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Abstract. In this paper, we propose the first generic framework for
attribute-based encryptions (ABE) with master-secret-key-dependent-
message security (mKDM security) for affine functions via predicate en-
codings by Chen, Gay and Wee [Eurocrypt 2015]. The construction is
adaptively secure under standard k-Lin assumption in prime-order bilin-
ear groups. By this, we obtain a set of new mKDM-secure ABE schemes
with high expressiveness that have never been reached before: we get
the first hierarchical IBE (HIBE) scheme and the first ABE scheme for
arithmetic branching program (ABP) with mKDM security for affine
functions. Thanks to the expressiveness (more concretely, delegability
like HIBE), we can obtain mKDM-secure ABE against chosen-ciphertext
attack (i.e., CCA security) via a classical CPA-to-CCA transformation
that works well in the context of mKDM.

1 Introduction

Semantic security of public-key encryption (PKE) ensures a ciphertext does not
leak any information on the message without corresponding secret key. However
this might not be true when the message depends on the secret key [ABBC10,
CGH12]. The notion of key-dependent message (KDM) security is established to
capture this situation [CL01, BRS03]. Specifically, given pk whose corresponding
secret key is sk, KDM security means it remains semantically secure even when
the message is f(sk) for f from some a-priori function family F .

Although much progress has been made on building KDM-secure PKE [CCS09,
Hof13, LLJ15, HLL16, KT18, DGHM18, KM19, KMT19] and even analogous en-
hancement of other cryptographic primitives [HK07], the study of KDM security
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in the context of attribute-based encryption (ABE) [SW05, GPSW06], a gen-
eralization of PKE, lags behind. In an ABE for predicate P under master key
pair (mpk,msk), a ciphertext encrypts message m under mpk with an attribute
x, a user key sk is issued for a policy y by msk; decryption recovers m when
P (x, y) = 1. The semantic security requires that a key holder cannot get any
information on m when P (x, y) = 0; typically, we need this to hold even when
multiple key holders collude with each other.

State-of-the-art: KDM Security in IBE. To our best knowledge, all existing
results on KDM security in ABE only concern the simplest case — identity-based
encryption (IBE) [Sha84, BF01]. Here both attribute x and policy y belong to
the same domain (say, binary strings of fixed length) and P (x, y) = 1 if and only
if x = y. Due to the presence of two types of secret keys in IBE, two flavors of
KDM securities are considered: master-key-dependent-message (mKDM) secu-
rity [GHV12] and user-key-dependent-message (uKDM) security [AP12]. In this
work, we focus on the former one: given mpk whose corresponding master secret
key is msk, it remains semantically secure even when the message is f(msk) for
f from some a-priori function family F .

The first mKDM-secure IBE scheme [GHV12] has several limitations: the
scheme is selectively secure and bounded in the sense that the size of mpk is
proportional to the number of encryptions of key-dependent messages. Recently,
Garg et al. [GGH20] discovered a surprising connection between mKDM security
and tight reduction technique in the context of IBE and avoided the above
limitations. As a bonus, their scheme also enjoys tight reduction.

This work: KDM Security in expressive ABE. We initiate the study of
KDM security in the context of ABE beyond IBE. A classical application and
motivation of ABE is to support fine-grained access control. A more expressive
ABE (i.e., supporting larger class of policies) means a more flexible and powerful
access control system. Apart from this, higher expressiveness may also help us to
achieve higher security level. For instance, one can get chosen-ciphertext secure
IBE from chosen-plaintext secure HIBE [CHK04] and follow-up works extended
the method to the ABE setting [YAHK11, BL16, CMP17].

1.1 Results

This work proposes the first generic framework for ABE with mKDM-security
for affine functions via predicate encodings [Wee14, CGW15]. Our construction
is adaptively secure under standard k-Lin assumption in the prime-order bilinear
group. Thanks to various concrete instantiations of predicate encodings, we can
derive a set of new mKDM-secure ABE schemes; they support more complex
policies than IBE, which have never been reached since the first KDM-secure
IBE was proposed [GHV12, AP12]. In particular, as examples, we obtain
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– the first HIBE scheme with mKDM-security for affine functions; users are
organized in a tree-based structure and can partially delegate the decryption
power (i.e., user secret key) to its children;

– the first ABE for arithmetic branching program (ABP) with mKDM-security
for affine functions; note that, ABP covers NC1, LOGSPACE and the class
of arithmetic circuits.

With the high expressiveness (more concretely, delegability like HIBE), we up-
grade the generic framework to resist the chosen-ciphertext attack (i.e., achieve
CCA security) and obtain CCA-secure variants of all above concrete ABE schemes.
We summarize existing KDM-secure ABE (for affine functions) in Table 1.

Reference Policy KDM CCA?

[GHV12] IBE mKDM 8

[AP12] IBE uKDM 8

[GGH20] IBE mKDM 8

§ 6.1 (H)IBE mKDM 4

§ 6.2 ABE for ABP mKDM 4
Table 1. Comparison among existing KDM-secure ABE for affine functions.

A Brief Technical Overview. Our generic framework (with CPA security)
is obtained by extending Garg et al.’s mKDM-secure IBE scheme [GGH20]. Re-
call that their IBE can be viewed as a combination of the KDM-secure PKE
scheme from [BHHO08] and tightly-secure IBE from [AHY15, GDCC16]. The
latter ingredient is aimed to handle leakage of master secret key in user se-
cret keys in the presence of multiple challenge ciphertexts. We achieve this in
the context of ABE by combining Chen et al.’s dual-system ABE via predi-
cate encodings and nested dual-system technique that has been widely used to
achieve unbounded ABE [LW11, OT12, KL15, CGKW18]. The first idea is to
handle the afore-mentioned leakage while the second one ensures that this works
well with multiple ciphertexts. See Section 1.2 for a more detailed technical
overview. To get their CCA variant, we simply employ the classical CPA-to-
CCA transformation [CHK04] which relies on delegation and is proved to work
in the setting of mKDM security. For those predicates without delegation, we
provide a generic way to extend their predicate encodings with a special dele-
gation layer that is sufficient for the CPA-to-CCA transformation; this basically
follows [YAHK11, BL16, CMP17]. See the full paper for more details.

Discussion in the Scope of IBE. Our generic framework gives us a new IBE
scheme with mKDM-security (see Section 6.1) as [GHV12, GGH20], we make a
comparison among them in Table 2 before we move to more technical details.
We highlight that, Garg et al.’s scheme is the unique one with tight security
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but the master public key size is linear in λ; on the other hand, our scheme
enjoys constant-size master public key but the security loss is related to the
number of queries. It is, of course, the ideal case to have a tightly secure scheme
with constant-size master public key. However this has been an open problem
in the context of standard semantic security for IBE. The only exception is
the scheme in [CGW17] over composite-order bilinear groups, but this can only
be considered as a partial solution due to the lack of realization of Déjà Q
technique [CM14, CMM16] in prime-order bilinear groups. We finally note that
our IBE scheme is the unique one with mKDM-security against chosen-ciphertext
attack ; this benefits from the high expressiveness of our generic framework that
is able to lead to the first mKDM-secure HIBE (against chosen-plaintext attack).

Reference Adaptive? |mpk| CCA? Tight? Assumption

[GHV12] 8 O(QC) 8 8 DLIN
[GGH20] 4 O(λ) 8 4 SXDH

§ 6.1 4 O(1) 4 8 SXDH
Table 2. Comparison among existing mKDM-secure IBE. Here, λ is the security pa-
rameter and QC is the number of ciphertexts.

1.2 Technical Overview

Garg et al.’s Scheme [GGH20]. We start from the unique mKDM-secure IBE
(with adaptive security against unbounded collusion) by Garg et al. [GGH20].
Let (p,G1, G2, GT , e) be an asymmetric bilinear groups of prime order p; we use
g1, g2, gT to denote random generators of G1, G2, GT and employ the implicit
representation of group elements: for a matrix M over Zp, we write [M]s := gMs
where s ∈ {1, 2, T} and the exponentiation is carried out component-wise. Garg
et al.’s scheme uses the basis:

(A1,A2,A3)← Z`×`1p × Z`×`2p × Z`×`3p (1)

and its dual basis (A†1,A
†
2,A

†
3) ∈ Z`×`1p ×Z`×`2p ×Z`×`3p where ` = `1 + `2 + `3 =

Θ(log p) is much larger than k and `1, `2, `3 ≥ k; this satisfies orthogonality (i.e,
A>iA

†
j = 0 for i 6= j) and non-degeneracy (i.e., A>iA

†
i = I for all i = 1, 2, 3).

