
Multi-Client Functional Encryption for
Separable Functions

Michele Ciampi1 , Luisa Siniscalchi2, and Hendrik Waldner1

1 The University of Edinburgh, Edinburgh, UK
{michele.ciampi,hendrik.waldner}@ed.ac.uk

2 Concordium Blockchain Research Center, Aarhus University, Aarhus, Denmark
lsiniscalchi@cs.au.dk

Abstract. In this work, we provide a compiler that transforms a single-
input functional encryption scheme for the class of polynomially bounded
circuits into a multi-client functional encryption (MCFE) scheme for
the class of separable functions. An n-input function f is called sepa-
rable if it can be described as a list of polynomially bounded circuits
f1, . . . , fn s.t. f(x1, . . . , xn) = f1(x1) + · · · + fn(xn) for all x1, . . . , xn.
Our compiler extends the works of Brakerski et al. [Eurocrypt 2016]
and of Komargodski et al. [Eurocrypt 2017] in which a generic compiler
is proposed to obtain multi-input functional encryption (MIFE) from
single-input functional encryption. Our construction achieves the stronger
notion of MCFE but for the less generic class of separable functions.
Prior to our work, a long line of results has been proposed in the setting
of MCFE for the inner-product functionality, which is a special case of
a separable function. We also propose a modified version of the notion
of decentralized MCFE introduced by Chotard et al. [Asiacrypt 2018]
that we call outsourceable mulit-client functional encryption (OMCFE).
Intuitively, the notion of OMCFE makes it possible to distribute the load
of the decryption procedure among at most n different entities, which
will return decryption shares that can be combined (e.g., additively) thus
obtaining the output of the computation. This notion is especially useful
in the case of a very resource consuming decryption procedure, while the
combine algorithm is non-time consuming. We also show how to extend
the presented MCFE protocol to obtain an OMCFE scheme for the same
functionality class.

1 Introduction

Compared to traditional public-key encryption, functional encryption (FE) [10,34]
enables fine-grained access control of encrypted data. In more detail, a FE scheme
is equipped with a key generation algorithm that allows the owner of a master
secret key to generate a functional key skf associated with a function f . Using
such a functional key skf for the decryption of a ciphertext ct = Enc(sk, x) yields
only f(x). Roughly speaking, the security of a functional encryption scheme
guarantees that no other information except for f(x) is leaked. In the classical
notion of FE, the decryption algorithm takes as input a single ciphertext and a

https://orcid.org/0000-0001-5062-0388
https://orcid.org/0000-0002-9083-5794
mailto:michele.ciampi@ed.ac.uk,hendrik.waldner@ed.ac.uk
mailto:lsiniscalchi@cs.au.dk

2 M. Ciampi, L. Siniscalchi, and H. Waldner

functional key for a single-input (one-variable) function. The more general notion
of Multi-Input Functional Encryption (MIFE) [25] allows the evaluation of an
n-input function on n encrypted inputs. In more detail, the decryption algorithm
takes as an input n ciphertexts Enc(sk, x1), . . . ,Enc(sk, xn) and a functional key
for an n-input function f ′ and outputs f ′(x1, . . . , xn).

In this work we consider an even stronger notion than MIFE called multi-
client functional encryption (MCFE) [25]. In the MCFE setting, each ciphertext
Enc(ski, xi) is encrypted using a different secret key ski. Moreover, an arbitrary set
of secret keys I = {ski1 , . . . , skim} can be leaked to the adversary. Intuitively, the
notion of MCFE, says that the adversary cannot learn more about the ciphertexts
generated using the disclosed keys than what it can learn by evaluating f ′. Note
that the adversary in this case can evaluate f ′ using any input that it chooses
with respect to the positions i1, . . . , im. In general, we can distinguish between
two types of MCFE schemes: labeled and unlabeled [2, 4]. In the labeled case
every ciphertext is encrypted under a label `. A valid decryption requries that
the input ciphertexts have been encrypted under the same label (otherwise the
decryption procedure generates an invalid output). Our results are proven secure
under the stronger notion of security with labels, which also allows the adversary
to obtain multiple ciphertexts under the same label. This additional security
requirement has been considered since [2, 18].

In this work we focus on MCFE for a specific functionality class called
separable functions [32, 33]. A separable function is an efficiently computable
function f that can be separated into a list of efficiently computable functions
f1, . . . , fn s.t. f(x1, . . . , xn) = f1(x1) + · · · + fn(xn) for all x1, . . . xn, with xi
contained in the domain of f i. This is not restricted to addition but to any group
operation, therefore also multiplication (i.e., f(x1, . . . , xn) = f1(x1) · . . . · fn(xn)
for all x1, . . . xn, with xi contained in the domain of f i). Separable functions
are used in many real-world applications, and a MCFE scheme, covering such a
functionality class, would enable privacy in these scenarios. For example, consider
the problem of counting a specific word w in n different files, provided by n
different parties, that contain sensitive information. In more detail, assume that
we have n parties and each party Pi owns a file which is encrypted using a FE
scheme under the secret key ski. Consider now an entity Pw that receives all
the encrypted files and wants to count the number of times that the word w
occurs in all these files. In addition, Pw receives a functional key skfw for the
separable function fw = f1

w, . . . , f
n
w , where each function f iw simply counts the

number of occurrences of the word w in a file. Given all the encrypted files and
skfw , Pw can compute the number of occurrences of w over all the encrypted
files. In addition, even if Pw manages to obtain some of the encryption keys, the
content of the files remains partially hidden.3 A second scenario where a MCFE
scheme can be useful is the aggregation of SQL-queries. In this context, it would
be possible to do the computation of sums, counting, and averages over multiple

3 For example in the worst case, where the adversary has all but the key skj , it should
be able to compute the number of times that the word w appears in the i-th file, but
nothing more than that.

Multi-Client Functional Encryption for Separable Functions 3

(n) encrypted tables held by different authorities. As already mentioned in [33]
separable functions have several applications in sensor and peer-to-peer networks,
where different functions are computed over the data of the different sensors (or
resp. peers) and only the sum of evaluations should be learned by the decryptor,
but nothing about the individual results of the sensors (resp. peers).

Decentralized MCFE. Both, the notions of MIFE and MCFE, assume the existence
of a central trusted authority that generates and distributes the secret and
functional keys. This is undesirable in some scenarios, given that an adversarial
trusted authority can compromise the security of the MCFE scheme (note that
the trusted authority can generate any functional key, hence also the functional
key for the identity function). To remove the need for a trusted authority, Chotard
et al. [17] introduced the notion of decentralized multi-client functional encryption
(DMCFE), where the generation of the secret keys and the functional keys
happens in a decentralized way. In this work, we consider DMCFE for the case
of separable functions.

1.1 Our Contribution

In this paper we investigate the feasibility of constructing MCFE for separable
functions starting from any general-purpose FE scheme. In more detail, we provide
a compiler that takes as input any secret-key FE scheme and outputs a MCFE
scheme for separable functions that is selectively secure4 and supports an a priori
bounded (but still polynomial) number of encryption and an unbounded number
of n-input functional key queries (where n is polynomially related to the security
parameter). We show how to extend the above scheme to the case of adaptive
security5 (where the adversary can request an a priori bounded number of en-
cryptions and functional keys at any time). We now state our theorems informally.

Theorem 1 (informal). Assuming the existence of any selective secure secret-key
FE scheme that supports an a priori bounded number of encryption queries and
an unbounded number of functional key queries, then there exists a selective
secure MCFE scheme for separable functions that supports a bounded number of
encryption queries and an ubounded number of functional key queries.
Theorem 2 (informal). Assuming the existence of any adaptive secure secret-key
FE scheme that supports an a priori bounded number of encryption and functional
key queries, then there exists an adaptive secure MCFE scheme for separable
functions that supports a bounded number of encryption queries and functional
key queries.

4 We actually mean static-selective, i.e. the adversary has to submit all its message
and corruption queries at the beginning of the game.

5 We consider adaptive-adaptive security, which means that the adversary is allowed
to query all the oracles, i.e. message and corruption oracles, throughout the whole
game.

4 M. Ciampi, L. Siniscalchi, and H. Waldner

We prove our constructions for the so-called pos+ security notion [1, 18]. In a
pos+ security game an adversary is required to ask a left-or-right query under
a specific label in either every or none position. A second notion called any
security [1, 18] allows the adversary to ask a left-or-right encryption query on
as many positions as it wants without any restrictions. To achieve the notion of
any security, we make use of a slightly modified version of a black-box compiler
presented in [1] which amplifies any pos+ secure MCFE scheme into an any
secure MCFE scheme.

In the next step, we discuss how to modify our constructions in order to
obtain a DMCFE scheme for separable functions and prove the following theorem.

Theorem 3 (informal). Assuming the existence of any selective (adaptive) secure
secret-key FE scheme that supports an a priori bounded number of encryptions
queries (and a bounded number of functional key queries), then there exists a
selective (adaptive) secure DMCFE scheme for separable functions that supports
a bounded number of encryption queries (and a bounded number of functional
key queries).

Outsourceable MCFE. As an additional contribution, we introduce a new notion
called outsourceable multi-client functional encryption (OMCFE). Intuitively,
the notion of OMCFE makes it possible to outsource the load of the decryption
procedure among n different entities. In more detail, let f be the n-input separable
function that we want to evaluate, then the key-generation algorithm of an
OMCFE scheme generates n partial functional keys skf,1, . . . , skf,n (one for each
input-slot of f), instead of generating one functional key skf for f . Each of the
functional keys skf,i can be applied on a ciphertext cti,` (a ciphertext under label
` that contains the i-th input of the function) to obtain a decryption share ϕi,`.
An evaluator that obtains all the n share (one for each input slot), can compute
the final output by running a combine algorithm taking the shares as an input.

This notion becomes important in the case where the combine algorithm
is significantly more efficient than the partial decryption procedure. More for-
mally, we require that the computational complexity of the combine algorithm is
independent from the computational complexity of the function f .

Coming back to the word count example, it is possible to give skfi
w
and an

encryption of the i’th part of a huge file, to an entity Pi (for each i ∈ [n]) and let Pi
generate the decryption share by executing the decryption procedure. In this way
an evaluator Pw, would receive the decryption shares from P1, . . . , Pn, and execute
the (light) combine algorithm to obtain the final output of the computation. The
word count example can also be seen as a special case of a class of problems
that can be parallelized using the MapReduce paradigm [21]. This parallelization
paradigm consists of a map phase which divides the problem into sub-problems
and a reduce phase which parallelizes the aggregation of the partial solutions. It is
easy to see that if the reduce phase consists of addition/multiplication operations
then our OMCFE scheme could be particularly useful to implement a layer of
privacy on top of this parallelization paradigm.

