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Abstract. We present a new construction of maliciously-secure, two-
round multiparty computation (MPC) in the CRS model, where the
first message is reusable an unbounded number of times. The security of
the protocol relies on the Learning Parity with Noise (LPN) assumption
with inverse polynomial noise rate l/nlf6 for small enough constant e,
where n is the LPN dimension. Prior works on reusable two-round MPC
required assumptions such as DDH or LWE that imply some flavor of
homomorphic computation. We obtain our result in two steps:

— In the first step, we construct a two-round MPC protocol in the
silent pre-processing model (Boyle et al., Crypto 2019). Specifically,
the parties engage in a computationally inexpensive setup procedure
that generates some correlated random strings. Then, the parties
commit to their inputs. Finally, each party sends a message depend-
ing on the function to be computed, and these messages can be
decoded to obtain the output. Crucially, the complexity of the pre-
processing phase and the input commitment phase do not grow with
the size of the circuit to be computed. We call this multiparty silent
NISC (msNISC), generalizing the notion of two-party silent NISC of
Boyle et al. (CCS 2019). We provide a construction of msNISC from
LPN in the random oracle model.

— In the second step, we give a transformation that removes the pre-
processing phase and use of random oracle from the previous proto-
col. This transformation additionally adds (unbounded) reusability
of the first round message, giving the first construction of reusable
two-round MPC from the LPN assumption. This step makes novel
use of randomized encoding of circuits (Applebaum et al., FOCS
2004) and a variant of the “tree of MPC messages” technique of
Ananth et al. and Bartusek et al. (TCC 2020).

1 Introduction

Consider a scenario where a consortium of oncologists wants to compute several
statistical tests on the confidential genomic data of their patients, while pre-
serving the privacy of their patients. To accomplish this, each oncologist first
publishes an encryption of their private database on their website. Next, given
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a proposed hypothesis F', the oncologists would like to figure out if this hypoth-
esis is consistent with their joint databases. They would like to achieve this by
sending a single message (that could grow with the size of the circuit computing
F) to each other. Can they achieve this? What if they want to continue com-
puting multiple hypotheses on the same data? Can they perform multiple tests
at varying points in time while sending just one additional message for every
new test? In other words, can they reuse the published encryptions of their data
across multiple tests?

This scenario is a special case of the more general problem of constructing
reusable two-round multiparty computation, whose feasibility was established
in the work of Garg et al. [GGHR14] assuming the existence of indistinguisha-
bility obfuscation [BGIT01, GGH'13]. Starting with this work, an important
line of research has been to weaken the computational assumptions required for
constructing this primitive. The work of Mukherjee and Wichs [MW16] and a
recent work of Ananth et al. [AJJIM20] gave a construction from the Learning
with Errors assumption [Reg05]. The work of Benhamouda and Lin [BL20] con-
structed such a protocol from standard assumptions on bilinear maps and the
work of Bartusek et al. [BGMM20] provided a construction based on the DDH
assumption.

Despite significant progress, our understanding of the assumptions necessary
to realize two-round MPC protocols with reusability still lags behind the as-
sumptions known to be sufficient for two-round MPC without reusability. In
particular, while we know two-round MPC from any two-round OT [BLIS,
GS18a], known constructions of two-round MPC with reusability seem to re-
quire assumptions that support homomorphic computation — namely, LWE
and DDH (which are known to imply various flavours of homomorphic secret
sharing [BGI16]). In particular, these assumptions are known to imply some
notion of communication-efficient' secure computation for a rich class of func-
tions [MW16, BGI16, DHRW16]. In this work, we ask:

Can we realize reusable two-round MPC' from assumptions that are not
known to imply communication-efficient secure computation?

1.1 Our Results

We answer the above question in the affirmative by constructing a reusable two-
round MPC protocol from the LPN assumption over binary fields with inverse
polynomial noise rate 1/n'~¢ for small enough constant €, where n is the LPN
dimension.

Our construction proceeds in two steps:

— Multiparty Silent NISC: We first consider the problem of constructing
a two-round MPC protocol where the first round message is succinct (i.e.,

! By communication efficiency, we mean that the communication cost of the protocols
do not grow with the circuit size of the functionality to be computed.



the complexity of computing the first round message does not grow with
the circuit size) in the silent pre-processing model [BCGT19b]. To give more
details, there is a pre-processing phase run by a dealer that generates cor-
related random strings for each party. In the first round, the parties send
a commitment to their inputs using the correlated randomness. In the sec-
ond round, the parties send a message that can be later decoded to obtain
the output of the function. For efficiency, we require the complexity of the
pre-processing phase and the input commitment phase to be independent of
the circuit size and only the second round computation can depend on this
parameter. We call this multiparty silent NISC, and this naturally extends
a similar notion defined by Boyle et al. [BCG*19a] for the two-party case.
We give a construction of a multiparty silent NISC protocol in the random
oracle model based on the LPN assumption.

— Reusable Two-Round MPC: In the second step, we transform the above
protocol to a protocol in the CRS model that achieves unbounded reusability
without increasing the number of rounds or requiring stronger assumptions.
As a corollary, we obtain the first construction of reusable two-round MPC
in the CRS model from the LPN assumption.

2 Technical Overview

In this section, we first discuss the notion of multiparty silent non-interactive
secure computation (msNISC), which is a natural extension of the silent NISC
primitive of [BCG'19a] to the multiparty setting. We then give an overview of
our construction of msNISC from the LPN assumption in the random oracle
model. This result mostly follows from a combination of ideas from [GIS18] and
[BCGT19b], with a few necessary tweaks. Finally, we give an overview of the
transformation from msNISC to reusable two-round MPC. This transformation
forms the heart of our technical contribution.

2.1 Multi-party Silent NISC

In a silent NISC protocol [BCG'19al, two parties begin by interacting in a pre-
processing phase that results in some shared correlated randomness. In addition,
they send to each other encodings of their inputs x and y. So far, all computation
and communication is “small”| i.e. it does not grow with the size of the circuit
C they will eventually want to compute on their inputs. At this point, one party
may publish a single (large) message to the other party, allowing the latter to
learn the value C'(z,y). Since all communication before this point was small, the
parties will be required to “silently” expand their correlated randomness into
useful correlations needed for the final non-interactive computation phase.

We naturally extend this interaction pattern to the multi-party setting. We
outline a three-phase approach for computing an m-party functionality.

— Preprocessing phase: A trusted dealer computes correlated secrets {s; }
and sends s; to party i.
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— Input commitment phase: Party i, using secret s;, computes and broadcasts
a commitment ¢; to its input z;.

— Compute phase: Once a circuit C' is known to all parties, they each compute
and broadcast a single message m;.

— Recovery: The protocol is publicly decodable. That is, the messages {m; }, e[m]
can be combined by any party (inside or outside the system) to recover the
output Y « C(z1,...,2y).

Crucially, we require the computation and communication during the pre-
processing and input commitment phases to only grow as a fixed polynomial in
the input size and the security parameter, and not with the size of C' (although
an upper bound on the size of supported circuits may be known during these
phases).

Starting point: PCG Based on prior works, we can construct a multiparty
silent NISC protocol using either a multi-key fully-homomorphic encryption
[MW16, DHRW16], or homomorphic secret sharing [BGMM20], or using a spe-
cialized type of witness encryption [BL20, GS17]. However, each of these ap-
proaches make use of assumptions that can support some (limited) form of
homomorphic computation on encrypted data. Further, these protocols have
a fairly inefficient compute phase. For example, the approach of [BGMM20] re-
quires the parties to compute a PRF homomorphically under a HSS scheme - this
non-black-box use of cryptography will be prohibitively inefficient in practice.

On the other hand, the works of [BCG'19b] and [BCG'19a] study methods
for distributing short seeds to two parties which can then be silently and effi-
ciently expanded into useful two-party correlations under the LPN assumption.
For example, they show how to generate many random oblivious transfer (OT)
correlations efficiently via short seeds, and they call the primitive that accom-
plishes this a pseudorandom correlation generator (PCG) for OT correlations.

Now, given pairwise random OT correlations between each pair of parties,
[GIS18] shows how to implement the two-round MPC protocol of [GS18b] (which
we refer to as GS18) in a black-box manner. Their approach would fit the tem-
plate of multi-party silent NISC, except that their input commitment phase
would also grow with the size of the circuit, and thus the resulting protocol
would not be “succinct”. In this work, we show how to use the PCG techniques
of [BCG'19b, BCG'19a] in order to generate more sophisticated correlations
that suffice to instantiate GS18 while keeping the input commitment phase in-
dependent of the circuit to be computed.