We review Garg et al.’s IBE scheme from k-Lin assumption (with identity
space {0, 1}n) as follows:

mpk := [A>1]1, [A>1k]T , [B]2, { [A>1Wi,b]1, [WBi,b]2 }i∈[n],b∈{0,1}

msk := [k]T

skid := [k]2 · [(W1,id[1] + · · ·+ Wn,id[n])Br]2, [Br]2

ctid := [s>A>1]1, [s>A>1k]T ·m , [s>A>1(W1,id[1] + · · ·+ Wn,id[n])]1

(2)
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where id ∈ {0, 1}n, k ← {0, 1}`, Wi,b ← Z`×(k+1)
p , B ← Z(k+1)×k

p , s ← Z`1p ,

r← Zkp. Recall that the above scheme is a clever combination of the KDM-secure
PKE scheme from [BHHO08] and tightly-secure IBE from [AHY15, GDCC16];
we highlight the two ingredients by solid boxes and gray boxes, respectively.
Accordingly, the proof roughly consists of two phases: (a) One first changes
all keys and ciphertexts to the following forms by the tight reduction tech-
nique [AHY15, GDCC16] using the parts in gray boxes. We highlight the differ-
ences by dashed boxes. (Note that the distribution here is slightly different from
that in [GGH20]; one more computational transition can fill the gap.)

skid := [k + A†2k̂ ]2 · [(W1,id[1] + · · ·+ Wn,id[n])Br]2, [Br]2 , k̂← Z`2p

ctid := [s>A>1 + ŝ>A>2 ]1, [(s>A>1 + ŝ>A>2 )k]T ·m ,

[(s>A>1 + ŝ>A>2 )(W1,id[1] + · · ·+ Wn,id[n])]1 ,

ŝ← Z`2p (3)

(b) One then carries out the KDM argument for PKE from [BHHO08] using the

parts in solid boxes; this benefits from the fact that A†2k̂ introduced in the first
phase “controls” the leakage of k via skid.

Strategy. In order to extend scheme (2) to more expressive ABE, a natu-
ral idea is to follow the high-level idea of [GGH20] reviewed above but em-
ploy a tightly secure ABE scheme in the parts with gray boxes. However this
strategy has two issues. First, to our best knowledge, there only exist tightly
secure IBE [AHY15, GDCC16] and HIBE [LP20] in the multiple ciphertexts
setting while no known result on the tight reduction for ABE even in the sin-
gle ciphertext setting. Second, even with the recent progress on tightly secure
HIBE [LP20], the construction of mKDM-secure HIBE is not modular, one has
to go into the detail of the proof as in [LP20]. To circumvent the issues, we start
from the following warm-up scheme presented in [GGH20]:

mpk := [A>1]1, [A>1k]T , [B]2, [A>1W]1, [A>1V]1, [WB]2, [VB]2

msk := [k]T

skid := [k]2 · [(W + id ·V)Br]2, [Br]2

ctid := [s>A>1]1, [s>A>1k]T ·m , [s>A>1(W + id ·V)]1

(4)

where the gray boxes involve a non-tightly secure IBE scheme from [CGW15]
with id ∈ Zp. As reported in [GGH20], the scheme is mKDM-secure with respect
to affine functions in the single-ciphertext setting. Our strategy is to

upgrade the proof to the multi-ciphertexts setting without tight
reduction technique.
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The advantage of this strategy is that we can immediately generalize scheme (4)
to more expressive ABE via predicate encodings [CGW15]; this allows us to
derive mKDM-secure ABE for various policies in an modular way. As [GGH20],
the proof consists of two phases: in the first phase, we will prove1

mpk : [A>1]1, [A
>
1W]1, [A

>
1V]1, [B]2, [WB]2, [VB]2

skidi : [Bri]2, [(W + idi ·V)Bri]2, ri ← Zkp
ct∗id′j : [s>jA

>
1]1, [s

>
jA
>
1(W + id′j ·V)]1, sj ← Z`1p



≈c



mpk : [A>1]1, [A
>
1W]1, [A

>
1V]1, [B]2, [WB]2, [VB]2

skidi : [Bri]2, [ A†2k̂i + (W + idi ·V)Bri]2, ri ← Zkp, k̂i ← Z`2p

ct∗id′j : [s>jA
>
1 + ŝ>jA

>
2 ]1,

[(s>jA
>
1 + ŝ>jA

>
2 )(W + id′j ·V)]1,

sj ← Z`1p , ŝj ← Z`2p


(5)

where id1, . . . , idQK
and id′1, . . . , id

′
QC

are key and ciphertext queries, respectively,
this is analogous to the first phase in Garg et al.’s proof that changes the key and
ciphertext distributions to (3); the second phase is essentially identical to that

in Garg et al.’s proof with k̂i and ŝj . Note that the key and ciphertext structures
do not allow us to use known tight reduction techniques as in [GGH20].

Solution: Nested Dual-system Method. To carry out the strategy, we will
prove (5) using the so-called nested dual-system method [LW11] that was de-
veloped to realize unbounded HIBE and ABE. To see why this can be useful,
we consider unbounded HIBE built from IBE [LW11] as an example: a HIBE
ciphertext is composed of a set of IBE ciphertexts while a HIBE key is composed
of a set of IBE keys. To get standard semantic security of the unbounded HIBE,
one has already been required to handle multiple keys and multiple ciphertexts
of underlying IBE; this is essentially the same situation as in (5).

From a high level, the nested dual-system argument works as the standard
dual-system argument [Wat09]: we (i) change all challenge ciphertexts into semi-
functional form and (ii) change all keys into the semi-functional form one-by-one.
The “nested” means that step (ii) employs another dual-system argument where
the roles of ciphertexts and keys are exchanged; namely, we are handling a single
key in the presence of multiple ciphertexts.

However this method is not compatible with predicate encodings in general.
Roughly, the security of predicate encoding [Wee14, CGW15] ensures that, given
a ciphertext, a secret key that is not authorized to decrypt has an extra compu-
tational entropy such as k̂i in (5) that will be used to hide the master secret. This
is compatible with the standard dual-system argument [Wat09, Wee14, CGW15]
where we have a single ciphertext and multiple keys and the proof adds entropy

1 In Section 3.3 and 3.4 where we describe our formal proof, k̂ indicates a random
vector from a subspace of Z`

p, say span(A2).
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to each key one by one and always keeps the unique ciphertext “unchanged”.
However step (ii) involves multiple ciphertexts and a single key ; we can not add
extra entropy to ciphertexts while keeping the unique key “changed” via pred-
icate encodings. One can circumvent this issue by simply introducing an extra
subspace into basis (1) but this complicates the proof. (Note that, even though,
this will not hurt the efficiency too much since ` is independent of the number
of subspaces in our context.)

In this work, we will rely on a variant of nested dual-system argument implic-
itly used in the proof of entropy expansion lemma from [CGKW18] where they
exchanged the roles of ciphertexts and keys at the very beginning in step (i).
By this, when step (ii) reverses the roles again, we are facing a single ciphertext
and multiple keys that is compatible with predicate encodings and can avoid
the extra subspace in the aforementioned trivial countermeasure. In particular,
we can continue to use the basis (1) as [GGH20] although the proof is differ-
ent. Note that, even with this special arrangement, [CGKW18] essentially works
with IBE (an attribute i ∈ Zp is encoded in an IBE form: W + i ·V); this is the
first time to highlight this property and apply this to general ABE via predicate
encodings.

Proof Overview. For simplicity, we will illustrate our proof of (5) for the IBE
functionality in asymmetric composite-order bilinear groups (N,GN , HN , GT , e)
whose order N is a product of three primes p1, p2, p3. Let gi, hi be random
generators of subgroups of order pi in GN , HN for i ∈ {1, 2, 3}, respectively. The
switch between composite- and prime-order groups will rely on the following
classical correspondence in [CGKW18]:

g1, h123 ↔ [A>]1, [B]2

w, v ↔W,V gw1 , g
v
1 , h

w
123, h

v
123 ↔ [A>1W]1, [A

>
1V]1, [WB]2, [VB]2

s↔ s gs1, g
sw
1 , gsv1 ↔ [s>A>1]1, [s

>A>1W]1, [s
>A>1V]1

ŝ↔ ŝ gŝ2, g
ŝw
2 , gŝv2 ↔ [̂s>A>2]1, [̂s

>A>2W]1, [̂s
>A>2V]1

α̂, r ↔ k̂, r hr123, h
wr
123, h

vr
123, h

α̂
2 ↔ [Br]2, [WBr]2, [VBr]2, [A

†
2k̂]2

by which the statement (5) can be translated into composite-order groups as:
mpk : g1, g

w
1 , g

v
1 , h123, h

w
123, h

v
123

skidi : hri123, h
(w+idi·v)ri
123

ct∗id′j : g
sj
1 , g

sj(w+id′j ·v)
1



≈c


mpk : g1, g

w
1 , g

v
1 , h123, h

w
123, h

v
123

skidi : hri123, h
α̂i
2 · h(w+idi·v)ri

123

ct∗id′j : g
sj
1 · g

ŝj
2 , g

sj(w+id′j ·v)
1 · gŝj(w+id′j ·v)

2


(6)

where w, v ← ZN and α̂i, ri, sj , ŝj ← ZN for i ∈ [QK ], j ∈ [QC ]. Follow-
ing [CGKW18], our proof consists of two steps.
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1. We change all secret keys into the following form that is analogous to so-
called semi-functional keys in standard (nested) dual-system argument [Wat09,
LW11]:

skidi = (hri123, h
α̂i
2 · h(w+idi·v)ri

123 ).

