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Abstract. Transferable e-cash is the most faithful digital analog of
physical cash, as it allows users to transfer coins between them in isola-
tion, that is, without interacting with a bank or a “ledger”. Appropriate
protection of user privacy and, at the same time, providing means to
trace fraudulent behavior (double-spending of coins) have made instan-
tiating the concept notoriously hard. Baldimtsi et al. (PKC’15) gave a
first instantiation, but, as it relies on a powerful cryptographic primitive,
the scheme is not practical. We also point out a flaw in their scheme.
In this paper we revisit the model for transferable e-cash and propose
simpler yet stronger security definitions. We then provide the first con-
crete construction, based on bilinear groups, give rigorous proofs that it
satisfies our model, and analyze its efficiency in detail.

1 Introduction

Contrary to so-called “crypto”-currencies like Bitcoin [Nak08], a central ambition
of the predating cryptographic e-cash has been user anonymity. Introduced by
Chaum [Cha83], the goal was to realize a digital analog of physical cash, which
allows users to pay without revealing their identity; and there has been a long line
of research since [CFN88, Bra93, CHL05, BCKL09, FHY13, CPST16, BPS19]
(to name only a few). In e-cash, a bank issues electronic coins to users, who can
then spend them with merchants, who in turn can deposit them at the bank to
get their account credited. User privacy should be protected in that not even
the bank can link the withdrawing of a coin to its spending.

The main difference to the physical world is that digital coins can easily
be duplicated, and therefore a so-called “double-spending” of a coin must be
prevented. This can be readily achieved when all actors are online and connected
(as with cryptocurrencies), since every spending is broadcast and payees simply
refuse a coin that has already been spent.

Even in “anonymous” cryptocurrencies like Monero [vS13], which now also
uses confidential transactions [Max15], or systems based on the Zerocoin/-cash
[MGGR13, BCG+14] protocol, like Zcash [Zec20], or on Mimblewimble [Poe16,
FOS19], users must be connected when they accept a payment, in order to pre-
vent double-spending.



When users are allowed to spend coins to other users (or merchants) without
continuous connectivity, then double-spending cannot be prevented; however,
starting with [CFN88], ingenious methods have been devised for revealing a
double-spender’s identity while guaranteeing the privacy of all honest users.

Transferable e-cash. In all traditional e-cash schemes, including such “offline”
e-cash, once a coin is spent (transferred) after withdrawal, it must be deposited
at the bank by the payee. A more powerful concept, and much more faithful to
physical e-cash, is transferable e-cash, which allows users to re-transfer obtained
coins, while at the same time remaining offline. Note that cryptocurrencies are
inherently online, and every transfer of a coin could be seen as depositing a coin
(and marking it spent) and re-issuing a new one (in the ledger).

Transferable e-cash was first proposed by Okamoto and Ohta [OO89, OO91],
but the constructions only guaranteed very weak forms of anonymity. It was
then shown [CP93] that unbounded adversaries can recognize coins they owned
earlier and that a coin must grow in size with every transfer (since information
about potential double-spenders needs to be encoded in it).

While other schemes [Bla08, CGT08] only achieve unsatisfactory anonymity
notions, Canard and Gouget [CG08] define a stronger notion (which we call coin
transparency): it requires that a (polynomial-time) adversary cannot recognize
a coin he has already owned when it is later given back to him. This is not
achieved by physical cash, as banknotes can be marked by users (or the bank);
however, if an e-cash scheme allowed a merchant to identify users by tracing
the coins given out as change, then it would violate the central claim of e-
cash, namely anonymous payments. (Anonymous cryptocurrencies also satisfy a
notion analogous to coin transparency.) A limitation of this notion is that the
bank (more specifically, the part dealing with deposits) must be honest, as it
must be able to link occurrences of the same coin to detect double-spending.

Prior schemes. The first scheme achieving coin transparency [CG08] was com-
pletely impractical, as at every transfer, the payer sends a proof of (a proof of
(. . . (a proof of a coin). . . )) that she received earlier. The first practical scheme
was given by Fuchsbauer et al. [FPV09], but it makes unacceptable compromises
elsewhere: when a double-spending is detected, all (even innocent) users up to
the double-spender must give up their anonymity.

Blazy et al. [BCF+11] overcome this problem and propose a scheme that
assumes a trusted party (called the “judge”) that can trace all coins and users
in the system and has to actively intervene to identify double-spenders. The
scheme thus reneges on the promise that users remain anonymous as long as
they follow the protocol. Moreover, their proof of anonymity was flawed, as
shown by Baldimtsi et al. [BCFK15].

Despite all its problems, Blazy et al.’s [BCF+11] scheme, which elegantly
combined randomizable non-interactive zero-knowledge (NIZK) proofs [BCC+09]
and commuting signatures [Fuc11], serves as starting point for our construction.
In their scheme a coin consists of a signature by the bank and at every transfer
the spender adds her own signature (thereby committing to her spending). To
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achieve anonymity, these signatures are not given in the clear; instead, coins are
NIZK proofs of knowledge of signatures. Since the proofs can be rerandomized
(that is, from a proof, anyone can produce a new proof of the same statement
that looks unrelated to the original proof), coins can change appearance after
every transfer. Users will thus not recognize a coin when they see it again later,
meaning the scheme satisfies coin transparency.

Baldimtsi et al. [BCFK15] give an instantiation that avoids the “judge” by
using a double-spending-tracing mechanism from classical offline e-cash. They
add “tags” to the coin that hide the identity of the owner of the coin, except
when she spends the coin twice, then the bank can from two such tags compute
the user’s identity. Users must also include signatures in the coin during transfer,
which represent irrefutable proof of double-spending.

The main drawback of their scheme is efficiency. They rely on the concept
of malleable signatures [CKLM14], a generalization of digital signatures, where
a signature on a message m can be transformed into a signature on a message
T (m) for any allowed transformation T . Simulation unforgeability requires that
from a signature one can extract all transformations it has undergone (even when
the adversary that created it has seen “simulated” signatures).

In their scheme [BCFK15] a coin is a malleable signature computed by the
bank, which can be transformed by a user if she correctly encodes her identity
in a double-spending tag, adds an encryption (under the bank’s public key) to
it and randomizes all encryptions of previous tags cointained in the coin.

None of the previous schemes explicitly considers denominations of coins
(and neither do we). This is because efficient (“compact”) withdrawing and
spending can be easily achieved if the bank associates different keys to different
denominations (since giving change is readily supported in transferable e-cash).
Note that, in contrast to cryptocurrencies, where every transaction is publicly
posted, hiding the amount of a payment is meaningless in transferable e-cash.

Our contribution: security model. We revisit the formal model for trans-
ferable e-cash, starting from [BCFK15], whose model was a refined version of
earlier ones. We then exhibit attacks against users who follow the protocol,
against which previous models did not protect:

– When a user receives a coin (that is, the protocol accepts the received coin),
then previous models did not guarantee that this coin will be accepted by
other (honest) users when transferred. An adversary could thus send a mal-
formed coin to a user, which the latter accepts but can then not spend.

– There were also no guarantees against a malicious bank which at coin deposit
refuses to credit the user’s account (e.g., by claiming that the coin was invalid
or had been double-spent). In our model, when the bank refuses a coin, it
must accuse a user of double-spending and provide a proof for this.

We then simplify the anonymity definitions, which in earlier version had
been cluttered with numerous oracles the adversary has access to, and for which
the intuitive notion that they were formalizing was hard to grasp. While our
definitions are simpler, they are stronger in that they imply previous definitions
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(except for the previous notion of “spend-then-receive (StR) anonymity”, whose
existing formalizations we argue are not relevant in practice).

We also show that the proof of “StR anonymity” (a notion similar to coin
transparency) of the scheme from [BCFK15] is flawed and that it only satisfies
a weakening of the notion (Sect. 3.2).

Our contribution: instantiation. Our main contribution is a transferable
e-cash scheme, which we prove satisfies our security model, and which is more
efficient than the only previous realization [BCFK15]. Unfortunately, the au-
thors do not provide concrete numbers, as they use malleable signatures in a
blackbox way. Arguably, these signatures are the main source of inefficiency, due
to their generality and the strong security notions in the spirit of simulation-
sound extractability, requiring that a coin (i.e., a malleable signature) stores
every transformation it has undergone.

In contrast, we give a direct construction from the following primitives:
Groth-Sahai proofs [GS08], which are randomizable; structure-preserving sig-
natures [AFG+10], which are compatible with GS proofs; and rerandomizable
encryption satisfying RCCA-security [CKN03] (the corresponding variant of
CCA security, see Fig. 6). While we use signature schemes from the literature
[AGHO11, Fuc11], we construct a new RCCA-secure encryption scheme that is
tailored to our scheme, basing it on prior work [LPQ17]. Finally, our scheme also
uses the (efficient) double-spending tags used previously [BCFK15].

Due to the existence of an omnipotent “judge”, no such tags were required
by Blazy et al. [BCF+11]. Interestingly, although we do not assume any active
trusted parties, we achieve a comparable efficiency, which is a result of realizing
the full potential of the tags: previously [BCFK15], tags had only served to
encode a user’s identity; but, as we show, they can in addition be used to commit
the user. This allows us, contrary to all previous instantiations, to completely
forgo the inclusion of user signatures in the coins, which considerably reduces
their size. For a more detailed (informal) overview of our scheme see Sect. 5.1.

In terms of efficiency, our coins grow by around 100 elements from a bilinear
group per transfer (see table on p. 29). We view this as practical by current stan-
dards, especially in view of numbers for deployed schemes: e.g., the parameters
for Zcash consist of several 100 000 bilinear-group elements [Zec20].

2 Definition of transferable e-cash

The syntax and security definitions we present in the following are refinements
of earlier work [CG08, BCF+11, BCFK15].

2.1 Algorithms and protocols

An e-cash scheme is set up by running ParamGen and the bank generating its key
pair via BKeyGen. The bank maintains a list of users UL and a list of deposited
coins DCL. Users run the protocol Register with the bank to obtain their secret
key, and their public keys are added to UL. With her secret key a user can run
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Withdraw with the bank to obtain coins, which she can transfer to others via the
protocol Spend.