A PCG for GS18 Correlations In [GIS18], the random OT correlations and
first-round messages (which also function as input commitments) are essentially
used to set up certain structured OT correlations that enable the parties to
compute a circuit over their joint inputs with only one additional message. At a
high level, these structured correlations allow parties to each output sequences
of garbled circuits that communicate with each other in order to implement an



MPC protocol among themselves, though the details of this will not be important
for this discussion. Here, we directly describe the correlation which consists of
pairwise correlations set up between each pair of parties, one acting as a sender
and one as a receiver. The sender gets random OT messages {(124,0,M¢,1) }re[r
and the receiver gets a random string v along with messages {my,, }+c[7]. Each
z¢+ is not a uniformly random and independent bit, rather, each is computed
as z; = NAND (v[f] ® a, v[g] @ B) @ v[h] for some indices (f, g, h) and constants
(a, ).

As we will see below, one can write what is described so far as a two-party
bilinear correlation. This is good news, since the work of [BCG*19b] constructed
a PCG for two-party bilinear correlations. However, we do not generically make
use of their PCG, for two reasons. First, we will actually require a multi-party
correlation, since each party’s random string v must be shared among all of the
two-party correlations it sets up with each other party. Next, we have a more
stringent requirement on the complexity of expansion. In particular, parties must
use some of their expanded randomness in the input commitment phase, which
must be efficient. We set up the PCG so that parties can obtain some part of the
expanded randomness without expanding the entire set of correlations, which is
computation that would grow with the size of the circuit. Thus, we describe how
to set up the multi-party correlations necessary for GS18 from basic building
blocks. Although our construction and proof follow those of [BCGT19b] very
closely, we give a full description of the scheme in the body for the sake of
completeness.

Now we briefly review the PCG of [BCGT19b, BCG'19a] that produces a
large number of (unstructured) random OT correlations. Fix parameters n’ > n.
The dealer first samples a sparse binary error vector y € FSI (with a compact
description denoted by %) and a random offset (shift) 6 € Fox. Then, y - § is
secret shared into shares kg, k1, which are vectors in ]F;’; and also have com-

pact descriptions Eo,%l (this step requires the use of Distributed Point Func-
tions [GI14]). Finally, (ko,7) is given to the receiver, (k;,6) is given to the
sender, and a n/-by-n random binary matrix H is made public. In order to
expand these short seeds into n random OT correlations, the receiver first ex-
pands its compact descriptions into (ko,y) and then computes to := ko - H € F7,
and z := y - H € Fy, and the sender expands its compact description into k;
and computes ¢y := k1 - H € FJ,. It is easy to check that to = ¢; + 2 - 6 and
thus for each ¢ € [n], (z[i],to[i]), (t1[¢],t1[i] + 0) is a correlated random OT
instance. The choice bits z are random due to the LPN assumption. In order
to remove the correlated offset §, the parties can use a correlation robust hash
function [IKNPO3] or a random oracle, to hash each OT string.

Recall that in our setting, we actually require some structure on the string z of
choice bits. To implement this, we first write each expression z; = NAND(v[f] ®
a,v[g] ® B) @ v[h] as a degree-two equation over Fy whose variables are en-
tries of v. That is, z; = v[f]v[g] + av[g] + Bv[f] + v[h] + @S + 1. In order to
obtain these degree-two correlated OT, we follow the construction of PCGs
for constant-degree relations from [BCG'19b]. In particular, we define the er-



ror vector to be ¥ = (1,y) ® (1,y) € FZ ™. Same as before, 3 is secret
shared into ko, k1 € ]Fg;"/ Now, the receiver can compute v := y - H and set
z = (1,v) ® (1,v) € F5y™, and likewise the receiver and sender can compute
vectors tg := ko - (H' ® H') and t; := k1 - (H' ® H') respectively, where H' is

(1 H> . Both are vectors in 35", such that for any f, g € [n] and any degree-one

or degree-two monomial v[f]v[g] over the entries of v, there exists an index ¢ such
that (z[7] := v[f]v]g],to[i]) , (t1[d], t1[¢] + 6) is a valid correlated OT. One can then
obtain any degree-two correlated OT by taking appropriate linear combinations.
Correctness of this step crucially relies on the fact that all the “base” correlated
OTs have the same shift §. After taking the linear combinations, the parties can
still apply a correlation robust hash function to get structured OT correlations
with random sender strings.

In the body, we show that even in the setting where there is one receiver
with a fixed error vector y, but multiple senders with different random offsets d;,
one can still show security via reverse sampleability. In particular, for any one
of n parties, their output correlation can be reverse sampled, given the output
correlations of all other parties.

The Final Protocol Given ideas from the previous section, we can complete
our description of multiparty silent NISC from LPN in the random oracle model.

In the preprocessing phase, a trusted dealer sets up pairwise structured OT
correlations between each pair of parties as described above. We include a ran-
dom oracle in the CRS, which is used to generate the (large) matrix H and also
used as a correlation robust hash function. In the input commitment phase, we
have parties partially expand their correlated seeds into randomness that may
be used to mask their inputs. Crucially, this step does not require fully expand-
ing their seeds into the entire set of structured correlations that will be used
in the compute phase, so we maintain the “silent” notion. To implement this,
we actually sample two different Hy, Ho matrices and two different error vectors
H,

Hy
sufficient error positions, we can still rely on LPN with inverse polynomial er-
ror rate. Finally, in the compute phase, the parties publish GS18 second round
messages computed with respect to their expanded correlations, thus completing
the protocol. Since the GS18 protocol is publicly decodable, so is our protocol.

As a final note, we can remove the random oracle at the cost of having a large
CRS. In particular, given a bound on the size of the circuit to be computed, we
can instantiate the protocol with a CRS that contains the H matrix (note that
the size of this matrix must grow with the number of OT correlations generated
and thus, the size of the circuit to be computed). Although this CRS is large,
it can be reused across any number of input commitment and compute phases
- a property that we take advantage of in the next section, which focuses on a
construction of reusable two-round MPC from LPN. We will also have to replace
the use of the random oracle as a correlation-robust hash function. As already

y1,y2 of different sizes, and set v = (y1,y2) ) As long as each 1, has



observed in [BCG119b], the role of correlation robust hash function can be
replaced by an encryption scheme which is semantically secure against related-
key attack for the class of linear functions. It is known that such an encryption
scheme can be based on the LPN assumption [AHI11].

2.2 Reusable Two-round MPC from LPN

We now turn to our main result - a reusable two-round MPC protocol from the
LPN assumption. Our approach takes the multiparty silent NISC protocol from
last section as a starting point and constructs from it a first message succinct
two-round MPC (FMS-MPC). An FMS-MPC protocol satisfies the property
that the size of computation and communication necessary in the first round
only grows with the input size and security parameter, and not with the size of
the circuit to be computed in the second round. The work of [BGMM20] shows
that FMS-MPC implies reusable two-round MPC, so we appeal to their theorem
to finish our construction. Our construction of FMS-MPC proceeds in two steps.

Step 1: Bounded FMS-MPC. In order to convert a multiparty silent NISC
protocol into a two-round MPC, we need to remove the preprocessing phase,
instantiating the dealer’s computation in a distributed manner. A natural ap-
proach is to use a two-round MPC (e.g. GS18) to compute the preprocessing and
input commitment phases, and after this is completed, have the parties compute
and send their compute phases messages. However, this results in a three-round
MPC protocol.

To collapse this protocol into two rounds, we use an idea from [BGMM20)
- the two-round MPC which implements the dealer will compute garbled labels
corresponding to the outputs of the preprocessing and input commitment phases,
and in the second round, parties will also release garbled circuits that output
their compute phase messages. Anyone can then combine the garbled inputs and
garbled circuits to learn the entire set of compute phase messages, which will then
allow one to recover the output of the circuit. Since the computation necessary
for computing the preprocessing and input commitment phases is small, the first
round of the resulting protocol is succinct.

However, recall that the multiparty silent NISC constructed in last section
requires a large CRS if instantiated without the use of a random oracle. In an
FMS-MPC, the size of CRS should only depend on the security parameter, not
the circuit size. Thus, we do not quite obtain an FMS-MPC following the above
approach. Rather, we obtain what we call a bounded FMS-MPC, which has a
large (but reusable) CRS whose size grows with the size of the circuit to be
computed. Meanwhile, this MPC protocol is bounded since the size of the CRS
determines the bound on the circuit size that can be supported.

Step 2: From Bounded FMS-MPC to FMS-MPC. Thus, our task is to
reduce the size of the CRS as well as to enable computation of unbounded



polynomial-size circuits in the second round. This forms the main technical con-
tribution of the second step.