Multi-Client Functional Encryption for Separable Functions 5

The security definition of this notion is almost identical to the security defini-
tion of MCFE. They mainly differ in their correctness definition (since the key
generation algorithm and the decryption algorithm are different). We show how
to obtain an OMCFE for the class of separable functions. In particular, we have
the following informal theorem.

Theorem 4 (informal). Assuming the existence of any selective (adaptive) secure
secret-key FE scheme that supports an a priori bounded number of encryptions
queries (and a bounded number of functional key queries), then there exists a
selective (adaptive) secure OMCFE scheme for separable functions that supports
a bounded number of encryption queries (and a bounded number of functional
key queries).

Instantiations. Our constructions can be instantiated from various assumptions.
There exists a general-purpose secret-key FE scheme from indistinguishability
obfuscation or multilinear maps [13]. We can obtain our adaptive secure MCFE
scheme (and the decentralized one) from learning with errors [26], one-way
functions or low-depth pseudorandom generators [27]. In more detail, as already
mentioned in [13], based on the results of Ananth et al. [8] and Brakerski et
al. [15], it is possible to generically obtain a function-hiding scheme by relying
on any selectively secure and message-private functional encryption scheme.6
This implies that function-hiding schemes for any number of encryption and
key-generation queries can be based on indistinguishability obfuscation [23,35],
differing-input obfuscation [7, 11], and multilinear maps [24]. Besides this, it
is possible to construct function-hiding schemes for a polynomially bounded
number, denoted by q, of encryption and key-generation queries by relying on
the Learning with Errors (LWE) assumption (where the length of ciphertexts
grows with q and with a bound on the depth of allowed functions) [26], or on
pseudorandom generators computable by small-depth circuits (where the length
of ciphertexts grows with q and with an upper bound on the circuit size of the
functions) [27], and based on one-way functions (for q = 1) [27].

1.2 Overview of our Techniques

Our Compiler. We present a compiler that transforms any selectively secure
single-input FE scheme FE into a selectively secure MCFE scheme MCFE for the
class of n-input separable functions. We provide an incremental description of
how our compiler works.

In the setup procedure of MCFE we execute n times the setup of FE thus
obtaining n master secret keys msk1, . . . ,mskn. We define the i’th secret key for
MCFE as ski := mski for i = 1, . . . , n, whereas the master secret key of MCFE
6 In the informal theorems above we actually require the underlying functional encryp-
tion scheme to be function-hiding, but since this property comes for free from any
selectively secure and message-private functional encryption scheme, we do not state
it specifically.

6 M. Ciampi, L. Siniscalchi, and H. Waldner

is represented by all the secret keys {sk1, . . . , skn}. To encrypt a message xi for
the position i we simply run the encryption algorithm of FE using the secret
key ski and the message xi thus obtaining the ciphertext cti. To generate a
functional key for a separable function f := {f1, . . . , fn} the key generation
algorithm randomly samples a secret sharing of 0: r1 + · · · + rn = 0 (we refer
to this values as r-values) and runs, using the master secret key mski (which
corresponds to ski) of FE the key generation algorithms for FE to generate a
functional key skfi

ri
for f iri

. The function f iri
takes as an input xi and outputs

f i(xi) + ri. The output of the key generation algorithm is then represented by
{skf1

r1
, . . . , skfn

rn
}. The decryption algorithm of MCFE, on input the ciphertext

ct := {ct1, . . . , ctn} and the functional keys {skf1
r1
, . . . , skfn

rn
} runs the decryption

algorithm for FE on input skfi
ri

and cti thus obtaining ϕi for i = 1, . . . , n. The
output of the decryption procedure is then given by ϕ1 + · · · + ϕn which is
equal to f(x1, . . . , xn) due to the property of f and the way the values r1, . . . , rn
are sampled. Intuitively, the security of this scheme comes from the fact that a
functional key skfi

ri
for FE hides the description of the function, hence it hides

the value ri. The fact that the value ri is protected allows us to argue that ϕi
encrypts the partial output f i(xi) (that the adversary is not supposed to see).
Indeed, ϕi can be seen as the one-time pad encryption of f i(xi) using the key ri.

We show that for the class of separable functions the described one-time
pad encryption is sufficient for several encryption queries. This is possible by
exploiting the fact that the security game for functional encryption requires
that f(x0

1, . . . , x
0
n) = f(x1

1, . . . , x
1
n) for all the challenge queries (x0

i , x
1
i) and

all the functional key queries f . This means, in the case of separable func-
tions, that

∑
i∈[n] f

i(x0
i) =

∑
i∈[n] f

i(x1
i), which is equivalent to f i

∗(x0
i∗) −

f i
∗(x1

i∗) =
∑
i∈[n]\{i∗} f

i(x1
i)− f i(x0

i). This restriction enforces the security of
the information-theoretic encryption under many queries (we show this using a
simple reduction).

To extend our scheme to the labeled setting, we modify it as follows: Assuming
that we know a polynomial upper-bound on the number of labels q, during the
setup phase, we generate q random secret sharings of 0: t1,j + · · · + tn,j := 0,
with j ∈ [q] (we refer to this values as the t-values) and the i’th secret key now
becomes ski := (mski, {ti,j})j∈[q]. To encrypt a message xi under the label j the
encryptor runs the encryption algorithm of FE on input ski and the concatenation
of xi with ti,j , thus obtaining cti,j .

To generate a functional key for the function f , a secret sharing of 0 is
generated as before (i.e., r1 + · · · + rn = 0), but this time we generate the
functional key skf̃i

ri

of FE for the function f̃ iri
. The function f̃ iri

takes as input
(xi, ti,j , j) and outputs f i(xi) + ri + ti,j . The output of the key generation
algorithm is then represented by {skf̃1

r1
, . . . , skf̃n

rn
}. The decryption procedure for

this new scheme works exactly as before. Let ϕi,j be the output of the decryption
algorithm of FE on input cti,j (the ciphertext computed with respect to the label
j) and skfi

ri
. Intuitively, our new scheme allows encrypting multiple messages

under different labels, since the partial decryption ϕi,j is now encrypted using a

Multi-Client Functional Encryption for Separable Functions 7

fresh one-time pad key which corresponds to the combination of the r-value ri
(hidden inside the function) and the t-value ti,j (hidden inside the ciphertext) for
every label j. Note that even if new t-values are generated for each encryption
we still need to rely on the r-values hidden inside the function. Otherwise an
adversary could use the same ciphertext cti,j as the input of multiple functions,
which would be the same as reusing a one-time pad key.

Even if this scheme is secure under the generation of multiple encryptions
and functional keys it has the drawback that the size of each secret key growths
with q (the upper-bound to the number of encryptions). To tackle this problem
we borrow a technique from the work of Abdalla et al. [1]7, that allows multiple
parties to generate a secret sharing of 0 non-interactively by agreeing on a set
(of size n) of pseudo-random function (PRF) keys during the setup. We refer
to Section 4 for more details. The adaptive q-message q-function bounded MCFE
scheme works in a similar way, the main differences are regarding the size of the
ciphertext and the size of the functional keys. For the selective scheme only the
size of the functional keys depends on q, whereas in the adaptive scheme also the
ciphtertexts grow with q. The details for this proof can be found in Section 5.

Decentralized Multi-Client Functional Encryption. In a DMCFE scheme,
as introduced in [17], the key-generation phase is decentralized in the sense that
each secret key owner should be able to compute a partial functional key for a
function f , such that the combination of all these partial functional keys allows
the generation of a valid functional key for f . Additionally, it is assumed that
the setup procedure is a protocol between the different parties that allows for the
generation of the different secret keys. This results in a completely decentralized
setup that does not require a trusted authority. The MCFE scheme presented
above seems to be easily translatable into the decentralized setting but there is
an issue: the key generation phase of MCFE requires the computation of a new
set of r-values such that r1 + · · ·+ rn = 0 for each function f which needs to be
computed without interaction between the parties. To do that, we adopt again
the technique proposed in [1] to distributively generate a secret sharing of 0. The
idea of decentralizing a MCFE scheme in this way has first been proposed in [2].

Outsourceable Multi-Client Functional Encryption. We show how to
obtain, with minor modifications to the presented compiler, an OMCFE scheme.
The proof works, as already mentioned in the previous sections, by relying on
the fact that the values ϕi,` do not reveal any information on the encrypted
messages.

Remark 1.1. Without loss of generality, in the remainder of this paper, we only
refer to the case of additive separability. However, our compiler also works for
the case of multiplicative separability. To achieve multiplicative separability all
7 This technique has previously been used in [16] to remove the central authority in
the context of multi-authority attribute based encryption and in [30] in the context
of privacy-friendly aggregation.

8 M. Ciampi, L. Siniscalchi, and H. Waldner

the additive operators need to be replaced by its multiplicative counterparts (i.e.
addition with multiplication and subtraction with division). Also the group we
need to operate in needs to be changed from an additive group to a multiplicative
group, e.g. from Zp to Z∗p

1.3 Related Work

Multi-Input/Client Functional Encryption. Since the introduction of multi-input
and multi-client functional encryption [25] several contributions have been made
to provide constructions in these areas. In this work we follow the notation
of [28], which means that we denote a scheme with a single encryption key
that can be used to generate ciphertexts for every position as a MIFE scheme
and a scheme where every position is associated with its own encryption key
as multi-client functional encryption scheme. One of the main techniques that
have been proposed to construct MIFE schemes are “liftings” from single-input
functional encryption into the multi-input setting. The first foundational work
that presents such a “lifting” in the secret-key setting is the work of Brakerski et
al. [12]. In this work, the authors manage to transform a single-input selectively
secure functional encryption scheme into an adaptive function-hiding multi-input
functional encryption scheme which supports a constant number of inputs. In [29]
the authors, among other results, improve the result of [12] by obtaining a MIFE
scheme that supports functions with 2t = (log λ)δ inputs, where 0 < δ < 1. Both
of these transformations require a single-input functional encryption scheme for
the class of polynomially bounded circuits as an input. The schemes that cover
the class of polynomially bounded circuits can be divided into two categories.
The first category is only able to handle a bounded number of plaintexts (a
so called message-bounded scheme) and (or) a bounded number of functional
keys, whereas the second class is able to handle an unbounded number of queries
and functional keys. A construction that falls into the first category is given by
Gorbunov, Vaikuntanathan and Wee [27]. Their construction relies only on the
existence of one-way functions. A second construction in this category has been
proposed by Goldwasser et al. [26] and it is based on the Learning with Errors
(LWE) assumption.