Spend is also used when a user deposits a coin at the bank. After receiving a
coin, the bank runs CheckDS (for “double-spending”) on it and the previously
deposited coins in DCL, which determines whether to accept the coin. If so, it is
added to DCL; if not (in case of double-spending), CheckDS returns the public
key of the accused user and a proof Π, which can be verified using VfyGuilt.

ParamGen(1λ), on input the security parameter λ in unary, outputs public pa-
rameters par, which are an implicit input to all of the following algorithms.

BKeyGen() is run by the bank B and outputs its public key pkB and its secret
key skB = (skW , skD, skCK), where skW is used to issue coins in Withdraw
and to register users in Register; skD is used as the receiver secret key when
coins are deposited via Spend; and skCK is used for CheckDS.

Register〈B(skW),U(pkB)〉 is a protocol between the bank and a user. The user
obtains a secret key sk and the bank gets pk, which it adds to UL.

Withdraw〈B(skW),U(skU ,pkB)〉 is run between the bank and a user, who outputs
a coin c (or ⊥ in case of error), while the bank outputs ok (in which case it
debits the user’s account) or ⊥.

Spend〈U(c, sk,pkB),U ′(sk′,pkB)〉 is run between two users and lets U spend a
coin c to U ′ (who could be the bank). U ′ outputs a coin c′ (or ⊥), while U
outputs ok (or ⊥).

CheckDS(skCK,UL,DCL, c), run by the bank, takes as input its checking key,
the lists of registered users UL and of deposited coins DCL and a coin c. It
outputs an updated list DCL (when the coin is accepted) or a user public
key pkU and an incrimination proof Π.

VfyGuilt(pkU , Π) can be executed by anyone. It takes a user public key and an
incrimination proof and returns 1 (acceptance of Π) or 0 (rejection).

Note that we define a transferable e-cash scheme as stateless, in that there is
no state information shared between the algorithms. A withdrawn coin, whether
it was the first or the n-th coin issued to a specific user, is always distributed
the same. Moreover, a received coin will only depend on the spent coin (and not
on other spent or received coins). Thus, the bank and the users need not store
anything about past transactions for transfer; the coin itself must be sufficient.

In particular, the bank can separate withdrawing from depositing, in that
CheckDS, used during deposit, need not be aware of the withdrawn coins.

2.2 Security definitions

Global variables. In our security games, we store all information about users
and their keys in the user list UL. Its entries are of the form (pki, ski,udsi),
where udsi indicates how many times user Ui has double-spent.

In the coin list CL, we keep information about the coins created in the system.
For each withdrawn or spent coin c, we store a tuple (owner, c, cds, origin), where
owner stores the index i of the user who withdrew or received the coin (coins
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obtained by the adversary are not stored); cds counts how often this specific
instance of the coin has been spent; origin is set to “B” if the coin was issued
by the honest bank and to “A” if it originates from the adversary; if the coin
was originally spent by the challenger itself, then origin indicates which original
coin this transferred coin corresponds to.

Finally, we maintain a list of deposited coins DCL.

Oracles. Our security games use oracles, which differ depending on whether the
adversary impersonates a corrupt bank or users. If during the oracle execution
an algorithm fails (i.e., it outputs ⊥) then the oracle also stops. Otherwise the
call to the oracle is considered successful ; a successful deposit oracle call must
also not detect any double-spending.

Registration and corruption of users. The adversary can instruct the creation of
honest users and either play the role of the bank during registration, or passively
observe registration. It can moreover “spy” on users, meaning it can learn the
user’s secret key. This will strengthen yet simplify our anonymity games com-
pared to [BCFK15], where once the adversary had learned the secret key of a user
(by “corrupting” her), the user could not be a challenge user in the anonymity
games anymore (yielding selfless anonymity, while we achieve full anonymity).

BRegist() plays the bank side of Register and interacts with A. If successful, it
adds (pk,⊥,uds = 0) to UL (where uds is the number of double-spends).

URegist() plays the user side of the Register protocol when the bank is controlled
by the adversary. Upon successful execution, it adds (pk, sk, 0) to UL.

Regist() plays both parties in the Register protocol and adds (pk, sk, 0) to UL.
Spy(i), for i ≤ |UL|, returns user i’s secret key ski.

Withdrawal oracles. The adversary can either withdraw a coin from the bank,
play the role of the bank, or passively observe a withdrawal.

BWith() plays the bank side of the Withdraw protocol. Coins withdrawn by A
(and thus unknown to the experiment) are not added to the coin list CL.

UWith(i) plays user i in Withdraw when the bank is controlled by the adversary.
Upon obtaining a coin c, it adds (owner= i, c, cds=0, origin=A) to CL.

With(i) simulates a Withdraw protocol execution playing both B and user i. It
adds (owner= i, c, cds=0, origin=B) to CL.

Spend and deposit oracles.

Spd(j) spends the coin from the j-th entry (ownerj , cj , cdsj , originj) in CL to A,
who could be impersonating a user, or the bank during a deposit. The oracle
plays U in the Spend protocol with secret key skownerj . It increments the coin
spend counter cdsj by 1. If afterwards cdsj > 1, then the owner’s double-
spending counter udsownerj is incremented by 1.

Rcv(i) makes honest user i receive a coin fromA. The oracle plays U ′ in the Spend
protocol with user i’s secret key. It adds a new entry (owner = i, c, cds = 0,
origin=A) to CL.
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ExptsoundA (λ):

par← ParamGen(1λ); pkB ← A(par)
(b, i1, i2)← AURegist,Spy

If b = 0 then run UWith(i1) with A
Else run Rcv(i1) with A
If this outputs ⊥ then return 0
Run S&R(1, i2); if one party outputs ⊥ then return 1 and 0 otherwise

Fig. 1. Game for soundness (protecting users from financial loss)

S&R(j, i) spends the j-th coin in CL to user i. It runs (ok, c) ← Spend〈U(cj ,
skownerj ,pkB),U ′(ski,pkB)〉 and adds (owner= i, c, cds=0, origin=j) to CL.
It increments the coin spend counter cdsj by 1. If afterwards cdsj > 1, then
udsownerj is incremented by 1.

BDepo() lets A deposit a coin. It runs U ′ in Spend using the bank’s secret key skD
with the adversary playing U . If successful, it runs CheckDS on the received
coin and either updates DCL or returns a pair

(
pk, Π

)
.

Depo(j), the honest deposit oracle, runs Spend between the owner of the j-th
coin in CL and an honest bank. If successful, it increments cdsj by 1; if
afterwards cdsj > 1, it also increments udsownerj . It runs CheckDS on the
received coin and either updates DCL or returns a pair

(
pk, Π

)
.

(No “UDepo” is needed since Spd lets user deposit at an adversarial bank.)

2.3 Economic properties

We distinguish two types of security properties of transferable e-cash schemes.
Besides anonymity notions, economic properties ensure that neither the bank
nor users will incur an economic loss when participating in the system.

The following property was not required in any previous formalization of
transferable e-cash in the literature and is analogous the property clearing de-
fined for classical e-cash [BPS19].

Soundness. If an honest user accepted a coin during a withdrawal or a transfer,
then she is guaranteed that the coin will be accepted by others, either honest
users when transferring, or the bank when depositing. The game is formalized
in Fig. 1 where i2 plays the role of the receiver of a spending or the bank. For
convenience, we define probabilistic polynomial-time (PPT) adversaries A to be
stateful in all our security games.

Definition 1 (Soundness). A transferable e-cash system is sound if for any
PPT A, we have Advsound

A (λ) := Pr[ExptsoundA (λ) = 1] is negligible in λ.

Unforgeability. This notion covers both unforgeability and user identification
from [BCFK15] (which were not consistent as we explain in Sect. 3.2). It protects
the bank, ensuring that no (coalition of) users can spend more coins than the
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ExptunforgA (λ):

par← ParamGen(1λ); (skB, pkB)← BKeyGen(par)
ABRegist,BWith,BDepo (par, pkB)
If in a BDepo call, CheckDS does not return a coin list:

Return 1 if any of the following hold:
– CheckDS outputs ⊥
– CheckDS outputs (pk, Π) and VfyGuilt (pk, Π) = 0
– CheckDS outputs (pk, Π) and pk 6∈ UL

Let qW be the number of calls to BWith

If qW < |DCL|, then return 1 and 0 otherwise

Fig. 2. Game for unforgeability (protecting the bank from financial loss)

number of coins they withdrew. Unforgeability also guarantees that whenever a
coin is deposited and refused by CheckDS, it returns the identity of a registered
user, who is accused of double-spending. (Exculpability, below, ensures that no
innocent user will be accused.) The game is given in Fig. 2 and lets the adversary
impersonate all users.

Definition 2 (Unforgeability). A transferable e-cash system is unforgeable if
Adv

unforg
A (λ) := Pr[Expt

unforg
A (λ) = 1] is negligible in λ for any PPT A.

Exculpability. This notion, a.k.a. non-frameability, ensures that the bank, even
when colluding with malicious users, cannot wrongly accuse an honest user of
double-spending. Specifically, it guarantees that an adversarial bank cannot pro-
duce a double-spending proof Π∗ that verifies for the public key of a user i∗ that
has never double-spent. The game is formalized as in Fig. 3.

Definition 3 (Exculpability). A transferable e-cash system is exculpable if
Advexcul

A (λ) := Pr[ExptexculA (λ) = 1] is negligible in λ for any PPT A.

2.4 Anonymity properties

Instead of following previous anonymity notions [BCF+11, BCFK15], we intro-
duce new ones which clearly distinguish between the adversary’s capabilities; in
particular, whether or not it is able to detect double-spending. When the ad-
versary impersonates the bank, we consider two cases: user anonymity and coin
anonymity (and explain why this distinction is necessary).

