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one-way. The existing post-quantum security of OAEP (TCC 2016-B [14])
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1 Introduction

The rapid progress on quantum computing and the existence of quantum al-
gorithms like Shor’s algorithm [12] has sparked the necessity of replacing old
cryptography with post-quantum cryptography. Toward this goal, the National
Institute of Standards and Technology (NIST) has initiated a competition for
post-quantum cryptography. In this paper we address an open question in one
of the finalists of NIST competition, NTRU submission [6]. The security of
(unmodified) Optimal Asymmetric Encryption Padding (OAEP) in the quantum
random oracle model has been mentioned as an interesting open question in [6]1.
The existing post-quantum security proof of OAEP [14] requires a modification
to OAEP transform. (See details below.)

The random oracle model [1] is a powerful model in which the security of
a cryptographic scheme is proven assuming the existence of a truly random
function that is accessible by all parties including the adversary. But in real
world applications, the random oracle will be replaced with a cryptographic hash
function and the code of this function is public and known to the adversary.
Following [4], we use the quantum random oracle model in which the adversary can
make queries to the random oracle in superposition (that is, given a superposition
of inputs, he can get a superposition of output values). This is necessary since a
quantum adversary attacking a scheme based on a real hash function is necessarily

1In the subsection 2.4.5 (titled: An IND-CCA2 PKE using Q-OAEP) of the version
dated September 2020.



able to evaluate that function in superposition. Hence the random oracle model
must reflect that ability if one requests post-quantum security.

Bellare and Rogaway [2] proposed OAEP transform, for converting a trapdoor
permutation into a public-key encryption scheme using two random oracles. It
was believed that the OAEP-cryptosystem is provable secure in the random oracle
model based on one-wayness of trapdoor permutation, but Shoup [13] showed it
is an unjustified belief. Later, Fujisaki et al. [9] proved IND-CCA security of the
OAEP-cryptosystem based on a stronger assumption, namely, partial-domain
one-wayness of the underlying permutation.

Is OAEP transform secure in the standard model? A recent work to
study this question [5] shows that a full instantiation of RSA-OAEP is only
possible for two variants of RSA-OAEP (called ‘t-clear’ and ‘s-clear’). Also, we
emphasize that the positive results in [5] hold against a classical adversary and
one needs to investigate the possibility of such instantiation in the post-quantum
setting. For instance, the partial instantiations are based on algebraic properties of
the RSA assumption that trivially does not hold in the post-quantum setting. Or
the full instantiation of t-clear RSA-OAEP is based on non-standard assumptions
(called ‘XOR-type’ assumptions) for which an intuitive justifications has been
only given in light of the multiplicative structure of RSA, and etc. Even though
the post-quantum instantiation of the random oracles in OAEP is a relevant
research question, it is not in the scope of this paper and we leave a further
investigation as an open question. Here, we investigate the security of OAEP
transform in the quantum random oracle model.

Post-quantum security of OAEP transform has been studied in [14]. The
authors modified OAEP transform (called it Q-OAEP) using an extra hash
function that is length-preserving and show that Q-OAEP is IND-CCA secure in
the quantum random oracle model. The extra hash function in Q-OAEP is used
to extract the preimage of a random oracle queries in the security proof. In this
work, we show that this extra hash function is unnecessary. We use Zhandry’s
compressed oracle technique [17] to prove IND-qCCA security of OAEP transform
(without any modification) in the quantum random oracle model. IND-qCCA
notion introduced in [3] is an adaptation of IND-CCA in which the adversary
is allowed to make quantum decryption queries, but, the challenge query is
restricted to be classical. Since security in the sense of IND-qCCA implies IND-
CCA security, our result answers an open question in one of the finalists of NIST
competition, NTRU [6], affirmatively.

Note that in the IND-qCCA notion, the adversary’s challenge queries are
restricted to be classical. Proposing a quantum IND-CCA notion that grants the
adversary the possibility of submitting quantum challenge queries is a challenging
task with some partial successes [7, 10]. We postpone verifying the security of
OAEP transform in the sense of definitions in [7, 10] until a definite definition is
given.
Organization. In Section 2, we present some basics of quantum information
and computation, security definitions needed in the paper and an introduction
for the Compressed Standard Oracle that has been introduced in [17] which we
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use in the paper. In Section 3, we present the OAEP scheme and show that it is
IND-qCCA secure in the quantum random oracle model.

2 Preliminaries

Notations. Let MSP shows the message space. The notation x
$←− X means

that x is chosen uniformly at random from the set X. For a natural number
n, [n] means the set {1, · · · , n}. Pr[P : G] is the probability that the predicate
P holds true where free variables in P are assigned according to the program
in G. The function negl(n) is any non-negative function that is smaller than
the inverse of any non-negative polynomial p(n) for sufficiently large n. That is,
limn→∞ negl(n)p(n) = 0 for any polynomial p(n). For a function f , fx denotes
the evaluation of f on the input x, that is f(x). For a bit-string x of size more-
than-equal k, [x]k are the k least significant bits of x and [x]k are the k most
significant bits of x. For two bits b and b′, [b = b′] is 1 if b = b′ and it is 0
otherwise.