In the case of unbounded message security most of the known constructions are
based on less standard assumptions like indistinguishable obfuscation [9, 23,35],
multilinear maps [24] and differing-input obfuscation [7,11]. All of the mentioned
schemes are also covering the functionality class of polynomially bounded circuits.

Beside the class of polynomially bounded circuits, it is also possible to
construct multi-input functional encryption schemes for more specific functionality
classes, like inner-product. The first multi-input functional encryption scheme for
inner-product functions has been provided by Abdalla et al. [5]. The construction
they present relies on pairings. A follow up work [4] proposes a compiler that
takes as input a single-input functional encryption scheme that fulfills some
special properties and outputs a MIFE scheme for inner-product functions. This
construction does not require pairings and can be instantiated using DDH, Paillier
or LWE. It turns out that the construction of Abdalla et al. [4] also fulfills the

Multi-Client Functional Encryption for Separable Functions 9

Number
of Inputs Functions Setting Assumptions

[12] Constant Generic MIFE SK Single-input FE

[29] log(λ)δ
0 < δ < 1 Generic MIFE SK Single-input FE

[4] poly(λ) Inner-product (D)MCFE
(no labels)

SK Single-input FE
for Inner-product

[1] poly(λ) Inner-product (D)MCFE PK Single-input FE
for Inner-product

This
work poly(λ) Separable

functions (D)MCFE SK Single-input FE

Table 1: Comparison with the most relevant compilers. λ: the security parameter,
SK: secret key, PK: public key.

stronger notion of multi-client functional encryption (without labels) which has
been proven in [2]. In the case of multi-client functional encryption, it can be
distinguished between two cases, the labeled and the unlabeled case. Labels
enforce an additional restriction on the decryption procedure. Namely, it is only
possible to decrypt tuples of ciphertexts that are encrypted under the same label,
otherwise the decryption procedure outputs an invalid value. The first labeled
scheme for the inner-product functionality has been proposed in [17]; its security
is proven based on DDH in the random oracle model. Following, Abdalla et al. [1]
and Libert and Titiu [31] show how to construct multi-client functional encryption
with labels in the standard model. In more detail, Abdalla et al. [1] present a
compiler that lifts a single-input public key functional encryption scheme, which
can be instantiated using MDDH, DCR or LWE, into a MCFE scheme with
labels. Whereas, Libert and Titiu [31] show how to directly construct a MCFE
scheme with labels based on LWE. More recently, Abdalla et al. [3] show how
to construct a MCFE scheme with labels in the random oracle model based on
MDDH, DCR or LWE, which extends the results of Chotard et al. [17]. In Table 1
we provide a short comparison between the most relevant compilers that turn a
single-input FE scheme into a MIFE or MCFE scheme.

Decentralization. The notion of DMCFE has been introduced in the work of
Chotard et al. [17] in the context of inner product functional encryption. In their
work, the authors also present a construction based on the symmetric external
Diffie-Hellman assumption in the random oracle model that achieves security in
the DMCFE setting. Since then, several compilers for inner product functional
encryption have been proposed [1,2,18] that turn a MCFE scheme into a DMCFE
scheme. In the works [1, 2] the authors present decentralization compilers that
purely rely on information theoretic arguments in the standard model and in

10 M. Ciampi, L. Siniscalchi, and H. Waldner

the work of Chotard et al. [18] the authors present a compiler based on either
the CDH assumption in the random oracle model or the DDH assumption in
the standard model. The standard notion of DMCFE [17], with and without
labels [2], has the main limitation that it is not possible to let parties join or
leave adaptively after the setup procedure has been executed. This problems has
been first considered in the work of Agrawal et al. [6], where the authors propose
the notion of Ad Hoc Multi-Input Functional Encryption. In this setting every
user generates its own public and secret key. Functional key shares are generated
with respect to the public keys of other parties. Combining all the functional keys
of the specified subset of parties yields the full functional key. This notion allows
every party to join the system adaptively and to decide during the key generation
which parties’ data can be used in the decryption. The authors show how to
realize this notion by bootstrapping standard MIFE to ad hoc MIFE without
relying on additional assumptions. They also present a direct construction of an
ad hoc MIFE for the inner product functionality based on the LWE assumption.
In both constructions malicious security is achieved in the common reference
string (CRS) model. The high level idea of these constructions is to combine
standard MIFE and two-round secure multi-party computation. Another work
that considers the above mentioned limitation is the work of Chotard et al. [19].
In their work, the authors introduce the notion of dynamic decentralized MCFE,
which generalizes the notion of ad-hoc MIFE. The notion of dynamic DMCFE
does not require a specified group of users for the generation of a functional
key. Additionally, their notion also considers labels, to prevent certain mix and
match attacks and leaks less information about the underlying plaintexts. The
authors present a dynamic DMCFE scheme for the inner product functionality
from standard assumptions in the random oracle model.

2 Preliminaries

Notation. We denote the security parameter with λ ∈ N. A randomized al-
gorithm A is running in probabilistic polynomial time (PPT) if there exists a
polynomial p(·) such that for every input x the running time of A(x) is bounded
by p(|x|). We call a function negl : N→ R+ negligible if for every positive poly-
nomial p(λ) a λ0 ∈ N exists, such that for all λ > λ0 : ε(λ) < 1/p(λ). We denote
by [n] the set {1, . . . , n} for n ∈ N. We use “=” to check equality of two different
elements (i.e. a = b then...) and “:=” as the assigning operator (e.g. to assign
to a the value of b we write a := b). A randomized assignment is denoted with
a← A, where A is a randomized algorithm and the randomness used by A is not
explicit. If the randomness is explicit we write a := A(x; r) where x is the input
and r is the randomness. We denote the winning probability of an adversary A
in a game or experiment G as WinG

A(λ, n), which is Pr[G(λ, n,A) = 1]. The prob-
ability is taken over the random coins of G and A. We define the distinguishing
advantage between games G0 and G1 of an adversary A in the following way:
AdvG

A(λ, n) =
∣∣WinG0

A (λ, n) −WinG1
A (λ, n)

∣∣. The notation (−1)j<i denotes −1 if
j < i and 1 otherwise.

Multi-Client Functional Encryption for Separable Functions 11

2.1 Secret-Key Functional Encryption

In this section, we define the notion of secret-key functional encryption (SK-FE)
[14]. They are an adaption of the notion from [10,34].

Definition 2.1 (Secret-Key Functional Encryption). Let F = {Fλ}λ∈N be
a collection of function families (indexed by λ), where every f ∈ Fλ is a polynomial
time function f : Xλ → Yλ. A secret-key functional encryption scheme (SK-FE)
for the function family Fλ is a tuple of four algorithms FE = (Setup,KeyGen,
Enc,Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ
and generates a master secret key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ Fλ,
and outputs a functional key skf .

Enc(msk, x): Takes as input the master secret key msk, a message x ∈ Xλ to
encrypt, and outputs a ciphertext ct.

Dec(skf , ct): Takes as input a functional key skf and a ciphertext ct and outputs
a value y ∈ Yλ.

A scheme FE is correct, if for all λ ∈ N, msk ← Setup(1λ), f ∈ Fλ, x ∈ Xλ,
when skf ← KeyGen(msk, f), we have

Pr [Dec(skf ,Enc(msk, x)) = f(x)] = 1 .

We define the security of a SK-FE scheme using a left-or-right oracle. We
distinguish between selective and adaptive submission of the encryption challenges.
We consider a function-hiding secure SK-FE scheme, which, intuitively, means
that the SK-FE scheme guarantees privacy for both, the description of the
functions and the encrypted messages. We will recall now the formal definition.

Definition 2.2 (Function-Hiding of SK-FE). Let FE be an SK-FE scheme,
F = {Fλ}λ∈N a collection of function families indexed by λ. For xx ∈ {sel, ad}
and β ∈ {0, 1}, we define the experiment xx-FHFE

β in Fig. 1, where the oracles
are defined as:

Left-or-Right oracle QLeftRight(x0, x1): Outputs ct ← Enc(msk, xβ,j) on a
query (x0, x1). We denote by QLeftRight the set containing the queries (x0, x1).

Key generation oracle QKeyG(f0, f1): Outputs skf ← KeyGen(msk, fβ) on a
query (f0, f1). We denote by Qf the queries of the form QKeyG(·, ·).

and where Condition (*) holds if all the following condition holds:

– For every query (f0, f1) to QKeyG, and every query (x0, x1) ∈ QLeftRight, we
require that:

f0(x0) = f1(x1) .

12 M. Ciampi, L. Siniscalchi, and H. Waldner

sel-FHFE
β (λ,A)

QLeftRight ← A(1λ)
msk← Setup(1λ)
ctj ← QLeftRight(xj,0, xj,1),

for all (xj,0, xj,1) ∈ QLeftRight

α← AQKeyG(·,·)({ctj}j∈[QEnc])
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise

ad-FHFE
β (λ,A)

msk← Setup(1λ)
α← AQLeftRight(·,·),QKeyG(·,·)(1λ)
Output: α if Condition (*) is

satisfied, or a uniform
bit otherwise

Fig. 1: Function-Hiding Games for SK-FE

We define the advantage of an adversary A for xx ∈ {sel, ad} in the following
way:

Advxx-FH
FE,A (λ) = |Pr[xx-FHFE

0 (λ,A) = 1]− Pr[xx-FHFE
1 (λ,A) = 1]| .

A secret-key functional encryption scheme FE is xx-FH secure, if for any
polynomial-time adversary A, there exists a negligible function negl such that:
Advxx-FH

FE,A (λ) ≤ negl(λ). In addition, we call a scheme q-message bounded, if
|QLeftRight| < q and q-message-and-key bounded, if |QLeftRight| < q and |Qf | < q,
with q = poly(λ).

2.2 Multi-Client Functional Encryption

Now, we introduce multi-client functional encryption (MCFE) as in [1,2,25]. In a
multi-client functional encryption scheme, every client can encrypt its own input
(corresponding to a slot) and the evaluation of a functional key is executed over
the ciphertexts of all the clients.