This is basically the step that changes normal keys to semi-functional keys in
the standard dual-system argument [Wat09, CGW15]. The indistinguisha-
bility employs a standard hybrid argument going through every keys based
on (a) subgroup decision assumption: hri12 ≈c h

ri
1 given g1, h123 and (b) sta-

tistical argument: for all α̂i, ri ∈ ZN , we have w mod p2 ≈s w+α̂i/ri mod p2
when w ← ZN .

2. We change all ciphertexts into the following form that is analogous to so-
called semi-functional ciphertexts in the standard dual-system argument [Wat09]:

ctid′j = (g
sj
1 · g

ŝj
2 , g

sj(w+id′j ·v)
1 · gŝj(w+id′j ·v)

2 ).

Again, we will make the change in a one-by-one manner. However, we cannot
simply use subgroup decision assumption for each transition. Instead, we will
employ a game sequence with the help of the p3-subgroup. Let us show how
to change the ̂-th ciphertext as an example. Given

mpk = (g1, g
w
1 , g

v
1 , h123, h

w
123, h

v
123)

and ciphertexts that has been changed (with index j < ̂) and has not been
changed (with index j > ̂):

ct∗id′j (j < ̂) : g
sj
1 · g

ŝj
2 , g

sj(w+id′j ·v)
1 · gŝj(w+id′j ·v)

2

ct∗id′j (j > ̂) : g
sj
1 , g

sj(w+id′j ·v)
1

we change the ̂-th ciphertext along with all secret keys via the following
hybrid argument:skidi : hri123, h

α̂i
2 · h

(w+idi·v)ri
123 , ∀i ∈ [QK ]

ct∗id′̂
: g

ŝ
1 , g

ŝ(w+id′̂·v)
1


≈c

skidi : hri123, h
α̂i
2 · h

(w+idi·v)ri
123 , ∀i ∈ [QK ]

ct∗id′̂
: g

ŝ
1 · g

s̃̂
3 , g

ŝ(w+id′̂·v)
1 · gs̃̂(w+id′̂·v)

3



≈c

skidi : hri123, h
α̂i
2 · h

α̃i
3 · h(w+idi·v)ri

123 , ∀i ∈ [QK ]

ct∗id′̂
: g

ŝ
1 · g

s̃̂
3 , g

ŝ(w+id′̂·v)
1 · gs̃̂(w+id′̂·v)

3


≈c

skidi : hri123, h
α̂i
2 · h

α̃i
3 · h

(w+idi·v)ri
123 , ∀i ∈ [QK ]

ct∗id′̂
: g

ŝ
1 · g

ŝ̂
2 , g

ŝ(w+id′̂·v)
1 · gŝ̂(w+id′̂·v)

2
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≈c

skidi : hri123, h
α̂i
2 ·��h

α̃i
3 · h

(w+idi·v)ri
123 , ∀i ∈ [QK ]

ct∗id′̂
: g

ŝ
1 · g

ŝ̂
2 , g

ŝ(w+id′̂·v)
1 · gŝ̂(w+id′̂·v)

2


where α̃i, s̃̂ ← ZN for all i ∈ [QK ]. Here

– the first ≈c follows from subgroup decision assumption: g
ŝ
1 ≈c g

ŝ
1 · g

s̃̂
3

given g1, g2, h123, h2.
– the second ≈c is similar to the first step of our proof with (a) subgroup

decision assumption: hri13 ≈c h
ri
1 given g1, g2, h2, h123 and (b) statistical

argument over p3-subgroup for a fixed i ∈ [QK ]: for all α̃i, ri ∈ ZN ,

skidi︷ ︸︸ ︷
w + idi · v,

ct∗
id′
̂︷ ︸︸ ︷

w + id′̂ · v ≈s α̃i/ri + w + idi · v, w + id′̂ · v mod p3

when w, v ← ZN .

– the third ≈c follows from subgroup decision assumption: g
s̃̂
3 ≈c g

ŝ̂
2 given

g1, g2, h123, h23; h23 is a random generator of subgroup of order p2p3
that is used to simulate term {hα̂i

2 · h
α̃i
3 }i∈[QK ].

– the last ≈c is analogous to the second one except that statistical argu-
ment becomes: for all α̃i, ri ∈ ZN , we have w mod p3 ≈s w+α̃i/ri mod p3
when w ← ZN .

In the final proof with predicate encodings in prime-order bilinear groups, we
translate

– subgroup decision assumption overGN into the prime-order version in [CGKW18]
w.r.t. basis (1), cf. Lemma 1;

– subgroup decision assumption over HN into the MDDH assumption w.r.t.
B, see Assumption 1;

– the statistical arguments into the so-called α-privacy of predicate encoding,
cf. Section 2.3.

1.3 Discussions and Open Problems

Towards Framework via Pair Encoding. Pair encoding [Att14, AC17] is a
primitive similar to the predicate encoding [Wee14, CGW15]. It is also feasible to
generalize (4) via pair encodings. Although this will give us even more expressive
mKDM-secure ABE, the security would rely on complex q-type assumptions. In
this paper, we restrict us to the security based on static assumption notably
k-Lin assumption. We leave this as an open problem to get even more expressive
ABE that goes beyond predicate encoding.

Towards Multi-instance Setting. As [GGH20], we only study the mKDM-
security in the single instance setting. We believe both constructions can be
extended to multiple instance setting, as [GHV12], where the message can be
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f(msk1, . . . ,mskN ) with mski are master secret keys of N independent instances.
We leave this as one of future works. In fact, [GHV12] reported that they can
reduce the mKDM-security of their IBE scheme in the multiple instance setting
to that in the single instance setting. However we point out that this might not
be straightforward in the context of ABE: each instance can support different
policies which makes the above reduction quite hard.

More Open Problems. We leave several open problems:

– As we have discussed, it is desirable to have a mKDM-secure IBE with tight
security under constant-size master public key in the prime-order bilinear
group. This will be a breakthrough even for the standard semantic security.

– It would be interesting to build a mKDM-secure ABE from various assump-
tions such as learning with error (LWE) assumption. Note that, to our best
knowledge, there is no LWE-based construction with such security property.

– A formal study of the relation of uKDM-security and mKDM-security is
also appealing. For now, we can conjecture that mKDM-security is strictly
stronger than uKDM-security. However there’s no formal implication and/or
separation results on this.

Organization. We describe some background knowledge in Section 2. In Sec-
tion 3, we present our generic ABE scheme via predicate encoding and prove
its mKDM security from k-Lin assumption in the prime-order biliear group. We
show how to add delegation and revisit the CPA-to-CCA transformation with
mKDM security in Section 4 and Section 5. Several concrete schemes derived
from previous generic results will be given out in Section 6.

2 Preliminaries

Notation. We use s ← S to indicate that s is selected uniformly from finite
set S. PPT stands for probabilistic polynomial time. For a matrix A over Zp,
we use span(A) to denote the column span of A, and we use basis(A) to denote
a basis of span(A). We use 〈G,A〉 = 1 to denote that adversary A wins game
G. We use ≈c and ≈s to denote two distributions being computationally and
statistically indistinguishable, respectively.

2.1 Attribute-Based Encryption

Syntax. An attribute-based encryption (ABE) scheme for predicate P : X ×
Y → {0, 1} consists of the following PPT algorithms:

– Setup(1λ, P ) → (mpk,msk). The setup algorithm takes as input the secu-
rity parameter 1λ and a description of predicate P , outputs a master pub-
lic/secret key pair (mpk,msk). We assume that mpk contains the description
of domains X , Y of P as well as message space M.

10



– Enc(mpk, x,m) → ctx. The encryption algorithm takes as input the master
public key mpk, an index x ∈ X and a message m ∈M, outputs a ciphertext
ctx.

– KeyGen(mpk,msk, y) → sky. The key generation algorithm takes as input
the master public/secret key pair (mpk,msk) and an index y ∈ Y, outputs a
secret key sky.

– Dec(mpk, sky, ctx)→ m. The decryption algorithm takes as input the master
public key mpk, a secret key sky and a ciphertext ctx, outputs a message m
or a symbol ⊥ indicating the ciphertext is invalid.

Correctness. For all (x, y) ∈ X × Y such that P (x, y) = 1 and m ∈ M, it is
required that

Pr

m = Dec(mpk, sky, ctx)

∣∣∣∣∣∣∣
(mpk,msk)← Setup(1λ, P )

ctx ← Enc(mpk, x,m)

sky ← KeyGen(mpk,msk, y)

 = 1.

