
Multiparty Cardinality Testing for Threshold
Private intersection

Pedro Branco1, Nico Döttling2, and Sihang Pu2

1 IT, IST - University of Lisbon
2 Helmholtz Center for Information Security (CISPA)

Abstract. Threshold Private Set Intersection (PSI) allows multiple par-
ties to compute the intersection of their input sets if and only if the in-
tersection is larger than n − t, where n is the size of each set and t is
some threshold. The main appeal of this primitive is that, in contrast to
standard PSI, known upper-bounds on the communication complexity
only depend on the threshold t and not on the sizes of the input sets.
Current threshold PSI protocols split themselves into two components:
A Cardinality Testing phase, where parties decide if the intersection is
larger than some threshold; and a PSI phase, where the intersection is
computed. The main source of inefficiency of threshold PSI is the former
part.
In this work, we present a new Cardinality Testing protocol that allows
N parties to check if the intersection of their input sets is larger than
n − t. The protocol incurs in Õ(Nt2) communication complexity. We
thus obtain a Threshold PSI scheme for N parties with communication
complexity Õ(Nt2).

1 Introduction

Suppose Alice holds a set SA and Bob a set SB . Private set intersection (PSI)
is a cryptographic primitive that allows each party to learn the intersection
SA ∩ SB and nothing else. In particular, Alice gets no information about SB \
SA (and vice-versa). The problem has attracted a lot of attention through the
years, with an extended line of work proposing solutions in a variety of different
settings (e.g., [27,15,25,11,12,13,34,32,26,35,21,36,33,16,17,31]). Also, numerous
applications have been proposed for PSI such as contact discovery, advertising,
etc (see for example [22] and references therein). More recently, PSI has also
been proposed as a solution for private contact tracing (e.g., [2]).

Threshold PSI. In this work, we focus on a special setting of PSI called Threshold
PSI. Here, the parties involved in the protocol learn the output if the size of the
intersection between the input sets of the parties is very large, say larger than
n − t, where n is the size of the input sets and t is some threshold such that
t≪ n; Otherwise, they learn nothing about the intersection. This is in contrast
with standard PSI where the parties always get the intersection, no matter its
size.

The main reason for considering this problem (apart from its numerous ap-
plications which we discuss next) is that the amount of communication needed
is much smaller than for standard PSI: In particular, there are threshold PSI
protocols whose communication complexity depends only on the threshold t and
not on the size of the input sets as for standard PSI [17].

Despite its theoretical and practical appeal, there are just a few works that
consider this problem [20,16,17], and just one of them achieves communication
complexity independent of n [17], in the two party setting.

1.1 Applications of Threshold PSI

A wide number of applications has been suggested for threshold PSI in previous
works such as applications to dating apps or biometric authentication mecha-
nisms [17].

One of the most interesting applications for threshold PSI is its use in carpool-
ing (or ridesharing) apps. Suppose two (or more) parties are using a carpooling
app, which allows them to share a vehicle if their routes have a large intersec-
tion. However, due to privacy issues, they do not want to make their itinerary
public. Threshold PSI solves this problem in a simple way [20]: The parties can
engage in a threshold PSI protocol, learn the intersection of the routes and, if
the intersection is large enough, share a vehicle. Otherwise, they learn nothing
and their privacy is maintained.

PSI using Threshold PSI. Most of current protocols for threshold PSI (including
ours) are splitted into two parts: i) a Cardinality Testing, where parties decide if
the intersection is larger than n− t; and ii) secure computation of the intersec-
tion of the input sets (which we refer to as the PSI part). The communication
complexity of these two parts should depend only on the threshold t and not on
the input sets’ size n.

Threshold PSI protocols of this form can be used to efficiently compute the
intersection, even when no threshold on the intersection is known a priori by
the parties, by doing an exponential search for the right threshold. In this case,
parties can proceed as follows:

1. Run a Cardinality Testing for some t (say t = 1).
2. If it succeeds, perform the PSI part. Else, run again the Cardinality Test for

t = 2t.
3. Repeat Step 2 until the Cardinality Testing succeeds for some threshold t

and the set intersection is computed.

By following this blueprint, parties are sure that they overshoot the right
threshold by a factor of at most 2. That is, if the intersection is larger than
n − t′, then the Cardinality Testing will succeed for t such that t ≥ t′ > t/2.
Thus, they can compute the intersection incurring only in a factor of 2 overhead
over the best insecure protocol. In other words, PSI protocols can be computed
with communication complexity depending on the size of the intersection, and
not on the size of the sets.

2

This approach can be useful in scenarios where parties suspect that the in-
tersection is large but they do not know exactly how large it is.

1.2 Our Contributions

In the following, N denotes the number of parties in a multi-party protocol and
t is the threshold in a threshold PSI protocol. Below, we briefly describe our
results.

Multi-party Cardinality Testing. We develop a new Cardinality Testing scheme
that allows N parties to check if the intersection of their input sets, each having
size n, is larger than n− t for some threshold t≪ n. The protocol needs Õ(Nt2)
bits of information to be exchanged.

Along the way, we develop new protocols to securely compute linear algebra
related functions (such as compute the rank of an encrypted matrix, invert a
encrypted matrix or even solve an encrypted linear system). Our protocols build
on ideas of previous works [29,24], except that our protocols are specially crafted
for the multi-party case. Technically, we rely heavily on Threshold Public-Key
Encryption schemes which are additively homomorphic (such schemes can be
constructed from DDH [14], DCR [30], or from several pairings assumptions
[3,4]) to perform linear operations.

Multi-party Threshold PSI. We then show how our Cardinality Testing protocol
can be used to build a Threshold PSI protocol in the multi-party setting. Our
construction achieves communication complexity of Õ(Nt2).

Concurrent Work Recently, Ghosh and Simkin [18] updated their paper with
a generalization to the multi-party case which is similar to the one presented in
this paper in Section 4. However, they leave as a major open problem the design
of a new Cardinality Testing that extends nicely to multiple parties, a problem
on which we make relevant advances in this work.

In a concurrent work, Badrinarayanan et al. [1] also proposed new protocols
for threshold PSI in the multi-party setting. Their results complement ours. In
particular, they propose an FHE-based approach to solve the same problem as
we do with a communication complexity of O(Nt), where N is the number of
parties and t is the threshold. However, we remark that the goal of our work
was to reduce the assumptions needed for threshold PSI. They also propose a
TPKE-based protocol that solves a slightly different problem: the parties learn
the intersection if and only if the set difference among the sets is large, that
is, |

(
∪Ni=1Si

)
\
(
∩Ni=1Si

)
| is large3, which is denoted as FTPSI-diff in [1]. This

protocol achieves communication complexity of Õ(Nt). They achieve that result
using completely different techniques from ones used in this work. Namely, they
noticed that computing the determinant of a Hankel matrix can be done in

3

sublinear time in the size of the matrix. This implies that the cardinality testing
of [17] can actually be realized in time Õ(Nt).

1.3 Technical Outline

We now give a high-level overview of the techniques we use to achieve the results
discussed above.

Threshold PSI: The Protocol of [17] Consider two parties Alice and Bob,
with their respective input sets SA and SB of size n. Suppose that they want to
know the intersection SA ∩ SB iff |SA ∩ SB | ≥ n − t for some threshold t ≪ n.
To compute the intersection, both parties encode their sets into polynomials
PA(x) =

∏n
i (x − ai) and PB(x) =

∏n
i (x − bi) over a large finite field F, where

ai ∈ SA and bi ∈ SB . The main observation of Ghosh and Simkin [17] is that
set reconciliation techniques (developed by Minsky et al. [28]) can be applied in
this scenario: if |SA ∩ SB | ≥ n− t, then

PA(x)

PB(x)
=

PA∩B(x)

PA∩B(x)

PA\B(x)

PB\A(x)
=

PA\B(x)

PB\A(x)

and, moreover, degPA\B = degPB\A = t. Hence, Alice and Bob just need to (se-
curely) compute O(t) evaluation points of the rational function PA(x)/PB(x) =
PA\B(x)/PB\A(x) and, after interpolating over these points, Bob can recover
the denominator (which reveals the intersection).

Of course, Bob should not be able to recover the numerator PA\B , otherwise
security is compromised. So, [17] used an Oblivious Linear Evaluation (OLE)
scheme to mask the numerator with a random polynomial that hides PA\B from
Bob.

This protocol is only secure if Alice and Bob are absolutely sure that |SA ∩
SB | ≥ n−t. Otherwise, additional information could be leaked about the respec-
tive inputs. Consequently, Alice and Bob should perform a Cardinality Testing
protocol, which reveals if |SA ∩ SB | ≥ n− t and nothing else.

Limitations of the protocol when extending to the multi-party setting. It turns out
that the main source of inefficiency when extending Ghosh and Simkin protocol
to the multi-party setting is the Cardinality Testing they use. In [17], Alice
and Bob encode their sets into polynomials QA(X) =

∑n
i x

ai and QB(X) =∑n
i x

bi , respectively, where ai ∈ SA and bi ∈ SB . Then, they can check if

Q̃(x) = QA(x)−QB(x) is a sparse polynomial. If it is, we conclude that the set
(SA ∪SB) \ (SA ∩SB) is small. By disposing O(t) evaluations of the polynomial
Q̃(x) in a Hankel matrix [19] and securely computing its determinant (via a

3 It is a slightly different problem from the one we solve in this work. Here, we want
to disclosure the intersection ∩N

i=1Si if |∩N
i=1Si| ≥ n− t, which is denoted as FTPSI-int

in [1].