Definition 2.3 (Multi-Client Functional Encryption). Let F = {Fλ}λ∈N
be a collection of function families (indexed by λ), where every f ∈ Fλ is a
polynomial time function f : Xλ,1 × · · · × Xλ,n → Yλ. Let Labels = {0, 1}∗ or
{⊥} be a set of labels. A multi-client functional encryption scheme (MCFE)
for the function family Fλ supporting n users, is a tuple of four algorithms
MCFE = (Setup,KeyGen,Enc,Dec):

Setup(1λ, n): Takes as input a unary representation of the security parameter
λ, and the number of parties n and generates n secret keys {ski}i∈[n], and a
master secret key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ Fλ,
and outputs a functional key skf .

Enc(ski, xi, `): Takes as input a secret key ski, a message xi ∈ Xλ,i to encrypt, a
label ` ∈ Labels, and outputs a ciphertext cti,`.

Multi-Client Functional Encryption for Separable Functions 13

Dec(skf , ct1,`, . . . , ctn,`): Takes as input a functional key skf and n ciphertexts
under the same label ` and outputs a value y ∈ Yλ.

A scheme MCFE is correct, if for all λ, n ∈ N, ({ski}i∈[n],msk)← Setup(1λ, n),
f ∈ Fλ, xi ∈ Xλ,i, when skf ← KeyGen(msk, f), we have

Pr [Dec(skf ,Enc(sk1, x1, `), . . . ,Enc(skn, xn, `)) = f(x1, . . . , xn)] = 1 .

A scheme can either be without labels, in this case Labels = {⊥} or with
labels/labeled, where Labels = {0, 1}∗. In this work, we only consider schemes
that are labeled, i.e. Labels = {0, 1}∗. Where the latter case implies the former.

The security definition is the initial definition of Goldwasser et al. [25] (more
specifically [28]), whereas we also allow the adversary to determine under which
label it wants to query the left-or-right oracle and, in addition, we give the
adversary access to an encryption oracle. Besides this, we also allow the adversary
to query a single label several times. This security definition has initially been
considered in [1, 18]. As also noted in [1, 2] the security model of multi-client
functional encryption is similar to the security model of standard multi-input
functional encryption, whereas in the latter only a single master secret key msk is
used to generate encryptions for every slot i. In comparison to the standard multi-
input functional encryption model, we also consider static and adaptive corruption
of the different slots and selective and adaptive left-or-right and encryption oracle
queries in the multi-client case. In more detail, in the selective case the adversary
is required to ask all his left-or-right, encryption and corruption queries in the
beginning of the game. In the adaptive case, the adversary is allowed to ask
left-or-right, encryption and corruption queries throughout the whole game.

Definition 2.4 (Security of MCFE). Let MCFE be an MCFE scheme, F =
{Fλ}λ∈N a collection of function families indexed by λ and Labels a label set.
For xx ∈ {sel, ad}, yy ∈ {pos+, any} and β ∈ {0, 1}, we define the experiment
sel-yy-INDMCFE

β in Fig. 2 and ad-yy-INDMCFE
β in Fig. 3, where the oracles are

defined as:

Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We denote
by CS the set of corrupted slots at the end of the experiment.

Left-or-Right oracle QLeftRight(i, x0
i , x

1
i , `): Outputs cti,` ← Enc(ski, xβi , `) on

a query (i, x0
i , x

1
i , `). We denote the queries of the form QLeftRight(i, ·, ·, `)

by Qi,` and the set of queried labels by QL.
Encryption oracle QEnc(i, xi, `) Outputs cti,` ← Enc(ski, xi, `) on a query

(i, xi, `). We denote the queries of the form QEnc(i, ·, `) by Q′i,` and the
set of queried labels by QL′.

Key generation oracle QKeyG(f): Outputs skf ← KeyGen(msk, f) on a query
f . We denote by Qf the queries of the form QKeyG(·).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QLeftRight(i, x0
i , x

1
i , `),

x0
i = x1

i .

14 M. Ciampi, L. Siniscalchi, and H. Waldner

– For any label ` ∈ Labels, for any family of queries {QLeftRight(i, x0
i , x

1
i , `) or

QEnc(i, xi, `)}i∈[n]\CS , for any family of inputs {xi ∈ Xλ,i}i∈CS , we define
x0
i = x1

i = xi for any slot i ∈ CS and any slot queried to QEnc(i, xi, `), and
we require that for any query QKeyG(f):

f(x0) = f(x1) where xb = (xb1, . . . , xbn) for b ∈ {0, 1} .

– When yy = pos+: If there exists a slot i ∈ [n] and a ` ∈ Labels, such that
|Qi,`| > 0, then for any slot k ∈ [n] \ CS, |Qk,`| > 0. In other words, for any
label, either the adversary makes no left-or-right encryption query or makes
at least one left-or-right encryption query for each slot i ∈ [n] \ CS.

– When yy = any: there is no restriction in the left-or-right queries of the
adversary.

sel-yy-INDMCFE
β (λ, n,A)

(CS, {Qi,`}i∈[n],`∈QL, {Q′i,`}i∈[n],`∈QL′)← A(1λ, n)
({ski}i∈[n],msk)← Setup(1λ, n)
ctji,` ← QLeftRight(i, xj,0i , xj,1i , `), for all (xj,0i , xj,1i) ∈ Qi,`,

for all i ∈ [n] and ` ∈ QL.
ct′ji,` ← QEnc(i, xji , `), for all x

j
i ∈ Q′i,`, for all i ∈ [n]

and ` ∈ QL′.
α← AQKeyG(·)({ski}i∈CS , {ctji,`}i∈[n],`∈QL,j∈[|Qi,`|],

{ct′ji,`}i∈[n],`∈QL′,j∈[|Q′
i,`
|])

Output: α if Condition (*) is satisfied, or a uniform bit
otherwise

Fig. 2: Selective Security Games for MCFE

We define the advantage of an adversary A for xx ∈ {sel, ad}, yy ∈ {pos+, any}
in the following way:

Advxx-yy-IND
MCFE,A (λ, n) = |Pr[xx-yy-INDMCFE

0 (λ, n,A) = 1]

− Pr[xx-yy-INDMCFE
1 (λ, n,A) = 1]| .

A multi-client functional encryption scheme MCFE is xx-yy-IND secure, if
for any polynomial-time adversary A, there exists a negligible function negl such
that: Advxx-yy-IND

MCFE,A (λ, n) ≤ negl(λ).
In addition, we call a scheme q-message bounded, if

∑
i∈[n](

∑
`∈QL |Qi,`|+∑

`∈QL′ |Q′i,`|) < q and q-message-and-key bounded, if
∑
i∈[n](

∑
`∈QL |Qi,`| +∑

`∈QL′ |Q′i,`|) < q and |Qf | < q, with q = poly(λ).

Multi-Client Functional Encryption for Separable Functions 15

ad-yy-INDMCFE
β (λ, n,A)

({ski}i∈[n],msk)← Setup(1λ, n)
α← AQCor(·),QKeyG(·),QEnc(·,·,·),QLeftRight(·,·,·,·)(1λ)
Output: α if Condition (*) is satisfied, or

a uniform bit otherwise

Fig. 3: Adaptive Security Games for MCFE

We omit n when it is clear from the context. We also often omit A as a
parameter of experiments or games when it is clear from the context.

Multi-input functional encryption (MIFE) and functional encryption (FE)
are special cases of MCFE. MIFE is the same as MCFE without corruption, and
FE is the special case of n = 1 (in which case, MIFE and MCFE coincide as there
is no non-trivial corruption). In the case of single-input functional encryption,
we only consider the two security definitions of sel-FH and ad-FH. For simplicity,
in the notion of MCFE security, we denote by sel the case of static corruption,
and selective left-or-right and encryption queries. By ad we denote the case in
which all three, corruption, left-or-right and encryption queries, are adaptive.

2.3 Separable Functions

In this work, we focus on the class of additive separable functions. We recap the
definition of a separable function and the corresponding functionality:

Definition 2.5 (Separable Functions [32]). A function f : Xλ,1 × · · · ×
Xλ,n → Yλ, is called separable, if there exists a function f i : Xλ,i → Yλ for all
i ∈ [n], such that

f(x1, . . . , xn) =
∑
i∈[n]

f i(xi), with xi ∈ Xλ,i for all i ∈ [n] .

Functionality Class. We define the functionality class for separable functions
as F sep

n := {f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn), with f i : Xλ,i → Yλ}.
In this work, we consider the class of separable functions over the group Zp.

Since the separability of a function f is not necessarily unique, we require the
adversary to submit its functional key generation query as a set of the separated
functions {f i}i∈[n].

2.4 Security Compiler, Pseudorandom Functions (PRF), Symmetric
Encryption and One-Time Pad Extension

The details of the security compiler presented in Abdalla et al. [1] and its
adaption to the bounded case as well as the details on pseudorandom functions
and regarding symmetric encryption and the one-time pad extension can be
found in the full version [20].

16 M. Ciampi, L. Siniscalchi, and H. Waldner

3 Multi-Client Functional Encryption for Separable
Functions

In this section, we present our compiler, described in Fig. 4, that turns a single-
input functional encryption scheme for class F sep

1 into a multi-client functional
encryption scheme MCFE with labels Labels for the class of separable functions
F sep
n , by relying on a PRF instantiated with the keyspace K := {0, 1}λ, the domain
V := Labels and the range W := Yλ, where Yλ is the range of the functions
f ∈ F sep

n .
The construction works in the following way: In the setup procedure, n

different instances of the single-input functional encryption scheme {mski}i∈[n]
and shared keys Ki,j (shared between slot i and j) for all i, j ∈ [n], i 6= j, with
Ki,j = Kj,i are generated. These keys are used as PRF keys in the encryption
procedure. The setup procedure outputs a master secret key msk containing all
the different master secret keys from the different single-input instances and
a secret key ski := (mski, {Ki,j}j∈[n]) for every slot i ∈ [n]. We continue by
describing the behavior of the remaining algorithms.

To encrypt a message for position i, the encryption algorithm takes as input
the secret key ski, a message xi and a label `. In the first step, a padding ti,`
will be generated using the PRF keys {Ki,j}j∈[n] contained in the secret key ski.
This padding is different for every label ` and ensures that ciphertexts created
under different labels cannot be combined. In more detail, for every padding it
holds that

∑
i∈[n] ti,` = 0 for each label, but if paddings for different labels are

combined they do not add up to 0. To generate the ciphertext cti,`, the message
xi concatenated with the padding ti,` and the label ` is encrypted using mski.

