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Abstract. Group signature is a major cryptographic tool allowing anony-
mous access to a service. However, in practice, access to a service is usu-
ally granted for some periods of time, which implies that the signing
rights must be deactivated the rest of the time. This requirement thus
calls for complex forms of revocation, reminiscent of the concept of time-
bound keys. However, schemes implementing this concept are rare and
only allow revocation with limited granularity. That is, signing keys are
associated with an expiry time and become definitively useless once the
latter has passed.

In this paper, we revisit the notion of group signatures with time-bound
keys with several contributions. Firstly, we extend this notion to allow
high granularity revocation: a member’s signing key can in particular be
deactivated at some moments and then be automatically reinstated. Sec-
ondly, we show that this complex property is actually simple to achieve
using redactable signature. In particular, we consider in this context a
recent redactable signature scheme from PKC 20 that we improve by dra-
matically reducing the size of the public key. The resulting construction
is of independent interest.

1 Introduction

Group signature, introduced by Chaum and van Heyst [10], enables anonymous,
yet accountable, authentication to a service. In such a system, a so-called group
manager has the responsibility of a group of users who can issue anonymous
signatures on behalf of the group. More specifically, anyone can check that the
resulting signatures were issued by a group member but it is impossible, except
for the group manager, to identify the actual signer. This means for example
that a service provider can check that the user has the right to access the ser-
vice whereas the user has the assurance that this authentication leaks as little
information as possible.

This ability to reconcile the interests of all parties makes it an ideal solu-
tion in many scenarios, which explains the countless papers on this topic. We
in particular note that some simple variants such as DAA or EPID are today
massively deployed [1,25]. Group signature has also been proposed in the con-
text of public transport (e.g. [12,15]) to implement an anonymous version of a
transport subscription pass such as, for example, the Navigo pass [19] in Paris,
that allows a passenger to take unlimited trips within some fixed periods of time.



With group signature, this passenger could prove that he has the right to access
the transport service without being identified by the transport operator.

This use-case thus highlights the benefits of group signatures at first glance
but also reveals their limitations when we consider more thoroughly a real-world
application. Indeed, access to a service is usually not granted for ever but only
for some periods of time. For example, the user of a public transport system
typically pays for a 1 month or year subscription starting from a date of his
choice. We can also envision alternative cases where one would subscribe to a
pass providing unlimited access but only during weekends.

Providing signing rights without the ability to limit them to some time pe-
riods is therefore extremely problematic in practice. We in particular note that
this cannot be fixed by revealing these time periods in the signature as it would
break anonymity. We here touch a weak point of group signatures. Although
most schemes come with efficient enrolment procedures, the problem of limiting
the signing rights is rarely considered in papers, and usually only through the
concept of revocation that can be implemented in three different ways.

The first kind of revocation approach is the one where the group manager
regularly changes the group public key, thus resetting the group. This is com-
patible with any scheme but is highly impractical in practice as it is becomes
necessary to issue a new group signing key for each user at the beginning of each
time period.

The second kind of revocation is the one where the group manager provides
at each time period an updated information on the current set of non-revoked
members. This information is then used by the group members during the gen-
eration of the signature to prove that they are still part of the group. In other
words, a group member can no longer issue a valid group signature once he is
revoked. This approach may offer nice asymptotic complexity (e.g. [16,17]) but
increases both the computational cost and the size of a group signature while
forcing the user to regularly update their group signing key.

The last kind of revocation is based on the notion of revocation lists for-
malized by Boneh and Shacham under the name of Verifier-Local Revocation
(VLR) [6]. Here, a member is revoked by adding a specific information in a revo-
cation list allowing the verifiers to trace all signatures issued by this member, at
least for a certain time. This revocation technique is interesting because it does
not require to update group members’ signing keys and has no impact on the
complexity of the group signature itself. Unfortunately, it makes the verification
process linear in the number of revoked users and so can only be used in situa-
tions where this revocation list remains relatively short. In particular, we cannot
use it directly in the context of public transport to deactivate users’ signing keys
when their subscription is over as it would quickly lead to revocation lists con-
taining millions of elements. It can only be used for exceptional situations such
as the theft or loss of some user’s smartphone.