4

generic secure linear algebra protocol from [24]), both parties can determine if
|SA∩SB | ≥ n−t. The total communication complexity of this protocol is O(t2).4

However, if we were to naively extend this approach to the multi-party set-
ting, we would have N parties computing, say,

Q̃(x) = NQ1(x)−Q2(x)− · · · −QN (x)

which is a sparse polynomial only if N is small. Moreover, if we were to com-
pute the sparsity of this polynomial using the same approach, we would have a
protocol with communication complexity O((Nt)2).

Our Approach Given the state of affairs presented in the previous section, it
seems we need to take a different approach from the one of [17] if we want to
design an efficient threshold PSI protocol for multiple parties.

Interlude: Secure Linear Algebra. Recall that in the setting of secure linear al-
gebra (as in [29] and [24]), there are two parties, one holding an encryption of
a matrix Enc(pk,M) and the other one holding the corresponding secret key sk.
Their goal is to compute an encryption of a (linear algebra related) function of
the matrix M, such as the rank, the determinant of M, or, most importantly,
find a solution x for the linear system Mx = y where both M and y are en-
crypted. We can easily extend this problem to the multi-party case: Consider
N parties, P1, . . . ,PN , each one holding a share of the secret key of a thresh-
old PKE scheme. Additionally, P1 has an encrypted matrix. The goal of all the
parties is to compute an encryption of a (linear algebra related) function of the
encrypted matrix.

We observe that the protocols for secure linear algebra presented in [24] can
be extended to the multiparty setting by replacing the use of an (additively ho-
momorphic) PKE and garbled circuits for an (additively homomorphic) thresh-
old PKE5. Hence, our protocols allow N parties to solve a linear system of the
form Mx = y under the hood of a threshold PKE scheme.

Cardinality Testing via Degree Test of a Rational Function. Consider again the

encodings PSi
(x) =

∏n
j (x − a

(i)
j) where a

(i)
j ∈ Si, for N different sets, and the

rational function6

PS1 + · · ·+ PSN

PS1

=
PS1\(∩N

j=1Sj) + · · ·+ PSN\(∩N
j=1Sj)

PS1\(∩N
j=1Sj)

.

4 Given this, we conclude that the communication complexity of the threshold PSI
protocol of [17] is dominated by this Cardinality Testing protocol.

5 We need a bit-conversion protocol such as [37] to convert between binary circuits
and algebra operations.

6 We actually need to randomize the polynomials in the numerator to guarantee cor-
rectness, that is, we need to multiply each term in the numerator by a uniformly
chosen element. This is in contrast with the two-party setting where correctness holds
even without randomizing the numerator. However, we omit this step for simplicity.

5

Note that, if the intersection ∩Si is larger than n − t, then degPS1\(∩N
j=1Sj) =

· · · = degPSN\(∩N
j=1Sj) ≤ t.

Therefore, the Cardinality Testing boils down to the following problem: Given
a rational function f(x) = P̃1(x)/P̃2(x), can we securely decide if deg P̃1 =
deg P̃2 ≤ t having access to O(t) evaluation points of f(x)?

Our crucial observation is that, if we interpolate two different rational func-
tions fV and fW on different two support sets V = {vi, f(vi)} and W =
{wi, f(wi)} each one of size 2t, then we have:

1. fV = fW if degP1 = degP2 ≤ t

2. fV ̸= fW if degP1 = degP2 > t

except with negligible probability over the uniform choice of vi, wi.

Moreover, interpolating a rational function can be reduced to solving a linear
system of equations. Hence, by using the Secure Linear Algebra tools developed
before, we can perform the degree test revealing nothing else than the output.
In other words, we can decide if the size of the intersection is smaller than n− t
while revealing no additional information about the parties’ input sets.

Security of the protocol. We prove security of our Cardinality Testing in the UC
framework [7]. However, there is a subtle issue in our security proof. Namely,
our secure linear algebra protocols cannot be proven UC-secure since the inputs
are encrypted under a public key which, in the UC setting, needs to come from
somewhere.

We solve this problem by using the Externalized UC framework [8]. In this
framework, the secure linear algebra ideal functionalities all share a common
setup which, in our case, is the public key (and the corresponding secret key
shares). We prove security of our secure linear algebra protocols in this setting.

Since the secure linear algebra protocols are secure if they all share the same
public key, then, on the Cardinality Testing, we just need to create this public
key and share it over these functionalities. Thus, we prove standard UC-security
of our Cardinality Testing.

Badrinarayanan et al. [1] also encounter the same problem as we did and they
opted to not prove security of each subprotocol individually, but rather prove
security only for their main protocol (where the public key is created and shared
among these smaller protocols).

Multi-party PSI. Having developed a Cardinality Testing, we can now focus
on securely computing the intersection. In fact, our protocol for computing the
intersection can be seen as a generalization of Gosh and Simkin protocol [17].

Again, by encoding the sets as above (that is, PSi
(x) =

∏n
j (x−a

(i)
j) where a

(i)
j ∈

Sj and Sj is the set of party Pj) and knowing that the intersection is larger than
n− t, parties can securely compute the rational function7(PS1

+ · · ·+PSN
)/PS1

.

6

By interpolating the rational function on any O(t) points, party P1 can recover
the denominator and compute the intersection.

The main difference between our protocol and the one in [17] is that we
replace the OLE calls used in [17] by a threshold additively homomorphic PKE
scheme (which can be seen as the multi-party replacement of OLE).

1.4 Other Related Work

Oblivious Linear Algebra. Cramer and Damg̊ard [9] proposed a constant-round
protocol to securely solve a linear system of unknown rank over a finite field.
Since they were mainly focused on round-optimality, the communication cost of
their proposal isΩ(t3) forO(t2) input size. Bouman et al. [5] recently constructed
a secure linear algebra protocol for multiple parties, however they focused on
computational complexity.

Other secure linear algebra schemes in the two-party setting were presented
by Nissim and Weinreb in [29] and Kiltz et al. in [24]. In the following, con-
sider (square) matrices of size t over a field F. These two works take different
approaches: [29] obliviously solves linear algebra related problems directly via
Gaussian elimination in O(t2) communication complexity, for a square matrix of
size t. However, their approach has an error probability that decreases polynomi-
ally with t. In other words, the error probability is only sufficiently small when
applied to linear system with large matrices. Whereas [24] has error probability
decreases polynomially with |F|, which is negligible when F is of exponentially
size.8

2 Preliminaries

If S is a finite set, then x←$S denotes an element x sampled from S according to
a uniform distribution and |S| denotes the cardinality of S. If A is an algorithm,
y ← A(x) denotes the output y after running A on input x. For N ∈ N, we
define [N] = {1, . . . , N}.

Given two distributions D1, D2, we say that they are computationally indis-
tinguishable, denoted as D1 ≈ D2, if no probabilistic polynomial-time (PPT)
algorithm is able to distinguish them.

Throughout this work, we denote the security parameter by λ.

7 Again, we omit the randomization of the polynomials. Actually, without random-
ization, these methods (including [17]) are exactly the same as the technique for set
reconciliation problem in [28].

8 This is important to us since, in the threshols PSI setting, t ≪ n where t is the
threshold and n is the set size. Kiltz et al. solve linear algebra problems via minimal
polynomials, and use adaptors between garbled circuits and additive homomorphic
encryption to reduce round complexity. In this work, we extend Kiltz’s protocol to
the multiparty case without using garbled circuits (otherwise the circuit size would
depend on number of parties) while preserving the same communication complexity
for each party (O(t2)).

7

2.1 Threshold Public-key Encryption

We present some ideal functionalities regarding threshold public-key encryption
(TPKE) schemes. In the following, N is the number of parties.

Let FGen be the ideal functionality that distributes a secret share of the secret
key and the corresponding public key. That is, on input (sid,Pi), FGen outputs
(pk, ski) to each party party where (pk, sk1, . . . , skN)← TPKE.Gen(1λ, N).

Moreover, we define the functionality FDecZero, which allows N parties, each
of them holding a secret share ski, to learn if a ciphertext is an encryption of 0
and nothing else. That is, FDecZero receives as input a ciphertext c and the secret
shares of each of the parties. It outputs 0, if 0← Dec(sk, . . .Dec(skN , c) . . .), and
1 otherwise. Note that these functionalities can be securely realized on varies
PKE schemes such as El Gamal PKE or Pailler9PKE [21].

We also assume that the underlying TPKE (or plain PKE) is always addi-
tively homomorphic, unless stated otherwise (see Supplementary Material A.1).

2.2 UC Framework and Ideal Functionalities

In this work, we use the UC framework by Canetti [7] to analyze the security of
our protocols.10 Throughout this work, we only consider semi-honest adversaries,
unless stated otherwise. We denote the underlying environment by Z. For a
protocol π and a real-world adversary A, we denote the real-world ensemble by
EXECπ,A,Z Similarly, for an ideal functionality F and a simulator Sim, we denote
the ideal-world ensemble by IDEALF,Sim,Z .

Definition 1. We say that a protocol π UC-realizes F if for every PPT ad-
versary A there is a PPT simulator Sim such that for all PPT environments
Z,

IDEALF,Sim,Z ≈ EXECπ,A,Z

where F is an ideal functionality.