The key generation procedure, takes as inputs the master secret key msk and
a function f ∈ F sep

n separated into the functions f1, . . . , fn with f i ∈ F sep
1 for

all i ∈ [n]. In the first step of the key generation, n different random values
ri are sampled in such a way that

∑
i∈[n] ri = 0, these values are used to

ensure that different functional keys cannot be combined. In the next step, a
functional key skfi

ri
for the function f iri

is generated for every single-input instance
i ∈ [n]. The function f iri

takes as input the message xi and the padding ti,` and
outputs the addition of these values together with the hardcoded value ri, i.e.
f iri

(xi, ti,`, `) = f i(xi) + ti,` + ri. The functional key skf is defined as the set of
all the functional keys generated by the single-input instances {skfi

ri
}i∈[n].

To decrypt a set of ciphertexts {cti,`}i∈[n] using a decryption key skf =
{skfi

ri
}i∈[n], the decryptions of all the instances are generated and the final output

is computed by adding up all of the decryptions. In more detail, Dec(skfi
ri
, cti,`) =

f i(xi) + ti,` + ri is computed for all i ∈ [n] and the final output f(x1, . . . , xn) is
equal to

∑
i∈[n] f

i(xi) + ti,` + ri.
The output of the decryption of a single-input instance, i.e. f i(xi) + ti,` + ri

ensures that it is not possible to combine ciphertexts encrypted under different
labels or functional keys generated in different key generation procedures. If one
of the ciphertexts in the decryption procedure is generated under a different label

Multi-Client Functional Encryption for Separable Functions 17

Setupmc(1λ, n) :
mski ← Setupsi(1λ), for all i ∈ [n]
For i ∈ [n], j > i:
Ki,j = Kj,i ← {0, 1}λ

msk := ({mski}i∈[n], {Ki,j}i,j∈[n],i6=j)
ski := (mski, {Ki,j}j∈[n])
Return ({ski}i∈[n],msk)
Encmc(ski, xi, `) :
Parse ski := (mski, {Ki,j}j∈[n])
ti,` :=

∑
j 6=i(−1)j<iPRFKi,j

(`)
cti,` ← Encsi(mski, (xi, ⊥ , ti,`, `))
Return cti,`

KeyGenmc(msk, {f i}i∈[n]) :
Parse msk := ({mski}i∈[n],

{Ki,j}i,j∈[n],i6=j)
For all i ∈ [n− 1], ri ← Yλ
rn := −

∑
i∈[n−1] ri

skfi
ri
← KeyGensi(mski, f iri

),
with f iri

as defined in Fig. 5a Fig. 5b .
Return skf := {skfi

ri
}i∈[n]

Decmc(skf , {cti,`}i∈[n]) :
Parse skf := {skfi

ri
}i∈[n]

Decsi(skfi
ri
, cti,`) = f i(xi) + ti,` + ri

Return
∑
i∈[n] f

i(xi) + ti,` + ri

Fig. 4: The generic construction of q-message bounded sel-pos+-IND-secure MCFE
and q-message-and-key bounded ad-pos+-IND-secure MCFE multi-client func-
tional encryption from single-input functional encryption. We note that “⊥”
denotes a slot of size q.

f iri
(x, ti,`, `) :

Output: f i(x) + ti,` + ri

(a) Selective Security

f iri
(x,⊥, ti,`, `) :

Output: f i(x) + ti,` + ri

(b) Adaptive Security

Fig. 5: Description of the function that is used for the key generation under the
different security definitions.8

or a different partial functional key has been used the decryption procedure will
not output the correct f(x1, . . . , xn).

Correctness. The correctness of the multi-client scheme follows from the
correctness of the single input scheme and the fact that

∑
i∈[n] ti,` = 0 and∑

i∈[n] ri = 0. Let us consider in more detail the decryption of the correctly
generated ciphertexts ct1,`, . . . , ctn,` under a correctly generated functional key
skf = {skfi

ri
}i∈[n]. Due to the correctness of the single-input scheme it holds that

f i(xi) + ti,` + ri = Decsi(skfi
ri
, cti,`) and together with the properties of the ti,`

values and the ri values it follows that
∑
i∈[n] f

i(xi)+ti,`+ri =
∑
i∈[n] f

i(xi). To-

18 M. Ciampi, L. Siniscalchi, and H. Waldner

gether with the separability property of the function
∑
i∈[n] f

i(xi) = f(x1, . . . , xn)
correctness follows.

4 Selective Security

To prove the selective security of the proposed construction, we proceed via a
hybrid argument. In the first hybrid, we replace the PRF’s with random functions
between a selected honest party i∗ and all the remaining honest parties i ∈ HS\i∗
such that the padding values ti,` are randomly generated. Our goal is to encode all
the function evaluations of the left submitted challenges, i.e. f i(x0

i)+ti,`+ri inside
the functional keys9 and switch from encryptions of (x0

i , ti,`, `) to encryptions of
(x1
i , 0λ, `).10 Since, after this step, all the random values are part of the functional

key, we can rely on an information theoretic argument and change the values
encoded in the functional key from f i(x0

i) + ti,` + ri to f i(x1
i) + ti,` + ri. In the

next hybrid, we generate the functional key in the same way as before and change
from encryptions of (x1

i , 0λ, `) to encryptions of (x1
i , ti,`, `). In the last hybrid, we

replace the random functions again with pseudorandom functions and therefore
security follows. We present the formal security proof:

Theorem 4.1 (q-message sel-pos+-IND-security of MCFE). Let FE =
(Setupsi,KeyGensi,Encsi,Decsi) be a q-message bounded sel-FH-secure single-input
functional encryption scheme for the functionality class F sep

1 , and PRF an IND
secure pseudorandom function, then the MCFE scheme MCFE = (Setupmc,
KeyGenmc,Encmc,Decmc) described in Fig. 4 is a q-message bounded sel-pos+-IND-
secure for the functionality class F sep

n . Namely, for any PPT adversary A, there
exists PPT adversaries B and B′ such that:

Advsel-pos+-IND
MCFE,A (λ) ≤ 2(n− 1) · AdvIND

PRF,B(λ) + 2n · Advsel-FH
FE,B′ (λ) .

Proof. The arguments used for the generation of the values ti,` are based on the
proof in [1] and we recap those parts here adapted to our construction. For the
case with only one honest (non-corrupted) position, we can rely directly on the
sel-FH security of the underlying single-input functional encryption scheme FE.
8 We note that the label ` of the plaintext is ignored by the functions and therefore
not necessary for the correctness of the construction. However, it is needed in the
security proof later.

9 This encoding results in a functional key size that polynomially depends on the
number of challenge and encryption queries. The security of our construction can
therefore only been shown if the number of challenge and encryption queries is
bounded such that the desired programming is possible.

10 For our compiler to work, it is required that the underlying single-input functional
encryption scheme allows for the desired programmability of the functional keys.
Therefore every functional encryption scheme which allows for the desired program-
ming can be used in our compiler and not only functional encryption schemes for a
general functionality class, as stated in the formal theorem.

Multi-Client Functional Encryption for Separable Functions 19

Namely, we build a PPT adversary B such that Advsel-pos+-IND
MCFE,A (λ, n) ≤

Advsel-pos+-FH
FE,B (λ). After B has received {Qi,`}i∈[n],`∈QL, {Q′i,`}i∈[n],`∈QL′ and

CS from A, it generates mski ← Setupsi(1λ) for all i ∈ [n] \ i∗, where i∗ de-
notes the honest slot, and samples Ki,j for all i, j ∈ [n]. Finally B sets ski :=
(mski, {Ki,j}j∈[n]) and sends {ski}i∈[n]\{i∗} to A. It must hold for the queries
{Qi,`}i∈[n],`∈QL, i.e. {(i, xj,0i , xj,1i , `)}i∈[n],`∈QL,j∈[|Qi,`|], of A that xj,0i = xj,1i for
all i ∈ [n] \ {i∗} and j ∈ [|Qi,`|]. This results in the fact that f iri

(xj,0i) = f iri
(xj,1i)

in every slot i ∈ [n] \ {i∗} and for all queries j ∈ [|Qi,`|], which implies that
f i
∗

ri∗
(xj,0i∗) = f i

∗

ri∗
(xj,1i∗). The left-or-right queries {Qi,`}i∈[n]\i∗,`∈QL can directly

be answered by B, it submits {((xj,0i∗ , ti∗,`, `), (x
j,1
i∗ , ti∗,`, `))}`∈QL,j∈[|Qi,`|], with

ti∗,` := Gen(ski∗ , i∗, `) for all ` ∈ QL computed by B, as its own left-or-right
queries to the experiment. It receives {ctji∗,`}`∈QL,j∈[|Qi,`|] as an answer and sends
{ctji,`}i∈[n],`∈QL,j∈[|Qi,`|] as a reply to A.

For the submitted queries {Q′i,`}i∈[n],`∈QL′ , i.e. {(i, xji , `)}i∈[n],`∈QL′,j∈|Q′
i,`
|,

to the encryption oracle QEnc, we distinguish between two different cases. In
the case that A asks for an encryption for all positions i 6= i∗, B computes
ti,` := Gen(ski, i, `) for all ` ∈ QL′ and ctji,` ← Encsi(mski, (xji , ti,`, `)) for all
j ∈ [|Q′i,`|] and ` ∈ QL′. If A queries QEnc for the position i∗, i.e. it queries
(i∗, xj , `), B computes ti,` :=

∑
j 6=i(−1)j<iPRFKi,j

(`) for all ` ∈ QL′, queries its
own left-or-right encryption oracle on ((i∗, xj , `), (i∗, xj , `)) for all j ∈ [|Q′i,`|] and
` ∈ QL′. Finally, B sends the answer {ctji,`}i∈[n],`∈QL′,j∈[|Q′

i,`
|] to A.

Whenever A asks a key generation query QKeyG({f i}i∈[n]), B samples ri ←
Yλ for all i ∈ [n−1], sets rn := −

∑
i∈[n−1] ri and generates skfi

ri
← KeyGen(mski,

f iri
) for all i ∈ [n] \ {i∗}. For the functional key skfi∗

ri∗
, B queries its own key

generation oracle on (f i∗ri∗
, f i
∗

ri∗
). Finally it sends skf := {skfi

ri
}i∈[n] as a reply to

A.
This results in the fact that Advsel-pos+-IND

MCFE,A (λ, n) ≤ Advsel-FH
FE,B (λ).

For the cases with more than one honest position, we use a hybrid argument
with the games defined below. More details on the description of the different
games can be found in the full version [20]. Note that G0 corresponds to the game
sel-pos+-INDMCFE

0 (λ, n,A), and G5 corresponds to the game sel-pos+-INDMCFE
1 (λ,

n,A). This results in:

Advsel-pos+-IND
MCFE,A (λ, n) = |WinG0

A (λ, n)−WinG5
A (λ, n)| .