F-mKDM Security. Let F be a function family. For all stateful PPT adver-
saries A, the advantage function is defined as

mKDMAdvcpaA,F (λ) :=

∣∣∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣∣∣∣
b← {0, 1}

(mpk,msk)← Setup(1λ, P )

b′ = AOb
Enc(·,·),OKeyGen(·)(mpk)

− 1

2

∣∣∣∣∣∣∣∣
where the oracles work as follows:

– ObEnc(x, F ), on input x ∈ X and F ∈ F , picks m←M, returns ctb where

ct0 ← Enc(mpk, x, F (msk)) and ct1 ← Enc(mpk, x,m);

– OKeyGen(y), on input y ∈ Y, returns sky where

sky ← KeyGen(mpk,msk, y);

with the restriction that all queries (x, ·) and y satisfy P (x, y) = 0. An ABE
scheme is master-key-dependent-message secure with respect to function family
F against chosen-plaintext attack if mKDMAdvcpaA,F (λ) is negligible in λ. In the
following, we use mKDMb to denote the above game parameterized by b. We can
also define the variant against chosen-ciphertext attack analogously by providing
A with a decryption oracle that works as below:

– ODec(y, ct), on input y ∈ Y and a ciphertext ct, generates sky ← KeyGen(mpk,
msk, y) and returns

m′ ← Dec(mpk, sky, ct)

with the restriction that ct is not produced by ObEnc. In this work, we will always
consider F being an affine function and call F-mKDM as mKDM when the
context is clear.

11



2.2 Prime-order Bilinear Groups

We assume a group generator G which takes as input a security parameter 1λ

and outputs a group description G := (p,G1, G2, GT , e). Here G1, G2, GT are
cyclic groups of prime order p of Θ(λ) bits and e : G1 × G2 → GT is a non-
degenerated bilinear map. Typically, the descriptions of G1, G2 contain respec-
tive generators g1, g2. We employ the implicit representation of group elements:
for any matrix A over Zp and s ∈ {1, 2, T}, we define [A]s := gAs where the
exponentiation is carried out component-wise. Given [A]1 and [B]2, we define
[AB]T = e([A]1, [B]2).

Matrix Decisional Diffie-Hellman Assumption. We revisit the matrix de-
cisional Diffie-Hellman (MDDH) assumption in the prime-order bilinear group
that is a generalization of k-Linear assumption.

Assumption 1 (MDDHk,`, [EHK+13]). Let k, ` ∈ N, s ∈ {1, 2, T}. For all
PPT adversaries A, the advantage function

Adv
MDDHk,`

A (λ) := |Pr[A(G, [A]s, [As]s) = 1]− Pr[A(G, [A]s, [u]s) = 1]|

is negligible in λ where A← Z`×kp , s← Zkp and u← Z`p.

We write MDDHk = MDDHk,k+1 and have MDDHk ⇒MDDHk,` for ` > k.
Note that the assumption unconditionally holds when ` ≤ k.

2.3 Predicate Encoding

Syntax. A Zp-linear predicate encoding [Wee14, CGW15] for P : X×Y → {0, 1}
consists of five deterministic algorithms:

sE : X × Znp → Zns
p sD : X × Y × Zns

p → Zp
rE : Y × Znp → Znr

p kE : Y × Zp → Znr
p rD : X × Y × Znr

p → Zp

for some n, ns, nr ∈ N with the following features:

(linearity). For all (x, y) ∈ X×Y, sE(x, ·), rE(y, ·), kE(y, ·), sD(x, y, ·), rD(x, y, ·)
are Zp-linear. A Zp-linear function L : Znp → Zn′p can be encoded as a matrix

L = (li,j) ∈ Zn×n′p such that

L : (w1, . . . , wn)→ (
∑n
i=1 li,1wi, . . . ,

∑n
i=1 li,n′wi). (7)

(restricted α-reconstruction). For all (x, y) ∈ X × Y such that P (x, y) = 1,
α ∈ Zp and w ∈ Znp , we have

sD(x, y, sE(x,w)) = rD(x, y, rE(y,w)) and rD(x, y, kE(y, α)) = α. (8)

(α-privacy). For all (x, y) ∈ X ×Y such that P (x, y) = 0, α ∈ Zp and w← Znp ,
the following distributions are identical:

{x, y, α, sE(x,w), kE(y, α) + rE(y,w) }
and {x, y, α, sE(x,w), rE(y,w) }.

(9)
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Notations and Facts. For s ∈ {1, 2, T}, we can define an extension of linear
function (7) where we replace scalars wi ∈ Zp with (column) vector wi ∈ Zkp “in
the exponent”:

L : (Gks)n → (Gks)n
′

([w1]s, . . . , [wn]s) 7→ (
∏n
i=1[li,1wi]s, . . . ,

∏n
i=1[li,n′wi]s)

(10)

For simplicity, we use the same notation L since they correspond to the same L.
Moreover, this works with row vectors and matrices analogously. We conclude
this part with some properties of (10):

(L(·) and pairing e are commutative). Let n′ = 1. For all a,b1, . . . ,bn ∈
Zkp, we have

e([a>]1, L([b1]2, . . . , [bn]2)) = L([a>b1]T , . . . , [a
>bn]T ), (11)

e(L([b>1]1, . . . , [b
>
n]1), [a]2) = L([b>1a]T , . . . , [b

>
na]T ). (12)

(L(·) and [·]s are commutative). For all (w1, . . . ,wn) ∈ (Zkp)n, we have

L([w1]s, . . . , [wn]s) = [L(w1, . . . ,wn)]s. (13)

3 Master-Key KDM ABE

In this section, we present our generic ABE via predicate encodings in the prime-
order bilinear group. The scheme is adaptively mKDM-CPA secure (with respect
to affine functions) against unbounded collusion under k-Lin assumption.

3.1 Basis

Our ABE scheme based on MDDHk assumption uses the following basis

(A1,A2,A3)← Z`×`1p × Z`×`2p × Z`×`3p (14)

where ` = `1 + `2 + `3 ≥ 2(λ+ k log p) and `1 = `2 = k, `3 ≥ k. We denote their
dual basis by (A†1,A

†
2,A

†
3) such that A>iA

†
j = 0 when i 6= j and A>iA

†
i = I. We

write horizontal concatenation Aij = (Ai|Aj), A†ij = (A†i|A
†
j) for short.

Subgroup Decision Assumption. We describe a three-subgroup variant of
prime-order (A1 7→ A12)-subgroup decision assumption [CGKW18], denoted by
SDA1 7→A12 . By symmetry, we can permute the indices for A1, A2, A3. One can
define the assumption over dual bases A†1, A†2, A†3 analogously.

Lemma 1 (MDDH`1,`1+`2 ⇒ SDA1 7→A12
). Under MDDH`1,`1+`2 assump-

tion in G1, there exists an efficient sampler outputting random ([A1]1, [A2]1,
[A3]1) along with bases basis(A†1), basis(A†1,A

†
2), basis(A†3) (of arbitrary choice)

such that the advantage function

Adv
SDA1 7→A12

A (λ) := |Pr[A(D, [t0]1) = 1]− Pr[A(D, [t1]1) = 1]|
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is negligible in λ where

D := ( [A1]1, [A2]1, [A3]1, basis(A
†
1), basis(A†1,A

†
2), basis(A†3) ),

t0 ← span(A1) and t1 ← span(A1,A2).

3.2 Scheme

Construction. Our ABE scheme via predicate encoding is as follows:

– Setup(1λ, P ): Let n be parameter size of predicate encoding (sE, rE, kE, sD, rD)

for P . Run G ← G(1λ), sample A1 ← Z`×kp as in (14), B ← Z(k+1)×k
p , pick

W1, . . . ,Wn ← Z`×(k+1)
p and k← {0, 1}`. Output

mpk :=

(
G, [A>1]1, [A

>
1W1]1, . . . , [A

>
1Wn]1,

[B]2, [W1B]2, . . . , [WnB]2, [A>1k]T

)
, msk := [k]T .

– Enc(mpk, x,m): Pick s← Zkp and output

ctx := (

C0︷ ︸︸ ︷
[s>A>1]1,

#–
C1︷ ︸︸ ︷

sE(x, [s>A>1W1]1, . . . , [s
>A>1Wn]1),

C︷ ︸︸ ︷
[s>A>1k]T ·m ).

– KeyGen(mpk,msk, y): Recover k ∈ {0, 1}` from msk = [k]T . Pick r← Zkp and
output

sky := (

K0︷ ︸︸ ︷
[Br]2,

#–
K1︷ ︸︸ ︷

kE(y, [k]2) · rE(y, [W1Br]2, . . . , [WnBr]2) ).

– Dec(mpk, sky, ctx): Parse sky = (K0,
#–

K1) and ctx = (C0,
#–

C1, C), and output

m′ = C · e(C0, rD(x, y,
#–

K1))−1 · e(sD(x, y,
#–

C1),K0).

The correctness follows from properties in Section 2.3 as in [CGW15]. See the
full paper for more details.

Security. We have the following theorem for the above scheme.

Theorem 1 (Main Theorem). Under MDDHk assumption (cf. Section 3.1),
our ABE scheme described in this section is master-key-dependent-message se-
cure for affine functions mapping G`T to GT against chosen-plaintext attack.