To address this problem, Chu et al [11] proposed to improve VLR group
signatures by associating signing keys with an expiry time beyond which the
group member loses his ability to sign, hence the name of group signature with



time-bound keys. Such systems thus deal with two kinds of revocation, a natural
revocation that automatically excludes users once their expiry time has passed
and a premature revocation that works exactly as in a standard VLR scheme.
This way, such systems dramatically limit the size of the revocation list and so
the computational cost of the verification process.

Following [11], Emura et al [13] recently proposed an improved security model
for this primitive along with an efficient construction that blends the last two
kinds of revocation we mentioned above. Concretely, the natural revocation is
based on [17] by providing at each time period an information that enables non-
revoked users to issue group signatures while premature revocation is still based
on VLR. The resulting construction has nice asymptotic complexity but suffers
from the limitations listed above, namely the need to prove in each signature
that the signing key is still active and the need to update the latter at each time
period.

Our Contribution. We propose in this paper to improve group signature with
time-bound keys in several ways.

Firstly, we allow the group manager to associate a group signing key with
any set of time periods and not just an expiry time as in previous works. Con-
cretely, this means that a user may be able to sign at some time period ¢; and
then be considered as revoked during the subsequent time periods before being
automatically reinstated at a later time period 5. This can for example be useful
in the case mentioned above where a user would have access to a service only
during weekends. The signing key will then be active only during the weekends
and not during the other days of the week. This thus improves the granularity of
the revocation but raises some privacy issues as it now means that revocation is
not necessarily permanent: we must therefore ensure both backward and forward
unlinkability for revoked users. We also allow opening queries in our anonymity
experiment, contrarily to [13], and thus achieve a stronger notion of privacy.

Our second contribution is a construction of a very efficient scheme satisfying
our new definition based on unlinkable redactable signatures (URS) [9,22]. An
URS scheme enables to issue a signature o on a set of messages {m; }* ; and then
to publicly derive from ¢ an unlinkable signature ¢’ that only proves authenticity
of a subset of messages {m;};cz, for some Z C [1,n]. Here, unlinkability means
that o’ does not leak information on the set of redacted messages {m;};¢7 and
cannot be linked to o beyond the fact that both signatures coincide on Z.

We use URS to construct group signature with time-bound keys as follows.
During the enrolment process a group manager will issue a redacted signature
o on a set of messages {m;}? , where m; # 0 if and only if the new member
has the right to issue group signatures at the time period i. To generate a
group signature at a time period ¢ this member then only has to redact all
the messages {m;}?; but m; and then send the resulting derived signature o’
attesting that m; # 0. Intuitively, thanks to unlinkability of URS schemes, we
do not have to hide ¢’ or the redacted messages, which leads to a very efficient
and simple protocol. Similarly, signatures from an unregistered member or an



illicit extension of signing rights (i.e. a member that manages to sign outside his
periods of activity) imply a forgery against the URS scheme. It then essentially
remains to add a premature revocation mechanism that still retains backward
and forward unlinkability but this can be done using rather standard techniques.
An interesting outcome of our approach based on URS is that our group members
no longer need to update their signing keys at each time period. They only need
to know their original signing key and the current time period to generate a
group signature.

So far we have shown that URS schemes lead to simple constructions of group
signature with time-bound keys. However, this result is of practical significance
only if we can propose an efficient candidate for the URS scheme. An interesting
candidate was proposed very recently at PKC 20 [22], with extremely short sig-
natures containing only four elements and which can be verified with essentially
one exponentiation by non-redacted message. This might seem perfect in our
context (as each group signature only involves one non-redacted element) but
unfortunately the construction in [22] suffers from a large public key, quadratic
in n. In the context of public transport, where it seems reasonable to consider
one-day time period and a public key valid for the next 3 years, this means that
the public parameters would contain millions of elements, which can be cum-
bersome. We therefore propose an improved version of the construction of [22],
which retains all the nice features of the latter but with a public key only lin-
ear in n. We believe that this contribution is of independent interest, although
its security analysis is done in the generic group model and the random oracle
model.

Organisation. We recall in Section 2 the notion of bilinear groups and present
the computational assumptions that underlay the security of our protocols. Sec-
tion 3 is dedicated to URS and contains in particular a new construction with
shorter public keys. Section 4 presents an improved model for group signature
with time-bound keys whereas section 5 shows how to instantiate this primitive
with URS. Finally, the last section compares the efficiency of our contributions
with the most relevant schemes from the state-of-the-art.