2.1 Quantum Computing

We present basics of quantum computing in this subsection. The interested reader
can refer to [11] for more information. For two vectors |Ψ〉 = (ψ1, ψ2, · · · , ψn) and
|Φ〉 = (φ1, φ2, · · · , φn) in Cn, the inner product is defined as 〈Ψ, Φ〉 =

∑
i ψ
∗
i φi

where ψ∗i is the complex conjugate of ψi. Norm of |Φ〉 is defined as ‖ |Φ〉 ‖ =√
〈Φ,Φ〉. The n-dimensional Hilbert space H is the complex vector space Cn

with the inner product defined above. A quantum system is a Hilbert space H and
a quantum state |ψ〉 is a vector |ψ〉 in H with norm 1. A unitary operation over
H is a transformation U such that UU† = U†U = I where U† is the Hermitian
transpose of U and I is the identity operator over H. Norm of an operator U is
‖U‖ = max|ψ〉 ‖U |ψ〉‖. The computational basis for H consists of logn vectors
|bi〉 of length logn with 1 in the position i and 0 elsewhere. With this basis, the
Hadamard unitary is defined as

H : |b〉 → 1√
2

(
∣∣b̄〉+ (−1)b |b〉),

for b ∈ {0, 1} where b̄ = 1− b. The controlled-swap unitary is defined as

|b〉 |ψ0〉 |ψ1〉 → |b〉 |ψb〉 |ψb̄〉 ,

for b ∈ {0, 1}. The controlled-unitary U (cU) is define as:

cU |b〉 |Ψ〉 →

{
|b〉U |Ψ〉 if b = 1
|b〉 |Ψ〉 if b = 0

.

The bit-flip unitary X maps |b〉 to
∣∣b̄〉 for b ∈ {0, 1}. An orthogonal projection P

over H is a linear transformation such that P2 = P = P†. A measurement on a
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Hilbert space is defined with a family of projectors that are pairwise orthogonal.
An example of measurement is the computational basis measurement in which any
projection is defined by a basis vector. The output of computational measurement
on a state |Ψ〉 is i with probability ‖〈 bi, Ψ〉‖2 and the post measurement state is
|bi〉. For a general measurement {Pi}i, the output of this measurement on a state
|Ψ〉 is i with probability ‖Pi |Ψ〉 ‖2 and the post measurement state is Pi|Ψ〉

‖Pi|Ψ〉‖ .
For two operators U1 and U2, the commutator is [U1,U2] = U1U2 − U2U1.

For two quantum systems H1 and H2, the composition of them is defined by
the tensor product and it is H1 ⊗H2. For two unitary U1 and U2 defined over
H1 and H2 respectively, (U1 ⊗U2)(H1 ⊗H2) = U1(H1)⊗U2(H2). In this paper,
QFT over an n-qubits system is H⊗n.

If a system is in the state |Ψi〉 with the probability pi, we interpret this
with a quantum ensemble E = {(|Ψi〉 , pi)}i. Different outputs of a quantum
algorithm can be represented as a quantum ensemble. The density operator
corresponding with the ensemble E is ρ =

∑
i pi |Ψi〉 〈Ψi| where |Ψi〉 〈Ψi| is the

operator acting as |Ψi〉 〈Ψi| : |Φ〉 → 〈Ψi, Φ〉 |Ψi〉. The trace distance of two
density operators ρ1, ρ2 is defined as TD(ρ1, ρ2) := 1

2 tr |ρ1 − ρ2| where tr is
the trace of a square matrix (the sum of entries on the main diagonal) and
|ρ1−ρ2| :=

√
(ρ1 − ρ2)†(ρ1 − ρ2). Note that the trace distance of two pure states

|Ψ〉 , |Φ〉 is defined as TD(|Ψ〉 〈Ψ | , |Φ〉 〈Φ|).
Any classical function f : X → Y can be implemented as a unitary operator

Uf in a quantum computer where Uf : |x, y〉 → |x, y ⊕ f(x)〉 and it is clear that
U†f = Uf . A quantum adversary has standard oracle access to a classical function
f if it can query the unitary Uf .

2.2 Definitions

Here, we define a public-key encryption scheme, the IND-qCCA security notion
and the quantum partial-domain one-wayness.

Definition 1. A public-key encryption scheme E consists of three polynomial-
time (in the security parameter n) algorithms, E = (Gen,Enc,Dec), such that:

1. Gen, the key generation algorithm, is a probabilistic algorithm which on input
1n outputs a pair of keys, (pk, sk)← Gen(1n), called the public key and the
secret key for the encryption scheme, respectively.

2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key pk and a message m ∈ MSP and outputs a ciphertext
c← Encpk(m). The message space, MSP, may depend on pk.

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as input
a secret key sk and a ciphertext c and returns the message m := Decsk(c). It
is required that the decryption algorithm returns the original message, i.e.,
Decsk(Encpk(m)) = m, for every (pk, sk) ← Gen(1n) and every m ∈ MSP.
The algorithm Dec returns ⊥ if ciphertext c is not decryptable.

In the following, we define the IND-qCCA security notion [3] in the quantum
random oracle model. The IND-qCCA security notion for a public-key encryption
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scheme allows the adversary to make quantum decryption queries but the challenge
query is classical. We define UDec as:

UDec |c, y〉 →

{
|c, y⊕ ⊥〉 if c∗ is defined ∧ c = c∗

|c, y ⊕Decsk(c)〉 otherwise
,

where c∗ is the challenge ciphertext and ⊥ is a value outside of the output space.
We say that a quantum algorithm A has quantum access to the random oracle
H if A can submit queries in superposition and the oracle H answers to these
queries by applying a unitary transformation that maps |x, y〉 to |x, y ⊕H(x)〉.