3.3 Useful Lemmas

We prepare two lemmas with respect to the basis (14) in Section 3.1 which
will be used throughout the proof. The first lemma (Lemma 2) is a variant of
“c ≈s c − f” where c ← Z`p and f ∈ Z`p; here we allow c to live in a subspace
and work with groups. The second lemma (Lemma 3) is an extension of leftover
hash lemma which additionally gives out an extra term randomly picked from
the coset k + span(A†23). We present the lemmas without proofs.
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Lemma 2. Let Q ∈ N. For any {fj}j∈[Q] ∈ (Z`p)Q, we have

{[cj ]1}j∈[Q] ≈c {[cj − fj ]1}j∈[Q] given A1, [A2]1, [A3]1,A
†
1, basis(A

†
2,A

†
3)

where cj ← span(A1,A2). The distinguishing advantage Adv
CompHideQ
A (λ) is

bounded by 2Q · AdvMDDHk,`

B (λ) for all PPT adversaries B.

Lemma 3. Within probability 1− 1/2λ, we have

(A>1,A
>
2,A

†
23,A

>
1k,k + k̂, A>2k ) ≈s (A>1,A

>
2,A

†
23,A

>
1k,k + k̂, u )

where k← {0, 1}`, u← Zkp and k̂← span(A†23).

3.4 Proof

We prove the following technical lemma that implies Theorem 1 (see Section 2.2
and Lemma 1).

Lemma 4. For all PPT adversaries A making at most QC and QK queries to
OEnc and OKeyGen, respectively, there exist B1, B2, B3 with Time(B1),Time(B2),
Time(B3) ≈ Time(A) such that

mKDMAdvcpaA (λ) ≤ poly(`,QC , QK) · AdvMDDHk

B1
(λ)

+ 2 · AdvCompHideQC

B2
(λ) + Adv

MDDHk,QC

B3
(λ) + 1/2λ.

We prove the lemma via the following game sequence, summarized in Fig. 1. For
each query (x, F ) to OEnc, we represent the affine function F as (f , f) ∈ Z`p×Zp
and define F ([k]T ) = [f>k + f ]T . Similar to our notation of linear function in
Section 2.3, we also use F to indicate the corresponding affine function over Zp,
namely, F (k) = f>k + f .

Game G0. This game is the mKDM-CPA security game mKDM0. Under

mpk = ([A>1]1, [A
>
1W1]1, . . . , [A

>
1Wn]1, [B]2, [W1B]2, . . . , [WnB]2, [A

>
1k]T )

where A1 ← Z`×kp , B ← Z(k+1)×k
p , W1, . . . ,Wn ← Z`×(k+1)

p and k ← {0, 1}`,
the oracles work as follows:

– on the i-th query yi, with i ∈ [QK ], OKeyGen outputs

ski = ([di]2, kE(yi, [k]2) · rE(yi, [W1di]2, . . . , [Wndi]2)), di ← span(B),

– on the j-th query (xj , Fj), with j ∈ [QC ], OEnc parses Fj as (fj , fj) and
outputs

ct∗j = ([c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), [c>jk +

Fj(k)︷ ︸︸ ︷
f>j k + fj ]T ),

cj ← span(A1).

By the definition, for all PPT adversaries A, we have

Pr[〈mKDM0,A〉 = 1] = Pr[〈G0,A〉 = 1].
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Game
ski ct∗j Remark Justification

kE(yi, ?) C0,j Cj

0 k c>j c>j k + f>j k + fj cj ← span(A1)
mKDM0,

Fj(k) = f>j k + fj

1 k + k̂i c>j (c>j + f>j )k + fj
cj ← span(A1, A2 )

k̂i ← span(A†2,A
†
3)

Nested dual-system
argument, see Fig. 2

2 k + k̂i c>j − f>j c>j k + fj Lemma 2

3 k + k̂i c>j − f>j
s>j A>1k+

s>j u + fj

u, sj , sj ← Zk
p

cj = A1sj + A2sj
Lemma 3

4 k + k̂i c>j − f>j mj mj ← Zp

([s>j ]1, [s
>
j A>1k+

s>j u + fj ]T ) ≈c

([s>j ]1, [mj ]T )

5 k + k̂i c>j −��f
>
j mj Lemma 2

6 k + k̂i c>j c>j k +mj mj ≈s mj + c>j k

7 k + ��̂ki c>j c>j k +mj cj ← span(A1,��A2)
mKDM1,

analogous to G1

Fig. 1. mKDM-CPA security proof of our ABE scheme. In column “ski”, we let ski =
(K0,i,

#–
K1,i) and only present the kE-part in K0,i and omit [·]2; in column “ct∗j”, we let

ct∗j = (C0,j ,
#–
C1,j , Cj), only show C0,j , Cj and omit [·]1, [·]T , respectively. We also note

that
#–
C1,j in ct∗j depends on C0,j in an obvious way, we do not show it in this figure.

Game G1. We modify the distribution of all {ski}i∈[QK ] and {ct∗j}j∈[QC ] as
follows:

ski = ([di]2, kE(yi, [k + k̂i ]2) · rE(yi, [W1di]2, . . . , [Wndi]2)),

di ← span(B), k̂i ← span(A†2,A
†
3) ,

ct∗j = ([c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), [(c>j + f>j )k + fj ]T ),

cj ← span(A1, A2 ).

We claim that G0 ≈c G1 via nested dual system argument. In more detail, we
have the following lemma and the detail will be given out in Section 3.5.

Lemma 5 (G0 ≈c G1). For all PPT adversaries A, there exists B with Time(B) ≈
Time(A) such that

|Pr[〈G0,A〉 = 1]− Pr[〈G1,A〉 = 1]| ≤ poly(`,QC , QK) · AdvMDDHk

B (λ).

Game G2. We modify the distribution of all {ct∗j}j∈[QC ] as follows:

ct∗j = ([ c>j − f>j ]1, sE(xj , [( c>j − f>j )W1]1, . . . , [( c>j − f>j )Wn]1), [ c>j k + fj ]T ).
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We claim that G1 ≈c G2. This follows from Lemma 2 which states that for any
{fj}j∈[QC ] ∈ (Z`p)QC , we have

{[cj ]1}j∈[QC ] ≈c {[cj − fj ]1}j∈[QC ] given A1, [A2]1, basis(A
†
2,A

†
3)

where cj ← span(A1,A2). In more detail, we have the following lemma and the
proof is deferred to the full paper.

Lemma 6 (G1 ≈c G2). For all PPT adversaries A, there exists B with Time(B) ≈
Time(A) such that

|Pr[〈G1,A〉 = 1]− Pr[〈G2,A〉 = 1]| ≤ Adv
CompHideQC

B (λ).

Game G3. We modify the distribution of all {ct∗j}j∈[QC ] as follows:

ct∗j = ([c>j−f>j ]1, sE(xj , [(c
>
j−f>j )W1]1, . . . , [(c

>
j−f>j )Wn]1), [s>jA

>
1k+s>j u +fj ]T )

where u, sj , sj ← Zkp and cj = A1sj + A2sj . We claim that G2 ≈s G3. This

follows from Lemma 3 which asserts that, with probability 1 − 1/2λ, it holds
that

(

mpk︷ ︸︸ ︷
A>1,A

>
1k,A

>
2, A>2k︸ ︷︷ ︸

ct∗j

,

ski︷ ︸︸ ︷
A†23,k + k̂) ≈s (A>1,A

>
1k,A

>
2, u ,A†23,k + k̂)

where k ← {0, 1}`, u ← Zkp and k̂ ← span(A†23). Here we use A>1, A>1k to
simulate mpk; all {ct∗j}j∈[QC ] are simulated additionally with A>2, A>2k or u; all

{ski}i∈[QK ] are simulated using (k + k̂) + k̃i with k̃i ← span(A†23), namely we

implicitly set k̂i = k̂ + k̃i. In more detail, we have the following lemma and the
proof is deferred to the full paper.

Lemma 7 (G2 ≈s G3). For all PPT adversaries A,

|Pr[〈G2,A〉 = 1]− Pr[〈G3,A〉 = 1]| ≤ 1/2λ.

Game G4. We modify the distribution of all {ct∗j}j∈[QC ] as follows:

ct∗j = ([c>j−f>j ]1, sE(xj , [(c
>
j−f>j )W1]1, . . . , [(c

>
j−f>j )Wn]1), [ mj ]T ), mj ← Zp,

where cj ← span(A1,A2). We claim that G3 ≈c G4. This follows from MDDHk,QC

which implies that, for all {s>jA>1k + fj}j∈[QC ] ∈ ZQC
p with sj ∈ Zkp, we have

{[s>j ]1, [s>jA>1k + s>ju + fj ]T }j∈[QC ] ≈c {[s>j ]1, [mj ]T }j∈[QC ]

where u, sj ← Zkp and mj ← Zp. Note that we will set cj = A1sj + A2sj . In
more detail, we have the following lemma and the proof is deferred to the full
paper.

Lemma 8 (G3 ≈c G4). For all PPT adversaries A, there exists B with Time(B) ≈
Time(A) such that

|Pr[〈G3,A〉 = 1]− Pr[〈G4,A〉 = 1]| ≤ Adv
MDDHk,QC

B (λ).
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Game G5. We modify the distribution of all {ct∗j}j∈[QC ] as follows:

ct∗j = ([c>j−��f
>
j ]1, sE(xj , [(c

>
j−��f

>
j )W1]1, . . . , [(c

>
j−��f

>
j )Wn]1), [mj ]T ), mj ← Zp.