To support unbounded circuit size, our idea is to use a randomized encoding
in order to break down the computation of one large circuit into the computation
of many small circuits. In particular, using results from [AIKO05] for example, one
can compute any a priori unbounded polynomial-size circuit with a number of
“small” circuits, where this number depends on the original circuit size. Here
“small” means that the size of each individual circuit is some fixed polynomial
in the security parameter. Thus, the size of the CRS required to compute each of
these small circuits only grows with the security parameter. Moreover, the CRS
in our bounded FMS-MPC protocol is reusable, so the same small CRS can be
used to compute each small circuit of randomized encodings.

However, computing each of the small circuits in parallel does not result in an
FMS-MPC. Indeed, to maintain security this would require a different first round
message for computing each randomized encoding circuit, and thus the total size
of first round messages will still grow with the original circuit size. To remedy
this, we use a variant of the tree-based approach from [AJJM20, BGMM20].
We construct a polynomial-size tree of bounded FMS-MPC instances, where
each internal node computes two sets of fresh first round messages which are
to be used to compute its two child nodes. Each leaf node corresponds to one
of the small randomized encoding circuits. The first round message in our final
FMS-MPC protocol will only consist of the first round messages for computing
the root of this tree. In the second round, parties release garbled circuits that
compute the second round message for each node in this tree. As before, to assist
evaluation of these garbled circuits, each node will instead output garbled labels
corresponding to the second round messages. This allows anyone to evaluate the
entire tree, eventually learning the outputs of each leaf MPC, thus learning the
randomized encoding of the original circuit that was computed.

Crucially, the small CRS can be reused to compute each node of this tree, so
that each internal node does not need to generate a fresh CRS for its children.
This allows the tree to grow to some unbounded polynomial size without each
node computation becoming prohibitively large - each node just computes two
sets of first round messages of the bounded FMS-MPC, which in total has some
fixed polynomial size. Additional details of this construction can be found in
Section 5.2.

On the LPN Assumption. In both the multiparty NISC and the reusable
MPC results, we rely on LPN with inverse polynomial error rate 1/n'=¢. In
both cases, the reason is that we require the computation in the first phase to be
polynomially smaller than the size of the circuits supported in the second phase.
Indeed, as discussed above, in the reusable MPC case we only need to support
circuits of some fized polynomial size \° in order to allow parties to compute
circuits of unbounded polynomial size. However, we require the size of the first-
round message to be some fixed polynomial size in the security parameter A, say
A2, independent of the circuit size A\°. That is, the size of the first round message



should not depend on the constant ¢ determining the fixed polynomial size of
the circuits supported in the second round.?

We accomplish this as follows. In the first phase, parties perform computation
that sets up the LPN error vector. We fix the number of error positions in this
vector to be A, so that the size of this computation does not grow with the size A°
of circuits supported. Now, the number of LPN samples required in the second
round must grow with A°. Thus, while the number of error positions is fixed to
A, we set the LPN dimension n to be roughly A°, and the number of samples
to be, say, 2n. In the two-round MPC setting without a random oracle, this
corresponds to a CRS (consisting of the LPN matrix) that grows with the size
of circuits supported. However, as discussed above, we can handle a large CRS
on the way to our eventual reusable two-round MPC result, as long as the first
round message satisfies our succinctness property. Finally, note that the error
rate of the LPN samples is \/2n, which is roughly 1/\°~' = 1/n'~1/¢, Thus,
setting € ~ 1/c¢, we see that our final results follows from LPN with inverse
polynomial noise rate. We stress that while the constant € that appears in the
LPN noise rate does depend on the constant ¢ that determines the size of circuits
supported, this constant ¢ can be some fized constant in our final protocol, which
nevertheless allows for computation of unbounded polynomial-size circuits.

3 Preliminaries

3.1 Learning Parity with Noise

We recall the decisional exact Learning Parity with Noise (LPN) assumption
over binary fields. The word “exact” modifies the standard decisional Learning
Parity with Noise problem by changing the sampling procedure for the error
vector. Instead of setting each component of e € Fy to be 1 with independent
probability, we sample e uniformly from the set of error vectors with exactly ¢
entries set to 1. We let HWW,, ; denote the uniform distribution over binary strings
of length n with Hamming weight t. The exact LPN problem is polynomially
equivalent to the standard version following the search to decision reduction
given in [AIKO09], as noted in [JKPT12]. We give the precise definition in its
dual formulation.

Definition 1 (Exact Learning Parity with Noise). Let A be the security
parameter and let n(-),n'(-),t(-) be some polynomials. The (dual) Decisional Ex-
act Learning Parity with Noise problem with parameters (n(-),n'(-),t()) is hard
if, for every probabilistic polynomial-time algorithm A, there exists a negligible
function p such that

Pr[A(B.e- B) = 1] = PrlA(B.u) = 1]| < (n)

2 Tt should also suffice to require only that the first-round message is sufficiently sub-
linear in the size of circuits supported, though we achieve the stronger succinctness
property described here.



where B Fgl()‘)xn()‘), e "Wy, and u IF;(A).

Throughout this work, we will use the following flavor of LPN assumption.
For a given security parameter A and polynomial p(\), we will need to assume
that LPN is hard when e has Hamming weight A and e - B is a vector of length
p(A). Thus, we can set n = p(A\) and n’ = 2n, which corresponds to a (primal)
LPN assumption of dimension n and error rate \/2n = 1/n'~¢ for some constant
€. This is referred to as “LPN with inverse polynomial error rate”.

3.2 PCG
We recall the following definition of PCG from [BCG'19b]:

Definition 2 (Reverse-sampleable Correlation Generator). Let C be a
correlation generator, that is, C(1*) outputs two random strings (Ro, R1) ac-
cording to some joint distribution. We say C is reverse sampleable if there exists
a PPT algorithm Rsample such that for b € {0,1} the correlation obtained via:

{(R}, R}) | (R, R1) + C (1’\) Ry == Ry, R|_, < Rsample (b, Ry)}
is indistinguishable from {(Ro, R1) < C (1*)}.
In this work, we primarily consider the following correlation generators:

— Correlated OT: {(Ro := (0,m¢) , Ry := (mg, my :=mg + 6)) < C(1*)}. Where
d is a random element in some field, each o € {0,1} and each mg are uni-
formly sampled. This correlation generator is clearly reverse-sampleable. In
this work we sometimes refer to Ry as the receiver strings and R; as the
sender strings.

— Subfield-VOLE: {(Ry := (@, 7), Ry := (6,®)) < C(1*)}. Where (&,7) € Fj x
Fo\, (6,W) € Fax x F7,, and where 4, ¢, and 0 are uniformly random, and
¥ = 1d + . This correlation generator is also reverse-sampleable.

Definition 3 (Pseudorandom Correlation Generator (PCG)). Let C be
a reverse-sampleable correlation generator. A pseudorandom correlation gener-
ator (PCG) for C is a pair of algorithms (PCG.Gen, PCG.Expand) with the fol-
lowing syntax:

— (80, 81) < PCG.Gen (1)‘): On input the security parameter X\, it outputs a
pair of seeds (sg, s1).

— Ry, < PCG.Expand (b, sp): On input an index b € {0, 1}, the seed sy, it outputs
a string Ry.

Correctness: We require that the correlation obtained via:

{(Ro, R1) | (s, 81) + PCG.Gen (1*) , R}, - PCG.Expand (b, s;)}
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is indistinguishable from {(Ro, R1) < C (1*)}.

Security: For any b € {0,1}, the following two distributions are computationally
indistinguishable:

{(s1-, Ry) | (80, 81) < PCG.Gen(1%), Ry < PCG.Expand (b, )}, and

(1. Ry) (80, 81) + PCG.Gen(1*), Ry}, < PCG.Expand (1 — b, 81_3),
1=b> 20 Ry, < Rsample (1 — b, R1_p)

where Rsample is the reverse sampling algorithm for correlation C.

We will also consider m-party PCGs, where PCG.Gen(1*) outputs an m-tuple
of seeds (si,...,8,). Here, security is defined against any subset of colluding
parties. In particular, for any T C [m], the following two distributions should be
computationally indistinguishable:

{({Sj}jeT, {Rz}ng) ‘ (S17 ey Sm) < PCG.Gen(lA), Vi ¢ T, Rl < PCG.Expand (’L', Si)}, and

N N (s1,--.,8m) + PCG.Gen(1*),Vj € T, R; < PCG.Expand (j,s;),
{<{SJ jer: (Bidigr) {Ri}igr < Rsample (T, {R;}jer) |

PCG for subfield-VOLE One of the building blocks used in this work is a
PCG protocol for subfield-VOLE correlation. It has been studied by the works
of [BCG'19b, BCG'19a] and is known to be implied by a suitable choice of the
LPN assumption. Our main construction is crucially inspired by such PCG so
we give a brief overview of the protocol.