2 Preliminaries

Bilinear Groups. Our construction requires bilinear groups whose definition
is recalled below.

Definition 1. Bilinear groups are a set of three groups G1, Go, and G of order
p along with a map, called pairing, e : G1 X Go — G that is

1. bilinear: for any g € G1,g € Gz, and a,b € Z,, e(9%,3°) = e(g, 9)*;

2. non-degenerate: for any g € G} and g € G3, e(9,9) # 1o ;

3. efficient: for any g € Gy and g € Gao, e(g,g) can be efficiently computed.

As most recent cryptographic papers, we only consider bilinear groups of
prime order with type & pairings [14], meaning that no efficiently computable
homomorphism is known between G| and Go.



Computational Assumptions. The security analysis of our protocols will
make use of the following two assumptions.

— SDL assumption: Given (g, ¢%) € G and (g, §%) € G3, this assumption states
that it is hard to recover a. It thus essentially extends the standard discrete
logarithm assumption to the case of bilinear groups. v

— EDDH assumption: Given ({g>° _?23, L o L U L S L S I =
GI”Q*"“ and ({7¢'}21,3%, {97 Yiep 2n2]\Jn2 —non24n]) € ng%an’ the
EDDH assumption states that it is hard to decide whether z = a-b-c” +b-d
or z is random.

We note that our EDDH assumption is an instance of the generic BBG assump-
tion [8]. The hardness of the underlying problem is studied in the generic group
model in the full version [23] but it is intuitively based on the following ratio-
nale. A non-random z is the sum of two monomials, a - b -_0”2 and b - d, that are
both multiple of b. As b is only provided in G; with {g*¢ ?;01, any attempt to
distinguish z from randomness will intuitively require to pair an element of this
set with an element of Gs. If the latter belongs to {ga'cl}ie[l’gnz]\]n2,n7n2+n[,
then we get an element of G whose exponent is of the form a - b - ¢’ for some
i € [1,n? — 1] U [n? + n, 2n?]. This is not sufficient to distinguish the first mono-
mial in z so we must pair g% with some g¢ for i > n, resulting (once we remove
the first monomial) in an element e(g,§)>%¢ with i > n. The latter element
cannot be computed from the EDDH instance as we only have ¢"¢', for i < n,
in G; and §¢ in G,. The same reasoning applies if we start by trying to remove
the second monomial.

3 Redactable Signatures with Linear Size Public Key

3.1 Unlinkable Redactable Signature

Before presenting our construction, we recall the notion of unlinkable redactable
signature (URS) from [9], using the notations from [22]. The core idea of this
primitive is that a signature o issued on a set! of messages {m;}"_; can be
publicly redacted so as to be valid only on a subset {m;};cz, for some Z C [1, n].
This feature is important both for efficiency and privacy reasons. The set of
redacted messages is then {m;}, 7, where Z = [1,n] \ Z.

Syntax. An URS scheme consists of the 4 following algorithms.

— Keygen(1*, n): On input a security parameter 1* and an integer n, this algo-
rithm returns a key pair (sk, pk) supporting signatures on sets of n messages

{mitig.

1 We stress that the index of each message is important as the term “set” might lead
to a confusion. Here, m; means that this message has been signed under the i-th
element of the public key and is only valid for this position. In particular, deriving
from o a signature on {m;)}i=; for some permutation = would constitute a forgery.



— Sign(sk, {m;}"_;): On input n messages {m;}?_; and the signing key sk, this
algorithm outputs a signature o.

— Derive(pk, o, {m;}"_,,Z): On input a signature o on {m;}?_;, the public
key pk and a subset Z C [1, n], this algorithm returns a redacted (or derived)
signature oz on the subset of messages {m;};cz.

— Verify(pk, o, {m;}icz): Oninput the public key pk, a set of messages {m; };cz
and a signature o (generated by Sign or Derive), this algorithm outputs 1
(valid) or 0 (invalid).