In the following, we present some ideal functionalities that will be recurrent
for the rest of the paper.

Multi-Party Threshold Private Set Intersection. This ideal functionality imple-
ments the multi-party version of the functionality above. Here, each of the N
parties input a set and they learn the intersection if and only if the intersection
is large enough.

9 We will assume the message space of Paillier’s cryptosystem as a field as also men-
tioned in [24].

10 We refer the reader to [7] for a detailed explanation of the framework.

8

FMTPSI functionality

Parameters: sid, N, t ∈ N known to both parties.

– Upon receiving (sid,Pi, Si) from party Pi, FMTPSI stores Si and
ignores future messages from Pi with the same sid.

– Once FMTPSI has stored all inputs Si, for i ∈ [n], it does the
following: If |S1 \

(
∩Ni=2Si

)
| ≤ t, FMTPSI outputs S∩ = ∩Ni=1Si.

Else, it outputs ⊥.

Externalized UC Protocol with Global Setup We introduce a notion of
protocol emulation from [8], called externalized UC emulation (EUC), which is
a simplified version of UC with global setup (GUC).

Definition 2 (EUC-Emulation [8]). We say that π EUC-realizes F with respect
to shared functionality Ḡ (or, in shorthand, that π Ḡ-EUC-emulates ϕ) if for any
PPT adversary A there exists a PPT adversary Sim such that for any shared
functionality Ḡ, we have:

IDEALḠF,Sim,Z ≈ EXECḠ
π,A,Z

Notice that the formalism implies that the shared functionality Ḡ exists both
in the model for executing π and also in the model for executing the ideal protocol
for F , IDEALF .

We remark that the notion of Ḡ-EUC-emulation can be naturally extended to
protocols that use several different shared functionalities (instead of only one).

2.3 Polynomials and Interpolation

We present a series of results that will be useful to analyze correctness and
security of the protocols presented in this work.

The following lemma show how we can mask a polynomial of degree less than
t using a uniformly random polynomial.

Lemma 1 ([25]). Let Fp be a prime order field, P (x), Q(x) be two polynomials
over Fp such that degP = degQ = d ≤ t and gcd(P,Q) = 1. Let R1, R2←$Fp

such that degR1 = degR2 = t. Then U(x) = P (x)R1(x) + Q(x)R2(x) is a
uniformly random polynomial with degU ≤ 2t.

Note that this result also applies for multiple polynomials as long as they
don’t share a common factor (referring to Theorem 2 and Theorem 3 of [25] for
more details).

We say that f is a rational function if f(x) = P (x)
Q(x) for two polynomials P

and Q.
The next two lemmata show that we can recover a rational function via

interpolation and that this function is unique.

9

Lemma 2 ([28]). Let f(x) = P (x)/Q(x) be rational function where degP (x) =
m and degQ(x) = n. Then f(x) can be uniquely recovered (up to constants) via
interpolation from m+ n+1 points. In particular, if P (x) and Q(x) are monic,
f(x) can be uniquely recovered from m+ n points.

Lemma 3 ([28]). Choose V to be a support set11 of cardinality m1+m2+1. Then,
there is a unique rational function f(x) = P (x)/Q(x) that can be interpolated
from V , and P (x) has degree at most m1 and Q(x) has degree at most m2.

3 Oblivious Degree Test for Rational Functions

Suppose we have a rational function f(x) = P (x)/Q(x) where P (x) and Q(x)
are two polynomials with the same degree. In this section, we present a protocol
that allows several parties to check if degP (x) = degQ(x) ≤ t for some threshold
t ∈ Z. To this end, and inspired by the works of [29,24], we present a multi-party
protocol to obliviously solve a linear system Mx = y over a finite field F with
communication complexity O(t2kλN), where M ∈ Ft×t, log |F| = k and N is
the number of parties involved in the protocol.

3.1 Oblivious Linear Algebra

In this section, we state the Secure Linear Algebra protocols that we need to build
our degree test protocol. For the sake of briefness, the protocols are presented in
Appendix B. These protocol all have the following form: There is a public key
of a TPKE that encrypts a matrix M and every party involved in the protocol
has a share of the secret key.

Note that if we let parties Pi input their encrypted matrix Enc(M), then
the ideal functionality F has to know the secret key (by receiving secret key
shares from all parties), otherwise F cannot compute the corresponding func-
tion correctly. However, this will cause an unexpected problem in security proof
as mentioned in our introduction and [1]: The environment Z will learn the
secret key as well since it can choose inputs for all parties. We fix this by rely-
ing on global UC framework where exists a shared functionality Ḡ in charge of
distributing key pairs (FGen from Section 2.1).

Oblivious matrix multiplication We begin by presenting the ideal function-
ality for a multi-party protocol to jointly compute the product of two matrices,
under a TPKE. The protocol is presented in Appendix B.1.

Ideal functionality. The ideal functionality for oblivious matrix multiplication is
presented below.

11 A support set is a set of pairs (x, y).

10

FOMM functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q, known
to the N parties involved in the protocol.

Global Setup: pk public-key of a threshold PKE scheme and ski dis-
tributed to each party Pi via FGen.

– Upon receiving (sid,P1,Enc(pk,Ml),Enc(pk,Mr)) from party P1

(whereMl,Mr ∈ Ft×t), FOMM outputs Enc(pk,Ml·Mr) to P1 and
(Enc(pk,Ml),Enc(pk,Mr),Enc(pk,Ml ·Mr)) to all other parties
Pi, for i = 2, . . . , N .

Securely Compute the Rank of a Matrix We present the ideal function-
ality to obliviously compute the rank of an encrypted matrix. The protocol is
presented in Appendix B.2.

Ideal Functionality. The ideal functionality of oblivious rank computation is
defined below.

FORank functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q, known
to the N parties involved in the protocol.

Global Setup: pk public-key of a threshold PKE scheme and ski dis-
tributed to each party Pi via FGen.

– Upon receiving (sid,P1,Enc(pk,M)) from party P1 (where
M ∈ Ft×t), FORank outputs Enc(pk, rank(M)) to P1 and
(Enc(pk,M),Enc(pk, rank(M)) to all other parties Pi, for i =
2, . . . , N .

Oblivious Linear System Solver We now show how N parties can securely
solve a linear system using the multiplication protocol above. We follow the ideas
from [24] to reduce the problem to minimal polynomials, and the only difference
is we focus on multiparty setting.

The protocol is presented in Appendix B.5. Informally, we evaluate an arith-
metic circuit following the ideas of [10], and for the unary representation, a
binary-conversion protocol [37] is required. All of above protocols can be based
on Paillier cryptosystem.

Ideal Functionality. We give an ideal functionality of oblivious linear system
solver for multiparty as follows.

11

FOLS functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q ,
known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme.

Global Setup: pk public-key of a threshold PKE scheme and ski dis-
tributed to each party Pi via FGen.

– Upon receiving (sid,P1,Enc(pk,M),Enc(pk,y)) from party P1 (as-
suming there is a solution x forMx = y), FOLS outputs Enc(pk,x)
such that Mx = y.

3.2 Oblivious Degree Test

We now present the main protocol of this section and the one that will be using
in the construction of threshold PSI. Given a rational function P (x)/Q(x) (for
two polynomials P (x) and Q(x) with the same degree) and two support sets
V1, V2, the protocol allows us to test if the degree of the polynomials is less than
some threshold t. Of course, we can do this using generic approaches like garbled
circuits. However, we are interested in solutions with communication complexity
depending on t (even when the degree of P (x) or Q(x) is much larger than t).

Ideal functionality. The ideal functionality for degree test of rational functions
is presented below.

FSDT functionality

Parameters: sid, N, q, n, t ∈ N, F is a field of order q and t is a pre-
defined threshold, known to the N parties involved in the protocol.
pk public-key of a threshold PKE scheme. α1, . . . , α4t+2←$F known
to the N parties.

Global Setup: pk public-key of a threshold PKE scheme and ski dis-
tributed to each party Pi via FGen.

– Upon receiving (sid,P1,Enc(pk, f1), . . . ,Enc(pk, f4t+2)) from
party P1 (where fi = P1(αi)/P2(αi), and P1, P2 are two co-prime
polynomials with same degree t′ (additionally, P2 is monic), FSDT

outputs 0 if t′ ≤ t; otherwise it outputs 1.

Protocol. We present the Protocol 1 for secure degree test which we denote by
secDT. The main idea of the protocol is to interpolate the rational function on
two different support sets and check if the result is the same in both experiments.

Recall that interpolating a rational function boils down to solve a linear
equation. We can thus use the secure linear algebra tools developed to allow the
parties to securely solve a linear equation.

12

Also recall that two rational functions C
(1)
v /C

(2)
v = C

(1)
w /C

(2)
w are equivalent

if C
(1)
v C

(2)
w −C

(1)
w C

(2)
v = 0. Thus, in the end, parties just need to securely check

if C
(1)
v C

(2)
w − C

(1)
w C

(2)
v is equal to 0.