Definition 2 (IND-qCCA in the quantum random oracle model). A
public-key encryption scheme E = (Gen,Enc,Dec) is IND-qCCA secure if for
any quantum polynomial-time adversary A

Pr
[
b = 1 : b← ExpqCCA,qROA,E (n)

]
≤ 1/2 + negl(n),

where ExpqCCA,qROA,E (n) game is define as:
ExpqCCA,qROA,E (n) game:
Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk) and
chooses random oracles.

Query: The adversary A given the public key pk, the quantum oracle access
to UDec and the quantum access to the random oracles, chooses two classical
messages m0,m1 of the same length and sends them to the challenger. The chal-
lenger chooses a random bit b and responds with c∗ ← Encpk(mb).

Guess: The adversary A continues to query the decryption oracle and the random
oracles. Finally, the adversary A produces a bit b′. The output of the game is
[b = b′].

Definition 3 (Quantum partial-domain one-way function). We say a per-
mutation f : {0, 1}n+k1 × {0, 1}k0 → {0, 1}m is quantum partial-domain one-way
if for any polynomial-time quantum adversary A,

Pr
[
s̃ = s : s $←− {0, 1}n+k1 , t

$←− {0, 1}k0 , s̃← A(f(s, t))
]
≤ negl(n).

2.3 Compressed Standard Oracle

In this section, we briefly present the Compressed Standard Oracle (CStO) that
has been introduced in [17]. The interested reader can refer to [8, 17] for more
details.

In the standard quantum random oracle model, a function H : {0, 1}m →
{0, 1}n is chosen uniformly at random from the set of all functions (lets call it
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ΩH) and superposition queries will be answered by the unitary UH that maps
|x, y〉 to |x, y ⊕H(x)〉. Another perspective to consider this is that the oracle
puts the superposition of all functions on his private register2 and a query is
implemented as

StO : |x, y〉
∑
H

1√
|ΩH |

|H〉 →
∑
H

1√
|ΩH |

|x, y ⊕H(x)〉 |H〉 .

Note that if the oracle measures its internal state in the computational basis,
this corresponds to choosing H uniformly at random from ΩH and answer with
UH . So these two oracles are perfectly indistinguishable. Now if we apply QFT to
the output register before and after applying StO, we will get the Phase oracle
that operates as follows:

PhO : |x, y〉
∑
H

1√
|ΩH |

|H〉 →
∑
H

1√
|ΩH |

(−1)y·H(x) |x, y〉 |H〉 .

Let D represent the truth table of the function H and Px,y represent the truth
table of the point function that is y on the input x and it is zero elsewhere. With
this notation we can write the query above as follows:

PhO : |x, y〉
∑
D

1√
|ΩH |

|D〉 →
∑
D

1√
|ΩH |

(−1)Px,y·D |x, y〉 |D〉 .

Now if the oracle applies QFT to the oracle register after applying PhO, it will
get:

QFTDPhO : |x, y〉
∑
D

1√
|ΩH |

|D〉 → |x, y〉 |Px,y〉 .

Note that QFTD only effects the oracle state and it is undetectable to the
adversary. At this stage, the oracle will symmetrically store the inputs/outputs
of the adversary’s queries in its private register. Informally, if the oracle is able
to move the entry that is not zero in the database Px,y to the beginning of its
private register and remove all the zero slots (without the adversary’s detection),
the private register of the oracle can contain a polynomial number of registers.

RmoVDMoVDQFTDPhO :
∑
x,y

αx,y |x, y〉
∑
D

1√
|ΩH |

|D〉 →
∑
x,y

αx,y |x, y〉 |x, y〉 .3

Following the perspective above, Zhandry [17] developed the CStO that
its private register can be implemented efficiently, symmetrically stores the
inputs/outputs of the adversary’s queries in its private register and it is perfectly
indistinguishable from the standard oracle (StO).

Lemma 1 (Lemma 4 in [17]). CStO and StO are perfectly indistinguishable.
2This requires an exponential number of registers that is not efficient.
3This informal ‘move’ and ‘remove’ operations are detectable to the adversary and

they are given only to build the intuition behind CStO.
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For the rest, we import the representation of CStO from [8]. Let D = ⊗x∈XDx

be the oracle register. The state space of Dx is generated with vectors |y〉 for
y ∈ Y ∪ {⊥}. Let FDx be a unitary acting on Dx that maps |⊥〉 to QFT |0〉 and
vice versa. And for any vector orthogonal to |⊥〉 and QFT |0〉, F is identity. We
define CStO to be the following unitary acting on the input register, the output
register and the D register.

CStO =
∑
x

|x〉〈x| ⊗ FDx
CNOTYDx

FDx
,

where CNOTYDx
|y, yx〉 = |y ⊕ yx, yx〉 for y, yx ∈ Y and it is identity on |y,⊥〉.

The initial state of D register is ⊗x∈X |⊥〉.
We call a query to CStO ‘dummy’ if its output register is set to the uniform

superposition. Note that for such a query CNOTYDx is identity and therefore
CStO is identity.

In the following, we present preliminaries for Theorem 3.1 in [8] that will be
used in the security proof in Section 3. For a fixed relation R ⊂ X × Y , ΓR is
the maximum number of y’s that fulfill the relation R where the maximum is
taken over all x ∈ X:

ΓR = max
x∈X
|{y ∈ Y |(x, y) ∈ R}|.

We define a projector Πx
Dx

that checks if the register Dx contains a value y 6=⊥
such that (x, y) ∈ R:

Πx
Dx

:=
∑

y s.t. (x,y)∈R

|y〉〈y|Dx
.