We claim that G4 ≈c G5 via Lemma 2 that is analogous to G1 ≈c G2. In more
detail, we have the following lemma and the proof is deferred to the full paper.

Lemma 9 (G4 ≈c G5). For all PPT adversaries A, there exists B with Time(B)
≈ Time(A) such that

|Pr[〈G4,A〉 = 1]− Pr[〈G5,A〉 = 1]| ≤ Adv
CompHideQC

B (λ).

Game G6. We modify the distribution of all {ct∗j}j∈[QC ] as follows:

ct∗j = ([c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), [ c>jk +mj ]T ).

We claim that G5 ≈s G6. This follows from the fact that, for all cj ← span(A1,A2)
and k← {0, 1}`, it holds that

{mj}j∈[QC ] ≈s {mj + c>jk}j∈[QC ]

where mj ← Zp. In more detail, we have the following lemma and the proof is
deferred to the full paper.

Lemma 10 (G5 ≈s G6). For all PPT adversaries A,

Pr[〈G5,A〉 = 1] = Pr[〈G6,A〉 = 1].

Game G7. We modify the distribution of all {ski}i∈[QK ] and {ct∗j}j∈[QC ] as
follows:

ski = ([di]2, kE(yi, [k +��̂ki]2) · rE(yi, [W1di]2, . . . , [Wndi]2)),

ct∗j = ([c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), [c>jk +mj ]T ), cj ← span(A1,��A2).

We claim that G6 ≈c G7 via nested dual system argument that is analogous to
G0 ≈c G1. In more detail, we have the following lemma and the detail will be
given out in Section 3.5.

Lemma 11 (G6 ≈c G7). For all PPT adversaries A, there exists B with Time(B)
≈ Time(A) such that

|Pr[〈G6,A〉 = 1]− Pr[〈G7,A〉 = 1]| ≤ poly(`,QC , QK) · AdvMDDHk

B (λ).

Furthermore, G7 is exactly the same as mKDM-CPA security game mKDM1.
By the definition, for all PPT adversaries A, we have

Pr[〈G7,A〉 = 1] = Pr[〈mKDM1,A〉 = 1].

This completes the proof of Lemma 4 that implies Theorem 1.
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3.5 Nested Dual-System Argument

Overview. This section proves Lemma 5 (G0 ≈c G1) and Lemma 11 (G6 ≈c
G7). As both arguments are irrelevant to k, we will neglect k-related terms
[(c>j + f>j )k + fj ]T or [c>jk + mj ]T in ct∗j and kE(yi, [k]2) in ski for now. More
concretely, we will focus on the following statement that allows us to simulate
the actual ciphertexts and secret keys in Lemma 5 and Lemma 11.


mpk : [A>1]1, [A

>
1W1]1, . . . , [A

>
1Wn]1, [B]2, [W1B]2, . . . , [WnB]2

ski : [di]2, rE(yi, [W1di]2, . . . , [Wndi]2) , di ← span(B)

ct∗j : [c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), cj ← span(A1)

 ≈c

mpk : [A>1]1, [A

>
1W1]1, . . . , [A

>
1Wn]1, [B]2, [W1B]2, . . . , [WnB]2

ski : [di]2, kE(yi, [k̂i]2) · rE(yi, [W1di]2, . . . , [Wndi]2) , di ← span(B)

ct∗j : [c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), cj ← span(A12)


(15)

where indices i and j go over [QK ] and [QC ], respectively; W1, . . . ,Wn ←
Z`×(k+1)
p , k̂i ← span(A†2,A

†
3). Observe that

– for Lemma 5, LHS and RHS in (15) correspond to G0 and G1, respectively;
we can simulate the omitted terms [(c>j + f>j )k + fj ]T and kE(yi, [k]2) by

sampling k← {0, 1}` by ourselves;
– for Lemma 11, LHS and RHS in (15) correspond to G7 and G6, respectively;

we can simulate the omitted terms [c>jk +mj ]T and kE(yi, [k]2) by sampling

k← {0, 1}` and mj ← Zp by ourselves;

More formally, let AdvNesDualSys(λ) be the advantage function of distinguishing
LHS and RHS in (15).

Bounding AdvNesDualSys(λ). In the remaining of this section, we bound

AdvNesDualSys(λ) as follow:

Lemma 12. For all PPT adversaries A, there exists B with Time(B) ≈ Time(A)
such that

AdvNesDualSys
A (λ) ≤ 4QK · AdvMDDHk(λ) +QC ·

(
AdvSDA1 7→A13 (λ)

+ 4QK · AdvMDDHk(λ) + AdvSDA3 7→A2 (λ)
)

≤ poly(`,QK , QC) · AdvMDDHk

B (λ).

This readily proves Lemma 5 and Lemma 11. To prove the lemma, we use the
following game sequence, summarized in Fig 2, and prove that

H0 ≈c H1.0 ≈c · · · ≈c H1.4 = H2.0 ≈c · · · ≈c HQC .4 ≈c HQC+1

where “=” and “≈c” mean two games are exactly identical and computationally
indistinguishable, respectively.
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Game

ski ct∗j
Justification

k̂i ← span(?)
cj ← span(A1, ?)

j < ̂ j = ̂ j > ̂

0 — — LHS in (15)

̂.0 A†2 A2 —
α-privacy, cf. [CGW15] for ̂ = 1;

Ĥ.0 = Ĥ−1.4 for ̂ > 1

̂.1 A†2 A2 A3 —
(A†2, [span(A1)]1) ≈c

(A†2, [span(A1,A3)]1)

̂.2 A†2,A
†
3 A2 A3 — α-privacy, cf. [CGW15]

̂.3 A†2,A
†
3 A2 A2 —

(basis(A†2,A
†
3), [span(A3)]1) ≈c

(basis(A†2,A
†
3), [span(A2)]1)

̂.4 A†2 A2 — analogous to Ĥ.2

QC + 1 A†2,A
†
3 A2 RHS in (15), analogous to Ĥ.2

Fig. 2. Game sequence for nested dual-system argument (̂ ∈ [QC ])

Game H0. In this game, the adversary A is given LHS in (15).

Game Ĥ.0(̂ ∈ [QC ]). In this game, the distribution of all {ski}i∈[QK ] and

{ct∗j}j∈[QC ] is as follows:

ski : [di]2, kE(yi, [k̂i]2) · rE(yi, [W1di]2, . . . , [Wndi]2),

di ← span(B), k̂i ← span(A†2),

ct∗j (j < ̂) : [c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), cj ← span(A1,A2),

ct∗j (j = ̂) : [c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), cj ← span(A1),

ct∗j (j > ̂) : [c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), cj ← span(A1).

We note that Ĥ.0 = Ĥ−1.4 for ̂ > 1. Furthermore, we claim that H0 ≈c H1.0.
This follows from the dual-system argument in [CGW15]: first switch di to Zk+1

p

by MDDHk assumption stating that

([B]2, [span(B)]2) ≈c ([B]2, [Zk+1
p ]2),

program Wt for all t ∈ [n] via the change of variable

Wt 7→Wt + A†2wt(b
†)> where wt ← Z`2p

ensuring wt only leaked by ski, then use α-privacy of predicate encoding with wt

(cf. (9)), finally switch di back by MDDHk assumption again. In more detail,
we have the following lemma and the proof is deferred to the full paper.

Lemma 13 (H0 ≈c H1.0). For all PPT adversaries A, there exists B with
Time(B) ≈ Time(A) such that

|Pr[〈H0,A〉 = 1]− Pr[〈H1.0,A〉 = 1]| ≤ 2QK · AdvMDDHk(λ).
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Game Ĥ.1(̂ ∈ [QC ]). We change the distribution of ct∗j for j = ̂ as follows:

ct∗j (j = ̂) : [c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), cj ← span(A1, A3 ).

We claim that Ĥ.0 ≈c Ĥ.1 for all ̂ ∈ [QC ] by SDA1 7→A13
assumption (cf.

Lemma 1). In more detail, we have the following lemma and the proof is deferred
to the full paper.

Lemma 14 (Ĥ.0 ≈c Ĥ.1). For all PPT adversaries A, there exists B with
Time(B) ≈ Time(A) such that

|Pr[〈Ĥ.0,A〉 = 1]− Pr[〈Ĥ.1,A〉 = 1]| ≤ Adv
SDA1 7→A13

B (λ).

Game Ĥ.2(̂ ∈ [QC ]). We change the distribution of all {ski}i∈[QK ] as

follows:

ski : [di]2, kE(yi, [k̂i]2) · rE(yi, [W1di]2, . . . , [Wndi]2), k̂i ← span(A†2, A†3 ).

We claim that Ĥ.1 ≈c Ĥ.2 for all ̂ ∈ [QC ]. This is analogous to H0 ≈c H1.0

except that we ensure wt only leaked by ski and ct̂ and then use α-privacy
of predicate encoding with wt (cf. (9)). In more detail, we have the following
lemma and the proof is deferred to the full paper.