Comments. Suppose that, for an interpolation point αi, the rational function
f(x) = P (x)/Q(x) is well-defined but Q(αi) = P (αi) = 0 such that we cannot
compute f(αi) by division. In this case 14 , the parties evaluate P̃ (x) = P (x)/(x−
αi) and Q̃(x) = Q(x)/(x−αi) on αi and set f(αi) = P̃ (αi)/Q̃(αi). These points
are called tagged values and this strategy is used in [28]. In more details, instead

of using Enc(pk, fi) for αi, we will use a tagged pair
(
Enc

(
pk, s

(1)
i

)
,Enc

(
pk, s

(2)
i

))
where s

(1)
i = P1(αi)

x−αi
and s

(2)
i = P2(αi)

x−αi
. Correspondingly, replace each row of

Enc(pk,Mr) and Enc(pk,yr) with

Enc
(
pk,
[
s
(2)
i rti . . . s

(2)
i −s(1)i rt−1

i . . . −s(1)i

])
and Enc

(
pk,
[
s
(1)
i rti

])
, respectively.

Also, note that the protocol easily generalizes to rational functions f(x) =
P (x)/Q(x) with degP ̸= degQ (which is actually what we use in the follow-
ing sections). We present the version where degP = degQ for simplicity. In
fact, the case where degP ̸= degQ can be reduced to the presented case by
multiplying the least degree polynomial by a uniformly chosen R(x) of degree
max{degP (x)− degQ(X),degQ(x)− degP (x)}.

Moreover, if t′ > t, the linear system for rational interpolation might be
unsolvable. In this case, there is no solution which means we cannot interpolate
an appropriate rational function on certain support set. Therefore, the parties
just return 0.

Analysis We analyze correctness, security and communication complexity of the
protocol. We begin the analysis with the following auxiliary lemma.

Lemma 4. Let F be a field with |F| = ω(2log λ). Let V = {(vi, f(vi))|∀i ∈
[1, 2t + 1]} and W = {(wi, f(wi))|∀i ∈ [1, 2t + 1]} be two support sets each of

them with 2t + 1 elements over a field F, with wi←$F, and f(x) := P (x)
Q(x) is

some unknown reduced rational function (i.e., P (x), Q(x) are co-prime), where
deg(P) = deg(Q) = t′ and t < t′ where t, t′ ∈ poly(λ). We also require Q(x) to
be monic (to fit in our application). Additionally, assume that Q(vi) ̸= 0 and
Q(wi) ̸= 0 for every i ∈ [2t+ 1].

12 Note that this is the linear system that we need to solve in order to perform rational
interpolation [28].

13 The polynomial multiplication can be expressed as matrix multiplication.
14 In the case that only Q(αi) = 0, use a different tagged pair (Enc(pk, s

(1)
i),Enc(pk, 0)),

and this can be noticed by the party who owns polynomial Q(x). In our PSI setting,
it is party P1.

13

Protocol 1 Secure Degree Test secDT
Setup: Each party has a secret key share ski for a public key pk of a TPKE TPKE =

(Gen,Enc,Dec). The parties have access to the ideal functionalities FORank, FOLS,
FOMM and FDecZero. The values {α1, . . . , α4t+2} ←$F4t+2 are public, from which also
sampling a random point α∗ ←$ {α1, . . . , α4t+2}.

Input: Party P1 inputs {(α1,Enc(pk, f1)), . . . , (α4t+2,Enc(pk, f4t+2))}, where fi =
P1(αi)
P2(αi)

, where P1(x), P2(x) are two polynomials with degree deg(P1) = deg(P2) =

t′ = poly(log |F|) and such that P2(αi) ̸= 0 for all i ∈ [2t].
1: P1 sets {(αj ,Enc(pk, fj))}j∈[2t+1] = {(vj ,Enc(pk, fv,j))}j∈[2t+1], and
{(αj ,Enc(pk, fj))}j∈{2t+2,...,4t+2} = {(wj ,Enc(fw,j))}j∈[2t+1]. It homomorphically
generates an encrypted linear system consisting of

Enc(pk,Mr) = Enc

pk,

 rt1 . . . 1 −fr,1 · rt−1
1 . . . −fr,1

...
...

...
...

rt2t+1 . . . 1 −fr,2t+1 · rt−1
2t+1 . . . −fr,2t+1




and

Enc(pk,yr) = Enc

pk,

 fr,1 · rt1
...

fr,2t+1 · rt2t+1




for r = {v, w}.12 Here Mr is a square matrix with dimension 2t + 1 and yr a
2t+ 1-sized vector.

2: All parties jointly compute Enc(pk, rank(Mr) − rank ([Mr||y]) for r ∈ {v, w}
through two invocations of FORank and mutually decrypt the ciphertext via FDecZero.
If the result is different from 0, they abort the protocol.

3: All parties mutually solve the two linear systems above using FOLS such that each

party gets Enc
(
pk,

(
c
(1)
v ||c(2)v

))
and Enc

(
pk,

(
c
(1)
w ||c(2)w

))
, where Mr

[
c
(1)
r

c
(2)
r

]
= yr,

for r ∈ {v, w}. Besides, c(1)r and c
(2)
r are t+ 1- and t-sized vectors, respectively.

4: All parties compute the polynomials C
(1)
r (x) =

∑t
j=0 c

(1)
r,jx

t−j , and C
(2)
r (x) = xt +∑t

j=1 c
(2)
r,j−1x

t−j , for r ∈ {v, w}, then compute

Enc(pk, z) = Enc(pk, C(1)
v (x) · C(2)

w (x)− C(1)
w (x) · C(2)

v (x))

by invoking FOMM.
13 Here C

(b)
r (x) are evaluated on a random selected point

α∗ ←$ {α1, . . . , α4t+2}.
5: All parties jointly use FDecZero to check if z = 0. If it is, output 1. Otherwise, output

0.

14

If we recover two rational function fV (x), fW (x) by interpolation on V,W ,
respectively, then

Pr [fV (x) = fW (x)] ≤ negl(λ)

over the choice of vi, wi.

Proof. Let fV (x) = A(x)/B(x) the rational function recovered by rational in-
terpolation over the support set V . and let f(x) = P (x)/Q(x) be the ratio-
nal function interpolated over any 2t′ + 1 interpolation points. We have that
fV (vi) = f(vi) for all i ∈ [2t+ 1] and hence

A(vi)

B(vi)
=

P (vi)

Q(vi)
⇔ A(vi)Q(vi) = P (vi)B(vi).

Since gcd(P (x), Q(x)) = 1, then the polynomial P̃ (x) = A(x)Q(x) − P (x)B(x)
is different from the null polynomial (as deg(P) = t′ > t = deg(A)). Moreover,
vi is a root of P̃ (x), for all i ∈ [2t+1], and deg P̃ (x) ≤ t+ t′ (which means that
P̃ (x) has at most t+ t′ roots).

Analogously, let fW = C(x)/D(x) be the rational function resulting from
interpolating over the support set W and let Q̃(x) = C(x)Q(x)−D(x)P (x). We
have that Q̃(wi) = 0 for all i ∈ [2t+ 1]. Hence, if fV (x) = fW (x), then we have
that the points wi are also roots of P̃ (x). But, since the points wi are chosen
uniformly at random from F (which is of exponential size when compared to
t, t′), then there is a negligible probability that all wi’s are roots of P̃ (x).

Concretely,

Pr [fV = fW] ≤ Pr
[
P̃ (wi) = 0∀i[2t+ 1]

]
=

2t+1∏
i

Pr
[
P̃ (wi) = 0

]
≤

(
deg P̃

|F|

)2t+1

which is negligible for |F| ∈ ω(2log λ).

Theorem 1 (Correctness). The protocol secDT is correct.

Proof. The protocol interpolates two polynomials from two different support
sets. Then, it checks if the two interpolated polynomials are the same by com-
puting

C(1)
v (x) · C(2)

w (x)− C(1)
w (x) · C(2)

v (x))

which should be equal to 0 if C
(1)
v (x)/C

(2)
v (x) = C

(1)
w (x)/C

(2)
w (x).

If t′ ≤ t, then by Lemma 3, there is a unique rational function can be recov-
ered thus the final output of the algorithm should be 1. On the other hand, if
t′ > t, the linear system can be either unsolvable or solvable but yielding two
different solutions with overwhelming probability by Lemma 4. In this case, the
protocol outputs 0.

15

Theorem 2. The protocol secDT EUC-securely realizes FSDT with shared ideal
functionality FGen in the (FORank,FOMM, FOLS,FDecZero)-hybrid model against
semi-honest adversaries corrupting at most N − 1 parties, given that TPKE is
IND-CPA.

Proof (Sketch). The simulator sends the corrupted parties’ input to the ideal
functionality and obtains the output (either 0 or 1). Then, it simulates the
ideal functionalities (FORank,FOMM,FOLS,FDecZero) so that the output in the real-
world execution is the same as in the ideal-world execution. In particular, the
simulator is able to recover the secret key shares via FORank,FOMM,FOLS and,
thus, simulate FDecZero in the right way.

Indistinguishability of executions holds given that TPKE is IND-CPA.

Communication complexity. When we instantiate FOLS with the protocol from
the previous section, the communication complexity of secDT is O(Nt2).

4 Multi-Party Threshold Private Set Intersection

We present our protocol for Threshold PSI in the multi-party setting. Our pro-
tocol to privately compute the intersection can be seen as a generalization of
Ghosh and Simkin protocol [17] where we replace the OLE by a TPKE (which
fits nicer in a multi-party setting). The main difference between our protocol
and theirs is in the cardinality test protocol used.