We describe the different intermediate games in more detail:

Game G1: We replace the PRF evaluation for the computation of the masking
values ti,` for the left-or-right oracle QLeftRight and the encryption oracle
QEnc in the non-corrupted positions i ∈ [n] \ CS with random function eval-
uations. In more detail, we switch from the PRF generated values PRFKi1,is

to RFs(`), for all s ∈ {2, . . . , h}, where the set of honest users is denoted
as HS := {i1, . . . , ih}, h ≤ n denotes the number of honest users, and RF

20 M. Ciampi, L. Siniscalchi, and H. Waldner

denotes a random function (see the full version [20] for more details). The
transition from G0 to G1 is justified by the security of the PRF. Namely, we
exhibit a PPT adversary B0 such that:

|WinG0
A (λ, n)−WinG1

A (λ, n)| ≤ (h− 1) · AdvIND
PRF,B0

(λ).

Game G2: We replace the encryptions of (xj,0i , ti,`, `) with the encryptions of
(xj,1i , 0λ, `) for all (xj,0i , xj,1i) ∈ Qi,`, all ` ∈ QL and all i ∈ [n] in the left-or-
right oracle and we replace the encryptions of (xji , ti,`, `) with the encryptions
of (xji , 0λ, `) for all xji ∈ Q′i,`, all ` ∈ QL′ and all i ∈ [n] in the encryption
oracle. The values ti,` in the left-or-right queries and the encryption queries
are replaced with 0λ to make the ciphertexts independent from the masking
values ti,`. We also replace the functional key skf := {skfi

ri
}i∈[n] (see Fig. 5a

for the function description) with skf := {skfi
Qi,Yi

}i∈[n] (see Fig. 6 for the

function description). The hardcoded values yj,f
i

i,` ∈ Yi are generated using
the random value ri, the queries (xj,0i , xj,1i) ∈ Qi,` and by computing the
masking values ti,`, i.e. yj,f

i

i,` := f i(xj,0i) + ti,` + ri. The same holds for the
hardcoded values y′j,f

i

i,` ∈ Yi. They are generated using the random value
ri, the queries xji ∈ Q′i,` and by computing the masking values ti,`, i.e.
y′j,f

i

i,` := f i(xji) + ti,` + ri. The transition from G1 to G2 is achieved using a
hybrid argument with a sequence of games G1.k, for k ∈ [n]. It holds that
G1 = G1.0 and G2 = G1.n. This results in

WinG1
A (λ, n)−WinG2

A (λ, n)| ≤
n∑
k=1
|WinG1.k−1

A (λ, n)−WinG1.k

A (λ, n)|,

The transition from G1.k−1 to G1.k is justified by the function-hiding security
of FE. Namely, we exhibit a PPT adversary Bk for all k ∈ [n] such that:

|WinG1.k−1
A (λ, n)−WinG1.k

A (λ, n)| ≤ Advsel-FH
FE,Bk

(λ).

Combining both of the statements and noticing that a PPT adversary B1 can
be obtained by picking i ∈ [n] and running Bi, we can justify the transition
from G1 to G2. Namely, we exhibit a PPT adversary B1 such that:

|WinG1
A (λ, n)−WinG2

A (λ, n)| ≤ n · Advsel-FH
FE,B1

(λ).

Game G3: We change the generation of all the values yj,f
i

i,` ∈ Yi, which are
computed using the random value ri, the queries (xj,0i , xj,1i) ∈ Qi,` and the
masking values ti,`. We change the generation from yj,f

i

i,` := f i(xj,0i) + ti,`+ ri

to yj,f
i

i,` := f i(xj,1i) + ti,` + ri. The transition from G2 to G3 is justified by an
information theoretic argument and happens for all i ∈ [n]. In more detail, we
prove the transition by relying on the conditioned perfect security of several

Multi-Client Functional Encryption for Separable Functions 21

instances of the one-time pad as shown in the full version [20]. Namely, we
show that

|WinG2
A (λ, n)−WinG3

A (λ, n)| = 0.
Game G4: We replace the encryptions of (xj,1i , 0λ, `) with the encryptions of

(xj,1i , ti,`, `) for all (xj,0i , xj,1i) ∈ Qi,`, all ` ∈ QL and all i ∈ [n] in the left-or-
right oracle and we replace the encryptions of (xji , 0λ, `) with the encryptions
of (xji , ti,`, `) for all xji ∈ Q′i,`, all ` ∈ QL′ and all i ∈ [n] in the encryption
oracle. The masking values ti,` are inserted back into the ciphertext and
replace the 0λ values. We also replace the functional key skf := {skfi

Qi,Yi

}i∈[n]

(see Fig. 6 for the function description) with skf := {skfi
ri
}i∈[n] (see Fig. 5a for

the function description). The transition from G3 to G4 is almost symmetric
to the transition from G1 to G2, justified by the function-hiding security of
FE applied on every slot i ∈ [n]. Namely, it can be proven that there exists
a PPT adversary B2 such that:

|WinG3
A (λ, n)−WinG4

A (λ, n)| ≤ n · Advsel-FH
FE,B2

(λ).

Game G5: This game is identical to sel-pos+-INDMCFE
1 (λ, n,A). The transition

from G4 to G5 is almost symmetric to the transition from G0 to G1, justified
by the security of the PRF. Namely, it can be proven that there exists a
PPT adversary B3 such that:

|WinG4
A (λ, n)−WinG5

A (λ, n)| ≤ (h− 1) · AdvIND
PRF,B3

(λ).

Putting everything together, we obtain the theorem. ut

The detailed proof of the different game transitions can be found in the full
version [20].

5 Adaptive Security

To prove the adaptive security of our construction, we face two main problems that
do not occur in the case of selective security: First, we do not know all the honest

f iQi,Yi
(x, ti,`, `) :

Parse Qi := {{Qi,`}`∈QL, {Q′i,`}`∈QL′} and
Yi := {{yj,f

i

i,` }`∈QL,j∈[|Qi,`|], {y
′j,fi

i,` }`∈QL′,j∈[|Q′
i,`
|]}

If (·, x) ∈ Qi,`
Output: yj,f

i

i,`

If x ∈ Q′i,`
Output: y′j,f

i

i,`

Fig. 6: Description of the function that is used in the reduction for the selective
security reduction.

22 M. Ciampi, L. Siniscalchi, and H. Waldner

slots in advance and therefore cannot directly replace the honest pseudorandom
function evaluations with random function evaluations. The second problem is
that we cannot encode all the function evaluations inside the functional keys
since we do not know all the message queries in advance.

We overcome the first problem using a proof technique borrowed from [1].
We define an explicitly honest slots (as in [1]) as slots where the first left-or-
right oracle query happens for different messages x0

i and x1
i , i.e. x

1,0
i 6= x1,1

i .
Notice that if a slot i is disclosed as explicitly honest it cannot be corrupted
afterwards anymore and we can replace the pseudorandomness in this slot with
real randomness (i.e. by relying on the security of the PRF). To know which
slots are going to be explicitly honest, we will guess, at a very high level, the
number of corrupted slots and the index of the first and the last slots that will
be corrupted. This results only in a polynomial loss in the reduction instead
of an exponential loss. To solve the second issue, we make use of the ⊥ slot
in the different encryptions. In more detail, we create a list that contains all
the functions that have already been queried to the key generation oracle and
whenever the adversary queries the left-or-right oracle or the encryption oracle
on a new challenge, we place all the function evaluations for every previous
queried functions inside the ⊥ position of the ciphertext. Combining this with
the approach from the selective security proof, we ensure that the function
evaluation happens correctly no matter if the encryption or left-or-right oracle
query happened before or after a functional key query. Since the ciphertext also
contains function evaluations, we need to replace them together with function
evaluations contained inside the functional key. This happens with the same
information theoretic argument as in the selective security case extended to the
ciphertexts. The formal proof of the theorem can be found in the full version [20].

Theorem 5.1 (q-message-and-key ad-pos+-IND-security of MCFE). Let
FE = (Setupsi,KeyGensi,Encsi,Decsi) be a q-message-and-key bounded ad-FH-
secure single-input functional encryption scheme for the functionality class F sep

1 ,
and PRF an IND secure pseudorandom function, then the MCFE scheme MCFE
described in Fig. 4 is a q-message-and-key bounded ad-pos+-IND-secure func-
tional encryption scheme for the functionality class F sep

n . Namely, for any PPT
adversary A, there exists PPT adversaries B and B′ such that:

Advad-IND
MCFE,A(λ) ≤ 2(n+ 1)n(n− 1)2 · AdvIND

PRF,B(λ) + 4(n+ 1)n · Advad-FH
FE,B′ (λ) .

6 Decentralized Multi-Client Functional Encryption

6.1 Definition of Decentralized Multi-Client Functional Encryption

Here, we recap the definition of decentralized multi-client functional encryption
(DMCFE) as introduced in [17].

Definition 6.1 (Decentralized Multi-Client Functional Encryption).
Let F = {Fλ}λ be a family (indexed by λ) of sets Fλ of functions f : Xλ,1× · · ·×

Multi-Client Functional Encryption for Separable Functions 23

Xλ,n → Yλ. Let Labels = {0, 1}∗ or {⊥} be a set of labels. A decentralized multi-
client functional encryption scheme (DMCFE) for the function family F and
the label set Labels is a tuple of six algorithms DMCFE = (Setup,KeyGenShare,
KeyGenComb,Enc,Dec):

Setup = (P1, . . . ,Pn): Is an interactive protocol between n PPT algorithms
P1, . . . ,Pn, s.t. for all i ∈ [n] Pi on input 1λ and interacting with Pj for all
j ∈ [n] with i 6= j obtains the i-th secret key ski.

KeyGenShare(ski, f): Takes a secret key ski from position i and a function f ∈ Fλ,
and outputs a partial functional key ski,f .

KeyGenComb(sk1,f , . . . , skn,f): Takes as input n partial functional decryption
keys sk1,f , . . . , skn,f and outputs the functional key skf .

Enc(ski, xi, `) is defined as for MCFE in Definition 2.3.
Dec(skf , ct1,`, . . . , ctn,`) is defined as for MCFE in Definition 2.3.