Lemma 15 (Ĥ.1 ≈c Ĥ.2). For all PPT adversaries A, there exists B with
Time(B) ≈ Time(A) such that

|Pr[〈Ĥ.1,A〉 = 1]− Pr[〈Ĥ.2,A〉 = 1]| ≤ 2QK · AdvMDDHk

B (λ).

Game Ĥ.3(̂ ∈ [QC ]). We change the distribution of ct∗j for j = ̂ as follows:

ct∗j (j = ̂) : [c>j ]1, sE(xj , [c
>
jW1]1, . . . , [c

>
jWn]1), cj ← span(A1, A2 ).

We claim that Ĥ.2 ≈c Ĥ.3 for all ̂ ∈ [QC ] by SDA3 7→A2
assumption (cf.

Lemma 1). In more detail, we have the following lemma and the proof is de-
ferred to the full paper.

Lemma 16 (Ĥ.2 ≈c Ĥ.3). For all PPT adversaries A, there exists B with
Time(B) ≈ Time(A) such that

|Pr[〈Ĥ.2,A〉 = 1]− Pr[〈Ĥ.3,A〉 = 1]| ≤ Adv
SDA3 7→A2

B (λ).

Game Ĥ.4(̂ ∈ [QC ]). We change the distribution of all {ski}i∈[QK ] as

follows:

ski : [di]2, kE(yi, [k̂i]2) · rE(yi, [W1di]2, . . . , [Wndi]2), k̂i ← span(A†2,�
�A†3).

We claim that Ĥ.3 ≈c Ĥ.4 for all j ∈ [QC ]. This is analogous to Ĥ.1 ≈c Ĥ.2. In
more detail, we have the following lemma and the proof is deferred to the full
paper. We note that Ĥ.4 is exactly the same as Ĥ+1.1 for all j ∈ [QC − 1].
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Lemma 17 (Ĥ.3 ≈c Ĥ.4). For all PPT adversaries A, there exists B with
Time(B) ≈ Time(A) such that

|Pr[〈Ĥ.3,A〉 = 1]− Pr[〈Ĥ.4,A〉 = 1]| ≤ 2QK · AdvMDDHk

B (λ).

Game HQC+1. We change the distribution of all {ski}i∈[QK ] as follows:

ski : [di]2, kE(yi, [k̂i]2) · rE(yi, [W1di]2, . . . , [Wndi]2), k̂i ← span(A†2, A†3 ).

We claim that HQC .4 ≈c HQC+1. This is analogous to Ĥ.1 ≈c Ĥ.2. In more
detail, we have the following lemma and the proof is deferred to the full paper.

Lemma 18 (HQC .4 ≈c HQC+1). For all PPT adversaries A, there exists B with
Time(B) ≈ Time(A) such that

|Pr[〈HQC .4,A〉 = 1]− Pr[〈HQC+1,A〉 = 1]| ≤ 2QK · AdvMDDHk

B (λ).

We note that HQC+1 is exactly the same as RHS in (15). This is sufficient to

bound AdvNesDualSys(λ).

4 Delegation

In this section, we will show how to support delegable predicates. A predicate
P : X ×Y → {0, 1} is said to be delegable if there exists a strong partial ordering
≺ on Y such that

(y′ ≺ y) ∧ P (x, y′) = 1 =⇒ P (x, y) = 1 ∀x ∈ X .

Delegation in ABE. An ABE scheme for a delegable predicate P : X × Y →
{0, 1} consists of algorithms Setup, KeyGen, Enc, Dec as defined in Section 2.1
and an extra delegation algorithm:

– Del(mpk, sky, y
′)→ sky′ . The delegation algorithm takes as input the master

public key mpk, a secret key sky for y ∈ Y and a y′ ∈ Y satisfying y′ ≺ y,
outputs a secret key sky′ for y′.

We further require that, for all y, y′ ∈ Y satisfying y′ ≺ y, it holds that

{ sky′ ← Del(mpk,KeyGen(mpk,msk, y), y′) } ≡ { sky′ ← KeyGen(mpk,msk, y′) }

If it does not hold, one should turn to the security model described in [SW08].

Delegable Predicate Encoding. A Zp-linear predicate encoding for delegable
predicate P is composed of algorithms sE, sD, rE, kE, rD and an extra algorithm

dE : Y × Y × Znr
p → Zn

′
r
p

with the following features:

(linearity). For all y, y′ ∈ Y, dE(y, y′, ·) is Zp-linear (see Eq. (7)).
(delegability). For all y, y′ ∈ Y with y′ ≺ y, α ∈ Zp and w← Znp , it holds

dE(y, y′, kE(y, α) + rE(y,w)) = kE(y′, α) + rE(y′,w). (16)
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Example for n-level HIBE [BBG05]. In a n-level HIBE with X = Y = Znp ,
if y is a prefix of y′ then we say y′ ≺ y. Let x = (x1, . . . , xnx

), y = (y1, . . . , yny
),

y′ = (y1, . . . , yn′y ) for nx, ny, n
′
y ≤ n and y′ ≺ y. Let w← Z1×(n+1)

p , we have

sE(x,w) := w
(
1 x 0n−nx

)>
sD(x,y, c) := c

rE(y,w) := w

(
1 y

In−ny

)>
rD(x,y,k) := k

(
1 xny+1 . . . xnx

0n−nx

)>
kE(y, α) :=

(
α 0n−ny

)
dE(y,y′,k′) := k′

(
1 yny

. . . yn′y
In−n′y

)>

Scheme. Our delegable ABE scheme is basically the ABE scheme in Section 3.2
equipped with an additional algorithm Del that works as follows:

– Del(mpk, sky, y
′): Parse sky = (K0,

#–

K1), pick r′ ← Zkp and output

sky′ := (K0 · [Br′]2, dE(y, y′,
#–

K1) · rE(y′, [W1Br′]2, . . . , [WnBr′]2)).

As secret keys generated by KeyGen and Del are indistinguishable, the proof in
Section 3.4 is sufficient to prove that our scheme for delegable predicates can
also achieve mKDM-CPA security.

5 CPA-to-CCA Transformation

This section revisits the classical CPA-to-CCA transformation by Canetti, Halevi
and Katz [CHK04] (CHK transformation). We remark that the basic idea is not
new which is also used in previous work for CCA secure ABE [YAHK11, BL16,
CMP17]; this section is to show that the idea indeed works for mKDM security.

IBE-enhanced Predicate. Given a delegable predicate P : X × Y → {0, 1}
with partial ordering ≺ on Y, we define its IBE-enhanced version P : X × Y →
{0, 1} as

X = X × Zp,
Y = Y × (Zp ∪ {?}),

P ((x, id), (y, id′)) =

{
P (x, y) ∧ (id = id′) id′ 6= ?

P (x, y) id′ = ?

along with strong partial ordering ≺ on Y is defined as follows:

(y′, id)≺ (y′, ?)≺ (y, ?), ∀ y′ ≺ y ∈ Y, id ∈ Zp

where ? is a special symbol. Here the first ≺ involves IBE-part that is used to
embed verification key of an one-time signature scheme as CHK transformation;
the second ≺ preserves the delegation in P . Note that we consider delegable
predicate and all discussions naturally cover the case without delegation.

23



Transformation (informal). Assuming a predicate encoding for P : X ×Y →
{0, 1} as defined above for P : X × Y → {0, 1}, Section 4 gives us a mKDM-
CPA secure scheme (Setup,Enc,KeyGen,Dec,Del) for P . Our mKDM-CCA se-
cure ABE (Setup,Enc,KeyGen,Dec,Del) for P follows the CHK transformation:

– Setup(1λ, P ) = Setup(1λ, P ) outputs (mpk,msk);
– Enc(mpk, x,m) outputs (vk, ct = Enc(mpk, (x, vk),m), σ = Sign(sigk, ct))

where (sigk, vk) is a fresh key pair of a strong one-time signature scheme;
– KeyGen(msk, y) = KeyGen(msk, (y, ?)) outputs sky;
– Del(msk, sky, y

′) = Del(msk, sky, (y
′, ?)) outputs sky′ ;

– Dec(mpk, sky, ctx) outputs Dec(mpk,Del(mpk, sky, (y, vk)), ct) if σ is a valid
signature for ct under vk.

See the full paper for formal transformation and security analysis.

Generic Construction. Given a predicate encoding (sE, rE, kE, sD, rD, dE) for
P : X ×Y → {0, 1} with parameter n, ns, nr, the predicate encoding (sE, rE, kE,
sD, rD, dE) for P : X × Y → {0, 1} has parameter

n = n+ 2, ns = ns + 1, nr =

{
nr + 1 id′ 6= ?

nr + 2 id′ = ?

and is defined as follows: for (x, y) ∈ X × Y and id, id′ ∈ Zp ∪ {?},

sE((x, id), (w, w1, w2)) := (sE(x,w), w1 + id · w2) (id 6= ?)

rE((y, id), (w, w1, w2)) :=

{
(rE(y,w), w1 + id · w2) id 6= ?