Let Π̄x
Dx

= IDx
−Πx

Dx
. We define the measurement M to be the set of projectors

{Σx}x∈X∪{∅} where

Σx :=
⊗
x′<x

Π̄x′

Dx′
⊗Πx

Dx
for x ∈ X and Σ∅ := I−

∑
x

Σx. (1)

Informally, the measurement M checks for the smallest x for which Dx contains
a value y 6=⊥ such that (x, y) ∈ R. If no register Dx contains a value y 6=⊥ such
that (x, y) ∈ R, the outcome of M is ∅. We define a purified measurement MDP

corresponding to M that XORs the outcome of the measurement to an ancillary
register:

MDP |φ, z〉DP →
∑

x∈X∪{∅}

Σx |φ〉D |z ⊕ x〉P .

The following lemma states that CStO and MDP almost commute if ΓR is small
proportional to the size of Y .

Lemma 2 (Theorem 3.1 in [8]). For any relation R and ΓR defined above,
the commutator [CStO,MDP ] is bounded as follows:

‖[CStO,MDP ]‖ ≤ 8 · 2−n/2
√

2ΓR.
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It has been shown that a quantum adversary needs an exponential number
of quantum queries to a random oracle to find a collision [16]. As an immediate
corollary, a random injective function is indistinguishable from a random oracle
for a quantum polynomial-time adversary. We use this corollary in the security
proof of OAEP.

Lemma 3 (From [16]). Any quantum adversary making q queries to a random
oracle H : {0, 1}m → {0, 1}n outputs a collision for H with probability at most
C(q + 1)3/2n where C is a universal constant.

In addition to the lemmas above, we use the ‘gentle-measurement lemma’ [15]
in the proof. Informally, it states that if an output of a measurement is almost
certain for a quantum state, the measurement does not disturb the state much.

Lemma 4 (gentle-measurement lemma). Let M = {Pi}i is a measure-
ment. For any state |Ψ〉, if there exists an i such that ‖Pi |Ψ〉 ‖2 ≥ 1 − ε, then
TD(|Ψ〉 ,M |Ψ〉) ≤

√
ε+ ε.

3 Security of OAEP

In this section, we define OAEP transformation and prove that it is IND-qCCA
secure in the quantum random oracle model if the underlying trapdoor permu-
tation is quantum partial-domain one-way. (Since IND-qCCA security trivially
implies IND-CCA security, our result shows that OAEP transform is IND-CCA
in the quantum random oracle model if the underlying trapdoor permutation is
quantum partial-domain one-way.)

Definition 4 (OAEP). Let G : {0, 1}k0 → {0, 1}n+k1 , H : {0, 1}n+k1 →
{0, 1}k0 be random oracles. The encryption scheme OAEP = (Gen,Enc,Dec) is
defined as:

1. Gen: Specifies an instance of the injective function f and its inverse f−1.
Therefore, the public key and secret key are f and f−1 respectively.

2. Enc: Given a message m ∈ {0, 1}n, the encryption algorithm computes

s := m||0k1 ⊕G(r) and t := r ⊕H(s),

where r $←− {0, 1}k0 , and outputs the ciphertext c := f(s, t)4.
3. Dec: Given a ciphertext c, the decryption algorithm does the following: Com-

pute f−1(c) = (s, t) and then,
(a) query the random oracle H on input s, query the random oracle G on

input t⊕H(s) and compute M := s⊕G(t⊕H(s)). In addition it submits
two dummy queries to the random oracle G 5.

4Q-OAEP in [14] outputs the ciphertext c :=
(
f(s, t), H ′(s, t)

)
for a fresh random

oracle H ′.
5Note that these dummy queries are required to make the number of queries

submitted to G equal in the Games 1 and 2 in the security proof.
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(b) if the k1 least significant bits of M are zero then return the n most
significant bits of M , otherwise return ⊥.

Note that k0 and k1 depend on the security parameter n.

We prove the security of OAEP for the parameters k0 − n = O(n) (this
is needed to show that Games 1 and 2 are indistinguishable) and n + k1 ≥ k0
(because we need to replace the random oracle G with a random injective function
in Game 1).

Here we sketch the main ideas to prove the IND-qCCA security of OAEP in
the quantum random oracle. We start with the IND-qCCA game in QROM in
which the adversary wins if he guesses the challenge bit b correctly. By introducing
some (indistinguishable) intermediate games we reach the last game in which
the adversary’s success probability is 1/2. In the last game, the adversary is
not allowed to query the randomness r∗ that is used to obtain the challenge
ciphertext c∗. (Since queries are quantum, this is prevented by measuring the
input register of the queries to G by the projective measurement Mr∗ = {P1 =
|r∗〉〈r∗| ,P0 = I − P1} and aborting if the outcome is 1.) Therefore, G(r∗) is a
random value for the adversary and mb||0k1 ⊕ G(r∗) hides the challenge bit b
information-theoretically.

Note that at some steps of the proof, the indistinguishability of two games
(specifically two last games in the proof) needs to be reduced to the partial-
domain one-wayness of the underlying permutation. A reduction adversary to
break the partial-domain one-wayness of the underlying permutation needs to
answer the decryption queries without knowing f−1. In this step, the reduction
adversary uses the databases of the compressed standard oracles corresponding
to the random oracles H,G for decryption. (On the input c it searches over the
inputs/outputs of the random oracle queries in the databases of H,G that satisfies
c = f(s, r ⊕Hs) and [Gr ⊕ s]k1 = 0k1 and outputs [Gr ⊕ s]n.) However, it is not
straightforward to show that this new decryption algorithm is indistinguishable
from the decryption algorithm of the OAEP scheme. This is because a decryption
algorithm that uses the databases to decrypt may cause detectable effects on
the databases. In other words, the extraction of data from the databases may
be detectable to the adversary. Here we use Lemma 2 to show that the oracle
can extract information from the databases without an adversary’s detection.
We show this indistinguishability by modifying the decryption algorithm of the
OAEP scheme step by step to reach the decryption algorithm that only uses the
databases.