We begin by presenting the protocol to securely compute a cardinality testing
between N sets. Then, we plug everything together in a PSI protocol.

4.1 Secure Cardinality Testing

Ideal functionality. The ideal functionality for Secure Cardinality Testing re-
ceives the sets from all the parties and outputs 1 if and only if the intersection
between these sets is larger than some threshold. Else, no information is dis-
closed. The ideal functionality for multi-party cardinality testing is given as
follows.

FMPCT functionality

Parameters: sid, N, n, t ∈ N known to both parties.

– Upon receiving (sid,Pi, Si) from party Pi, FMPCT stores Si and
ignores future messages from Pi with the same sid;

– Once FMPCT has stored all inputs Si, for i ∈ [N], it does the
following: If |S∩| ≥ n − t, FMPCT outputs 1 to all parties, where
|S∩| = ∩Ni=1Si. Else, it returns 0.

Protocol. We introduce our multiparty Protocol 2 (based on degree test proto-
col). In the following, FGen be the ideal functionality defined in Section 2.1 and
FSDT be the functionality defined in Section 3.2.

16

Protocol 2 Private Cardinality Test for Multi-party MPCT
Setup: Values α1, . . . , α4t+2 ←$F, threshold t ∈ N and N parties. Functionalities FGen

and FSDT, and a IND-CPA TPKE TPKE = (Gen,Enc,Dec).

Input: Each party P i inputs a set Si = {a(1)
i , . . . , a

(n)
i } ∈ Fn.

1: Each party Pi sends request (sid, requesti) to FGen and receives a secret key share
ski and a public key pk, which is known to every party involved in the protocol.

2: Each party Pi encodes its set as a polynomial Pi(x) =
∏n

j=1(x−a
(j)
i) and evaluates

it on 4t + 2 points. That is, it computes Pi(α1), . . . , Pi(α4t+2). It encrypts the

points, that is, c
(j)
i ← Enc(pk, ri · Pi(αj)) for a uniformly chosen ri ←$F. Finally,

it broadcasts {c(j)i }j∈[4t+2].

3: Party P1 computes d(j) = (
∑N

i=1 c
(j)
i)/P1(αj) for each j ∈ [4t + 2]. Then, sends

{αi, d
(j)}j for every j, and sk1 to the ideal functionality FSDT.

15 Each party Pi, for
i = 2, . . . , N , send ski to FSDT to check if the degree of the numerator (and the
denominator) is at most t.

4: Upon receiving b ∈ {0, 1} from the ideal functionality FSDT, every party outputs b.

Analysis. We now proceed to the analysis of the protocol described above.

Lemma 5. Given n characteristic polynomials with same degree from F[x], de-
noted as P1(x), . . . , Pn(x), we argue that, for any j, P ′(x) =

∑n
i=1 ri ·Pi(x) and

Pj(x) are relatively prime with probability 1 − negl(log |F|) if P1(x), . . . , Pn(x)
are mutually relatively prime, where ri←$F is a uniformly random element.

Proof. Supposing there is a common divisor of two polynomials P ′(x) and Pj(x),
since Pj(x) is a characteristic polynomial, we denote (x−s) the common divisor.
Therefore, we have P ′(s) = 0 which can be represented as

∑n
i=1 ri · Pi(s) = 0.

However, from the mutually relative primality of P1(x), . . . , Pn(x), we know
that Pi(s) cannot be zero simultaneously which means there exists at least one
i∗ to make Pi∗(s) ̸= 0. Moreover, ri are all sampled uniformly from F, the
weighted sum of ri will not be zero with all but negligible probability. This is
a contradiction. Therefore, P ′(x) and Pj(x) will share a common divisor only
with negligible probability.

Theorem 3 (Correctness). The protocol MPCT described above is correct.

Proof. Note that the encryption d(j) computed by party P1 are equal to

d(j) = Enc

(
pk,

(
N∑
i=1

ri · Pi(αj)

)
/P1(αj)

)
.

Also, observe that∑N
i=1 ri · Pi(αj)

P1(αj)
=

P∩iSi
(αj) ·

∑N
i ri · PSi\(∩k ̸=iSk)(αj)

P∩iSi(αj) · PS1\(∩k ̸=1Sk)

=

∑N
i ri · PSi\(∩k ̸=iSk)(αj)

PS1\(∩k ̸=1Sk)(αj)
,

17

in this way, we make the numerator and denominator relatively prime except
with negligible probability by Lemma 5.

Observe that deg
∑N

i ri · PSi\(∩k ̸=iSk)(x) ≤ t and degPS1\(∩k ̸=1Sk)(x) ≤ t if
and only if S∩ ≥ n− t. Hence, by the correctness of FSDT, the protocol outputs
1 if S∩ ≥ n− t, and 0 otherwise.

Theorem 4. The protocol MPCT securely realizes functionality FMPCT in the
(FGen,FSDT)-hybrid model against any semi-honest adversaries corrupting up to
N − 1 parties, given that TPKE is IND-CPA.

Proof. Assume that the adversary is corrupting N − k parties in the protocol,
for k = 1, . . . , N − 1. The simulator creates the secret keys and the public key of
a threshold PKE in the setup phase while simulating FGen and distributes the
secret keys between every party. The simulator Sim takes the inputs (which are
sets of size n, say Si1 , . . . , SiN−k

) of the corrupted parties and send them to the
ideal functionality FMPCT. It receives the output b from the ideal functionality. If
b = 0, the simulator chooses k uniformly chosen sets such that | ∩Ni=1 Si| < n− t
and proceed the simulation as the honest parties would do. If b = 1, , the
simulator chooses k uniformly chosen random sets such that | ∩Ni=1 Si| ≥ n − t
and proceed the simulation as the honest parties would do. Note that it can
simulate the ideal functionality FSDT since it knows all the secret keys of the
threshold PKE.

Indistinguishability of executions follows immediately from the IND-CPA
property of the underlying threshold PKE scheme.

Communication Complexity. When we instantiate the FSDT with the protocol
from the previous section, each party broadcasts Õ(t2). Hence, the total com-
munication complexity is Õ(Nt2), assuming a broadcast channel.

4.2 Multi-party Threshold Private Set Intersection Protocol

In this section, we extend Ghosh and Simkin protocol [17] to the multi-party
setting using TPKE. We make use of the cardinality testing designed above to
get the Protocol 3.

Analysis. We now proceed to the analysis of the protocol described above. We
start by analyzing the correctness of the protocol and then its security.

Theorem 5 (Correctness). The protocol MTPSI is correct.

Proof. Assume that |S1 \
(
∩Ni=2Si

)
| ≤ t (note that this condition is guaranteed

after resorting to the functionality FMPCT in the first step of the protocol). After

the execution of the protocol, party P1 obtains the points V (j) =
∑N

i Pi(αj) ·

18

Protocol 3 Multi-Party Threshold PSI MTPSI
Setup: Given public parameters as follows: Values α1, . . . , α3t+1 ←$F, threshold t ∈ N

and N parties. Functionalities FGen and FMPCT, and a threshold additively PKE
TPKE = (Gen,Enc,Dec).

Input: Each party Pi inputs a set Si = {a(1)
i , . . . , a

(n)
i } ∈ Fn.

1: Each party Pi sends its set Si to FMPCT. If the functionality FMPCT outputs 0, then
every party Pi outputs ⊥ and terminates the protocol.

2: Each party Pi sends request (sid, requesti) to FGen and receives a secret key share
ski and a public key pk, which is known to every party involved in the protocol.

3: for all Party Pi do
4: It encodes its set as a polynomial Pi(x) =

∏n
j=1(x − a

(j)
i) and evaluates it on

3t+ 1 points. That is, it computes Pi(α1), . . . , Pi(α3t+1).
5: It samples Ri(x)←$F[x] such that degRi(x) = t.

6: It encrypts these points using pk, that is, it computes c
(j)
i = Enc(pk, Ri(αj) ·

Pi(αj)) for every j ∈ [3t+ 1].

7: It broadcasts {c(j)i }j∈[3t+1].
8: end for
9: Party P1 adds the ciphertexts to get d(j) =

∑N
i c

(j)
i for each j ∈ [3t + 1]. It

broadcasts {d(j)}j∈[3t+1].

10: They mutually decrypt {d(j)}j∈[3t+1] to learn V (j) ← Dec(sk, d
(j)
N) for j ∈ [3t+1].

11: P1 computes the points Ṽ (j) = V (j)/P1(αj) for j ∈ [3t+ 1].
12: P1 interpolates a rational function using the pairs of points (αj , Ṽ

(j)).
13: P1 recovers the polynomial PS1\(∩iSi)(x) in the denominator.

14: P1 evaluates PS1\∩iSi
(x) on every point of its set {a(1)

1 , . . . , a
(n)
1 } to compute ∩iSi.

That is, whenever PS1\∩iSi
(aj

1) ̸= 0, then aj
1 ∈ ∩iSi.

15: It broadcasts the output ∩iSi.

19

Ri(αj). Then,

Ṽ (j) =
V (j)

P1(αj)
=

∑N
i Pi(αj) ·Ri(αj)

P1(αj)

=
P∩iSi(αj) ·

∑N
i PSi\(∩k ̸=iSk)(αj) ·Ri(αj)

P∩iSi
(αj) · PS1\(∩k ̸=1Sk)(αj)

=

∑N
i PSi\(∩k ̸=iSk)(αj) ·Ri(αj)

PS1\(∩k ̸=1Sk)(αj)
.