ExptexculA (λ):

par← ParamGen(1λ); pkB ← A (par)

(i∗, Π∗)← AURegist,Spy,UWith,Rcv,Spd,S&R,UDepo (par)
Return 1 if all of the following hold (and 0 otherwise):

– VfyGuilt(pki∗ , Π
∗) = 1

– There was no call Spy(i∗)
– udsi∗ = 0

Fig. 3. Game for exculpability (protecting honest users from accusation)
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Exptc-anA,b (λ):

par← ParamGen(1λ)
pkB ← A(par)

i
(0)
0 ← AURegist,Spy; run UWith(i

(0)
0 ) with A

i
(1)
0 ← AURegist,Spy; run UWith(i

(1)
0 ) with A(

(i
(0)
1 , . . . , i

(0)
k0

), (i
(1)
1 , . . . , i

(1)
k1

)
)
← AURegist,Spy

If k0 6= k1 then return 0
For j = 1, . . . , k0:

Run S&R
(
2j − 1, i

(0)
j

)
Run S&R

(
2j, i

(1)
j

)
Run Spd(2k0 + 1 + b) with A
Run Spd(2k0 + 2− b) with A
b∗ ← A ; return b∗

Exptu-anA,b (λ):

par← ParamGen(1λ)
pkB ← A (par)

(i
(0)
0 , i

(1)
0 )← AURegist,Spy

Run Rcv(ib) with A(
(i

(0)
1 , . . . , i

(0)
k0

), (i
(1)
1 , . . . , i

(1)
k1

)
)

← AURegist,Spy

If k0 6= k1 then return 0
For j = 1, . . . , k0:

Run S&R
(
j, i

(b)
j

)
Run Spd(k0 + 1) with A
b∗ ← A ; return b∗

Fig. 4. Games for coin and user anonymity (protecting users from a malicious bank)

As transferred coins necessarily grow in size [CP93], we can only guarantee
indistinguishability of comparable coins. We therefore define comp(c1, c2) = 1 iff
size (c1) = size (c2), where size(c) = 1 after c was withdrawn and it increases
by 1 after each transfer.

Coin anonymity. This notion is closest to (and implies) the anonymity notion
of classical e-cash: an adversary, who also impersonates the bank, issues two coins
to the challenger and when she later receives them (via a deposit in classical e-
cash), she should not be able to associate them to their issuances. In transferable
e-cash, we allow the adversary to determine two series of honest users via which
the coins are respectively transfered before being given back to the adversary.

The experiment is specified on the left of Fig. 4: users i(0)0 and i(1)0 withdraw
a coin from the adversarial bank, user i(0)0 passes it to i(0)1 , who passes it to i(0)2 ,
etc., In the end, the last users of the two chains spend the coins to the adversary,
but the order in which this happens depends on a bit b that parametrizes the
game, and which the adversary must decide.

User anonymity. Coin anonymity required that users who transfer the coin are
honest. If one of the users through which the coin passes colluded with the bank,
there would be a trivial attack: after receiving the two challenge coins, the bank
simulates the deposit of one of them and the deposit of the coin intercepted by
the colluding user. If a double-spending is detected, it knows that the received
coin corresponds to the sequence of users which the colluder was part of.

Since double-spending detection is an essential feature of e-cash, attacks
of this kind are impossible to prevent. However, we still want to guarantee
that, while the bank can trace coins, the involved users remain anonymous.
We formalize this in the game on the right of Fig. 4, where, in contrast to
coin anonymity, there is only one coin and the adversary must distinguish the
sequence of users through which the coin passes before returning to her. In con-
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Exptc-trA,b (λ):

par← ParamGen(1λ); ((skW , skD, skCK), pkB)← BKeyGen(par)
DCL′ ← ∅ // lists the challenge coins
ctr← 0 // counts how often a challenge coin was deposited

i(0) ← AURegist,BDepo′,Spy (par, pkB, skW , skD)
// BDepo′ uses CheckDS′ (·, ·, ·, ·,DCL′) (see below) instead of CheckDS

Run Rcv(i(0)) with A; let c0 be the received coin stored in CL[1]
x0 ← CheckDS(skCK, ∅, CL, c0)
If x0 = ⊥ then ctr← ctr + 1 //c0 had been deposited
DCL′ ← CheckDS(skCK, ∅, ∅, c0) //add c0 to list of challenge coins

i(1) ← AURegist,BDepo,Spy

Run Rcv(i(1)) with A; let c1 be the received coin stored in CL[2]
x1 ← CheckDS(skCK, ∅, CL, c1)
If x1 = ⊥ then ctr← ctr + 1 //c1 had been deposited
If comp(c0, c1) 6= 1 then abort
x2 ← CheckDS(skCK, ∅,DCL′, c1) //add c1 to list of challenge coins
If x2 6= ⊥ then DCL′ ← x2 // (c1 could be a double-spending of c0)(
(i

(0)
1 , . . . , i

(0)
k0

), (i
(1)
1 , . . . , i

(1)
k1

)
)
← AURegist,BDepo′,Spy

If k0 6= k1 then abort

If (kb 6= 0) then run S&R
(
b+ 1, i

(b)
1

)
// spend coin cb to user i

(b)
1 . . .

For j = 2, . . . , k0: // . . . the received coin is placed in CL[3]

Run S&R
(
j + 1, i

(b)
j

)
// spend coins consecutively

Run Spd(k0 + 2) with A // and transfer it back to A
b∗ ← ABDepo′ ; return b∗

CheckDS′ (skCK,UL,DCL, c,DCL′): // used by BDepo′

x← CheckDS (skCK, ∅,DCL′, c)
If x = ⊥: // the deposited coin c is a double-spending of c0 or c1

ctr← ctr + 1
If ctr > 1 then abort

Output CheckDS (skCK, ∅,DCL, c)

Fig. 5. Game for coin transparency (protecting users from malicious users)

trast to coin anonymity, we now allow the coin to already have some “history”,
rather than being freshly withdrawn.

Coin transparency. This is arguably the strongest anonymity notion and it
implies that a user that transfers a coin cannot recognize it if she receives it
again. As the bank can necessarily trace coins (for double-spending detection),
it is assumed to be honest for this notion. Actually, only the detection key skCK
must remain hidden from the adversary, while skW and skD can be given.

The game formalizing this notion, specified in Fig. 5, is analogous to coin
anonymity, except that the challenge coins are not freshly withdrawn; instead,
the adversary spends two coins of its choice to users of its choice, both are passed
through a sequence of users of the adversary’s choice and one of them is returned
to the adversary.
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There is another trivial attack that we need to exclude: the adversary could
deposit the coin that is returned to him and one, say the first, of the coins
he initially transfered to an honest user. Now if the deposit does not succeed
because of double-spending, the adversary knows that it was the first coin that
was returned to him. Again, this attack is unavoidable due to the necessity of
double-spending detection. It is a design choice that lies outside of our model to
implement sufficient deterrence from double-spending, so that it would exceed
the utility of breaking anonymity.

This is the reason why the game aborts if the adversary deposits twice a
coin from the set of “challenge coins” (consisting of the two coins the adversary
transfers and the one it receives). The variable ctr counts how often a coin from
this set was deposited. Note also that because A has skW , and can therefore
create unregistered users, we do not consider UL in this game.

Definition 4 (Anonymity). For x ∈ {c-an, u-an, c-tr} a transferable e-cash
scheme satisfies x if Advx

A(λ) := Pr[ExptxA,1 (λ) = 1]− Pr[ExptxA,0 (λ) = 1] is
negligible in λ for any PPT adversary A.

3 Comparison with previous work

3.1 Model comparison

In order to justify our new model, we start with discussing a security vulnera-
bility of the previous model [BCFK15].

No soundness guarantees. In none of the previous models was there a security
notion that guaranteed that an honest user could successfully transfer a coin to
another honest user or the bank, even if the coin was obtained regularly.

Fuzzy definition of “unsuccessful deposit”. Previous models defined a
protocol called “Deposit”, which we separated into an interactive (Spend) and a
static part (CheckDS). In their definition of unforgeability, the authors [BCFK15]
use the concept of “successful deposit”, whose meaning is unclear, since an “un-
successful deposit” could mean one of the following:

– The bank detects a double-spending and provides a proof accusing the
cheater (who could be different from the depositer).

– The user did not follow the protocol (e.g., by sending a malformed coin), in
which case we cannot expect a proof of guilt from the bank.

– The user followed the protocol but using a coin that was double-spent (either
earlier or during deposit); however, the bank does not obtain a valid proof
of guilt and outputs ⊥.

Our interpretation of the definition in [BCFK15] is that it does not distinguish
the second and the third case. This is an issue, as the second case cannot be
avoided (and must be dealt with outside the model, e.g. by having users sign
their messages). But the third case should be prevented so the bank does not
lose money without being able to accuse the cheater. This is now guaranteed by
our unforgeability notion in Def. 2.
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Simplification of anonymity definitions. We believe that our notions are
more intuitive and simpler (e.g. by reducing the number of oracles of previous
work). Our notions imply prior notions from the literature: we can prove that
the existence of an adversary in a game from a prior notion implies the existence
of an adversary in one of our games. (The general idea is to simulate most of
the oracles using the secret keys of the bank or users, which in our notions can
be obtained via the Spy oracle.) In particular:

c-an⇒ OtR-fa and u-an⇒ StR*-fa

where OtR-fa is observe-then-receive full anonymity [CG08, BCF+11, BCFK15]
and StR*-fa is a variant of spend-then-receive full anonymity from [BCFK15].

The notion StR-fa [CG08, BCF+11] is similar to our coin transparency c-tr,
with the following differences: in StR-fa, when the adversary deposits a coin,
the bank provides a guilt proof when it can; and it lets the adversary obtain
user secret keys. Coin transparency would imply StR-fa if CheckDS replaced its
argument UL by ∅. This change is justified since (in both StR-fa and c-tr) the
adversary can create unregistered users (using skW), and thus CheckDS could
return ⊥ because it cannot accuse anyone in UL.

Finally, no prior scheme, including [BCFK15], achieves StR-fa, as shown next.

3.2 A flaw in a proof in BCFK15

The authors [BCFK15] claim that their scheme satisfies StR-fa as defined in
[BCF+11] (after having discovered a flaw in the StR-fa proof of the scheme of
that paper). To achieve this anonymity notion (the most difficult one, as they
note), they use malleable signatures, which guarantee that whenever an adver-
sary, after obtaining simulated signatures, outputs a valid message/signature
pair (m,σ), it must have derived the pair from received signatures. Formally,
there exists an extractor that can extract a transformation from σ that links m
to the messages on which the adversary queried signatures.