Theorem 1. If the underlying permutation is quantum partial-domain one-way,
then the OAEP scheme is IND-qCCA secure in the quantum random oracle model.

Proof. Let ΩH and ΩG be the set of all function G : {0, 1}k0 → {0, 1}n+k1 and
H : {0, 1}n+k1 → {0, 1}k0 , respectively. Let SG shows the set of all injective func-
tions from {0, 1}k0 to {0, 1}n+k1 . Let A be a polynomial-time quantum adversary
that attacks the OAEP-cryptosystem in the sense of IND-qCCA in the quantum
random oracle model and makes at most qH and qG queries to the random oracles
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H and G respectively and qdec decryption queries.

Game 0: This is IND-qCCA game in qROM, ExpqCCA,qROA,OAEP (n).

Game 0:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}, H $←− ΩH , G
$←− ΩG

let m0,m1 ← AH,G,UDec(pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← AH,G,UDec(c∗)
return [b = b′]

Game 1: In this game, we consider H is being implemented as the compressed
standard oracles CStOH and G is replaced with a random injective function.

Game 1:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}, G $←− SG
let m0,m1 ← ACStOH ,G,UDec(pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,G,UDec(c∗)
return [b = b′]

Since CStOH and the standard oracles StOH are perfectly indistinguishable by
Lemma 1, this change does not effect the adversary’s success probability. And
changing the random oracle G to a random injective function is distinguishable
by a probability at most C(qG+3qdec+2)3/2n+k1 by Lemma 3. (Each decryption
query makes three random oracle queries to G, so the total number of queries to
G is at most qG + 3qdec plus 1 for the challenge query.)

Game 2: In this game we change UDec oracle to UDec(1) described below. Let
DH denotes the database of CStOH . We define the relation RHc to be the set of
all (s,Hs) such that [G(Hs ⊕ [f−1(c)]k0) ⊕ s]k1 = 0k1 . Given the relation RHc ,
the projectors Σs

c for s ∈ {0, 1}n+k1 and Σ∅c are defined similar to Equation (1).
Now the measurement MH = {Σs

c}s∈{0,1}n+k1∪{∅} checks if there exists a pair in
DH satisfying the relation RHc or not. If there is more than one pair satisfying
the relation RHc , the smallest s will be the output of MH . If there is no such a
pair the output of MH is ∅. Let Mc

DH ,PH
be the following purified measurement

corresponding to MH :

Mc
DH ,PH

|φ, z〉DHPH
→

∑
s∈{0,1}n+k1∪{∅}

Σs
c |φ〉DH

|z ⊕ s〉PH
.

We define the unitary MDH ,PH
that operates on the ciphertext, DH and PH

registers as:

MDH ,PH
|c〉 |φ, z〉DHP

→ |c〉 ⊗Mc
DH ,PH

|φ, z〉DHPH
.
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Note that MDH ,PH
is an involution, that is, MDH ,PH

MDH ,PH
= I. For each

decryption query, UDec(1) first applies the MDH ,PH
unitary with the PH register

initiated with 0. Then it executes UDec without submitting the two dummy
queries to the random oracle G. We denote this slightly modified decryption
algorithm by U′Dec . (We omit these dummy queries since MDH ,PH

makes two
queries to G in each decryption query.) Finally it applies the MDH ,PH

again.

UDec(1) = MDH ,PH
U′Dec MDH ,PH

.

Game 2:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}, G $←− SG
let m0,m1 ← ACStOH ,G,UDec(1) (pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,G,UDec(1) (c∗)
return [b = b′]

We prove MDH ,PH
and U′Dec almost commute to show the indistinguishability of

these two games. Note that MDH ,PH
only interfaces with U′Dec when U′Dec makes

a query to the random oracle H. In other words, the reason that MDH ,PH
does

not commute with U′Dec is that U′Dec makes a random oracle query to H in each
decryption query. By Lemma 2, if we commute Mc

DH ,PH
and UDec , this will be

distinguishable to the adversary with a probability at most 8 ·2−
k0
2
√

2ΓRc
H
. Since

G is an injective function ΓRc
H

= 2n. Therefore the distinguishing advantage of
the adversary is at most 2

n−k0
2 + 7

2 that is negligible because k0 − n = O(n). The
overall advantage of the adversary in distinguishing these two games is at most
qdec2

n−k0
2 + 7

2 .

Game 3: In this game we replace the random injective function with a compressed
standard oracle CStOG. (First we replace the random injective function with a
random oracle and then we change it to a compressed standard oracle. We do
these two changes in one game in favor of reducing the total number of games in
the proof.)

Game 3:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1},
let m0,m1 ← ACStOH ,CStOG,UDec(1) (pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(1) (c∗)
return [b = b′]

Replacing the random injective function with a random oracle G is distin-
guishable with a probability at most C(qG + 3qdec + 1)3/2n+k1 by Lemma 3.
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Then, a random oracle G is perfectly indistinguishable from a CStOG by Lemma 1.