(rE(y,w), w1, w2) id = ?

kE((y, id), α) :=

{
(kE(y, α− δ), δ) id 6= ?

(kE(y, α− δ), δ, 0) id = ?

sD((x, id), (y, id′), (c, c)) := sD(x, y, c) + c (id 6= ?, id′ 6= ?)

rD((x, id), (y, id′), (k, k)) := rD(x, y,k) + k (id 6= ?, id′ 6= ?)

dE((y, id), (y′, id′), (k, k1, k2)) :=

{
(k, k1 + id′ · k2) y′ = y, id = ?, id′ 6= ?

(dE(y, y′,k), (k1, k2)) y′ ≺ y, id = ?, id′ = ?

where (w, w1, w2) ← Znp and α, δ ← Zp. Note that we only give out rD for the

case “id 6= ?, id′ 6= ?”; for the case “id 6= ?, id′ = ?” where the encoding is in the
form (k, k1, k2), we apply dE first.

6 Concrete Schemes

6.1 Concrete mKDM-secure Hierarchical IBE

This section presents a concrete mKDM-CCA secure n-level HIBE scheme de-
rived from our generic construction via predicate encoding in Section 4.
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Construction. Assuming (Gen,Sign,Verify) is a strongly unforgeable one-time
signature scheme against chosen-message attack in the multi-user setting (MU-
sUF-CMA security), our mKDM-CCA secure HIBE scheme is as follows:

– Setup(1λ, n): Run G ← G(1λ), sample A1 ← Z`×kp , B ← Z(k+1)×k
p , pick

W,W1, . . . ,Wn+1 ← Z`×(k+1)
p and k← {0, 1}`. Output

mpk :=

(
[A>1]1, [A

>
1W]1, [A

>
1W1]1, . . . , [A

>
1Wn+1]1,

[B]2, [WB]2, [W1B]2, . . . , [Wn+1B]2, [A>1k]T

)
, msk := [k]T .

We assume that group description G is always contained in mpk.

– Enc(mpk, id,m): Parse id = (id1, . . . , idt) where t ≤ n, run (sigk, vk) ←
Gen(1λ), pick s← Zkp and compute

ct := ( [s>A>1]1, [s>(A>1W +
∑t
i=1 idiA

>
1Wi + vkA>1Wn+1)]1, [s>A>1k]T ·m ).

Output

ctid := (vk, ct,Sign(sigk, ct)).

– KeyGen(mpk,msk, id): Recover k ∈ {0, 1}` from msk = [k]T . Parse id =
(id1, . . . , idt) where t ≤ n, pick r← Zkp and output

skid := ( [Br]2, [k+(WB+
∑t
i=1 idiWiB)r]2, [Wt+1Br]2, . . . , [Wn+1Br]2 ).

– Del(mpk, skid, id
′): Parse skid = (K0,K1,Kt+1, . . . ,Kn+1) for id = (id1, . . . , idt)

and id′ = (id, idt+1) where t < n, pick r′ ← Zkp and output

skid′ :=

(
K0 · [Br′]2, K1 ·K idt+1

t+1 · [(WB +
∑t+1
i=1 idiWiB)r′]2,

Kt+2 · [Wt+2Br′]2, . . . ,Kn+1 · [Wn+1Br′]2

)
.

– Dec(mpk, skid, ctid): Parse ctid = (vk, ct, σ), output ⊥ if Verify(vk, ct, σ) =
0. Otherwise, parse skid = (K0,K1,Kt+1, . . . ,Kn+1) and ct = (C0, C1, C).
Output

m′ = C · e(C0,K1 ·Kvk
n+1)−1 · e(C1,K0).

6.2 Concrete mKDM-secure ABE for ABP

This section presents a concrete mKDM-CCA secure ABE for arithmetic branch-
ing programs (ABP) derived from our generic construction. We work with arith-
metic span programs (ASP) that captures ABP [IW14] and use the predicate
encoding from [CGW15].
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Arithmetic Span Program [IW14]. An arithmetic span program (V, ρ) is a
collection of row vectors V = {(yj , zj)}j∈[n′] ∈ (Z`′p × Z`′p )n

′
and ρ : [n′] → [n].

We say that

x ∈ Znp satisfies (V, ρ) if 1 ∈ span(yj + xρ(j)zj),

where 1 := (1, 0, . . . , 0)> ∈ Z`′p . That is, x satisfies (V, ρ) if there exist constants
ω1, . . . , ωn′ ∈ Zp such that∑

j∈[n′] ωj(yj + xρ(j)zj) = 1.

We impose a one-use restriction, that is, ρ is a permutation and n′ = n. By
re-ordering the coordinates in V, we may assume that ρ is the identity map.

Predicate Encodings from [CGW15]. Let (w,v,u) ← Znp × Znp × Z`′−1p .
Define

sE(x, (w,v,u)) :=
(
w1 + x1v1 . . . wn + xnvn

)
∈ Znp

rE(V, (w,v,u)) :=

(
y>1 ( 0

u ) + w1 . . . y
>
n ( 0

u ) + wn
z>1 ( 0

u ) + v1 . . . z>n ( 0
u ) + vn

)
∈ Z2n

p

kE(V, α) :=

(
y>1 ( α0 ) . . . y>n ( α0 )
z>1 ( α0 ) . . . z>n ( α0 )

)
∈ Z2n

p

sD(x,V, c) :=
∑
j∈[n] ωjcj

rD(x,V, (d,d′)) :=
∑
j∈[n] ωj(dj + xjd

′
j)

Construction. Assuming (Gen,Sign,Verify) is a strongly unforgeable one-time
signature scheme against chosen-message attack in the multi-user setting (MU-
sUF-CMA security), our mKDM-CCA secure ABE scheme for ABP is as follows:

– Setup(1λ, n): Run G ← G(1λ), sample A1 ← Z`×kp , B ← Z(k+1)×k
p , pick

W,W1, . . . ,Wn,V,V1, . . . ,Vn ← Z`×(k+1)
p and k← {0, 1}`. Output

mpk :=


[A>1]1, [A

>
1W]1, [A

>
1W1]1, . . . , [A

>
1Wn]1,

[A>1V]1, [A>1V1]1, . . . , [A
>
1Vn]1,

[B]2, [WB]2, [W1B]2, . . . , [WnB]2,

[VB]2, [V1B]2, . . . , [VnB]2, [A>1k]T

 , msk := [k]T .

We assume that group description G is always contained in mpk.
– Enc(mpk,x,m): Parse x = (x1, . . . , xn), run (sigk, vk) ← Gen(1λ), pick s ←

Zkp and compute

ct :=

(
[s>A>1]1, [s>(A>1W + vk ·A>1V)]1,

{[s>(A>1Wj + xj ·A>1Vj)]1}j∈[n], [s>A>1k]T ·m

)
.

Output
ctx := (vk, ct,Sign(sigk, ct)).
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– KeyGen(mpk,msk,V): Recover k ∈ {0, 1}` from msk = [k]T . Parse V =

{(yj , zj)}j∈[n], pick k′ ← Z`p, K′ ← Z`×(`
′−1)

p , r, rj ← Zkp for all j ∈ [n] and
output

skV :=

[Br]2, [k
′ + WBr]2,

[VBr]2,

{
[Brj ]2, [((k− k′)|K′)yj + WjBrj ]2,

[((k− k′)|K′)zj + VjBrj ]2

}
j∈[n]

 .

– Dec(mpk, skV , ctx): Parse ctx = (vk, ct, σ), output ⊥ if Verify(vk, ct, σ) =
0. Otherwise, parse skV = (K0,K1,K2, {K0,j ,K1,j ,K2,j}j∈[n]) and ct =
(C0, C1, {C1,j}j∈[n], C). If x satisfies V, one can compute ω1, . . . , ωn ∈ Zp
such that

∑
j∈[n] ωj(yj + xj · zj) = 1. Output

m′ = C ·
(
e(C0,K1 ·Kvk

2 )−1 · e(C1,K0)
)

·
∏
j∈[n]

(
e(C0,K1,j ·K2,j

xj )−1 · e(C1,j ,K0,j)
)ωj

.
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Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 627–656. Springer, Heidelberg, April / May 2017.

AHY15. Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. A frame-
work for identity-based encryption with almost tight security. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume
9452 of LNCS, pages 521–549. Springer, Heidelberg, November / Decem-
ber 2015.

AP12. Jacob Alperin-Sheriff and Chris Peikert. Circular and KDM security for
identity-based encryption. In Marc Fischlin, Johannes Buchmann, and
Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 334–352.
Springer, Heidelberg, May 2012.

Att14. Nuttapong Attrapadung. Dual system encryption via doubly selective secu-
rity: Framework, fully secure functional encryption for regular languages,
and more. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 557–577. Springer, Heidelberg,
May 2014.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based en-
cryption with constant size ciphertext. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, Heidelberg,
May 2005.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 213–229. Springer, Heidelberg, August 2001.

27



BHHO08. Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-
secure encryption from decision Diffie-Hellman. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 108–125. Springer, Heidel-
berg, August 2008.
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