In the game formalizing StR-fa [BCF+11] (analogously to Exptc-tr in Fig. 5)
the adversary receives skW , which formalizes the notion that the part of the bank
that issues coins can be corrupt. In their scheme [BCFK15], skW contains the
signing key for the malleable signatures. However, with this the adversary can
easily compute a fresh signature, and thus no extractor can recover a trans-
formation explaining the signed message. This shows that a scheme based on
malleable signatures only satisfies a weaker notion of StR-fa/c-tr, where all
parts of the bank must be honest.

In contrast, we prove that our scheme satisfies c-tr; it can therefore be seen
as the first scheme to satisfy the “spirit” of StR-fa, as captured by c-tr.

4 Primitives used in our construction

4.1 Bilinear groups

The building blocks of our scheme will be defined over a (Type-3, i.e., “asym-

metric”) bilinear group, which is a tuple Gr = (p,G, Ĝ,GT , e, g, ĝ), where G, Ĝ
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and GT are groups of prime order p; 〈g〉 = G, 〈ĝ〉 = Ĝ, and e : G× Ĝ→ GT is a
bilinear map (i.e., for all a, b ∈ Zp: e(ga, ĝb) = e(g, ĝ)ab) so that e(g, ĝ) generates
GT . We assume that the groups are discrete-log-hard and other computational
assumptions, such as SXDH, defined in the full version [BFQ20], hold as well.
We assume that there exists an algorithm GrGen that, on input the security
parameter λ in unary, outputs the description of a bilinear group with p ≥ 2λ−1.

4.2 Randomizable proofs of knowledge and signatures

Commit-and-prove proof systems. As coins must be unforgeable, at their
core lie digital signatures. To achieve anonymity, these must be hidden, which can
be achieved via non-interactive zero-knowledge (NIZK) proofs of knowledge; if
these proofs are re-randomizable, then they can not even be recognized by a past
owner. We will use Groth-Sahai NIZK proofs [GS08], which are randomizable
[FP09, BCC+09] and include commitments to the witnesses.

We let V be set of values that can be committed, C be the set of commitments,
R the randomness space and E the set of equations (containing equality) whose
satisfiability can be proved. We assume that V and R are groups. We will use
an extractable commitment scheme, which consists of the following algorithms:

C.Setup(Gr) takes as input a description of a bilinear group and returns a com-
mitment key ck, which implicitly defines the sets V, C,R and E .

C.ExSetup(Gr) returns an extraction key xk in addition to a commitment key ck.
C.SmSetup(Gr) returns a commitment key ck and a simulation trapdoor td.
C.Cm(ck, v, ρ), on input a key ck, a value v ∈ V and randomness ρ ∈ R, returns

a commitment in C.
C.ZCm(ck, ρ), used when simulating proofs, is defined as C.Cm(ck, 0V , ρ).
C.RdCm(ck, c, ρ) randomizes a commitment c to a fresh c′ using randomness ρ.
C.Extr(xk, c), on input extraction key xk and a commitment c, outputs a value

in V. (This is the only algorithm that might not be polynomial-time.)

We extend C.Cm to vectors in Vn: for M = (v1, . . . , vn) and ρ = (ρ1, . . . , ρn)
we define C.Cm(ck,M, ρ) :=

(
C.Cm(ck, v1, ρ1), . . . ,C.Cm(ck, vn, ρn)

)
and likewise

C.Extr(xk, (c1, . . . , cn)) :=
(
C.Extr(xk, c1), . . . ,C.Extr(xk, cn)

)
.

We now define a NIZK proof system that proves that committed values satisfy
given equations from E . Given a proof for commitments, the proof can be adapted
to a randomization (via C.RdCm) of the commitments using C.AdptPrf.

C.Prv(ck, E, (v1, ρ1), . . . , (vn, ρn)), on input a key ck, a set of equations E ⊂ E ,
values (v1, . . . , vn) and randomness (ρ1, . . . , ρn), outputs a proof π.

C.Verify(ck, E, c1, . . . , cn, π), on input a commitment key ck, a set of equations
in E , a commitment vector (c1, . . . , cn), and a proof π, outputs a bit b.

C.AdptPrf(ck, E, c1, ρ1, . . . , cn, ρn, π), on input a set of equations, commitments
(c1, . . . , cn), randomness (ρ1, . . . , ρn) and a proof π, outputs a proof π′.

C.SmPrv(td, E, ρ1, . . . , ρn), on input the simulation trapdoor, a set of equations
E with n variables and randomness (ρ1, . . . , ρn), outputs a proof π.
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M-structure-preserving signatures. To prove knowledge of signatures, we
require a scheme that is compatible with Groth-Sahai proofs [AFG+10].

S.Setup(Gr), on input the bilinear group description, outputs signature parame-
ters parS , defining a message space M. We require M⊆ Vn for some n.

S.KeyGen(parS), on input the parameters parS , outputs a signing key and a
verification key (sk, vk). We require that vk is composed of values in V.

S.Sign(sk,M), on input a signing key sk and a message M ∈ M, outputs a
signature Σ. We require that Σ is composed of values in V.

S.Verify(vk,M,Σ), on input a verification key vk, a message M and a signature
Σ, outputs a bit b. We require that S.Verify proceeds by evaluating equations
from E (which we denote by ES.Verify(·,·,·)).

M-commuting signatures. As in a previous construction of transferable e-
cash [BCF+11], we will use commuting signatures [Fuc11], which let the signer,
given a commitment to a message, produce a commitment to a signature on that
message, together with a proof, via the following functionality:

SigCm(ck, sk, c), given a signing key sk and a commitment c of a message M ∈
M, outputs a committed signature cΣ and a proof π that the signature in cΣ
is valid on the value in c, i.e., the committed values satisfy S.Verify(vk, ·, ·).

SmSigCm(xk, vk, c, Σ), on input the extraction key xk, a verification key vk, a
commitment c and a signature Σ, outputs a committed signature cΣ and a
proof π of validity for cΣ and c (the key xk is needed to compute π for c).

Correctness and soundness properties. We require the following properties
of commitments, proofs and signatures, when the setup algorithms are run on
any output Gr ← GrGen(1λ) for any λ ∈ N:

Perfectly binding commitments: C.Setup and the first output of C.ExSetup are
distributed equivalently. Let (ck, xk) ← C.ExSetup; then for every c ∈ C
there exists exactly one v ∈ V such that c = C.Cm(ck, v, ρ) for some ρ ∈ R.
Moreover, C.Extr(xk, c) extracts that value v.

V ′-extractability: Committed values from a subset V ′ ⊂ V can be efficiently
extracted (e.g., V ′ = G1 ∪ G2 [GS08]). Let (ck, xk) ← C.ExSetup; then
C.Extr(xk, ·) is efficient for all c = C.Cm(ck, v, ρ) for any v ∈ V ′ and ρ ∈ R.

Proof completeness: Let ck ← C.Setup; then for all (v1, . . . , vn) ∈ Vn satisfying
E ⊂ E , and (ρ1, . . . , ρn) ∈ Rn and π ← C.Prv(ck, E, (v1, ρ1), . . . , (vn, ρn)) we
have C.Verify(ck, E,C.Cm(ck, v1, ρ1), . . . ,C.Cm(ck, vn, ρn), π) = 1.

Proof (knowledge) soundness: Let (ck, xk)←C.ExSetup, E ⊂ E , (c1, . . . , cn)∈Cn.
If C.Verify(ck, E, c1, . . . , cn, π) = 1 for some π, then letting vi := C.Extr(xk, ci),
for all i, we have that (v1, . . . , vn) satisfy E.

Randomizability: Let ck← C.Setup and E ⊂ E ; for all (v1, . . . , vn) ∈ Vn satisfy-
ing E, and ρ1, ρ

′
1, . . . , ρn, ρ

′
n ∈ R the following are distributed equivalently:
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(
C.RdCm(C.Cm(ck, v1, ρ1), ρ′1), . . . ,C.RdCm(C.Cm(ck, vn, ρn), ρ′n),

C.AdptPrf
(
ck, E,C.Cm(ck, v1, ρ1), ρ′1, . . . ,C.Cm(ck, vn, ρn), ρ′n,

C.Prv(ck, E, (v1, ρ1), . . . , (vn, ρn))
))

and(
C.Cm(ck, v1, ρ1 + ρ′1), . . . ,C.Cm(ck, vn, ρn + ρ′n),

C.Prv(ck, E, (v1, ρ1 + ρ′1), . . . , (vn, ρn + ρ′n))
)

Signature correctness: Let (sk, vk) ← S.KeyGen(S.Setup) and M ∈ M; then we
have S.Verify(vk,M, S.Sign(sk,M)) = 1.

Correctness of signing committed messages: Let (ck, xk) ← C.ExSetup and let

(sk, vk) ← S.KeyGen(S.Setup), and M ∈ M; for ρ, ρ′
$←− R, the following

three are distributed equivalently:(
C.Cm

(
ck,S.Sign(sk,M), ρ′

)
, C.Prv

(
ck, ES.Verify(vk,·,·), (M,ρ), (Σ, ρ′)

))
and

SigCm
(
ck, sk,C.Cm(ck,M, ρ)

)
and

SmSigCm
(
xk, vk,C.Cm(ck,M, ρ),S.Sign(sk,M)

)
The first equivalence also holds for ck← C.Setup, since it is distributed like
ck output by C.ExSetup.

Security properties

Mode indistinguishability: LetGr ← GrGen(1λ); then the outputs of C.Setup(Gr)
and the first output of C.SmSetup(Gr) are computationally indistinguishable.

Perfect zero-knowledge in hiding mode: Let (ck, td) ← C.SmSetup(Gr), E ⊂ E
and v1, . . . , vn ∈ V such that E(v1, . . . , vn) = 1. For ρ1, . . . , ρn

$←− R the
following are distributed equivalently:(
C.Cm(ck, v1, ρ1), . . . ,C.Cm(ck, vn, ρn),C.Prv

(
ck, E, (v1, ρ1), . . . , (vn, ρn)

))
and

(
C.ZCm(ck, ρ1), . . . ,C.ZCm(ck, ρn),C.SmPrv

(
td, E, ρ1, . . . , ρn

))
Signature unforgeability (under chosen message attack): No PPT adversary that

is given vk output by S.KeyGen and an oracle for adaptive signing queries
on messages M1,M2, . . . of its choice can output a pair (M,Σ), such that
S.Verify(vk,M,Σ) = 1 and M /∈ {M1,M2, . . . }.