Game 4: In this game we change UDec(1) oracle to UDec(2) described below. Let
DG denotes the database of CStOG. We define the relation RGc to be the set
of all (r,Gr) such that [[f−1(c)]n+k1 ⊕Gr]k1 = 0k1 . Given the relation RGc , the
projectors Σr

c for r ∈ {0, 1}k0 and Σ∅c are defined similar to Equation (1). Now
the measurement MG = {Σr

c}r∈{0,1}k0∪{∅} checks if there exists a pair in DG

satisfying the relation RGc or not. If there are more than one pair satisfying
the relation RGc , the smallest r will be the output of MG. If there is no such a
pair the output of MG is ∅. Let Mc

DG,PG
be the following purified measurement

corresponding to MG:

Mc
DG,PG

|φ, z〉DGPG
→

∑
r∈{0,1}k0∪{∅}

Σr
c |φ〉DG

|z ⊕ r〉PG
.

We define the unitary MDG,PG
that operates on the ciphertext, DG and PG

registers as:

MDG,PG
|c〉 |φ, z〉DG,PG

→ |c〉 ⊗Mc
DG,PG

|φ, z〉DGPG
.

Note that MDG,PG
is an involution. For each decryption query, UDec(2) first

applies the MDH ,PH
unitary with the PH register initiated with 0. Then it applies

the MDG,PG
unitary with the PG register initiated with 0. Then it executes U′Dec.

And finally it applies MDG,PG
and MDH ,PH

again.

UDec(2) = MDH ,PH
MDG,PG

U′Dec MDG,PG
MDH ,PH

.

Game 4:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}
let m0,m1 ← ACStOH ,CStOG,UDec(2) (pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(2) (c∗)
return [b = b′]

In order to show the indistinguishability of two games, we show that U′Dec
and MDG,PG

almost commutes (then MDG,PG
will cancel out with its second

application and we will get UDec(1)). Note that U′Dec does not commute with
MDG,PG

because it makes a random oracle query to G in each decryption query.
In other words, U′Dec would commute with MDG,PG

if U′Dec had not made a ran-
dom oracle query to G. By Lemma 2, if we commute Mc

DG,PG
and UDec , this will

be distinguishable to the adversary with a probability at most 8 · 2−
n+k1

2
√

2ΓRc
G
.

Since ΓRc
G

= 2n, the overall distinguishing advantage of the adversary is at most
qdec2−

k1
2 + 7

2 .
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Game 5: In this game we change UDec(2) oracle to UDec(3) described below. For
each decryption query, UDec(3) first applies MDH ,PH

and then MDG,PG
with the

PH and PG registers initiated with 0. Then, if c∗ is defined and c = c∗ it XORs ⊥
to the output register. Otherwise, if the PH register contains ∅ or the PG register
contains ∅ it XORs ⊥ to the output register and make a dummy query to the
random oracles G,H. If the PH and PG registers do not contain ∅, it executes
U′Dec:

|c, y〉 |z1〉PH
|z2〉PG

→


|c, y⊕ ⊥〉 |z1〉 |z2〉 if c∗ is defined ∧ c = c∗

|c, y⊕ ⊥〉 |z1〉 |z2〉 if z1 = ∅ ∨ z2 = ∅∣∣c, y ⊕Decf−1(c)
〉
|z1〉 |z2〉 if z1 6= ∅ ∧ z2 6= ∅

.

Finally, it applies the unitary MDG,PG
and MDH ,PH

.

Game 5:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}
let m0,m1 ← ACStOH ,CStOG,UDec(3) (pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(3) (c∗)
return [b = b′]

We show that UDec(2) and UDec(3) algorithms are indistinguishable. Below, we
recall a bit modified version of the decryption algorithm UDec(2) :

|c, y〉 |z1〉PH
|z2〉PG

→


|c, y⊕ ⊥〉 |z1〉 |z2〉 if c∗ is defined ∧ c = c∗∣∣c, y ⊕Decf−1(c)

〉
|z1〉 |z2〉 if z1 = ∅ ∨ z2 = ∅∣∣c, y ⊕Decf−1(c)
〉
|z1〉 |z2〉 if z1 6= ∅ ∧ z2 6= ∅

.

Note that if for any ciphertext c for which z1 = ∅ or z2 = ∅, Decf−1 (on input
c) returns ⊥ then the algorithms UDec(2) and UDec(3) return the same output in
all three cases. In the claim below, we show that if z1 = ∅ or z2 = ∅, Decf−1(c)
returns ⊥ with an overwhelming probability. The high-level argument to prove
this claim is that the adversary is not able to output a valid ciphertex (we call
a ciphertext c valid if Decf−1(c) 6=⊥) with an overwhelming probability unless
it executes the encryption oracle, that is, unless it executes the random oracle
queries. (Note that the ciphertex space is {0, 1}n+k0+k1 and the total number of
the valid ciphertexts is 2n+k0 . So a random ciphertext is a valid ciphertext with
a probability at most 1/2k1 .) Then we show that if an adversary can distinguish
these two games with a non-negligible probability, then a reduction adversary
can output a valid ciphertext c for which z1 = ∅ or z2 = ∅ with a non-negligible
probability and this is a contradiction to the claim shown below.