A scheme DMCFE is correct, if for all λ, n ∈ N, {ski}i∈[n] are the output of
Setup = (P1, . . . ,Pn) executed between P1, . . . ,Pn, f ∈ Fλ, ` ∈ Labels, xi ∈ Xλ,i,
when ski,f ← KeyGenShare(ski, f) for i ∈ [n], and skf ← KeyGenComb(sk1,f , . . . ,
skn,f), we have

Pr [Dec(skf ,Enc(sk1, x1, `), . . . ,Enc(skn, xn, `)) = f(x1, . . . , xn)] = 1 .

Definition 6.2 (Security of DMCFE). The xx-yy-IND security notion of
DMCFE (xx ∈ {sel, ad} with yy ∈ {pos+, any}) is similar to the notion of MCFE
(Definition 2.4), except that the Setup is executed by P1, . . . ,Pn and the adversary
A can corrupt a subset of them, namely Pj1 , . . . ,Pjn s.t. ji ∈ CS. Moreover, there
is no msk and the key generation oracle is now defined as:

Key generation oracle QKeyG(f): Computes ski,f ← KeyGenShare(ski, f i) for
all i ∈ [n] and outputs {ski,f}i∈[n].

6.2 Construction of Decentralized Multi-Client Functional
Encryption

In this section, we describe the necessary modifications to turn the presented
MCFE of Fig. 4 into a decentralized MCFE scheme (DMCFE). In the decentralized
setting, following Definition 6.1, the algorithm KeyGenShare is decentralized and
non-interactive. Therefore we can not directly use KeyGen, as described in Fig. 4,
since the ri-values for a certain function f are required to be chosen in such
a way that their sum is equal to 0, which requires a simultaneous generation
of the functional keys. A way to work around this problem is to generate the
ri-values as a PRF output, in the same way as for the encryption procedure of
the scheme described in Fig. 4. In more detail, for the position i the ri,f -value
for the function f is defined as ri,f :=

∑
j 6=i(−1)j<iPRFKF

i,j
(f). The idea of

decentralizing a multi-client functional encryption scheme in this way has already
been informally described in [2].

The PRF keys for KeyGenShare and Enc are generated during the setup phase,
where the setup is executed between a set of players P1, . . . ,Pn, (i.e., Pi is the i-th

24 M. Ciampi, L. Siniscalchi, and H. Waldner

client of DMCFE scheme). Let Π = (P1, . . . , Pn) be a n-party MPC protocol [36]
that securely computes the function FK which is defined as follows. FK on input
the indexes 1, . . . n outputs for each index i the keys {Ki,j ,KF

i,j}j∈[n]. s.t. j ∈ [n]
with j > i: Ki,j = Kj,i ← {0, 1}λ and KF

i,j = KF
j,i ← {0, 1}

λ. In the setup phase
Pi executes the player Pi of Π thus obtaining keys for the functional keys and
for the encryption algorithm.

We formally describe the DMCFE scheme in Fig. 7.

Setupmc(1λ, n) :
For all i ∈ [n]: Pi executes the following
steps:

mski ← Setupsi(1λ)
Run Pi of Π to obtain PRF keys
for all j ∈ [n], j > i:
Ki,j = Kj,i ← {0, 1}λ and
KF
i,j = KF

j,i ← {0, 1}
λ

ski := (mski, {Ki,j ,KF
i,j}j∈[n])

Return ski
Encmc(ski, xi, `) :
Parse ski := (mski, {Ki,j ,KF

i,j}j∈[n])
ti,` :=

∑
j 6=i(−1)j<iPRFKi,j

(`)
cti,` ← Encsi(mski, (xi, ⊥ , ti,`, `))
Return cti,`

KeyGenSharemc(ski, f i) :
Parse ski := (mski, {Ki,j ,KF

i,j}j∈[n])
ri,f :=

∑
j 6=i(−1)j<iPRFKF

i,j
(f)

ski,f ← KeyGensi(mski, f iri,f
),

with f iri,f
as defined in

Fig. 5a Fig. 5b
Return ski,f
KeyGenCombmc(sk1,f , . . . , skn,f) :
skf := {ski,f}i∈[n]

Return skf
Dec(skf , {cti}i∈[n]) :
Parse skf := {ski,f}i∈[n]

Decsi(ski,f , cti,`) = f i(xi) + ti,` + ri,f

Return
∑
i∈[n] f

i(xi) + ti,` + ri,f

Fig. 7: The generic construction of q-message bounded sel-DMCFE and q-message-
and-key bounded ad-DMCFE decentralized multi-client functional encryption
from single-input functional encryption. We note that “⊥” denotes a slot of size
q.

Following the approach of Section 5 we also obtain a decentralized MCFE
scheme DMCFE that is ad-IND secure with a bounded number of message-and-
functional key queries.

Correctness. The correctness of DMCFE follows from the correctness of FE,
and the completeness of Π. We note that Dec(skf , ct1,`, . . . , ctn,`) outputs the
value

∑
i∈[n] f

i(xi) + ti,` + ri,f =
∑
i∈[n] f

i(xi), where the equality follows from
the fact that

∑
i∈[n] ti,` = 0 and

∑
i∈[n] ri,f = 0. This shows the correctness of

the construction.

Theorem 6.3 (sel-pos+-IND security). Let FE = (Setupsi,KeyGensi,Encsi,
Decsi) be a q-message bounded sel-FH-secure single-input functional encryption

Multi-Client Functional Encryption for Separable Functions 25

scheme for the functionality class F sep
1 , PRF an IND secure pseudorandom func-

tion, and Π secure realizes function FK, then DMCFE described in Fig. 7 is
q-message bounded sel-pos+-IND-secure for the functionality class F sep

n .

Proof (Sketch). The security proof proceeds very similar to the one of Theorem 4.1,
with the following two differences:

1. We consider an initial game G∗1 where we switch to the simulator SΠ of Π
in order to simulate Pj1 , . . . ,Pjn s.t. ji ∈ HS. The transition from G∗1 to G1
follows from the security of Π.

2. The game G1 is slightly modified and separated into two games, G′1 and
G′′1 . The game G′1 corresponds to G1 and in game G′′1 we switch from the
pseudorandom values PRFKF

i1,is
(f) to random values RFs(f), for all s ∈

{2, . . . , h}, where the set of honest users is denoted as HS := {i1, . . . , ih},
with h ≤ n as the number of honest users.

The transition from G′1 to G′′1 and from G′′1 to G2 follows as in the transition
from G0 to G1 in Theorem 4.1 with the observation that all the keys Kji,jk

,KF
ji,jk

with ji, jk ∈ HS are not visible to A since we are executing SΠ for Pj1 , . . . ,Pjn

with ji ∈ HS in Setup. ut

Theorem 6.4 (ad-pos+-IND security). Let FE = (Setupsi,KeyGensi,Encsi,
Decsi) be a q-message-and-key bounded ad-FH-secure single-input functional
encryption scheme for the functionality class F sep

1 , PRF an IND secure pseudo-
random function and Π secure realizes function FK with security against adaptive
corruption, then the DMCFE scheme described in Fig. 4 is a q-message-and-key
bounded ad-FH-secure for the functionality class F sep

n .

The security proof proceeds very similar to the one of Theorem 5.1 with the
argument described above. Moreover correctness of DMCFE follows from the
same arguments as the correctness of DMCFE. A description on how to lift an
pos+ secure DMCFE scheme into an any secure DMCFE scheme can be found
in the full version [20]

7 Outsourceable Multi-Client Functional Encryption

7.1 Definition of Outsourceable Multi-Client Functional Encryption

In addition to the definition of (decentralized) multi-client functional encryp-
tion, we present another definition called outsourceable multi-client functional
encryption (OMCFE). The notion of OMCFE makes it possible to outsource
the decryption procedure of the n different ciphertexts to at most n different
entities. This notion is especially useful in the case of a very resource consuming
decryption procedure. The different ciphertexts cti,` can be sent together with
the corresponding partial functional key ski,f to the i-th entity. The partial
decryption procedure applied on cti,` using ski,f generates a decryption share
si,`. Finally, the shares si,` for every position i ∈ [n] can be used to reconstruct
the final functional output f(x1, . . . , xn). We capture this notion formally:

26 M. Ciampi, L. Siniscalchi, and H. Waldner

Definition 7.1 (Outsourceable Multi-Client Functional Encryption).
Let F = {Fλ}λ∈N be a collection of function families (indexed by λ), where
every f ∈ Fλ is a polynomial time function f : Xλ,1 × · · · × Xλ,n → Yλ. Let
Labels = {0, 1}∗ or {⊥} be a set of labels. A outsourceable multi-client functional
encryption scheme (OMCFE) for the function family Fλ supporting n users, is a
tuple of four algorithms OMCFE = (Setup,KeyGen,Enc,PartDec,DecComb):

Setup(1λ, n): Takes as input a unary representation of the security parameter
λ and the number of parties n, and generates n secret keys {ski}i∈[n] and a
master secret key msk.

KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ Fλ,
and outputs n functional keys sk1,f , . . . skn,f .

Enc(ski, xi, `): Takes as input a secret key ski, a message xi ∈ Xλ,i to encrypt, a
label ` ∈ Labels, and outputs a ciphertext cti,`.

PartDec(ski,f , cti,`): Takes as input a functional key ski,f and a ciphertext cti,`
and outputs a decryption share si,` ∈ Yλ.

DecComb({si,`}i∈[n]) Takes as input n decryption shares {si,`}i∈[n] under the
same label ` and outputs a value y ∈ Yλ.

We require that the computational complexity of DecComb is independent from
the computational complexity of the function f , where f ∈ Fλ.

A scheme OMCFE is correct, if for all λ, n ∈ N, ({ski}i∈[n],msk)← Setup(1λ, n),
f ∈ Fλ, xi ∈ Xλ,i, when {ski,f}i∈[n] ← KeyGen(msk, f), we have

Pr[DecComb(PartDec(sk1,f ,Enc(sk1, x1, `)), . . . ,PartDec(skn,f ,Enc(skn, xn, `)))
= f(x1, . . . , xn)] = 1 .

The security definition for this new notion is the same as for multi-client
functional encryption (Definition 2.4). We remark that in [22] the authors describe
a definition of distributed public key FE that has a similar syntax as our definition
of OMCFE. Our main goal is to provide a notion of MCFE with an outsourceable
decryption procedure, whereas Fan and Tang [22] try to construct a public-
key functional encryption scheme that achieves a notion of function-hiding. In
particular, our definition does not require any privacy w.r.t. the partial functional
key.