4.3 Rerandomizable encryption schemes

In order to trace double-spenders, some information must be retrievable from
the coin by the bank. For anonymity, we encrypt this information. Since coins
must change appearance in order to achieve coin transparency (Def. 4), we use
rerandomizable encryption. We will prove consistency of encrypted messages
with values used elsewhere, and to produce such a proof, knowledge of parts of

15



the randomness is required; we therefore make this an explicit input of some
algorithms, which thus are still probabilistic.

A rerandomizable encryption scheme E consists of four algorithms:

E.KeyGen(Gr), on input the group description, outputs an encryption key ek and
a corresponding decryption key dk.

E.Enc(ek,M, ν) is probabilistic and on input an encryption key ek, a message M
and (partial) randomness ν outputs a ciphertext.

E.ReRand(ek, C, ν′), on input an encryption key, a ciphertext and (partial) ran-
domness, outputs a new ciphertext.

E.Dec(dk, C), on input a decryption key and a ciphertext, outputs either a mes-
sage or ⊥ indicating an error.

To prove statements about encrypted messages, we add two functionalities:
E.Verify lets one check that a ciphertext encrypts a given message M , for which
it is also given partial randomness ν. This will allow us to prove that a commit-
ment cM and a ciphertext C contain the same message. For this, we require that
the equations defining E.Verify are in the set E supported by C.Prv.

This lets us define an equality proof π̃ = (π, cν), where cν is a commitment
to the randomness ν, and π proves that the values in cM and cν verify the equa-
tions E.Verify(ek, ·, ·, C). To support rerandomization of ciphertexts, we define a
functionality E.AdptPrf, which adapts a proof (π, cν) to a rerandomization.

E.Verify(ek,M, ν, C), on input an encryption key, a message, randomness and a
ciphertext, outputs a bit.

E.AdptPrf(ck, ek, cM , C, π̃ = (π, cν), ν′), a probabilistic algorithm which, on in-
put keys, a commitment, a ciphertext, an equality proof (i.e., a proof and a
commitment) and randomness, outputs a new equality proof (π′, c′ν).

Correctness properties. We require the scheme to satisfy the following cor-
rectness properties for all key pairs (ek,dk)← E.KeyGen(Gr) forGr ← GrGen(1λ):

– For all M ∈M and randomness ν we have: E.Enc(ek,M, ν) = C if and only
if E.Verify(ek,M, ν, C) = 1.

– For all M ∈ M and ν: E.Verify(ek,M, ν, C) = 1 implies E.Dec(dk, C) = M .
(These two notions imply the standard correctness notion.)

– For all M ∈ M and randomness ν, ν′, if C ← E.Enc(ek,M, ν) then the fol-
lowing are equally distributed: E.ReRand(ek, C, ν′) and E.Enc(ek,M, ν + ν′).

– For all ck ← C.Setup, all (ek,dk) ← E.KeyGen, M ∈ M and randomness
ν, ν′, ρM , ρν , if we let

cM ← C.Cm(ck,M, ρM ) C ← E.Enc(ek,M, ν)

cν ← C.Cm(ck, ν, ρν) π ← C.Prv
(
ck,E.Verify(ek, ·, ·, C), (M,ρM ), (ν, ρν)

)
then the following are equivalently distributed (with ρ′ν

$←− R):

E.AdptPrf
(
ck, ek, cM ,E.Enc(ek, C, ν), (π, cν), ν′

)
and(

C.Prv(ck,E.Verify(ek, ·, ·,E.ReRand(ek, C, ν′)), (M,ρM ), (ν + ν′, ρν + ρ′ν)),

C.RdCm(ck, cν , ρ
′
ν)
)
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ExptRCCAA,b (λ):

(ek, dk)← E.KeyGen(1λ)

(m0,m1)← AE.Dec(dk,·)(ek)
C ← E.Enc(ek,mb)

b′ ← AGDec(·)(C)
Return b′.

GDec(C):
m← E.Dec(dk, C)
If m 6∈ {m0,m1}

Return m
Else return replay

ExptIACRA,b (λ):

(ek, dk)← KeyGen(1λ)
(C0, C1)← A(ek)
C ← E.ReRand(ek, Cb)
b′ ← A(ek, C)
Return b′

Fig. 6. Security games for rerandomizable encryption schemes

Security properties. We require two properties: the standard (strongest pos-
sible) variant of CCA security; and a new notion that is easier to achieve.

Replayable-CCA (RCCA) security. We use the definition by Canetti et al. [CKN03],
formalized in Fig. 6.

Indistinguishability of adversarially chosen and randomized ciphertexts (IACR).
An adversary that is given a public key, chooses two ciphertexts and is then given
the randomization of one of them cannot, except with a negligible advantage,
distinguish which one it was given. The game is formalized in Fig. 6.

Definition 5. For x ∈ {RCCA, IACR}, a rerandomizable encryption scheme is
x-secure if Pr[ExptxA,1(λ) = 1] − Pr[ExptxA,0(λ) = 1] is negligible in λ for any
PPT A.

4.4 Double-spending tag schemes

Our e-cash scheme follows earlier approaches [BCFK15], where the bank repre-
sents a coin in terms of its serial number sn = sn0‖ . . . ‖snk, which grows with
every transfer. In addition, a coin contains tag = tag1‖ . . . ‖tagk, which enables
tracing of double-spenders. The part sni is chosen by a user when she receives
the coin, while the tag tagi is computed by the sender as a function of sni−1, sni
and her secret key.

Baldimtsi et al. [BCFK15] show how to construct such tags so they perfectly
hide user identities, except when a user computes two tags with the same sni−1
but different values sni: then her identity can be computed from the two tags.
Note that this precisely corresponds to double-spending the coin that ends in
sni−1 to two users that choose different values for sni when receiving it.

We use the tags from [BCFK15], which we first formally define, and then show
that their full potential had not been leveraged yet: in particular, we realize that
the tag can also be used as method for users to authenticate the coin transfer. In
earlier works [BCF+11, BCFK15], at each transfer the spender computed a sig-
nature that was included in a coin and that committed the user to the spending
(and made her accountable in case of double-spending). Our construction does
not require any user signatures and thus gains in efficiency.

Furthermore, in [BCFK15] (there were no tags in [BCF+11]), the malleable
signatures took care of ensuring well-formedness of the tags, while we give
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an explicit construction. To be compatible with Groth-Sahai proofs, we define
structure-preserving proofs of well-formedness for serial numbers and tags.

Syntax. An M-double-spending tag scheme T is composed of the following
polynomial-time algorithms:

T.Setup(Gr), on input a group description, outputs the parameters parT (which
are an implicit input to all of the following).

T.KeyGen(), on (implicit) input the parameters, outputs a tag key pair (sk,pk).

T.SGen(sk, n), the serial-number generation function, on input a secret key and
a nonce n ∈ N (the nonce space), outputs a serial-number component sn
and a proof sn-pf of well-formedness.

T.SGeninit(sk, n), a variant of T.SGen, outputs a message M ∈ M instead of a
proof. (SGeninit is used for the first SN component, which is signed by the
bank using a signature scheme that requires messages to be in M.)

T.SVfy(pk, sn, sn-pf), on input a public key, a serial number and a proof verifies
that sn is consistent with pk by outputting a bit b.

T.SVfyinit(pk, sn,M), on input a public key, a serial number and a message in
M, checks their consistency by outputting a bit b.

T.SVfyall, depending on the type of the input, runs T.SVfyinit or T.SVfy.

T.TGen(sk, n, sn), the double-spending tag generator, takes as input a secret
key, a nonce n ∈ N and a serial number, and outputs a double-spending tag
tag ∈ T (the set of the double-spending tags) and a tag proof t-pf .

T.TVfy(pk, sn, sn′, tag, t-pf), on input a public key, two serial numbers, a double-
spending tag, and a proof, checks consistency of the tag w.r.t. the key and
the serial numbers by outputting a bit b.

T.Detect(sn, sn′, tag, tag′,L), double-spending detection, takes two serial num-
bers sn and sn′, two tags tag, tag′ ∈ T and a list of public keys L and
outputs a public key pk (of the accused user) and a proof Π.

T.VfyGuilt(pk, Π), incrimination-proof verification, takes as input a public key
and a proof and outputs a bit b.

Correctness properties. For a double-spending tag scheme T we require that
for all parT ← T.Setup(Gr) the following hold:

Verifiability: For every n, n′ ∈ N , after computing
– (sk,pk)← T.KeyGen ; (sk′,pk′)← T.KeyGen
– (sn, X)← T.SGen(sk, n) or (sn, X)← T.SGeninit(sk, n)
– (sn′, sn-pf ′)← T.SGen(sk′, n′)
– (tag, t-pf)← T.TGen(sk, n, sn′)

we have T.SVfyall(pk, sn, X) = T.TVfy(pk, sn, sn′, tag, t-pf) = 1.

SN-identifiability: For all tag public keys pk1 and pk2, all serial numbers sn and
all X1 and X2, which can be messages in M or SN proofs, if

T.SVfyall(pk1, sn, X1) = T.SVfyall(pk2, sn, X2) = 1

then pk1 = pk2.
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Expttag-anonA,b (λ):

Gr ← GrGen(1λ)
parT ← T.Setup(Gr)
k := 0
(sk0, sk1)← A(parT)

b∗ ← AO1(skb),O2(skb,·,·)

Return (b = b∗)

O1(sk):

n
$←− N ; T [k] := n; k := k + 1

(sn, sn-pf)← T.SGen(sk, n)
Return sn.

O2(sk, sn′, i):
If T [i] = ⊥, abort the oracle call
n := T [i]; T [i] := ⊥
(tag, t-pf)← T.TGen(sk, n, sn′)
Return tag

Fig. 7. Game for tag anonymity (with oracles also used in exculpability) for double-
spending tag schemes

Bootability: There do not exist an SN message M , serial numbers sn1 6= sn2 and
tag keys (not necessarily distinct) pk1,pk2 such that:

T.SVfyinit(pk1, sn1,M) = T.SVfyinit(pk2, sn2,M) = 1.