We denote this protocol specifically by (PCG.GengyoLg, PCG.ExpandyoLg)-
Due to the compressing nature of PCG, we also explicitly associate an algorithm
sEval with this protocol. It takes as input any compressed vector y € F; and
an evaluation domain of size k < n, and reconstructs the vector y restricted to
IE"; := [ [: k]. We denote the compressed form of any vector y by y. Therefore
for correctness we always have y = sEval (g, n).

In [BCG'19a], the algorithm PCG.GengyoLe begins by sampling a random
sparse vector y € FSI of Hamming weight w and a random offset 6 € Fax,
but here we alter the syntax so that PCG.GengyoLg takes these values as in-
put. Since y is a sparse vector, it can be naturally represented in a compressed
form using O(w -log(n')) bits, which we denote by y. In this way, PCG.GengyoLg
takes as input (1)‘, y, 6) and outputs a pair of compressed random seeds (k?o, lgl)
where (l;),l;l) can later be expanded using sEval into kg, k1 € F;’; such that

ko = k1 +y - 0. In fact, (];0,];1) are the outputs of a Function Secret Shar-
ing (FSS) scheme for the multi-point function induced by the sparse vector
y - 8. Their sizes only depend on (), t,1og(n’')). Furthermore, due to the secu-
rity of FSS, there exists a simulator Sim so that for any PPT adversary who
is given the description of y - 4, and for each b € {0,1}, the two distributions
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{(l;b, -) + PCG.Gengvore(17,y, 5)} , {l;l’7 — Sim(l)‘,]ng,n’)} are indistinguish-
able.
To expand these seeds into subfield-VOLE correlation, PCG.Expandgyq, g takes

as input (lgo, ];1> and a random n’-by-n binary code matrix Hy ,, € Fg'xn (where

n < n'), and computes ko = sEval (lgo,n’), k1 = sEval (/%Ln’), to := ko - Hp' s
t1 = k1 - Hy p and sets v := y - Hy/ . This immediately gives the desired
subfield-VOLE correlation where tg = t; + v - 6. The vector v is random due to
the LPN assumption.

4 Multiparty NISC with Silent Preprocessing

In this section we describe our first result: a multiparty silent NISC protocol
from the LPN assumption in the random oracle model. We organize this section
as follows. In section 4.1, we give a definition of multiparty silent NISC. In
section 4.2, we revisit the GS18 compiler in the context of multiparty silent
NISC and identify a specific type of correlation that we need for implementing
this compiler. In section 4.3 we give a PCG protocol for this correlation. The
final construction is given in section 4.4. Finally, in section 4.5, we discuss some
extensions to our basic protocol. The security proof of our protocol is given in
the full version [BGSZ21].
The main result of this section is the following:

Assuming LPN with inverse polynomial error rate, there exists a multiparty
silent NISC protocol in the random oracle model.

4.1 Multiparty Silent NISC: Definition

We introduce the notion of multiparty non-interactive secure computation with
silent preprocessing, or Multiparty Silent NISC, which extends the two-party
silent NISC primitive of [BCGT19a] to the multi-party setting.

An m-party silent NISC protocol begins with a preprocessing phase, where
a CRS is sampled and a trusted dealer sets up m secret parameters and dis-
tributes them to each party. The computation performed by the dealer should
be efficient, in the sense that it only grows with the security parameter, and not
with the size of the circuit that the parties will eventually compute. After the
preprocessing phase, each party broadcasts a commitment to its input. Finally,
the parties compute a circuit C' over their joint inputs by broadcasting one ad-
ditional message. Anyone can recover the output of the computation based on
these messages.

Definition 4 (Multiparty Silent NISC). An m-party non-interactive secure
computation with silent preprocessing (m-party silent NISC) is a protocol de-
scribed by algorithms (Gen, Setup, Commit, Compute, Recover) with the following
syntazx and properties:

12



CRS < Gen(11): On input a security parameter X, the Gen algorithm outputs
a CRS.

{Si}ie[m] <+ Setup (1’\,L, CRS): On input the security parameter A, a bound
L on the size of supported circuits, and CRS, the Setup algorithm outputs a
set of secret parameters {si}ie[m}. Secret s; is given to party 1.

¢; + Commit (i, x;,s;, CRS): On input an index i, it" party’s input x;, its
secret parameter s; and CRS, the Commit algorithm outputs party i’s com-
mitment c; to its input x;.

m; < Compute (i,xi, s;, CRS, {Cj}je[m] ,C): On input an index i, it" party’s
input x;, its secret parameter s;, the CRS, all the commitments {Cj}je[m] and
description of a circuit C, the Compute algorithm outputs party i’s message
my; for computing circuit C'.

the Recover

Y < Recover ({mj}je[m]): On input all messages {mj}je[m],

algorithm outputs Y < C(x1,...,Zm).

Correctness For any (deterministic) circuit C whose size is bounded by L, and

any

Pr

set of inputs (z1,...,,,), correctness requires that:
CRS « Gen(1%),
{Si}ie[m] <+ Setup (1)‘, L, CRS)
Y:C(xl T ) C; Commit(i,xi,si,CRS) 1

C

m; < Compute (i,xi, si, CRS, {¢;}
Y + Recover ({mj}je[m]

JE[mM]>

Silent Preprocessing A multi-party silent NISC satisfies the following prop-
erties.

Sec

Succinct setup: The running time of the Setup algorithm is independent of
the circuit size L. That is, we require that the setup algorithm runs in some
fixed polynomial time poly (A).

Circuit-independent commitment: The running time of the Commit algo-
rithm is independent of the circuit size, and only depends on the security
parameter and input size.

urity For defining security, we follow the standard real /ideal world paradigm.

A formal definition may be found in the full version [BGSZ21].

4.2
Rec

A Strawman From GS18 Compiler
all that the GS18 compiler (see the full version [BGSZ21] for a description

of the compiler and of the conforming protocol to which the compiler is applied)
yields a two round MPC protocol (MPCy, MPCy, MPC3), which can be presented
in the syntax of multiparty NISC as follows:
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— The Gen algorithm samples the CRS for GS18 compiler.

— In the setup phase, the setup algorithm samples a set of secret randomness
{ri}icpm)- Then it sets s; := r; for each i € [m].

— In the commit phase, given the description of circuit C, party ¢ commits to
its input x; by running (stgl),msg(l)) +— MP(C, (IA,CRS,C,i,xi,si). Then

i
it sets ¢; := msg(l)

i

— In the compute phase, given all the previous commitments, i*" party com-
putes msg(z) + MPC, (C7 stz(-l), {Cj}je[m])' It then sets m; := msgz(?).

i
— In the recover phase, given all messages, anyone can simply compute ¥ <
MPC3 ({mj}je[m]).

However, this naive construction does not achieve silent preprocessing (sec-
tion 4.1), due to the fact that MPC; takes as input a description of the circuit
and that its running time is dependent on the size of this circuit. Thus, this
construction does not achieve circuit-independent commitment.

To address this issue, we begin by taking a closer look to the MPC; algorithm.
It outputs two things: an encoding of party 4’s input, which only depends on the
input size, and a number of OT; messages that is comparable to the size of
circuit C. Merely computing these messages already takes time O (|C|) so we
cannot hope to include them as part of the commitment.

The reason these OT; messages are required is that, combining with the
subsequent OT, messages sent by each party’s garbled circuits, they allow to set
up OT correlations between any two parties (i, j) in the following way. For any
round ¢ where party 7 is the speaking party and party j is one of the listening
parties,

— Party ¢ has the receiver strings Ry := (7, m., ). The choice bit 7, is computed
according to the description of action ¢; of the conforming protocol® &:
~v¢ = NAND (v; @ a, vy & ) B vy, where a and J are recorded in each party’s
public state, ¢; := (4, f,g,h) and v := v; are i'" party masking bits (secret
state).

— Party j has the sender strings Ry := (mo = labZ’tOH, mp 1= labﬁl’tfrl) , where

(labZ}'L’tgr l,lab;‘l’j‘/l+ 1) are input labels for input value +; of its next garbled

circuit.

Then party ¢ can simply output its string so that any party can recover the
correct input label (c.f labﬁl”t;: 1) for party j’s next round garbled circuit.