Respectively, we can also define a decentralized version of OMCFE by decen-
tralizing the key generation procedure and the setup as in Definition 6.1. This
adaption is straightforward and we omit it here.

7.2 Construction of Outsourceable Multi-Client Functional
Encryption

In our OMCFE = (Setup,KeyGen,Enc,PartDec,DecComb) scheme the algorithms
Setup,KeyGen, and Enc are defined as for the MCFE scheme MCFE described
in Fig. 4 and the algorithms PartDec and DecComb are defined as follows:

We observe that DecComb satisfies the efficiency requirement stated in Defi-
nition 7.1 since it only consists of a single addition of shares.

Multi-Client Functional Encryption for Separable Functions 27

PartDec(ski,f , cti,`) :
Return si,` = Decsi(ski,f , cti,`)
DecComb({si,`}i∈[n]) :
Return

∑
i∈[n] si,`

Fig. 8: Description of PartDec and DecComb

Correctness. The correctness of the OMCFE scheme follows from the correctness
of FE. We note that the values si,` correspond to f i(xi) + ti,` + ri for i ∈ [n],
which in turns implies that DecComb({si,`}i∈[n]) outputs the value

∑
i∈[n] si,` =∑

i∈[n] f
i(xi) + ti,` + ri =

∑
i∈[n] f

i(xi), where the equality follows from the
fact that

∑
i∈[n] ti,` = 0 and

∑
i∈[n] ri = 0. This shows the correctness of the

construction.

Theorem 7.2. Let FE = (Setupsi,KeyGensi,Encsi,Decsi) be a q-message bounded
sel-FH-secure single-input functional encryption scheme for the functionality
class F sep

1 and PRF an IND secure pseudorandom function, then the OMCFE
scheme described above is q-message bounded ad-pos+-IND-secure scheme for the
functionality class F sep

n .

We notice that the proof of Theorem 5.1 can be carried out in the same way
for Theorem 7.2 with the only difference that the decryption phase is composed
of the algorithms PartDec and DecComb.

Following the approach of Section 5 we also obtain an outsourceable MCFE
scheme OMCFE that is ad-pos+-IND-secure with a bounded number of message-
and-key queries. In the adaptively secure scheme OMCFE = (Setup,KeyGen,
Enc,PartDec,DecComb) the algorithms Setup,KeyGen,Enc correspond to the ones
of the MCFE scheme MCFE as described in Fig. 4, whereas PartDec,DecComb
are defined as described in Fig. 8.

Theorem 7.3. Let FE = (Setupsi,KeyGensi,Encsi,Decsi) be a q-message-and-
key bounded ad-FH-secure single-input functional encryption scheme for the
functionality class F sep

1 and PRF an IND secure pseudorandom function, then the
OMCFE scheme described above is q-message-and-key bounded ad-pos+-IND-
secure scheme for the functionality class F sep

n .

The proof proceeds with the same arguments as the proof of Theorem 7.2.
We remark that we achieve sel-pos+-IND and ad-pos+-IND security for the
schemes OMCFE and OMCFE respectively.

Acknowledgments. We thank Michel Abdalla for helpful discussions. This
work was supported in part by the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement 780108 (FENTEC) and by
the European Union’s Horizon 2020 Research and Innovation Programme under
grant agreement 780477 (PRIVILEDGE).

28 M. Ciampi, L. Siniscalchi, and H. Waldner

References

1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client
inner-product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 552–582. Springer, Heidelberg (Dec
2019). https://doi.org/10.1007/978-3-030-34618-8_19

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing
inner-product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019,
Part II. LNCS, vol. 11443, pp. 128–157. Springer, Heidelberg (Apr 2019).
https://doi.org/10.1007/978-3-030-17259-6_5

3. Abdalla, M., Bourse, F., Marival, H., Pointcheval, D., Soleimanian, A., Waldner, H.:
Multi-client inner-product functional encryption in the random-oracle model. In:
Galdi, C., Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp. 525–545. Springer,
Heidelberg (Sep 2020). https://doi.org/10.1007/978-3-030-57990-6_26

4. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional en-
cryption for inner products: Function-hiding realizations and constructions without
pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 597–627. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-
3-319-96884-1_20

5. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Heidelberg (Apr / May 2017).
https://doi.org/10.1007/978-3-319-56620-7_21

6. Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-
input functional encryption. In: Vidick, T. (ed.) ITCS 2020. vol. 151, pp. 40:1–40:41.
LIPIcs (Jan 2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.40

7. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation
and applications. Cryptology ePrint Archive, Report 2013/689 (2013), http://
eprint.iacr.org/2013/689

8. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (Aug
2015). https://doi.org/10.1007/978-3-662-48000-7_32

9. Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional en-
cryption for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015, Part I. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (Nov / Dec
2015). https://doi.org/10.1007/978-3-662-48797-6_2

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(Mar 2011). https://doi.org/10.1007/978-3-642-19571-6_16

11. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (Feb 2014).
https://doi.org/10.1007/978-3-642-54242-8_3

12. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 852–880.
Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-49896-5_30

13. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. Journal of
Cryptology 31(2), 434–520 (Apr 2018). https://doi.org/10.1007/s00145-017-9261-0

https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-57990-6_26
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.4230/LIPIcs.ITCS.2020.40
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/s00145-017-9261-0

Multi-Client Functional Encryption for Separable Functions 29

14. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 306–324. Springer, Heidelberg (Mar 2015). https://doi.org/10.1007/978-3-662-
46497-7_12

15. Brakerski, Z., Segev, G.: Function-private functional encryption in the
private-key setting. Journal of Cryptology 31(1), 202–225 (Jan 2018).
https://doi.org/10.1007/s00145-017-9255-y

16. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-
authority attribute-based encryption. In: Al-Shaer, E., Jha, S., Keromytis,
A.D. (eds.) ACM CCS 2009. pp. 121–130. ACM Press (Nov 2009).
https://doi.org/10.1145/1653662.1653678

17. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer,
Heidelberg (Dec 2018). https://doi.org/10.1007/978-3-030-03329-3_24

18. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client
functional encryption with repetition for inner product. Cryptology ePrint Archive,
Report 2018/1021 (2018), https://eprint.iacr.org/2018/1021

19. Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dynamic
decentralized functional encryption. Cryptology ePrint Archive, Report 2020/197
(2020), https://eprint.iacr.org/2020/197

20. Ciampi, M., Siniscalchi, L., Waldner, H.: Multi-client functional encryption for
separable functions. Cryptology ePrint Archive, Report 2020/219 (2020), https:
//eprint.iacr.org/2020/219

21. Dean, J., Ghemawat, S.: Mapreduce: Simplified data process-
ing on large clusters. Commun. ACM 51(1), 107–113 (Jan 2008).
https://doi.org/10.1145/1327452.1327492, https://doi.org/10.1145/1327452.
1327492

22. Fan, X., Tang, Q.: Making public key functional encryption function private,
distributively. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol.
10770, pp. 218–244. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007/978-
3-319-76581-5_8

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all cir-
cuits. In: 54th FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013).
https://doi.org/10.1109/FOCS.2013.13

24. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part II. LNCS, vol. 9563,
pp. 480–511. Springer, Heidelberg (Jan 2016). https://doi.org/10.1007/978-3-662-
49099-0_18

25. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(May 2014). https://doi.org/10.1007/978-3-642-55220-5_32

26. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 555–564. ACM Press (Jun
2013). https://doi.org/10.1145/2488608.2488678

27. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)

https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/s00145-017-9255-y
https://doi.org/10.1145/1653662.1653678
https://doi.org/10.1007/978-3-030-03329-3_24
https://eprint.iacr.org/2018/1021
https://eprint.iacr.org/2020/197
https://eprint.iacr.org/2020/219
https://eprint.iacr.org/2020/219
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/978-3-319-76581-5_8
https://doi.org/10.1007/978-3-319-76581-5_8
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1145/2488608.2488678

30 M. Ciampi, L. Siniscalchi, and H. Waldner

CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (Aug 2012).
https://doi.org/10.1007/978-3-642-32009-5_11

28. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774 (2013), http://eprint.
iacr.org/2013/774

29. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 122–151. Springer, Heidelberg (Apr / May 2017).
https://doi.org/10.1007/978-3-319-56620-7_5

30. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the
smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794,
pp. 175–191. Springer, Heidelberg (Jul 2011). https://doi.org/10.1007/978-3-642-
22263-4_10

31. Libert, B., Titiu, R.: Multi-client functional encryption for linear functions
in the standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 520–551. Springer, Heidelberg (Dec
2019). https://doi.org/10.1007/978-3-030-34618-8_18

32. Mosk-Aoyama, D., Shah, D.: Computing separable functions via gossip. In: Rup-
pert, E., Malkhi, D. (eds.) 25th ACM PODC. pp. 113–122. ACM (Jul 2006).
https://doi.org/10.1145/1146381.1146401

33. Mosk-Aoyama, D., Shah, D.: Fast distributed algorithms for computing sep-
arable functions. IEEE Trans. Information Theory 54(7), 2997–3007 (2008).
https://doi.org/10.1109/TIT.2008.924648, https://doi.org/10.1109/TIT.2008.
924648

34. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010), http://eprint.iacr.org/2010/556

35. Waters, B.: A punctured programming approach to adaptively secure func-
tional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (Aug 2015).
https://doi.org/10.1007/978-3-662-48000-7_33

36. Yao, A.C.C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986).
https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1007/978-3-642-32009-5_11
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-642-22263-4_10
https://doi.org/10.1007/978-3-642-22263-4_10
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1145/1146381.1146401
https://doi.org/10.1109/TIT.2008.924648
https://doi.org/10.1109/TIT.2008.924648
https://doi.org/10.1109/TIT.2008.924648
http://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1109/SFCS.1986.25

	Multi-Client Functional Encryption for Separable Functions
	Introduction
	Our Contribution
	Overview of our Techniques
	Related Work

	Preliminaries
	Secret-Key Functional Encryption
	Multi-Client Functional Encryption
	Separable Functions
	Security Compiler, Pseudorandom Functions (PRF), Symmetric Encryption and One-Time Pad Extension

	Multi-Client Functional Encryption for Separable Functions
	Selective Security
	Adaptive Security
	Decentralized Multi-Client Functional Encryption
	Definition of Decentralized Multi-Client Functional Encryption
	Construction of Decentralized Multi-Client Functional Encryption

	Outsourceable Multi-Client Functional Encryption
	Definition of Outsourceable Multi-Client Functional Encryption
	Construction of Outsourceable Multi-Client Functional Encryption