2-show extractability: Let pk0, pk1 and pk2 be tag public keys, sn0, sn1 and sn2
be serial numbers, X0 be either an SN proof or a message inM, and sn-pf1
and sn-pf2 be SN proofs. Let tag1 and tag2 be tags, and t-pf1 and t-pf2 be
tag proofs, and let L be a set of tag public keys with pk0 ∈ L. If

T.SVfyall
(
pk0, sn0, X0

)
= 1

T.SVfy
(
pk1, sn1, sn-pf1

)
= T.SVfy

(
pk2, sn2, sn-pf2

)
= 1

T.TVfy
(
pk1, sn0, sn1, tag1, t-pf1

)
= T.TVfy

(
pk2, sn0, sn2, tag2, t-pf2

)
= 1

and sn1 6= sn2 then T.Detect(sn1, sn2, tag1, tag2,L) extracts (pk0, Π) effi-
ciently and we have T.VfyGuilt(pk0, Π) = 1.

N -injectivity: For any secret key sk, the function T.SGen(sk, ·) is injective.

Security properties.

Exculpability: This notion formalizes soundness of double-spending proofs, in
that no honestly behaving user can be accused. Let parT ← T.Setup and
(sk,pk) ← T.KeyGen(parT). Then we require that for a PPT adversary A
that is given pk and can obtain SNs and tags for receiver SNs of its choice,
both produced with sk (but no two tags for the same sender SN), is compu-
tationally hard to return a proof Π with T.VfyGuilt(pk, Π) = 1. Formally, A
gets access to oracles O1(sk) and O2(sk, ·, ·) defined in Fig. 7.

Tag anonymity: Our anonymity notions for transferable e-cash should hold even
against a malicious bank that gets to see the serial numbers and double-
spending tags for deposited coins and the secret keys of the users. We require
thus that as long as the nonce n is random and only used once, serial numbers
and tags reveal nothing about the user-specific values, such as sk and pk,
that were used to generate them. The game is given in Fig. 7.
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Definition 6 (Tag anonymity). A double-spending tag scheme is anonymous
if Pr[Expttag-anonA,1 (λ) = 1] − Pr[Expttag-anonA,0 (λ) = 1] is negligible in λ for any
PPT A.

5 Our transferable e-cash construction

5.1 Overview

The bank validates new users in the system and creates money, and digital
signatures can be used for both purposes: when a new user joins, the bank signs
her public key, which serves as proof of being registered; during a coin issuing,
the bank signs a message Msn that is associated to the initial serial-number
(SN) component sn0 of a coin (chosen by the user withdrawing the coin), and
this signature makes the coin unforgeable.

After a coin has been transferred k times, its core consists of a list of SNs
sn0, sn1, . . . , snk, together with a list of tags tag1, . . . , tagk (for a freshly with-
drawn coin, we have k = 0). When a user spends such a coin, the receiver
generates a fresh SN component snk+1, for which the spender must generate
a tag tagk+1, which is also associated with her public key and the last serial
number snk (which she generated when she received the coin.)

These tags allow the bank to identify the cheater in case of double-spending,
while they preserve honest users’ anonymity, also towards the bank. A coin more-
over contains the users’ public key w.r.t. which the tags were created, as well as
certificates from the bank on them. To provide anonymity, all these components
are not given in the clear, but as a zero-knowledge proof of knowledge. As we
use a commit-and-prove proof system, a coin contains commitments to its se-
rial number, its tags, the user public keys and their certificates and proofs that
ensure all of them are consistent.

Recall that a coin also includes a signature by the bank on (a message related
to) the initial SN component. To achieve anonymity towards the bank (coin
anonymity), the bank must sign this message blindly, which is achieved by using
the SigCm functionality: the user sends a commitment to the serial number, and
the bank computes a committed signature on the committed value.

Finally, the bank needs to be able to detect whether a double-spending oc-
curred and identify the user that committed it. One way would be to give the
serial numbers and the tags (which protect the anonymity of honest users) in
the clear. This would yield a scheme that satisfies coin anonymity and user
anonymity (note that in these two notions the bank is adversarially controlled).
In contrast, coin transparency, the most intricate anonymity notion, would not
be achieved, since the owner of a coin could easily recognize it when she receives
it again by looking at its serial number.

Coin transparency requires to hide the serial numbers (and the associated
tags), and to use a randomizable proof system, since the appearance of a coin
needs to change after every transfer. At the same time we need to provide the
bank with access to them; we thus include encryptions, under the bank’s public
key, in the coin. And we add proofs of consistency of the encrypted values. Now
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all of this must interoperate with the randomization of the coin, which is why
we require rerandomizable encryption. Moreover, this has to be tied into the
machinery of updating the proofs, which is necessary every time the ciphertexts
and the commitments contained in a coin are refreshed.

5.2 Technical description

Primitives used. The basis of our transferable e-cash scheme is a random-
izable extractable NIZK commit-and-prove scheme C to which we add com-
patible schemes: an M-structure-preserving signature scheme S that admits an
M-commuting signature add-on SigCm, as well as a (standard) M′-structure-
preserving signature scheme S′ (all defined in Sect. 4.2).

Our scheme moreover uses rerandomizable encryption (Sect. 4.3): a scheme E,
which only needs to be IACR-secure, and an RCCA-secure scheme E′, which will
only be used for a single ciphertext per coin. (One can instantiate E withmore
efficient schemes.) Finally, we use a double-spending tag scheme T (Sect. 4.4).
We require E, E′ and T to be compatible with the proof system C, that is, the
equations for E.Verify and E′.Verify, as well as T.SVfy, T.SVfyinit and T.TVfy, are
all in the set E of equations supported by C.

Auxiliary functions. To simplify the description of our scheme, we first de-
fine several auxiliary functions. We let Rand denote an algorithm that random-
izes a given tuple of commitments and ciphertext, as well as proofs for them
(and adapts the proofs to the randomizations) by internally running C.RdCm,
E.ReRand, C.AdptPrf and E.AdptPrf with the same randomness.

Below, we define C.Prvsn,init that produces a proof that a committed initial
serial number sn was correctly generated w.r.t. a committed key pkT and a
committed message M (given the randomness ρpk, ρsn and ρM used for the
commitments). We also define C.Verifysn,init that verifies such proofs. C.Prvsn
and C.Verifysn do the same for non-initial serial numbers (for which there are no
messages, but which require a proof of well-formedness instead).

C.Prvsn,init(ck,pkT, sn,M, ρpk, ρsn, ρM ):

– Return π ← C.Prv
(
ck,T.SVfyinit(·, ·, ·) = 1, (pkT, ρpk), (sn, ρsn), (M,ρM )

)
C.Verifysn,init(ck, cpk, csn, cM , πsn):

– Return C.Verify(ck,T.SVfyinit(·, ·, ·) = 1, cpk, csn, cM , πsn)

C.Prvsn(ck,pkT, sn, sn-pf , ρpk, ρsn, ρsn-pf ):

– π ← C.Prv
(
ck,T.SVfy(·, ·, ·) = 1, (pkT, ρpk), (sn, ρsn), (sn-pf , ρsn-pf )

)
– Return (π,C.Cm(ck, sn-pf , ρsn-pf ))

C.Verifysn(ck, cpk, csn, π̃sn = (πsn, csn-pf )):

– Return C.Verify(ck,T.SVfy(·, ·, ·) = 1, cpk, csn, csn-pf , πsn)

C.Prvtag produces a proof that a committed tag was correctly generated w.r.t.
committed serial numbers sn and sn′; and C.Verifytag verifies such proofs.
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C.Prvtag(ck,pkT, sn, sn
′, tag, ρpk, ρsn, ρ

′
sn, ρtag, t-pf , ρt-pf )

– π ← C.Prv
(
ck,T.TVfy(·, ·, ·, ·, ·) = 1, (pkT, ρpk), (sn, ρsn), (sn′, ρ′sn),

(tag, ρtag), (t-pf , ρt-pf )
)

– Return (π,C.Cm(ck, t-pf , ρt-pf ))

C.Verifytag(ck, cpk, csn, c
′
sn, ctag, πtag = (π, ct-pf )):

– Return C.Verify(ck,T.TVfy(·, ·, ·, ·) = 1, cpk, csn, c
′
sn, ctag, ct-pf , π)

C.E.Prvenc produces a proof that a ciphertext c̃ of M and C.Cm(ck,M, ρM ) con-
tain the same message; C.E.Verifyenc verifies such proofs. (Note that the output
of C.E.Prvenc is the same π as in the input of E.AdptPrf; moreover, since ρν is
not used outside of C.E.Prvenc, it can be sampled locally.)

C.E.Prvenc(ck, ek,M, ρM , νM , c̃):

– ρν
$←− R; π ← C.Prv(ck,E.Verify (ek, ·, ·, c̃) = 1, (M,ρM ), (νM , ρν))

– Return (π,C.Cm(ck, νM , ρν))

C.E.Verifyenc(ck, ek, cM , c̃M , π̃eq = (πeq, cν)):

– Return C.Verify(ck,E.Verify(ek, ·, ·, c̃M ) = 1, cM , cν , πeq)

Components of the coin. There are two types of components, the initial
components coininit, and the standard components coinstd. The first is of the
form

coininit =
(
c0pk, c

0
cert, π

0
cert, c

0
sn, π

0
sn, ε, ε, cM , c

0
σ, π

0
σ, c̃

0
sn, π̃

0
sn, ε, ε

)
, (1)

where the “c-values” are commitments to the withdrawer’s key pk, her certificate
cert, the initial serial number sn and the related message M , the bank’s signature
σ on M ; and c̃sn is an encryption of sn. Moreover, πcert and πsn prove validity
of cert and sn, and π̃sn proves that csn and c̃sn contain the same value. We use
“empty values” ε for padding so that both coin-component types have the same
format. Validity of an initial component is verified w.r.t. an encryption key for
E′ and two signature verification keys for S and S′:

VERinit

(
ek′, vk, vk′, coininit

)
: Return 1 iff the following hold: // coininit as in (1)