Since P1 has 3t + 1 evaluated points of the rational function above, then it
can interpolate a rational function to recover the polynomial PS1\(∩k ̸=1Sk). This
is possible because of Lemma 2 and the fact that

deg

(
N∑
i

PSi\(∩k ̸=iSk)(αj) ·Ri(αj)

)
≤ 2t and deg

(
PS1\(∩k ̸=1Sk)(αj)

)
≤ t.

Having computed the polynomial PS1\(∩k ̸=1Sk), party P1 can compute the
intersection because the roots of this polynomial are exactly the elements in
S1 \ (∩k ̸=1Sk).

Theorem 6. The protocol MTPSI securely realizes functionality FMTPSI in the
(FGen,FMPCT)-hybrid model against any semi-honest adversary corrupting up to
N − 1 parties.

Proof. Let A be an adversary corrupting up to k parties involved in the protocol,
for any k ∈ [N −1]. Let Pi1 , . . . ,Pik be the corrupted parties. The simulator Sim
works as follows:

1. It sends the inputs of the corrupted parties, Si1 , . . . , Sik , to the ideal func-
tionality FMTPSI. Sim either receives ⊥ or ∩iSi from the ideal functionality
FMTPSI.

2. Sim waits forA to send the corrupted parties’ inputs to the ideal functionality
FMPCT. If Sim has received ⊥ from FMPCT, then Sim leaks 0 to A (and Z)
and terminates the protocol. Else, Sim leaks 1 and continues.

3. Sim waits for A to send a request (sid, requestij) for each of the corrupted
parties (that is, for j ∈ [k]) to FGen. Upon receiving such requests, Sim
generates (pk, sk1, . . . , skN) ← Gen(1λ, N) and returns (pk, skij) for each of
the requests.

4. For each party Pℓ such that ℓ ̸= ij (where j ∈ [k]), Sim picks a random
polynomial Uℓ(x) of degree n−|∩iSi|+t and sends Enc(pk, Rℓ(αj)·P∩iSi(αj)·
Uℓ(αj)), where Rℓ(x) is chosen uniformly at random such that degRℓ(x) = t.
From now on, Sim simulates the dummy parties as in the protocol.

We now argue that both the simulation and the real-world scheme are in-
distinguishable from the point-of-view of any environment Z. In the real-world

20

scheme, party P1 obtains the polynomial

V (x) = P∩iSi
(x) ·

N∑
i

PSi\(∩k ̸=iSk)(x) ·Ri(x)

evaluated in 3t + 1 points. Assume that P1 is corrupted by A. Even in this
case, there is an index ℓ for which A does not know the polynomial Rℓ(x). More
precisely, we have that

V (x) = P∩iSi
(x) ·

∑
i ̸=ℓ

PSi\(∩k ̸=iSk)(x) ·Ri(x)

+ PSℓ\(∩k ̸=ℓSk)(x) ·Rℓ(x)

 .

First, note that

deg

∑
i ̸=ℓ

PSi\(∩k ̸=iSk)(x) ·Ri(x)

 = degPSℓ\(∩k ̸=ℓSk)(x) ·Rℓ(x)

= n− | ∩i Si|+ t ≤ 2t.

Moreover, we have for any i ∈ [N] that degPSi\(∩k ̸=iSk) ≤ t, degRi(x) = t

and gcd
(
PSi\(∩k ̸=iSk), PSj\(∩k ̸=jSk)

)
= 1 for any j ̸= i. Hence, by Lemma 1,

we can build a sequence of hybrids where we replace V (x) by the polynomial
V ′(x) = P∩iSi

(x) · U(x), where degU(x) = n− | ∩i Si|+ t, as in the ideal-world
execution. Indistinguishability of executions follows.

Communication complexity. When we instantiate the ideal functionality FMPCT

with the protocol from the previous section the scheme has communication com-
plexity Õ(Nt2).

Acknowledgment

Pedro Branco: Part of this work was done while the author was at CISPA.
The author is supported by DP-PMI and FCT (Portugal) through the grant
PD/BD/135181/2017. This work is supported by Security and Quantum Infor-
mation Group of Instituto de Telecomunicações, by the Fundação para a Ciência
e a Tecnologia (FCT) through national funds, by FEDER, COMPETE 2020, and
by Regional Operational Program of Lisbon, under UIDB/50008/2020.

Nico Döttling Part of this work was done while visiting Simons Institute, Berke-
ley, California. This work is partially funded by the Helmholtz Association within
the project ”Trustworthy Federated Data Analytics” (TFDA) (funding number
ZT-I-OO1 4)

Sihang Pu: Part of this work was done while visiting Simons Institute, Berkeley,
California.

21

References

1. Badrinarayanan, S., Miao, P., Raghuraman, S., Rindal, P.: Multi-party threshold
private set intersection with sublinear communication. in PKC 2021 (2021)

2. Berke, A., Bakker, M., Vepakomma, P., Larson, K., Pentland, A.S.: Assessing dis-
ease exposure risk with location data: A proposal for cryptographic preservation
of privacy (2020), https://arxiv.org/abs/2003.14412

3. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
Advances in Cryptology – CRYPTO 2004. Lecture Notes in Computer Science,
vol. 3152, pp. 41–55. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 15–19, 2004). https://doi.org/10.1007/978-3-540-28628-8 3

4. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005: 2nd Theory of Cryptography Conference. Lecture Notes
in Computer Science, vol. 3378, pp. 325–341. Springer, Heidelberg, Germany, Cam-
bridge, MA, USA (Feb 10–12, 2005). https://doi.org/10.1007/978-3-540-30576-7 -
18

5. Bouman, N.J., de Vreede, N.: New protocols for secure linear algebra: Pivoting-
free elimination and fast block-recursive matrix decomposition. IACR Cryptology
ePrint Archive 2018, 703 (2018)

6. Branco, P., Döttling, N., Pu, S.: Multiparty cardinality testing for threshold private
set intersection. Cryptology ePrint Archive, Report 2020/1307 (2020), https://
eprint.iacr.org/2020/1307

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science. pp.
136–145. IEEE Computer Society Press, Las Vegas, NV, USA (Oct 14–17, 2001).
https://doi.org/10.1109/SFCS.2001.959888

8. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007: 4th Theory of Cryptog-
raphy Conference. Lecture Notes in Computer Science, vol. 4392, pp. 61–85.
Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Feb 21–24, 2007).
https://doi.org/10.1007/978-3-540-70936-7 4

9. Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number of
rounds. In: Kilian, J. (ed.) Advances in Cryptology – CRYPTO 2001. Lecture Notes
in Computer Science, vol. 2139, pp. 119–136. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 19–23, 2001). https://doi.org/10.1007/3-540-44647-8 7

10. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from thresh-
old homomorphic encryption. In: Pfitzmann, B. (ed.) Advances in Cryptol-
ogy – EUROCRYPT 2001. Lecture Notes in Computer Science, vol. 2045, pp.
280–299. Springer, Heidelberg, Germany, Innsbruck, Austria (May 6–10, 2001).
https://doi.org/10.1007/3-540-44987-6 18

11. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust pri-
vate set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.A., Vergnaud,
D. (eds.) ACNS 09: 7th International Conference on Applied Cryptography and
Network Security. Lecture Notes in Computer Science, vol. 5536, pp. 125–142.
Springer, Heidelberg, Germany, Paris-Rocquencourt, France (Jun 2–5, 2009).
https://doi.org/10.1007/978-3-642-01957-9 8

12. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set in-
tersection protocols secure in malicious model. In: Abe, M. (ed.) Advances
in Cryptology – ASIACRYPT 2010. Lecture Notes in Computer Science,
vol. 6477, pp. 213–231. Springer, Heidelberg, Germany, Singapore (Dec 5–9, 2010).
https://doi.org/10.1007/978-3-642-17373-8 13

22

https://arxiv.org/abs/2003.14412
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-30576-7_18
https://eprint.iacr.org/2020/1307
https://eprint.iacr.org/2020/1307
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-44647-8_7
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-17373-8_13

13. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data:
an efficient and scalable protocol. In: Sadeghi, A.R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013: 20th Conference on Computer and Communica-
tions Security. pp. 789–800. ACM Press, Berlin, Germany (Nov 4–8, 2013).
https://doi.org/10.1145/2508859.2516701

14. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

15. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology –
EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 1–
19. Springer, Heidelberg, Germany, Interlaken, Switzerland (May 2–6, 2004).
https://doi.org/10.1007/978-3-540-24676-3 1

16. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EURO-
CRYPT 2019, Part III. Lecture Notes in Computer Science, vol. 11478, pp. 154–
185. Springer, Heidelberg, Germany, Darmstadt, Germany (May 19–23, 2019).
https://doi.org/10.1007/978-3-030-17659-4 6

17. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology –
CRYPTO 2019, Part II. Lecture Notes in Computer Science, vol. 11693, pp. 3–
29. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2019).
https://doi.org/10.1007/978-3-030-26951-7 1

18. Ghosh, S., Simkin, M.: The communication complexity of threshold private set in-
tersection. Cryptology ePrint Archive, Report 2019/175 (2019), https://eprint.
iacr.org/2019/175

19. Grigorescu, E., Jung, K., Rubinfeld, R.: A local decision test for
sparse polynomials. Inf. Process. Lett. 110(20), 898–901 (Sep 2010).
https://doi.org/10.1016/j.ipl.2010.07.012, https://doi.org/10.1016/j.ipl.