Claim. A ciphertext c for which z1 = ∅ or z2 = ∅ is a valid ciphertext with a
probability at most 1/2k1 .
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Proof. Let c is a ciphertext for which z1 = ∅ and let f−1(c) = (s′, t′). Note that
since z1 = ∅, there is no pair (s,Hs) in DH that satisfies [s⊕G(Hs⊕ t′)]k1 = 0k1 .
This means that either [s′⊕G(Hs′ ⊕ t′)]k1 6= 0k1 or the adversary has not queried
the input s′ to H. Clearly if [s′ ⊕ G(Hs′ ⊕ t′)]k1 6= 0k1 , Decf−1(c) =⊥ and c
is an invalid ciphertext. And if s′ has not been queried to H, Hs′ is a random
value from the adversary’s point of view. Therefore, [s′ ⊕G(t′ ⊕Hs′)]k1 = 0k1

holds with a probability at most 1/2k1 . That is, c is a valid ciphertext with a
probability at most 1/2k1 .

Let c is a ciphertext for which z2 = ∅ and let f−1(c) = (s′, t′). Note that since
z2 = ∅, there is no pair (r,Gr) in DG that satisfies [s′ ⊕Gr]k1 = 0k1 . This means
that either [s′ ⊕G(t′ ⊕Hs′)]k1 6= 0k1 or the adversary has not queried the input
t′ ⊕Hs′ to G. If [s′ ⊕Gr]k1 6= 0k1 , Decf−1(c) =⊥ and c is an invalid ciphertext.
If t′ ⊕Hs′ has not been queried to G, since G is a random oracle, the probability
that [s′ ⊕G(t′ ⊕Hs′)]k1 = 0k1 is at most 1/2k1 . That is, c is a valid ciphertext
with a probability at most 1/2k1 .

Now let A is an adversary that distinguishes these two games with a non-
negligible advantage. That is, at least one of the A’s decryption queries is of the
form ∑

ci for which z1=∅ or z2=∅, j

αi,j |ci〉 |yj〉+ |Ψ〉 ,

where for any i Decf−1(ci) 6=⊥ and
∑
i,j ‖αi,j‖

2 is non-negligible. (Note that if
there is no such a query, one can exclude the ciphertexts ci for which Decf−1(ci) 6=⊥
and z1 = ∅ or z2 = ∅ from the query using an appropriate projective measurement
without the adversary’s detection (by Lemma 4) in each decryption query and
therefore two games will be indistinguishable.)

Now a reduction adversary B runs A and measures one of its decryption
queries at random. It is clear that B is able to output a valid ciphertex c for which
z1 = ∅ or z2 = ∅ with a non-negligible probability. And this is a contradiction to
the claim above.

Game 6: The decryption algorithm UDec(3) in Game 5 searches over databases
DH ,DG to find pairs (s,Hs), (r,Gr) such that [G(Hs ⊕ [f−1(c)]k0)⊕ s]k1 = 0k1

and [[f−1(c)]n+k1 ⊕Gr]k1 = 0k1 respectively. Instead of using f−1, we can simply
search for pairs (s,Hs), (r,Gr) that satisfy c = f(s, r⊕Hs) and [Gr ⊕ s]k1 = 0k1 .
In this game, we change UDec(3) a new decryption oracle UDec(4) that searches
the databases DH and DG to decrypt. Let Search be a function that on input
(c,DH ,DG) searches for the pairs (s,Hs) in DH and (r,Gr) in DG such that
c = f(s, r⊕Hs) and [Gr⊕s]k1 = 0k1 . If it finds such pairs, it returns (1, [Gr⊕s]n),
otherwise it returns (0,⊥).

Let Qb′Qm be quantum registers of size (n+ 1) that are initiated with zero.
The unitary UDec(4) first applies the unitary USearch where its output is stored in
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Qb′Qm registers. Then it does as the following:

|c, y〉 |b′,m〉Qb′Qm
→


|c, y⊕ ⊥〉 |b′,m〉 if c∗ is defined ∧ c = c∗

|c, y⊕ ⊥〉 |b′,m〉 if b′ = 0
|c, y ⊕m〉 |b′,m〉 if b′ = 1

,

it submits two dummy queries to the random oracle G in all cases, and it submits
a dummy query to the random oracles G,H when b′ = 0 and when b′ = 1. Finally,
it applies USearch to undo Qb′Qm registers to zero.

Game 6:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}
let m0,m1 ← ACStOH ,CStOG,UDec(4) (pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(4) (c∗)
return [b = b′]

We show that UDec(3) and UDec(4) are indistinguishable.

1. When c∗ is defined and c = c∗, both algorithms XOR ⊥ to the output register
and make two random oracle queries to G.

2. When b′ = 0, it is clear that either z1 is ∅ or z2 is ∅. Both algorithms XOR
⊥ to the output register and make three random oracle queries to G and one
random oracle query to H.

3. When b′ = 1, it is clear that z1 6= ∅ and z2 6= ∅. So both algorithms XOR
[Gr ⊕ s]n to the output register and make three random oracle queries to G
and one random oracle query to H.

Game 7: This is identical to Game 6, except it measures all the queries to CStOG

with the projective measurements Mr∗ . If there is an 1-output measurement, it
aborts and returns a random bit.

