a query to Vi∗ , Bd∗ needs to make at most O(ℓ + qG

f ) queries
to G with depth O(qG

f ) in order for the computation of f̂i,b. Since Dd∗ makes
at most O(qH) queries to Vi∗ with depth O(dH), to simulate Dd∗ ’s queries to
Vi∗ , Bd∗ needs to make at most O(qH · (ℓ + qG

f )) queries to G with query depth
O(dH · qG

f ). Therefore, Bd∗ makes at most O(qG + qH · (ℓ + qG
f )) queries to G

with query depth O(dG + dH · qG
f ). This holds for every d∗ ∈ [d]. Also, Since

Dd∗ outputs a list of size O(qH), so does Bd∗ for every d∗ ∈ [d]. From this fact
and Theorems 4.2 and 5.2, we see that there exists a QPT Aind that satisfies
Equation (6). □ (Theorem 6.1)

Remark 6.1 (On the value of qG
f and qH

f .). Note that the values of qG
f and qH

f

are determined depending on usage scenarios and independent of the adversary’s
behavior. For example, in the usage scenario where we need only circular secu-
rity such as anonymous credential [CL01], we can set qG

f = qH
f = 0. In that

case, the multiplicative term of Advind-m-cpa
PKE,ℓ,Aind

(1λ) in Equation (6) is roughly the
square of the query depth of Akdm to the random oracles. It is asymptotically
the same as the multiplicative term appeared in the proof of IND-CCA secure
KEM using O2H lemma with MRM [KSS+20]. In order to capture a wide range
of applications, we allow KDM functions to get access to the random oracles in
this work, but we think qG

f and qH
f are not large in many applications.
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Let FO⊥m,OTP(PKE, Genc, H) be a PKE scheme constructed by combining the
KEM U⊥m(T(PKE, Genc), H) with OTP as DEM. From Theorem 6.1, we can
show that FO⊥m(PKE, Genc, H) satisfies KDM-CPA security with asymptotically
the same security loss with respect to the underlying IND-m-CPA secure PKE
as Equation (6). Concretely, we have the following theorem.

Theorem 6.2. Let ℓ = ℓ(λ) be a polynomial and PKE be a PKE scheme. Let
Akdm be an adversary for the KDM-ATK security of FO⊥m,OTP(PKE, Genc, H) where
ATK ∈ {CPA, CCA}. Then, for atk ∈ {cpa, cca}, there exists an adversary A ′kdm
such that

Advkdm-atk
FO⊥

m,OTP(PKE,Genc,H),ℓ,Akdm
(1λ) ≤ Advkdm-atk

U⊥
m,OTP(THKG(PKE,G),H),ℓ,A′

kdm
(1λ) + ℓ(ℓ− 1)

2|M|
.

Proof. Suppose we modify the security game Expkdm-atk
FO⊥

m,OTP,ℓ,Akdm
(1λ) so that the

k-th key pair (pkk, skk) is generated by using Gkg(rk) as the random coin for
KG for every k ∈ [ℓ], where Gkg : M → Rkg is a random oracle and rk ← M
for every k ∈ [ℓ]. If r1, . . . , rℓ are mutually different, then the distribution of
ℓ key pairs does not change from the view of Akdm by this modification. We
emphasize that Akdm does not have access to Gkg. By the modification, Akdm’s
advantage is changed at most ℓ(ℓ−1)

2|M| . We can see that we can easily construct an
adversary A ′kdm such that Advkdm-atk

U⊥
m,OTP(THKG(PKE,G),H),ℓ,A′

kdm
(1λ) is exactly the same as

Akdm’ advantage in the modified game. Therefore, we obtain the theorem. □
(Theorem 6.2)

Thus, we see that the KDM-CPA security of FO⊥m,OTP(PKE, Genc, H) is re-
duced to that of U⊥m,OTP(THKG(PKE, G), H) with additional security loss ℓ(ℓ−1)

2|M|
which is absorbed by the additive term of Equation (6).

Extension to KDM-CCA security. In the main body of this paper, we focused
on KDM-CPA security. Our proof technique is also compatible with KDM-CCA
security. Concretely, we can prove the KDM-CCA security of a PKE scheme
constructed by using a variant of U⊥m called U⊥,keyconf

m = U⊥,keyconf
m (dPKE, H)

as KEM and OTP-then-MAC as DEM without square root security loss if
the underlying dPKE is SDM-OW-RSA secure and additionally satisfies in-
jectiveness. The security proof is a combination of our proof for the KDM-
CPA security of U⊥m,OTP and the proof for the IND-CCA security of U⊥,keyconf

m

by [BHH+19, KSS+20]. We provide the formal description of this construction
and security proof for the KDM-CCA security of it in [KN21].

By following a similar argument as the case of KDM-CPA security, we can
show that the KDM-CCA security of the KEM FO⊥,keyconf

m (PKE, Genc, H) =
U⊥,keyconf

m (T (PKE, Genc), H) combined with OTP-then-MAC as DEM, can be
reduced to the IND-CPA security of PKE. The multiplicative term in the security
bound with respect to the underlying PKE is roughly the same as Equation (6)
though some additive terms are added to the security bound.
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