We formalize those OT correlations by defining the more general GS18 cor-
relations:

Definition 5 (GS18 correlation generator). A GS18 correlation generator,
denoted as Cgs, is an algorithm which takes as input the security parameter A

3 See the full version [BGSZ21] for a description of the conforming protocol.
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and a set {¢y 1= (-,f,g,h)}te[q]4, and outputs:

RO = (V’ {mtv(a’ﬁ)}Q»Be{o’l}’te[q]) ’

« Ces (1)\’ {dt}eer)
= (5’ 14,290} a,pe (0,1} el
Wherev < {0,1}" is a random vector and 6 <— Fax is a random offset. my (q,py,0
{0,1}* is a random string. Furthermore, for each t € [q], ¢: := (-, f,g,h), and
for any choice of o, B € {0,1}, let V¢ (a3 = NAND (vy © o, vy © ) @ v, and
My (a,8),1 = My (a,8),0 0. Then my o g) = Mt (0,8) 741 (0.5 - IVOtICE that the GS18
correlation is also reverse-sampleable:

— Rsample (0, Ry): Sample § < Fyx randomly, then for each t € [q] and each
a, B € {07 1}7 set Mg (a,8),0 = Mt (a,B) + Vt,(a,8) J.

— Rsample (1, Ry): Sample v + {0,1}"™ randomly, then for each t € [q] and
each o, 3 € {0,1}, compute s (a,5) as before and set my (4 8) = My (a,8),0 +
vt,(a,ﬂ) ’ 5

Observe that we define GS18 correlation such that for each action ¢, we
obtain a set of four correlated OTs, one for each choice of a;, S3:

Ro := (Vt,(a8)s Mt (0,8)) » B1 = (M (0,8),00 Mt (c8),1 := Tt ()0 +0) (1)

As first observed in [IKNPO03], it suffices to use a correlation robust hash function
to obtain random OTs from correlated OTs. In our construction we deploy a
random oracle function p as correlation robust hash function.

Now suppose that before the compute phase, for each round ¢, party i is
given Ry whereas party j is given R;, and additionally both parties agree on the
choice of (a, 8) in the compute phase. Thereby party i’s garbled circuit can sim-
ply output (’y,g = 'y;(a’ﬁ), me :=p (mi:j(‘aﬁ))) whereas party j’s garbled circuit
outputs:

. it4+1 i, . it+1 i,
(ao = labh70 @ p (mt,(a,ﬁ),o) ,ay = lath ®p (mtw(a’ﬁ)’l)). As aresult, any
party can recover the label labﬁ{f;z '=a, &m.

But how can those parties obtain GS18 correlations before the compute
phase? We cannot afford to generate them in the setup phase since its runtime
should be succinct. To solve this problem, we specifically design a pseudoran-
dom correlation generator (PCG) for GS18 correlations. With this tweak, the
setup algorithm will include PCG seeds for each party in its secret parameter, so
that each party can silently expand its seed to obtain desired GS18 correlations
before the compute phase, hence making the preprocessing phase silent.

4 We do not include the first argument to the description of the action ¢; = (i, f, g, k),
since this will be constant (a single party) for each correlation that we generate.
That is, we split the entire set of actions into one set per party, where each party’s
set consists of all actions in which they are the speaker.
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4.3 A PCG Protocol For GS18 Correlation

As suggested in [BCGT19a], any subfield-VOLE correlation gives correlated OTs
where for each i € [n], the receiver string is Rg := (v[i],my[;) := toi]), and the
sender string is Ry := (mg := t1[i],m1 := t1[i] + J). One can then get random
OTs by applying a correlation-robust hash function on these correlated OTs.

In order to generate desired OT correlations, first note that in the field Fy, one
can rewrite each NAND relation as a degree-two equation: NAND (vy & «, v, & 3)@
vp = 14 (vi+a) (vg+ ) +vu = (vyvg) + (avg + Bvs +vi) + (B +1). As a
result of this, given random masking bits v € {0,1}", each choice bit 4; can be
viewed as a sum of a degree two relation over v, a degree one relation over v,
and a constant which are parametrized by the choice of (¢, 3).

The subfield-VOLE correlation is itself a degree 1 relation. As before we set
v:=y- Hy,. In order to distinguish it from a degree 2 relation, we use the

notation ((y, kg), (k},9)) to denote the degree 1 seeds for receiver (R := 0) and
sender (S := 1) respectively, and propagate this notation to all other symbols
in the natural way. For consistency with previous sections, we slightly abuse the
notation by letting v; := v[i]. Under this notation, the degree-1 correlated OT
can be rewritten as follows: for each i € [n], R} = (v;, mi =t{[i]), R =
(md = t1[i], m] == t1[i] + 6).

In order to deduce degree 2 relations, we take the tensor product of same error
vector with itself and use it as the new error vector as suggested in [BCG*19a]:

(Eg, E%) + PCG.GengyoLE (1’\,}7_@\@/3@6). The expansion algorithm also needs
to be modified as follows: k2 = sEval (zzg n’) 2= k2 (Hyon ® Hy) k2 =
sEval (;;15, n'), t2 = k2 (Huyn, ® Hp ), where 3,13 € ]ng Viewing both

t2 and t3 as n-by-n matrices over Fax, for any i,j € [n], observe that the
following degree 2 relation holds: #3[i,5] = t3[i,5] + viv; - 6. As before, this
immediately gives a correlated OT where RZ := (vivj,mgivj = 12]i, j]), and
R? .= (m% = 12[i, j],m? == t3[i, 4] + 5).

Now that we know how to generate degree 1 and degree 2 correlated OTs,
we can easily derive the GS18 correlations by taking linear combinations of
(R}, R) (vesp. (Ri, R?)) over Fy. This gives a PCG protocol for generating GS18
correlations. Now, the protocol we need is actually in the multi-party setting:
that is, the receiver’s choice bits v must be shared between all of their pairwise
correlations with every other sender. This additional requirement can be ensured
by reusing the same error vector y multiple times. Below we give a PCG protocol
for GS18 correlations with one receiver and an arbitrary number m of senders.
We denote this specific PCG protocol by (PCG.Gengs, PCG.Expand¢g), given in
Protocol 1.

We prove the following theorem in the full version [BGSZ21].

Theorem 1. Assuming LPN with noise rate A\/n’, (PCG.Gengs, PCG.Expands)
in Protocol 1 is a multi-party PCG protocol for GS18 correlations satisfying PCG
security (Definition 3).
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Protocol 1 (Multi-party PCG Protocol For GS18 Correlations)

— Parameters: Let X be the security parameter, m be the number of senders, q be the
number of actions for the GS18 protocol, and n',n be integers such that n' > n.
— Output:
o For receiver:
x Masking bits v € {0,1}"; _
* For eacht € [q], a, B € {0,1}, i € [m], a receiver string m; (. g)-
e For sender i € [m]:
x A shift §; € Fox; _
* For eacht € [q], a, B € {0,1}, a sender string my (, g).0-
— Input:
e A compressed random error vector'y € {0,1}" with hamming weight X\, de-
noted by y.
o A random shift 0; € Fyx for each i € [m).
e Ann'-by- n binary code matriz Hy/ ..
o A sequence of actions {¢}iciq)-
- GenGS (1)\7 y? {61}16[m]) N
e For each i € [m], compute (ki{o, klll) + PCG.Gengvore (11, ¥,6:) ;
(EE) « PCG.GenwoLe (1*,{@},51-).
o et 55 = (g K03) ot = (FE,,01).
— Expandgs (1%, 0, {8} Yicim), Hur s {¢t }ecla)
o Ifb=0, sety =sEval(y,n’), v=y - Hpn n, and for each i € [m]:
% Parse s = (kil,07k712,07§); and compute kilyo = sEval (E;,n'), k?,o =
sEval (l/g?’;,n').
* ComPUte tzl,O = kil,O : Hn’,'ru tzz,O = kiz,o : (Hn’,n (29 Hn’,n)»
* For each t € [q], parse ¢ := (-, f,g,h), and for each a,B € {0,1} set
My (0,8) "= t7olfs gl + a - tiolgl + B -t o[f] + tiolh].
o Ifb=1, for each i € [m]:
% Parse s = (kilyl,kil,éi), and compute kl-lyl = sEval (k}yl,n/>, k‘il =

sEval (@:, n’)

x Compute tzl,1 = kil,l “Hyr s t?yl = kﬁl (Hptpn @ Hpt ).
* For each t € [q], parse ¢ := (-, f,9,h), and for each o, B € {0, 1}, set
My (0,800 = tialfs gl + o tialgl + B tialf] + tia[h] + (B +1) - 8.