2010.07.012

20. Hallgren, P., Orlandi, C., Sabelfeld, A.: Privatepool: Privacy-preserving rideshar-
ing. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF). pp.
276–291 (2017)

21. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017: 20th International Conference on Theory and Prac-
tice of Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol.
10174, pp. 175–203. Springer, Heidelberg, Germany, Amsterdam, The Netherlands
(Mar 28–31, 2017). https://doi.org/10.1007/978-3-662-54365-8 8

22. Ion, M., Kreuter, B., Nergiz, E., Patel, S., Saxena, S., Seth, K., Shanahan, D., Yung,
M.: Private intersection-sum protocol with applications to attributing aggregate ad
conversions. Cryptology ePrint Archive, Report 2017/738 (2017), http://eprint.
iacr.org/2017/738

23. Kaltofen, E., David Saunders, B.: On wiedemann’s method of solving sparse lin-
ear systems. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes. pp. 29–38. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1991)

24. Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.K.: Secure linear algebra using
linearly recurrent sequences. In: Vadhan, S.P. (ed.) TCC 2007: 4th Theory of Cryp-
tography Conference. Lecture Notes in Computer Science, vol. 4392, pp. 291–310.
Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Feb 21–24, 2007).
https://doi.org/10.1007/978-3-540-70936-7 16

23

https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-26951-7_1
https://eprint.iacr.org/2019/175
https://eprint.iacr.org/2019/175
https://doi.org/10.1016/j.ipl.2010.07.012
https://doi.org/10.1016/j.ipl.2010.07.012
https://doi.org/10.1016/j.ipl.2010.07.012
https://doi.org/10.1007/978-3-662-54365-8_8
http://eprint.iacr.org/2017/738
http://eprint.iacr.org/2017/738
https://doi.org/10.1007/978-3-540-70936-7_16

25. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)
Advances in Cryptology – CRYPTO 2005. Lecture Notes in Computer Science,
vol. 3621, pp. 241–257. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 14–18, 2005). https://doi.org/10.1007/11535218 15

26. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Conference
on Computer and Communications Security. pp. 818–829. ACM Press, Vienna,
Austria (Oct 24–28, 2016). https://doi.org/10.1145/2976749.2978381

27. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: 1986 IEEE Symposium on
Security and Privacy. pp. 134–134 (1986)

28. Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly op-
timal communication complexity. IEEE Trans. Information Theory 49(9),
2213–2218 (2003). https://doi.org/10.1109/TIT.2003.815784, https://doi.org/

10.1109/TIT.2003.815784

29. Nissim, K., Weinreb, E.: Communication efficient secure linear algebra. In: Halevi,
S., Rabin, T. (eds.) TCC 2006: 3rd Theory of Cryptography Conference. Lecture
Notes in Computer Science, vol. 3876, pp. 522–541. Springer, Heidelberg, Germany,
New York, NY, USA (Mar 4–7, 2006). https://doi.org/10.1007/11681878 27

30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) Advances in Cryptology – EUROCRYPT’99. Lecture
Notes in Computer Science, vol. 1592, pp. 223–238. Springer, Heidelberg, Ger-
many, Prague, Czech Republic (May 2–6, 1999). https://doi.org/10.1007/3-540-
48910-X 16

31. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: Lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
Advances in Cryptology – CRYPTO 2019, Part III. Lecture Notes in Computer
Science, vol. 11694, pp. 401–431. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 18–22, 2019). https://doi.org/10.1007/978-3-030-26954-8 13

32. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersec-
tion using permutation-based hashing. In: Jung, J., Holz, T. (eds.) USENIX Secu-
rity 2015: 24th USENIX Security Symposium. pp. 515–530. USENIX Association,
Washington, DC, USA (Aug 12–14, 2015)

33. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2018, Part III. Lecture Notes in Computer Science, vol. 10822, pp.
125–157. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018).
https://doi.org/10.1007/978-3-319-78372-7 5

34. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Fu, K., Jung, J. (eds.) USENIX Security 2014: 23rd USENIX Security
Symposium. pp. 797–812. USENIX Association, San Diego, CA, USA (Aug 20–22,
2014)

35. Rindal, P., Rosulek, M.: Improved private set intersection against malicious ad-
versaries. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology – EURO-
CRYPT 2017, Part I. Lecture Notes in Computer Science, vol. 10210, pp. 235–
259. Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017).
https://doi.org/10.1007/978-3-319-56620-7 9

36. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual
execution. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)

24

https://doi.org/10.1007/11535218_15
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1109/TIT.2003.815784
https://doi.org/10.1109/TIT.2003.815784
https://doi.org/10.1109/TIT.2003.815784
https://doi.org/10.1007/11681878_27
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-56620-7_9

ACM CCS 2017: 24th Conference on Computer and Communications Secu-
rity. pp. 1229–1242. ACM Press, Dallas, TX, USA (Oct 31 – Nov 2, 2017).
https://doi.org/10.1145/3133956.3134044

37. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted val-
ues. In: Vaudenay, S. (ed.) Advances in Cryptology – EUROCRYPT 2006. Lecture
Notes in Computer Science, vol. 4004, pp. 522–537. Springer, Heidelberg, Germany,
St. Petersburg, Russia (May 28 – Jun 1, 2006). https://doi.org/10.1007/11761679 -
31

A Preliminaries Cont’d

A.1 Threshold Public-Key Encryption

In this work, we will use Public-Key Encryption schemes and a variant of it:
Threshold Public-key Encryption. We now define Threshold Public-key Encryp-
tion. Such schemes can be instantiated from several hardness assumptions such
as DDH, DCR or pairing-based assumptions [21].

Definition 3 (Threshold Public-Key Encryption). A Threshold Public-Key En-
cryption (TPKE) scheme is defined by the following algorithms:

– (pk, sk1, . . . , skN)← Gen(1λ, N) takes as input a security parameter. It out-
puts a public key pk and N secret keys (sk1, . . . , skN).

– c ← Enc(pk,m) takes as input a public key pk and a message m ∈ {0, 1}∗.
It outputs a ciphertext c.

– c′ ← Dec(ski, c) takes as input one of the secret keys ski and a ciphertext. It
outputs a share decryption c′ of c.

Correctness. For any N ∈ N and any permutation π : [N]→ [N], we have that

Pr
[
m← Dec(skπ(N),Dec(skπ(N−1), . . .Dec(skπ(1),Enc(pk,m)) . . .))

]
= 1

where (pk, sk1, . . . , skN)← Gen(1λ, N).

IND-CPA security. For any N ∈ N, any permutation π : [N] → [N] and any
adversary A, we require that

Pr

b← A(c, st) :
(pk, sk1, . . . , skN)← Gen(1λ, N)

(m0,m1, st)← A
(
pk, skπ(1), . . . , skπ(k)

)
b←$ {0, 1}

c← Enc(pk,mb)

 ≤ negl(λ)

for any k < N .

25

https://doi.org/10.1145/3133956.3134044
https://doi.org/10.1007/11761679_31
https://doi.org/10.1007/11761679_31

Additive Homomorphism. We also assume that the TPKE (or plain PKE) is ho-
momorphic for additive operation.16 That is, for all (pk, sk1, . . . , skN)← Gen(1λ, N),
we can define two groups (M,⊕), (C,⊗) such that, given two ciphertexts c1 ←
Enc(pk,m1) and c2 ← Enc(pk,m2), we require that

c1 ⊗ c2 = Enc(pk,m1 ⊕m2).

By abuse of notation, we usually denote the operations ofM and C as +.

A.2 Linear Algebra

We first introduce minimal polynomials of a sequence and of a matrix. Then we
present how they can be used to solve linear algebra related problems.

Minimal Polynomial of a Matrix The minimal polynomial of a sequence a
is the least degree polynomial m such that ⟨m⟩ = Ann(a) where Ann(a) is the
annihilator ideal of a (that is, the ideal such that every element f of Ann(a)
satisfies f · a = 0).

Lemma 6 (Lemma 3 in [24]). Let A ∈ Fn×n and let mA be the minimal poly-
nomial of matrix A. For u,v←$Fn, we have mA = ma′ with probability at least
1 − 2 deg(mA)/|F|, where a′ = (uTAiv)i∈N. Moreover, ma′ can be calculated
using a Boolean circuit of size O(nk log n log k log log k) where k = log |F|

Compute the Rank of a Matrix and Solve a Linear System

Lemma 7 ([23]). Let A ∈ Fn×n of (unknown) rank r. Let U and L be randomly
chosen unit upper triangular and lower triangular Toeplitz matrices in Fn×n, and
let B = UAL. Let us denote the i×i leading principal of B by Bi. The probability
that det(Bi) ̸= 0 for all 1 ≤ i ≤ r is greater than 1− n2/|F|.

Lemma 8 ([23]). Let B ∈ Fn×n with leading invertible principals up to Br where
r is the (unknown) rank of B. Let X be a randomly chosen diagonal matrix in
Fn×n. Then, r = deg(mXB)− 1 with probability greater than 1− n2/|F|.