– C.Verify
(
ck,S′.Verify(vk′, ·, ·) = 1, c0pk, c

0
cert, π

0
cert

)
– C.Verify

(
ck,S.Verify(vk, ·, ·) = 1, cM , c

0
σ, π

0
σ

)
– C.Verifysn,init

(
ck, c0pk, c

0
sn, cM , π

0
sn

)
∧ C.E′.Verifyenc

(
ck, ek′, c0sn, c̃

0
sn, π̃

0
sn

)
Standard components of a coin are of the form

coinstd = (cipk, c
i
cert, π

i
cert, c

i
sn, π

i
sn, c

i
tag, π

i
tag, ε, ε, ε, c̃

i
sn, π̃

i
sn, c̃

i
tag, π̃

i
tag

)
, (2)

and instead of M and the bank’s signature they contain a commitment ctag and
an encryption c̃tag of the tag produced by the spender (and a proof πtag of validity
and π̃tag proving that the values in ctag and c̃tag are equal). A coin is verified by
checking the validity and consistency of each two consecutive components. If the
first is an initial component then the values ci−1tag , π

i−1
tag , c̃

i−1
tag and π̃i−1tag are ε; if it

is a standard component then cM , c
i−1
σ and πi−1σ are ε.
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VERstd

(
ek, vk′,

(
ci−1pk , ci−1cert , π

i−1
cert , c

i−1
sn , πi−1sn , ci−1tag , π

i−1
tag , cM , c

i−1
σ , πi−1σ , c̃i−1sn ,

π̃i−1sn , c̃i−1tag , π̃
i−1
tag

)
, coinstd

)
: // coinstd as in (2)

Return 1 iff the following hold:

– C.Verify
(
ck,S′.Verify(vk′, ·, ·) = 1, cipk, c

i
cert, π

i
cert

)
– C.Verifysn

(
ck, cipk, c

i
sn, π

i
sn

)
∧ C.Verifytag

(
ck, ci−1pk , ci−1sn , cisn, c

i
tag, π

i
tag

)
– C.E.Verifyenc

(
ck, ek, cisn, c̃

i
sn, π̃

i
sn

)
∧ C.E.Verifyenc

(
ck, ek, citag, c̃

i
tag, π̃

i
tag

)
Our scheme. We now formally define our transferable e-cash scheme.

ParamGen(1λ):

– Gr ← GrGen(1λ)

– parS ← S.Setup(Gr) ; parS′ ← S′.Setup(Gr)

– parT ← T.Setup(Gr) ; ck← C.Setup(Gr)

– Return par = (1λ,Gr,parS,parS′ ,parT, ck)

Recall that par, parsed as above, is an implicit input to all other algorithms.

BKeyGen():

– (sk, vk)← S.KeyGen(parS) ; (sk′, vk′)← S′.KeyGen(parS′)

– (ek′,dk′)← E′.KeyGen(Gr) ; (ek,dk)← E.KeyGen(Gr)

– (skT,pkT)← T.KeyGen(parT) // (skT, pkT, cert) let the bank act. . .

– cert← S′.Sign(sk′,pkT) // . . . as U ′ in Spend during deposit

– Return
(
skW = (sk, sk′), skCK = (dk′,dk),

skD = (cert,pkT, skT),pkB = (ek′, ek, vk, vk′)
)

Register
〈
B(skW = (sk, sk′)),U(pkB = (ek′, ek, vk, vk′))

〉
:

U : (skT,pkT)← T.KeyGen(parT) ; send pkT to B
B: certU ← S′.Sign(sk′,pkT) ; send certU to U ; output pkT

U : If S′.Verify(vk′,pkT, certU ) = 1, output skU ← (certU ,pkT, skT) ; else ⊥

Withdraw
〈
B(skW = (sk, sk′),pkB = (ek′, ek, vk, vk′)),

U(skU = (certU ,pkT, skT),pkB)
〉
:

U : – n
$←− N ; ρpk, ρcert, ρsn, ρM

$←− R
– (sn,Msn)← T.SGeninit(skT, n)

– cpk ← C.Cm(ck,pkT, ρpk)

– ccert ← C.Cm(ck, certU , ρcert)

– csn ← C.Cm(ck, sn, ρsn)

– cM ← C.Cm(ck,Msn, ρM )

– πcert ← C.Prv(ck,S′.Verify(vk′, ·, ·) = 1, (pkT, ρpk), (certU , ρcert))

– πsn ← C.Prvsn,init(ck,pkT, sn,Msn, ρpk, ρsn, ρM )

– Send (cpk, ccert, πcert, csn, cM , πsn) to B

23



B : – if C.Verify(ck,S′.Verify(vk′, ·, ·) = 1, cpk, ccert, πcert) = 0 or

C.Verifysn,init(ck, cpk, csn, cM , πsn) = 0 then abort and output ⊥
– (cσ, πσ)← SigCm(ck, sk, cM ) ; send (cσ, πσ) to U ′ ; return ok

U : – if C.Verify(ck,S.Verify(vk, ·, ·)=1, cM , cσ, πσ)=0 then abort and output ⊥
– νsn

$←− R ; c̃sn ← E′.Enc(ek′, sn, νsn)

– π̃sn ← C.E′.Prvenc(ck, ek
′, sn, ρsn, νsn, c̃sn)

– ρ′pk, ρ
′
cert, ρ

′
sn, ρ

′
M , ρ

′
σ, ν
′
sn, ρ

′
π̃,sn

$←− R //since π̃sn contains a commitment,

we also sample randomness for it

– c0 ← Rand
(
(cpk, ccert, πcert, csn, πsn, cM , cσ, πσ, c̃sn, π̃sn),

(ρ′pk, ρ
′
cert, ρ

′
sn, ρ

′
M , ρ

′
σ, ν
′
sn, ρ

′
π̃,sn)

)
– Output

(
c0, n, sn, ρsn + ρ′sn, ρpk + ρ′pk

)
Spend

〈
U(c, skU = (cert,pkT, skT),pkB = (ek′, ek, vk, vk′)),

U ′(sk′U = (cert′,pk′T, sk
′
T),pkB)

〉
:

U ′ : – n′
$←− N ; ρ′pk, ρ

′
cert, ρ

′
sn, ρ

′
sn-pf , ν

′
sn

$←− R
– (sn′, sn-pf ′)← T.SGen(parT, sk

′
T, n

′)

– c′pk ← C.Cm(ck,pk′T, ρ
′
pk) ; c′cert ← C.Cm(ck, cert′, ρ′cert)

– c′sn ← C.Cm(ck, sn′, ρ′sn) ; c′sn-pf ← C.Cm(ck, sn-pf ′, ρ′sn-pf )

– c̃′sn ← E.Enc(ek, sn′, ν′sn)

– π′cert ← C.Prv(ck,S.Verify(vk′, ·, ·) = 1, (pk′T, ρ
′
pk), (cert′, ρ′cert))

– π′sn ← C.Prvsn(ck,pk′T, sn
′, sn-pf , ρ′pk, ρ

′
sn, ρ

′
sn-pf )

– π̃′sn ← C.E.Prvenc(ck, ek, sn
′, ρ′sn, ν

′
sn, c̃

′
sn)

– Send (sn′, ρ′sn) to U

U : – Parse c as
(
c0,

(
cj=(cjpk, c

j
cert, π

j
cert, c

j
sn, π

j
sn, c

j
tag, π

j
tag,

c̃jsn, c̃
j
tag, π̃

j
sn, π̃

j
tag)

)i
j=1

, n, sn, ρsn, ρpk
)

// i could be 0
– ρtag, νtag, ρt-pf

$←− R
– (tag, t-pf)← T.TGen(parT, skT, n, sn

′)

– ctag ← C.Cm(ck, tag, ρtag) ; c̃tag ← E.Enc(ek, tag, νtag)

– πtag ← C.Prvtag(ck,pkT, sn, sn
′, tag, t-pf , ρpk, ρsn, ρ

′
sn, ρtag, ρt-pf )

– π̃tag ← C.E.Prvenc(ck, ek, tag, ρtag, νtag, c̃tag)

– Send c′ =
(
c0, (cj)ij=1, ctag, πtag, c̃tag, π̃tag

)
to U ′ ; output ok

U ′ : – If any of the following occur then abort and output ⊥:

– VERinit(ek
′, vk, vk′, c0) = 0

– VERstd(ek, vk, vk′, cj−1, cj) = 0, for some j = 1, . . . , i

– C.Verifytag(ck, cipk, c
i
sn, c

′
sn, ctag, πtag) = 0

– C.E.Verifyenc(ck, ek, ctag, c̃tag, π̃tag) = 0

– pick uniform random ~ρ′′

– c′′←Rand
(
((cj)ij=0, c

′
pk, c

′
cert, π

′
cert, c

′
sn, π

′
sn, ctag, πtag, c̃

′
sn, π̃

′
sn, c̃

′
tag, π̃

′
tag), ~ρ

′′
)

– Output
(
c′′, n′, sn′, ρ′sn + ( ~ρ′′)sn′ , ρ

′
pk + ( ~ρ′′)pk′

)
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CheckDS
(
skCK = (dk′,dk),DCL,UL, c

)
:

– Parse c as
(
c0 = (c0pk, c

0
cert, π

0
cert, c

0
sn, π

0
sn, c

0
M , cσ, πσ, c̃

0
sn, π̃

0
sn),

(cj = (cjpk, c
j
cert, π

j
cert, c

j
sn, π

j
sn, c

j
tag, π

j
tag, c̃

j
sn, π̃

j
sn, c̃

j
tag, π̃

j
tag))

i
j=1, n, sn, ρsn, ρpk

)
– ~sn←

(
E′.Dec(dk′, c̃0sn),E.Dec(dk, c̃1sn), . . . ,E.Dec(dk, c̃isn)

)
– ~tag←

(
E.Dec(dk, c̃1tag), . . . ,E.Dec(dk, c̃

i
tag)

)
– If for all ( ~sn′, ~tag′) ∈ DCL: sn0 6= sn′0 // initial SN of checked coin. . .

then return DCL‖ (~sn, ~tag) // . . . different from those of deposited coins

– Else let j be minimal so that snj 6= sn′j // double-spent at j-th transfer

– (pkT, Π)← T.Detect
(
snj , sn

′
j , tagj , tag

′
j ,UL

)
– Return (pkT, Π)

VfyGuilt(pkT, Π): Return T.VfyGuilt(pkT, Π)

5.3 Security analysis

Theorem 7. Our transferable e-cash scheme is perfectly sound.