4.4 Multiparty Silent NISC: The Construction

Two-step seed expansion In our strawman protocol (see section 4.2), each party’s
commitment contains an encoding of its input and a large number of OT; messages.
Using PCG for GS18 correlations we are able to remove the OT; messages in this
commitment. Nevertheless, recall that in GS18 compiler, party i’s input encoding is
computed as z; := z; ® 7y, where r; := v;[: I] (I is a bound on |z;|). If party ¢ does this
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naively and computes the whole masking bits v; in the commit phase, it would take
time |v;| at least, which is dependent on the circuit size. To circumvent this problem,
we slightly modify the receiver expansion algorithm to allow a two-step seed expansion.

First, instead of generating the code matrix H, s, uniformly at random, we let
H, , be a block diagonal matrix that consists of a small matrix Hlll’l and a big matrix
HTZL,,V‘"% along its diagonal. The small matrix is only used to generate input masking
bits whereas the big matrix is used to generate all of the remaining masking bits.
Correspondingly, we also need to modify the error vector y now that H, , is not a
uniformly random matrix. The error vector will be split into two parts: y := y'||ly™,
where |y’| = I’ and |y*| = n’ — . We sample y’ <+ HWyp  and y* < HW,r_p»
independently. This ensures that both v/ =y’ - Hj; , and v* =y*- HZ,_,, ., will both
be indistinguishable from random due to the LPN assumption with inverse polynomial
noise rate, showing that the multi-party PCG from last section remains secure.

Then, in the input commitment phase, each party computes y’' = sEvaI(;’7 ') and
then sets v =y’ - H;; and ¢; := z; = x; ® v'. This can be seen as the first-step seed
expansion and it allows to remove dependency on circuit size. Finally, in the compute
phase, each pair of parties silently expand the rest seeds just as before. This is the
second-step seed expansion.

Protocol 2 (Multiparty Silent NISC)

— Parameters: Let m be the number of parties. Let (MPC1, MPCy, MPC3) be a set of
algorithms in the GS18 compiler, and let (PCG.Gengs, PCG.Expand¢) be a multi-
party PCG protocol for GS18 correlations. Let n' > n be integers that depend on
the size L of the circuit to be computed, and let I > | be integers that depends on
the size of inputs to the circuit.

— Gen(1*): Set CRS := p, where p is a random oracle function.

— Setup(1*, L):

1. For each i € [m], sample yi <+ HWy x, yi < HW,_ x and set y; = yillyi.
2. For each i,j € [m], sample shifts §; ; < Fyp.
3. For each i € [m], compute {sy”, sy’ }j# + PCG.Gengs (1%, ¥5, {0i,; }j=i)-
Ce— 0,7 i
4. Set secret parameter s; := ({so }je[m]/{i} R {31 }je[m]/{i}).
— Commit (4, x4, si, CRS):
L ] j>0 (% A
L Parse si = (55 e {51 Yicmyy )+ then parse: any s o=
(Kd, K2, :) and 3 = ¥y
2. Compute y;' = sEval (37;, l’).
3. Generate an l'-by- | random binary code matriz Hll/yl «— p(I,1") and compute
vi' =yi' - Hjsy, where |l > |z| and I > 1.
4. Set commitment c; = z; D v;'.

— Compute: See algorithm 2.
— Recover: See algorithm 3.
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Algorithm 2 (Compute)

— Parameters: Let C be the description of a circuit and @ be a T-round conforming
protocol for computing C'.

— Compute (i,xi,si,CRS,{cj}je[m] ,C) :

1. Parse s; := ({sé’j}je[m]/{z‘} ’ {si’i}je[mv{i})'

2. Generate a (n' — I")-by-(n — 1) random binary code matriz H?Z,

n’ =1’ n—1 «—
p(n',l'), and set

1
H — Hl’,l
n',n — H2
n’' =/ n—1

5 <vi’{mi:{aﬁ)}t,a,ﬁ,j> «  PCG.Expandgs (1*,0, {567}y, Hur s {1 hrerq)) s

(5]-,i, {m{:?a,ﬁ)ﬂo}tﬁaﬁ’j) <+ PCG.Expandg (1’\, LS Yii, Hut s {be}ieq)-
4. For each t € T such that ¢+ := (i, f,g,h), and each j € [m]/{i}, compute

~ i, — 2%}
{mt,(a,m taB {P (mt,(a,ﬂ)) tas
For each t € T such that ¢: := (j, f,g,h) for j # 1,

J»t — 7yt o
o Set {mt’(a’ﬁ)’l}t,a,ﬂ = {mt,(a,B),O + 65 res

=t =t . Jt Jrt
° {mu,(a,ﬂ),o)’m(t,(a,m,l)}t,aﬁ = {p (mu,(a,ﬂ),o)) P (m(t,(a,m,n) }m,ﬁ
5. Parse v; = v;'||[vi and adjust v} so that pq = |vi|. Initialize a computation
tape st; := c1]|0P9]| ... ||em||0P9. Let N := |st;].
6. Setlad '™ = (lab:yﬁ“, lab;{“)kew] where for each k € [N] and b € {0,1}
labi, "t =0,
7. For each t from T to 1, compute:

(ﬁ“,m”) « Garble (1*, P”) .

where the circuit PH hardcodes party i’s recewer and sender strings, as well
as all input labels of P*'™* (see algorithm 4).
—~1 .
8. Set lab’ = {lab"1 }
ksti k ke[N]

~ —~ i1
9. Set message m; := ({P“t} , lab )
te(T)
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Algorithm 3 (Recover)

— Parameters: Let ¢ be the conforming protocol that computes circuit C. Let T be
total number of rounds of P.

— Recover ({mj}je[m]):
1. For each j € [m], parse m; := ({'ﬁat} ,l;z\bj’l>,
te[T)

2. For each t from 1 to T, do:
(a) Parse action ¢ := (i, f,g,h).

(b) Compute <’Yt7 {m;*
(¢) For each j # 1", do: '
i. Compute (ao, a1) < GEval (ﬁj’t, l?:b“).

, AR s ~w %,
J} Jdab T ) « GEval (PZ * lab t).
jelml/{i*}

1. Recover lab{b’t"'1 =a, D ﬁmi*’j.
— jt+1 . .
iii. Reset lab’ o = {{lab;c’,ts;lk}ke[m/{hh lab;b’t'ﬂ},
3. Let Z:= (y1,...,77), setY := post (Z).

Algorithm 4 (Circuit P"*)
Input: st;.
ardwired inputs: Party i’s masking bits v;, its receiver and sender strings
Hardwired inputs: Party i’ ki bit. it ) d d tri
mid , {(ﬁi“ i )} , the input
{ (B § o gefony.jelml/ i} (t:(@,8),00 "t (@81 ) § |, setoy,jefmi/ i) P

——i,t+1

labels of the next garbled circuit Pt Tab , and the round action ¢;.

1. Parse ¢ = (i*, f,g,h).
2 Set = st(i* — 1) (pg+1) + 1, B 1= stal(i* — 1) (pg + 1) + g].
3. Ifi=1", then: v

(a) Set v :=v;, and compute 7; (o 5y = NAND (vy © o, vy © B) © vp.

(b) Set sti[(i — 1) (pq + 1) + h] := 7 (a,p)-

3 httl it4+1
Set lab =< laby .
(c) Set la { @ }kE[N]

k,sti k
i i —~ i1
(A) Output <%’(a’6>’ {mt’(a’ﬁ)}je[m]/{i}7 fab '
4. Ifi #1i*, then:
(a) Set lab" " = {labi’“rl }
B P PRI

) ok ) T —~ it
(b) Output (lab;’fg'l B My (0 8).00 laby " O My (o510 lab ), where the label

laby"t" is the input for the bit st;[(i* — 1) (pg +1) + h] of the next garbled
circuit.

Theorem 5. Fizx any constant € > 0 and let n = A€ be a polynomial in the security
parameter. Assuming LPN with inverse polynomial error rate 1/n'~¢ (where n is the
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LPN dimension), Protocol 2 is a secure multiparty silent NISC protocol in the random
oracle model for computing circuits C' of size at most n. °

See Section 3.1 for more details about how we set LPN parameters based on the
(polynomial-size) circuit C to be computed. The proof of this theorem is given in the
full version [BGSZ21].

4.5 Extensions

Removing the random oracle Our construction of multiparty silent NISC relies
on a random oracle. Nevertheless, we can remove the use of random oracle, at the cost
of introducing a large (growing with the size of the computation) CRS. Below we define
this notion as multiparty silent NISC with large reusable CRS.