Game 7:

let (pk, sk)← Gen(1n), r∗ $←− {0, 1}k0 , b $←− {0, 1}
Mr∗ = {P1 = |r∗〉〈r∗| ,P0 = I− P1},
run until there is an 1-output measurement with Mr∗

let m0,m1 ← ACStOH ,CStOG,UDec(4) (pk)
let s∗ := mb||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(4) (c∗)

return [b = b′]

Let qG1 be the total number of queries submitted to G before the challenge query.
Let qG2 be the total number of queries submitted to G after the challenge query.
(qG1 + qG2 = qG + 3qdec.) If there is no query to CStOG with a non-negligible
weight on the state |r∗〉, we can use Lemma 4 (gentle-measurement lemma) to
show that these two games are indistinguishable. In more details, let ρi is the
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state of the i-th query (for i ∈ [qG + 3qdec]) and let Mr∗(ρi) returns 1 with the
probability εi. By the gentle-measurement lemma, the trace distance between
Mr∗(ρi) and ρi is at most √εi+εi. So overall, these two games are distinguishable
with the advantage of at most 2(qG + 3qdec)

√
maxi{εi}. Therefore, if maxi{εi}

is negligible, two games are indistinguishable.
Since r∗ is a random value that has not been used before the challenge query

Mr∗(ρi) returns 1 with a probability at most 1/2k0 for any i ∈ [qG1]. So the
measurements before the challenge query are distinguishable with a probability
at most 2qG1

√
2−k0 that is negligible.

It is left to show that the measurements after the challenge query are indis-
tinguishable. Proof by contrary, let assume A makes a query to CStOG after the
challenge query with a non-negligible weight on |r∗〉. From A, we can construct
an adversary B that breaks the quantum partial-domain one-wayness of f . In
more details, B on input c∗

(
:= f(s∗, t∗) for uniformly random s∗, t∗

)
, chooses

a random element i from [qG2] and a random bit b, runs the adversary A, an-
swers the random oracle queries and decryption queries using two compressed
oracles CStOH , CStOG and finally it measures the input register of the i-th
query to CStOG and the database DH with the computational basis measure-
ment, returns an output and aborts. In the following we describe B in more details.

Simulation of random oracle queries. For H-queries, the adversary B uses
CStOH . For G-queries, B does as follows. Let G′ be a random oracle with the same
domain and co-domain as G. Let Find be an operator that on inputs r, c∗,DH ,
checks if there exists a pair (s,Hs) in DH such that c∗ = f(s, r ⊕Hs). If there
exists such a pair it returns (1, s). Otherwise, it returns (0, 0n+k1). Note that
since f is a permutation, the Find unitary either returns (0, 0n+k1) or returns
(1, s∗). For each query, B first applies Find operator with an ancillary register
Qb′Qs of (1 + n+ k1) qubits initiated with zero. Then, if the query is conducted
before the challenge query or the Qb′ is set to 0, it forwards the query to CStOG′ ,
otherwise, it XORs mb||0k1 ⊕ s∗ to the output register:

G : |r, y〉 |DH〉 →


|r, y ⊕G′(r)〉 if mb is not defined
|r, y ⊕G′(r)〉 if Find(r, c∗,DH) = (0, 0n+k1)∣∣r, y ⊕ (mb||0k1 ⊕ s∗)

〉
if Find(r, c∗,DH) = (1, s∗)

.

And finally it applies the Find operator again. Since f is a permutation, there
exists only one r such that c∗ = f(s∗, r ⊕Hs∗) and that is r∗. For any r 6= r∗

the oracle G and the random oracle G′ are the same, therefore, the simulation
of G-queries will be indistinguishable from the random oracle G′ unless the
adversary submits a post-challenge query with a non-negligible weight on the
state |r∗〉 and Find(r∗, c∗,DH) = (1, s∗). (And if this happens, it breaks the
quantum partial-domain one-wayness of f explained below.)

The challenge query. Upon receiving m0 and m1 from A, the adversary B
returns c∗ as the challenge ciphertext. (Note that the way we simulate G-queries
G(r∗) := mb||0k1 ⊕ s∗ and c∗ = f(s∗, r∗ ⊕HS∗) that is a perfect simulation of
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the challenge query.)

Simulation of decryption queries. B uses the oracle UDec(4) on inputs DH

and DG′ for the decryption queries. Note that G and G′ only differ on the input
r∗ for which c∗ = f(s∗, r∗ ⊕ Hs∗). Since UDec(4) on input c∗ does not use its
database and returns ⊥, the simulation of the decryption queries is perfect.

Output of B. The adversary B measures the (qG1 + i)-th random oracle query to
CStOG withMr∗ and the databaseDH with the computational basis measurement.
Since there exists a query with a non-negligible weight on the state |r∗〉, the
adversary B can obtain r∗ with a non-negligible probability. Then, the adversary
searches over the database DH to find a pair (s∗, Hs∗) such that c∗ = f(s∗, r∗ ⊕
Hs∗). If it finds such a pair, it returns s∗ as the partial inverse of f on c∗

and aborts. Otherwise, it returns s∗ = G′(r∗) ⊕mb||0k1 as the partial inverse
of f on the input c∗. (Note that when there is no pair (s∗, Hs∗) in DH such
that c∗ = f(s∗, r∗⊕Hs∗), that is Find(r∗, c∗,DH) = (0, 0n+k1), the G-queries are
answered with the random oracle G′. Therefore, the equation c∗ = f(x, r∗⊕H(x))
holds for x = G′(r∗) ⊕ mb||0k1 .) Since f is quantum partial-domain one-way,
Games 6 and 7 are indistinguishable.

Now, it is clear that Game 7 returns 1 with the probability 1/2 because if one
of the measurements returns 1, the output of the game is a random bit. If none
of the measurements return 1, G(r∗) remains an uniformly random value for A
and consequently mb||0k1 ⊕G(r∗) is an uniformly random value for A. So the
probability that A guesses b is 1/2. Finally, since each two consecutive games
are indistinguishable, the probability that A guesses b in Game 0 is 1/2 + negl(n)
and this finishes the proof of the theorem.
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