Because a user verifies the validity of all components of a coin before accepting
it, perfect soundness of our scheme is a direct consequence of the correctness
properties of S, S′ and C, as well as perfect soundness of C and verifiability of T.

Detailed proofs of the following theorems are given in the full version [BFQ20].

Theorem 8. Let N be the nonce space and S be the space of signatures of
scheme S. Let A be an adversary that wins the unforgeability game with ad-
vantage ε and makes at most d calls to BDepo. Suppose that C is perfectly sound
and (M∪S)-extractable. Then there exist adversaries against the unforgeability
of the signature schemes S and S′ with advantages εsig and ε′sig, resp., such that

ε ≤ εsig + ε′sig + d2/|N |.

Assume that during the adversary’s deposits the bank never picks the same
final nonce twice. (The probability that there is a collision is at most d2/|N |.)
In this case, there are two ways for the adversary to win:
(1) CheckDS outputs ⊥, or an invalid proof, or an unregistered user: Suppose
that, during a BDepo call for a coin c, CheckDS does not return a coin list. Recall
that, by assumption, the final part (chosen by the bank at deposit) of the serial
number of c is fresh. Since CheckDS runs T.Detect, by soundness of C and two-
extractability of T, this will output a pair (pk, Π), such that VfyGuilt(pk, Π) = 1.
Since a coin contains a commitment to a certificate for the used tag key (and
proofs of validity), we can, again by soundness of C, extract an S′-signature
on pk. Now if pk is not in UL, then it was never signed by the bank, and A has
thus broken unforgeability of S′.
(2) qW < |DCL|: If the adversary creates a valid coin that has not been with-
drawn, then by soundness of C, we can extract a signature by the bank on a new
initial serial number and therefore break unforgeability of S.
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Theorem 9. Let A be an adversary that wins exculpability game with advan-
tage ε and makes u calls to the oracle URegist. Then there exist adversaries
against mode-indistinguishability of C and tag-exculpability of T with advantages
εm-ind and εt-exc, resp., such that

ε ≤ εm-ind + u · εt-exc.

An incrimination proof in our e-cash scheme is simply an incrimination proof of
the tag scheme T. Thus, if the reduction correctly guesses the user u that will
be wrongfully incriminated by A (which it can with probability 1/u), then we
can construct an adversary against exculpability of T. The term εm-ind comes
from the fact that we first need to switch C to hiding mode, so we can simulate
πsn and πtag for the target user, since the oracles O1 and O2 in the game for tag
exculpability (see Fig. 7) do not return sn-pf and t-pf .

Theorem 10. Let A be an adversary that wins the coin anonymity game
(c-an) with advantage ε and let k be an upper-bound on the number of users
transferring the challenge coins. Then there exist adversaries against mode-
indistinguishability of C and tag-anonymity of T with advantages εm-ind and εt-an,
resp., such that

ε ≤ 2
(
εm-ind + (k + 1) εt-an

)
.

Theorem 11. Let A be an adversary that wins the user anonymity game
(u-an) with advantage ε and let k be a bound on the number of users transferring
the challenge coin. Then there exist adversaries against mode-indistinguishability
of C and tag-anonymity of T with advantages εm-ind and εt-an, resp., such that

ε ≤ 2 εm-ind + (k + 1) εt-an.

In the proof of both theorems, we first define a hybrid game in which the commit-
ment key is switched to hiding mode (hence the loss εm-ind, which occurs twice
for b = 0 and b = 1). All commitments are then perfectly hiding (and proofs
reveal nothing either) and the only information contained in a coin are the serial
numbers and tags. They are encrypted, but the adversary, impersonating the
bank, can decrypt them.

We then argue that, by tag anonymity of T, the adversary cannot link a
user to a pair (sn, tag), even when it knows the users’ secret keys. We define
a sequence of k + 1 hybrid games (as k transfers involve k + 1 users); going
through the user vector output by the adversary, we can switch, one by one, all
users from the first two the second vector. Each switch can be detected by the
adversary with probability at most εt-an. Note that the additional factor 2 for
εt-an in game c-an is due to the fact that there are two coins for which we switch
users, whereas there is only one in game u-an.

Theorem 12. Let A be an adversary that wins the coin-transparency game
(c-tr) with advantage ε, let ` be the size of the two challenge coins, and k be an
upper-bound on the number of users transferring the challenge coins. Then there
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exist adversaries against mode-indistinguishability of C, tag-anonymity of T,
IACR-security of E and RCCA-security of E′ with advantages εm-ind, εt-an, εiacr
and εrcca, resp., such that

ε ≤ 2 εm-ind + (k + 1) εt-an + (2 ` + 1) εiacr + εrcca.

The crucial difference to the previous anonymity theorems is that the bank
is honest (which makes this strong notion possible). We therefore must rely on
the security of the encryptions, for which the reduction thus does not know the
decryption key. At the same time, the reduction must be able to detect double-
spendings, when the adversary deposits coins. Since we use RCCA encryption,
the reduction can do so by using its own decryption oracle.

As for c-an and u-an, the reduction first makes all commitments perfectly
hiding and proofs perfectly simulatable (which loses εm-ind twice). Since all ci-
phertexts in the challenge coin given to the adversary are randomized, the re-
duction can replace all of them, except the initial one, by IACR-security of E.
(Note that in the game these ciphertexts never need to be decrypted.) The fac-
tor 2` is due to the fact that there are at most ` encryptions of SN/tag pairs.
Finally, replacing the initial ciphertext (the one that enables detection of double-
spending) can be done by a reduction to RCCA-security of E′: the oracle Depo′

can be simulated by using the reduction’s own oracles Dec and GDec (depending
on whether Depo′ is called before or after the reduction receives the challenge
ciphertext) in the RCCA-security game. Note that, when during a simulation
of CheckDS, oracle GDec outputs replay, the reduction knows that a challenge
coin was deposited, and uses this information to increase ctr.

6 Instantiation of the building blocks and efficiency

The instantiations we use are all proven secure in the standard model under
non-interactive hardness assumptions.

Commitments and proofs. The commit-and-prove system C will be instan-
tiated with the SXDH-based instantiation of Groth-Sahai proofs [GS08].

Theorem 13 ([GS08]). The Groth-Sahai proof system, allowing to commit val-

ues from V := Zp∪G∪Ĝ is perfectly complete, perfectly sound and randomizable;

it is (G ∪ Ĝ)-extractable, mode-indistinguishable assuming SXDH, and perfectly
hiding in hiding mode.

We note that moreover, all our proofs can be made zero-knowledge [GS08], and
thus simulatable, because all pairing-product equations we use are homogeneous
(i.e., the right-hand term is the neutral element). We have (efficient) extractabil-
ity, as we only need to efficiently extract group elements from commitments (and
no scalars) in our reductions. (Note that for information-theoretic arguments
concerning soundness, Extr can also be inefficient.)
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Signature schemes. For efficiency and type-compatibility reasons, we use two
different signature schemes. The first one, S, must support the functionality
SigCm, which imposes a specific format of messages. The second scheme, S′, is
less restrictive, which allows for more efficient instantiations. While all our other
components rely on standard assumptions, we instantiate S with a scheme that
relies on a non-interactive q-type assumption defined in [AFG+10].

Theorem 14. The signature scheme from [AFG+10, Sect. 4] with message space
M := {(gm, ĝm) |m ∈ Zp} is (strongly) unforgeable assuming q-ADHSDH and
AWFCDH (see [BFQ20]), and it supports the SigCm functionality [Fuc11].

Theorem 15. The signature scheme from [AGHO11, Sect. 5] is structure-pre-

serving with message spaceM′ := Ĝ and (strongly) unforgeable assuming SXDH.

Randomizable encryption schemes. To instantiate the RCCA-secure scheme
E′ we follow the approach by Libert et al. [LPQ17]. Their construction is only
for one group element, but by adapting the scheme, it can support encryption
of a vector in Gn for arbitrary n. In our e-cash scheme, we need to encrypt
a vector in G2, and since it is not clear whether more recent efficient schemes
like [FFHR19] can be adapted to this, we give an explicit construction, which
we detail in the full version [BFQ20].

Recall that the RCCA-secure scheme E′ is only used to encrypt the initial part
of the serial number; using a less efficient scheme thus has a minor impact on the
efficiency of our scheme. From all other ciphertexts contained in a coin (which
are under scheme E) we only require IACR security, which standard ElGamal
encryption satisfies under DDH(!). Thus, we instantiate E with ElGamal vector
encryption. (Note that our instantiation of E′ is also built on top of ElGamal).
We prove the following in the full version [BFQ20].

Theorem 16. Assuming SXDH, our randomizable encryption scheme [BFQ20]
is RCCA-secure and ElGamal vector encryption is IACR-secure.

Double-spending tags. We will use a scheme that builds on the one given
in [BCFK15]. We have optimized the size of the tags and made explicit all the
functionalities not given previously. We defer this to the full version [BFQ20].

Efficiency analysis

We conclude by summarizing the sizes of objects in our scheme in the table
below and refer to the full version [BFQ20] for the details of our analysis.

For a group G ∈ {G, Ĝ,Zp}, let |G| denote the size of an element of G.
Let cbtsrap denote the coin output by U at the end of the Withdraw protocol
(which corresponds to cinit plus secret values, like n, ρsn, etc., to be used when
transferring the coin), and let cstd denote one (non-initial) component of the
coin. After k transfers the size of a coin is |cbtsrap|+ k|cstd|.

|skB| 9|Zp|+ 2|G|+ 2|Ĝ|
|pkB| 15|G|+ 8|Ĝ|
|skU | |Zp|+ 2|G|+ 2|Ĝ|
|pkU | |Ĝ|

|Πguilt| 2|G|
|cbtstrap| 6|Zp|+ 147|G|+ 125|Ĝ|
|cstd| 54|G|+ 50|Ĝ|
|( ~sn, ~tag)| (4t+ 2)|G|
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LPJY13. Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Lin-
early homomorphic structure-preserving signatures and their applications.
CRYPTO’13.
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