To begin with, one can observe that the previous construction utilizes the random
oracle in two following ways:

— Modeling it as a correlation robust hash function; This is used to obtain random
OTs from correlated OTs.

— Generating random binary code matrices for PCG seed expansion.

As already observed in [BCG119b], the role of correlation robust hash function can
be replaced by an encryption scheme which is semantically secure against related-key
attack (RKA) for the class of linear functions. It was also shown that this encryption
scheme can be based on standard LPN assumptions (over F2)[AHI11]. Therefore we
can effectively remove this use of random oracle without introducing new assumptions.
In slightly more detail, rather than using the hash of each string mifxﬁ’b to mask
the corresponding label laby, we instead encrypt lab, with an RKA-secure encryption
scheme using key m:’yiﬁ’b. Then, in Hybrid, in the proof of Theorem 5, we can appeal
to the RKA-security of the encryption scheme rather than the corelation-robustness of
the random oracle.

Without using the random oracle, an easy way to solve the second problem is
to let the Gen algorithm sample a random block-diagonal code matrix, and directly
includes it in the CRS. This, however, requires that the Gen algorithm must take as
input the circuit size bound L since the dimension of this code matrix must exceed
the size of circuit to be computed. Furthermore, the CRS is large since its size now
depends on the circuit size. As a result, the commit algorithm cannot take the whole
CRS as input. So instead we split the block-diagonal code matrix, and only supply the
small code matrix as input to the commit algorithm so as to remove its dependency
on the circuit size. To summarize, we set CRS := (CRS’, CRS*) < Gen(1*, L) where
CRS' := H};, and CRS* := H}, ;, ;. Notice that the size of CRS" only depends
on the input size whereas CRS* depends on the circuit size |C| < L. The commit
algorithm now takes as input (i, z;, s;, CRS’) whereas the compute algorithm still takes

as input (i, Zs, 85, CRS, {¢; }je[m] , C). We adopt these notations for CRS in all following
sections.

5 Here, by “size” of C, we mean the number of actions in the conforming protocol
used to compute C'.
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Reusable CRS Although the CRS in the resulting protocol is large, it can be
reused across an arbitrary polynomial number of multiparty silent NISC executions.
This property will be crucial for our construction next section, so we give more details
here. After the CRS is sampled, an adversary may specify any polynomial g(\) number
of multiparty silent NISC executions in which it would like to participate using the
same fixed CRS (but fresh preprocessing, commitment, and compute phases). Security
for each of these executions will still follow from the LPN assumption. To see why,
recall that the CRS is a dual-LPN matrix H, and is only used in the security proof
when appealing to the dual-LPN assumption. By a straightforward hybrid argument,
dual-LPN will hold with respect to a single random matrix H for any polynomial g(\)
number of samples.

5 Reusable Two-Round MPC from LPN

In this section, we build on top of our previous result and show a compiler that takes
any multiparty silent NISC with large reusable CRS and produces a reusable two-
round MPC protocol. This section is organized as follows: we divide our compiler
into three parts, each part involving one specific transformation. We proceed and give
constructions of these transformations one by one in each subsection:

1. We define the notion of bounded FMS-MPC and show that multiparty silent NISC
with reusable large CRS implies bounded FMS-MPC.

2. We show that bounded FMS-MPC implies standard FMS-MPC

3. Finally, we appeal to [BGMM20], who show that FMS-MPC implies reusable two-
round MPC.

5.1 Multiparty silent NISC with reusable large CRS — Bounded
FMS-MPC

We start by defining a relaxed notion of first message succinct MPC (FMS-MPC), which
was introduced in [BGMM20]. We call this new primitive a bounded FMS-MPC, which
can be naturally thought as a middle ground between a multiparty silent NISC and a
standard FMS-MPC.

Definition 6 (Bounded FMS-MPC). Let Gen be an algorithm that generates a
CRS. We say that the protocol ©* = (Gen, BFMS.MPC;, BFMS.MPC,, BFMS.MPC3) is
a bounded FMS-MPC' protocol if it is a two-round MPC protocol with the following
properties:

— Bounded circuit size: The Gen algorithm takes as input the security parameter X,
a circuit size bound L, and outputs a CRS := (CRS’, CRS*). The size of CRS' only
depends on an upper bound on input size, whereas the size of CRS™ can be as large
as L. Moreover, the protocol ©* only supports circuits such that |C| < L.

— Reusable CRS: The part CRS™ only needs to be set up once, and can be reused
across an unbounded polynomial number of two-round MPC protocols.

— First message succinctness: The BFMS.MPCy algorithm takes as input (1>‘, CRS', i, :cz)
In particular, its runtime should not depend on the circuit size |C].
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As our construction of bounded FMS-MPC from multiparty silent NISC is very
similar to the transformation given in [BGMMZ20, Section 5], we defer the construction
and security proof to the full version [BGSZ21]. In particular, we prove the following
theorem.

Theorem 6. Assuming a semi-honest multiparty silent NISC with large reusable CRS
and a maliciously-secure vanilla two-round MPC in the CRS model, there exists a
maliciously-secure bounded FMS-MPC' protocol.

Due to results from last section and [DGH'20], we have the following corollary.

Corollary 1. Fiz any constant € > 0 and let n = XA/ be a polynomial in the security
parameter. Assuming LPN with inverse polynomial error rate l/nlfe, there exists a
maliciously-secure bounded FMS-MPC protocol supporting circuits C' of size at most n.

5.2 Bounded FMS-MPC — FMS-MPC

In order to obtain standard FMS-MPC, we must allow for computation of a priori
unbounded polynomial size circuits. That is, we must support the computation of
unbounded polynomial size circuits using only a bounded polynomial size CRS. A
natural idea is then to use randomized encodings to break down the computation of
any unbounded polynomial size circuit into the computation of a number of bounded
polynomial size circuits, and use a bounded size (reusable) CRS to compute each small
circuit.

Indeed, any m-input polynomial-size circuit C' : {0,1}™* — {0,1}2/ admits a
randomized encoding, which can be written as a sequence of small circuits {Gy :
{0,1}™* x {0,1}* — {0,1}*},¢[n), where n depends on the size of C, but each G,
has size p(\) for some a priori fized polynomial p(-). The correctness of randomized
encoding ensures that for any inputs z1,...,%n and random coins v < {0, 1})‘, one
can recover the output Y := C(21,...,2m) just given {Gy(z1,...,%m,v)}yeqm). The
security of randomized encoding guarantees that this distribution is simulatable just
given the output Y.

Now, one could naively compute n bounded FMS-MPC protocols in parallel to de-
termine the outputs of G1,...,G,. However, the total number of first round messages
would now depend on |C], violating first message succinctness. To circumvent this issue,
we delay the computation of those first round messages to the second round. Following
the GGM approach, we define a complete binary tree based on the circuit being com-
puted. This tree will have n leaves in total and will be of depth d = log(n). The y’th
leaf is associated with the randomized encoding G,. Each internal node is associated
with an expansion circuit E. This circuit takes as input (z1, ..., Zm,v) and some addi-
tional secret randomness, and generates two sets of fresh first round messages, one for
each child node. By computing all the expansion circuits using bounded FMS-MPC,
we generate a set of fresh first round messages for each leaf node, enabling computa-
tion of all randomized encoding circuits using n more bounded FMS-MPC instances.
Furthermore, since the CRS of the bounded FMS-MPC has unbounded reusability, it
can be used by each node computation in this tree.

To fully compute this tree, each party needs to output its second round message for
each node computation in each level, and read all other parties’ second round messages.
This allows it to recover a new set of first round messages which is required for node
computations in the next level. If we implement this protocol naively, the number of
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rounds in total would match the depth of the tree. Nonetheless, one can still compress
it to just two rounds by repeatedly applying the round collapsing transformation: In
the first round, each party i outputs its first round message of a bounded FMS-MPC
for computing the first expansion circuit (root node). In the second round, party 4
first outputs its second round message for this bounded FMS-MPC. Then for each
level k € [2,d — 1], party ¢ outputs 2F=1 garbled circuits which realizes its MPCy
functionality at this level. That is, for each y € [2F7], it computes a garbled circuit
of MPC3 (E, (-, CRS"), -, - ). This circuit hardwires the description of E and the part
CRS™. It takes as input the part CRS’, party i’s first round state and all first round
messages for computing the ' expansion circuit in this level, and outputs its second
round message. In the last level, for each y € [n], party i computes a garbled circuit of
MPC; (Fy, (-, CRS*), -, ), where F, computes the randomized encoding G,. These
garbled circuits constitute party i’s second round message.