B Oblivious Linear Algebra

B.1 Oblivious Matrix Multiplication

Protocol. The following Protocol 4 allows several parties to jointly compute the
(encrypted) product of two encrypted matrices. Note that the protocol can also
be used to compute the encryption of the product of two encrypted values in F.
16 From now on, we always assume that PKE and TPKE used in this work fulfill this

property, unless stated otherwise.

26

Protocol 4 Secure Multiplication secMult
Setup: Each party Pi has a secret share ski of a secret key for a public key pk of a

TPKE scheme TPKE = (Gen,Enc,Dec).
Input: Party P1 inputs Enc(pk,Ml) and Enc(pk,Mr), where Ml,Mr ∈ Ft×t.

Goal: Every one knows the product Enc(Ml ·Mr).
1: for all party Pi do
2: It samples two random matrices R

(i)
l ,R

(i)
r ←$Ft×t.

3: It computes c
(i)
l = Enc(pk,R

(i)
l), c

(i)
l = Enc(pk,R

(i)
r), d

(i)
r = Enc(pk,Ml ·R(i)

r),

d
(i)
l = Enc(pk,R

(i)
l ·Mr).

4: It broadcasts {c(i)l , c
(i)
r , d

(i)
l , d

(i)
r }.

5: end for
6: Each party Pi computes c̃(i) = Enc(pk,

∑
j ̸=i R

(i)
l ·R

(j)
r) (using c

(j)
r and R

(i)
l) and

broadcasts c̃(i).
7: All parties mutually decrypt i) Enc(M′

l) := Enc(pk,Ml) +
∑

j c
(j)
l (to obtain M′

l ∈
Ft×t), ii) Enc(M′

r) := Enc(pk,Mr) +
∑

j c
(j)
r (to obtain M′

r ∈ Ft×t)
8: for all party Pi do
9: It computes d̃ = Enc(pk,M′

l ·M′
r).

10: It outputs e = d̃−
∑

j d
(j)
l −

∑
j d

(j)
r −

∑
j c̃

(j)

11: end for

Analysis. We proceed to the analysis of the protocol described above.

Lemma 9 (Correctness). The protocol secMult is correct.

Proof. The correctness is straightforward.

Lemma 10 (Security). The protocol secMult securely EUC-realizes FOMM with
shared ideal functionality FGen against semi-honest adversaries corrupting up to
N − 1 parties, given that TPKE is IND-CPA.

Proof (Sketch). Assume that the adversary corruptsN−k parties. The simulator
takes the inputs from these parties and send them to the ideal functionality. Upon
receiving the encrypted value Enc(pk,Ml ·Mr), it simulates the protocol as the
honest parties would do.

We now prove that no set of at most N − 1 colluding parties can extract
information about Ml,Mr. First, observe that any set of N − 1 parties cannot
extract any information about encrypted values that are not decrypted during
the protocol (because there is always a missing secret key share) given that TPKE
is IND-CPA. Second, we analyze the matrix M′

l (which is decrypted during the

protocol). We have that M′
l = Ml +

∑
j R

(j)
l . Hence, there is always at least

one matrix R
(ℓ)
l which is unknown to the adversary and that perfectly hides the

matrix Ml (the same happens M′
r.

Complexity. The communication complexity of the protocol is dominated by the
messages carrying the (encrypted) matrix. Hence, assuming a broadcast chan-
nel between the parties, the protocol has communication complexity of O(Nt2)

27

where t is the size of the input matrices and N the number of parties involved
in the protocol.

B.2 Compute the Rank of a Matrix

Protocol. We present this protocol in the full version of this paper in [6].

Complexity. Each party broadcasts O(t2k log t) bits of information, where k =
log |F|. To see this, note that the communication of the protocol is dominated
by the computation of the circuit that computes the degree of a and this can be
implemented with communication cost of O(t2k log t) [24]. Assuming a broadcast
channel, the communication complexity is Õ(Nt2)

B.3 Invert a Matrix

In this section, we present and analyze a protocol that allows N parties to invert
an encrypted matrix. In this setting, each of the N parties holds a secret share
of a public key pk of a TPKE. Given an encrypted matrix, they want to compute
an encryption of the inverse of this matrix.

Ideal Functionality. The ideal functionality of oblivious rank computation is
defined below.

FOInv functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q, known
to the N parties involved in the protocol. pk public-key of a threshold
PKE scheme.

– Upon receiving (sid,P1,Enc(pk,M)) from party P1 (where M ∈
Ft×t is a non-singular matrix), FORank outputs Enc(pk,M−1) to
P1 and (Enc(pk,M),Enc(pk,M−1)) to all other parties Pi, for
i = 2, . . . , N .

Protocol. This protocol allows N parties to jointly compute the encryption of
the inverse of a matrix, given that this matrix is non-singular. Please refer to
the full version of this paper in [6] to see details.

Analysis. The proofs of the following lemmas follow the same lines as the proofs
in the analysis of secMult protocol. We state the lemmas but omit the proofs for
briefness.

Lemma 11. The protocol secInv is correct.

Lemma 12. The protocol secInv securely EUC-realizes FOInv with shared ideal
functionality FGen against semi-honest adversaries corrupting up to N−1 parties,
given that TPKE is IND-CPA.

28

Complexity. Each party broadcasts O(t2) bits of information. The communica-
tion complexity of the protocol is O(Nt2), assuming a broadcast channel.

B.4 Secure Unary Representation

Following [24], we present a protocol that allows to securely compute the unary
representation of a matrix.

Ideal Functionality. The ideal functionality for Secure Unary Representation is
given below.

FSUR functionality

Parameters: sid, N, q, t ∈ N and F, where F is a field of order q, known
to the N parties involved in the protocol. pk public-key of a threshold
PKE scheme.

– Upon receiving (sid,P1,Enc(pk, r)) from party P1 (where r ∈
F and r ≤ t), FSUR computes (Enc(pk, δ1), . . . ,Enc(pk, δt))
such that δi = 1 if i ≤ r, and δi = 0 otherwise. The
functionality outputs (Enc(pk, δ1), . . . ,Enc(pk, δt)) to P1 and
(Enc(pk, r), (Enc(pk, δ1), . . . ,Enc(pk, δt))) to all other parties Pi,
for i = 2, . . . , N .

Protocol. A protocol for secure unary representation can be implemented with
the help of a binary-conversion protocol [37]. That is, given Enc(pk, r), all parties
jointly compute Enc(pk, δi), where δi = 1, if i ≤ r, and δi = 0 otherwise, via a
Boolean circuit (which can be securely implemented based on Paillier cryptosys-
tem).

Communication complexity. We can calculate the result using a Boolean circuit
of size O(r log t), thus the communication complexity is O(Nr log t).

B.5 Solve a Linear System

Protocol. We now present the Protocol 5 that allows multiple parties to solve
an encrypted linear system. In the following, we assume that the system has at
least one solution (note that this can be guaranteed using the secRank protocol).

Lemma 13 (Correctness). The protocol secLS is correct.

Proof. The proof follows directly from [23,24].

Lemma 14. The protocol secLS securely EUC-realizes FOLS with shared ideal
functionality FGen in the (FORank,FOInv,FSUR)-hybrid model against semi-honest
adversaries corrupting up to N − 1 parties, given that TPKE is IND-CPA.

Communication complexity. Each party broadcasts O(t2k log t) bits of informa-
tion where k = |F|. The total communication complexity is Õ(t2).

29

Protocol 5 Secure Linear Solve secLS
Setup: Each party has a secret key share ski for a public key pk of a TPKE TPKE =

(Gen,Enc,Dec). The parties have access to the ideal functionalities FORank, FOInv

and FSUR.
Input: Party P1 inputs Enc(pk,M) where M ∈ Ft×t is a non-singular matrix.
1: All parties jointly compute an encryption of the rank Enc(pk, r) of M via the ideal

functionality FORank.
2: Set Enc(pk,M′) := Enc(pk,M) and Enc(pk,y′) := Enc(pk,y).
3: for i from 1 to N do
4: Pi samples two non-singular matrices Ri,Qi from Ft×t. It calculates

Enc(pk,M′) = Enc(pk,RiM
′Qi) and Enc(pk,y′) = Enc(pk,Riy

′). Pi broadcasts
Enc(pk,M′),Enc(pk,y′).

5: end for
6: All the parties jointly compute Enc(δ1), . . . ,Enc(δt) by invoking FSUR on input

Enc(pk, r). They set Enc(pk,∆) := Enc

pk,

δ1 . . . 0
...
. . .

...
0 . . . δt


. Finally, they compute

Enc(pk,N) := Enc(pk,M′ ·∆+ It −∆), where It ∈ Ft×t is the identity matrix.
7: All the parties jointly compute Enc(N−1) by invoking FOInv on input Enc(pk,N).
8: Each party Pi samples ui ←$Ft and broadcasts (Enc(pk,M′ui),Enc(pk,ui)).
9: All parties jointly compute Enc(pk,u′) = Enc(pk,N−1y′

r) by invoking FOMM,
where Enc(pk,y′

r) = Enc(pk, (y′ +
∑

j M
′uj)∆). Then they set Enc(pk,x) =

Enc(pk, (
∑

j uj)− u′).
10: for i from N to 1 do
11: Pi calculates Enc(pk,x) = Enc(pk,Q−1

i x). Pi broadcasts Enc(pk,x).
12: end for
13: P1 outputs Enc(pk,x).

30

	Multiparty Cardinality Testing for Threshold Private intersection