In order to recover the input labels for each garbled circuit, we ask each expansion
circuit E to output the input labels which correspond to the correct inputs for each
party’s next garbled circuit. Each party will actually output encryptions of all input
labels along with each garbled circuit, and each expansion circuit will output keys
that can be used to decrypt only the correct input labels for each party’s next garbled
circuit.

It is worth noting that this use of “tree of MPC messages” differs somewhat from
how it is used in [AJIM20, BGMMZ20]. In particular, we build a tree of polynomial
size. In order to compute a single large circuit in the second round, each party releases
a garbled circuit for each node in the tree. During output reconstruction, the entire
tree is evaluated. In [AJJM20, BGMM20], to obtain reusability, they set up a implicit
tree of exponential size. Each time the parties wish to compute a circuit in the second
round, they each release a sequence of garbled circuits that trace one root to leaf path
in this exponentially-sized tree.

As a final point, since the size of the CRS in a FMS-MPC should only depend on
the security parameter A, we must argue that the CRS we are using is small. Notice
that for every node in this tree, either the expansion circuit E or some randomized
encoding G is computed. The size of either circuit only depends on A. Therefore it
suffices to set L = poly(\) for some fixed polynomial when instantiating the bounded
FMS-MPC. As a result, the CRS only depends on A, which is what is required for
FMS-MPC.

Applying this transformation, we build a FMS-MPC (described in protocol 3) from
bounded FMS-MPC.
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Protocol 3 (FMS-MPC)

Let (Gen, MPCy,MPCy, MPC3) be a bounded FMS-MPC protocol, (Garble, GEval)
be a garbling scheme, (LabEnc,LabDec) be a label encryption scheme and
(CRE.Enc, CRE.Dec) be a computational randomized encoding scheme. Let PRG =
(Go, G1,Ho,H1) be a length quadrupling PRG. The expansion circuit E is defined in
algorithm T and circuit Fy is defined in algorithm 8. Let L = max(|E|,|Fy|) and
CRS := (CRS’,CRS*) + Gen(1*, L).

— FMS.MPC; (1%, CRS', i, z;) :
1. Sample (r4,v;) + {0,1}* x {0,1}* and compute
(stgl)7 msglm) < MPC; (1*,CRS' 4, ((zi,vi),7i))-

2. Set FMS.stEl) = (stgl),mwi) and FMSAmngI) = msgl(.l).
— FMS.MPC, (C,CRS, FMS.st§1>,{FMS.msg§.1>} [ ]) :
JE[M

1. Compute [Gy], |, < CRE.Enc (1%, 0).
2. Define a complete binary tree of depth d = log(n) with n leaves. Associate the
yt" leaf with the randomized encoding G, .

3. Let rgk’y) denotes party i’s secret randomness for computing the y** node at
level k. Set rt"") := r;; compute Tf’l) = Go (Tgl’l) , 7"1(2’2) =G (rgl’l)).

4. Compute kig’l) :=Hop (ril’l)) , kl(-Q’Q) = H; (ril’l)).
5. Compute msgl@) + MPC, (E, CRS,stED, {msgi”} [ ]).
je€
6. For each level k € [2,d — 1] and for each y € [1,2°71]:
(a) Compute ((71.(’“’1”7%?’”) + Garble (1A, MPC; (E, (-, CRSY), -, -)).
——=(k,y) 2= (ksy) 37 (ky)
(b) Compute elab; <+ LabEnc (Ki ,lab; ), where

&Y _ pRF (icg’“”, (t, b)) .
te[l],be{0,1}

(c) Compute rFTH2=1 .= G, (rgk’y)) ;T Gy (rfk’w);
ErrL2v=1 oy (T(k,y)> EEFL29) oy (Tgk,y))
. In the last level d, for each y € |n|:
7. In the last level d, f h
(a) Compute (éfd’y),mid’”)) + Garble (1A7 MPC; (Fy, (-, CRS¥), -, - ))7
ompute elab; "’ < LabEnc (K, lab;" where
b) C lab,"" + LabEnc (K. Tab.""") wh

R = PRF (K™, (t,5)) :
tel],be{0,1}

8. Set FMS.msg'? := (msg?)7 {éi(k’y), elabgk’y)} )
k€[2,d],yc[1,2F—1]
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— FMS.MPC; <{FMs.msg§2>} [ ]> :
JjE[M

1. Compute {(IA(,L-(Q’I)7 [?52’2))} +— MPC; ({msg§.2)} >
i€[m] j€[m]

2. For each level k € [2,d] and each y € [1,271]:
(a) For each j € [m]:
i. Compute l?.ﬁ;;k’”) <+ LabDec ([?;kvy)ymg_k,y));
1. Compute (msgf)’(k’y)) <« GEval (és.k’y), l/a\b;ky)>
(b) If k < d, then compute
{(RFF12mD RN MPCy ({msgf)’(k*y)} ) .
i€[m] je[m]
(c) If k = d, compute
Gy (1, ..., 2m),v) — MPCs ({mSg;?va)} [ ]).
JE[mM

3. Set Y « CRE.Dec (1%, C,{Gy (21, 2m), 0)}yepny )

Algorithm 7 (Circuit E)
Input: {(xj7 Uj)7 7nj}je[m] .
Hardwired inputs: Description of a length-quadruple PRG : (Go, G1,Ho, H1).

1. For each i € [m] (Generating the left child):
(a) Compute CRS' Y < Gen (IA).
(b) Compute (stz(-l)’o7 msggl)’o) +~ MPC, (1A, CRS' i, (w4, v:), Go(r4)))-
2. For each i € [m]:
(a) Set kY :=Ho(ry), 20 := (CRS’O,stZ(-”’O, {msg§1)’0} [ ]>.
jelm
(b) Letl:=|22|. Fortc[l], set th := PRF (k?, (t, z?[t]))
(c) Set K== {Ki:}, -
3. For each i € [m] (Generating the right child):
(a) Compute CRS'' < Gen (1A).
(b) Compute (stgl)’l, msggl)’l) — MPCy (1*,CRS" 1,4, ((zi,v3), Gu (1))
4. For each i € [m]:
(a) Set k}:=Hi(r;), zf :== (CRS'I,StZ(.l)’l, {msgy)’l} [ ]).
JjE[m
(b) Letl:=|zj|. Fort € [l], set K}, :== PRF (kj, (t,2}[t])).
(c) Set K} = {Kil»t}te[l]'
5. Output {I?ZO} and {IA(}}

i€[m] i€[m] ’
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Algorithm 8 (Circuit F)
[nPUt" {(xﬁ vj)7 ] }je[m] .
Hardwired input: the randomized encoding G .

1. Setv:=v1 P P Um.
2. Output Gy ((z1,-..,Tm), V).

In the full version [BGSZ21], we prove the following theorem, which, combined with
Corollary 1, gives the following corollary.

Theorem 9. There exists a polynomial p(-) such that, assuming a maliciously-secure
bounded FMS-MPC protocol supporting circuits of size at most p(\), there exists a
maliciously-secure FMS-MPC' protocol in the CRS model.

Corollary 2. There exists a constant € > 0 such that, assuming LPN with inverse
polynomial error rate 1/n175, there exists a maliciously-secure FMS-MPC' protocol in
the CRS model.

5.3 FMS-MPC — Reusable two-round MPC

It has been shown in previous work [BGMMZ20] that any maliciously-secure FMS-
MPC protocol in the CRS model implies a maliciously-secure reusable two-round MPC
protocol in the CRS model. Thus, we immediately have the following theorem.

Theorem 10. There exists a constant € > 0 such that, assuming LPN with inverse
polynomial error rate 1/n*~¢, there exists a maliciously-secure reusable two-round MPC
protocol in the CRS model.

The semi-honest case We have presented all of our results in this section in the
malicious-security setting, which requires a CRS. However, we remark here that we
can also achieve semi-honest secure reusable MPC in the plain model from LPN. In
fact, we claim that any maliciously-secure reusable MPC in the CRS model plus semi-
honest secure vanilla two-round MPC in the plain model implies a semi-honest secure
reusable MPC in the plain model. As this transformation is nearly identical to that of
[BGMM20, Section 5], we do not provide a formal proof, but give the following sketch.

The vanilla two-round MPC can be used to compute a CRS and first round messages
of the reusable MPC, and release garbled labels of the CRS and first round messages to
all parties. In the second round, each party also releases a garbled circuit that computes
their second round message of the reusable MPC. Anyone can combine the labels for
the CRS and labels for the first round messages with these garbled circuits to compute
the second round messages and thus the output.
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