Security Model. As any signature, a redactable signature must be unforge-
able, meaning that it is impossible to output a valid signature on an unsigned
set (or subset) of messages. However, a subtlety arises if we consider the gen-
eration of a new derived signature as an attack, even if the latter is only valid
on an already signed subset of messages. Following the terminology of standard
signature schemes, a construction preventing generation of new signatures is said
to be strongly unforgeable. As its name suggests, strong unforgeability implies
unforgeability. In [22], these two notions were defined as in Figure 1. These ex-
periments make use of the following oracles that define a counter ¢ and three

tables, @1, Q2 and Qs3:

— O8ign*({m;}!,): on input a set of n messages, this oracle returns Sign(sk,
{mi}m)), stores Q1[c] = (o, {m{?}7_,) and increments ¢ < ¢ + 1.
— Osign({m;}?,): on input a set of n messages, this oracle computes o

Sign(sk, {m;},), stores Q1[c] = (o, {ml(-c) ?_,) and increments ¢ < ¢+ 1.
— ODerive(k,Z): on input an index k and a set Z, this algorithm returns L
if Q1[k] =0 or if Z ¢ [1,n]. Else, it uses o and {m;}, stored in Q;[k] to
return Derive(pk, o, {m;}I;,Z). The set {m,};cz is then added to Q3.
— OReveal(k): on input an index k, this algorithm returns L if Q;[k] = § and

Q1[k] = (o, {mgk)}?zl) otherwise. The set {mgk) ?_, is then added to Qs.

The difference between OSign* and OSign is that the latter does not return
anything. OSign indeed simply generates a signature that can be used as input
of subsequent ODerive queries. Finally, we also recall in the same figure the
notion of unlinkability that provides strong privacy guarantees as it ensures that
no information leak on redacted messages and that it is impossible to link the
input (o) and the output (¢’) of the Derive algorithm beyond the fact that they
both coincide on the set {m;};cz of revealed messages.

Let A be a probabilistic polynomial adversary. An URS scheme is

— unforgeable if Adv*f (A) = |Pr[Epof(1)‘, n) = 1]| is negligible for any .A.

— strongly unforgeable if Adv*"/ (A) = |Pr[Expfff (1*,n) = 1]| is negligible for
any A.

— unlinkable Adv*™ = \Pr[Epo‘"l_l(l)‘,n) =1] - Pr[Esz‘"l_O(lk,n) =1]| is
negligible for any A.



Strong Unforgeability
Exp’ld (1,m)

Unforgeability
wf 4\
EXP 1 n . 1. Q17Q27Q3 — ®7
It 57 0; 2;21 = 0; & 2. (sk,pk) « Keygen(1*,n)
2. (Sk,pk) — Keygen(los,‘n)* 3. (O'* {mi}ieI) « AOSign,ODerive,OReveal(pk)
3. (7, {mi}i.ez) « ATTE (pk) 4. Return 1if Z # 0
4. Return 1 if7# Ql and Verify(pk,o™, {m;}icz) =1
and Verify(pk,o*, {mi}icz) = 1 and {m:}icz ¢ Qs
and Vj <c, Jk; € T:my; # m‘;j) and Y{m{}7"_, € Qs :
5. Else, return 0 Jk; € T : my, #my
J J

5. Else, return 0

Unlinkability
Expz‘nl—b(l)\’ n)

L (pk,Z, {m{” } iy, {mPM Yy, 0@, o) < A()

2. If 3 € {0,1} : Verify(pk,o®", {mgb/)}?zl) =0, return 0

3. Ifd5e1: mgo) #* mg-l), return 0

4. O'(Ib) + Derive(pk,o®, {mgb)}?:hI)

5. b% + .A(O'(Ib))

6. Return (b* =b).

Fig. 1. Security Notions for Redactable Signatures

3.2 Our Construction

Intuition. The system of [22] is constructed upon the Pointcheval-Sanders (PS)
signature scheme [20] for blocks of n messages, by aggregating the redacted
messages in one element and then proving, thanks to an additional element,
that the latter was honestly generated. Unfortunately, in [22], this is done by
adding a quadratic number (in n) of elements in the public key, which quickly
becomes inefficient.

Our approach shares some similarities with [22] but differs in several im-
portant ways. Our first difference is that we do not start from the original PS
signature scheme but rather from a specific instantiation where the secret key
only contains two scalars  and y and where a signature (o1,02) € G? on a
set of messages {m;}7_, is (h, h*T2Xi=1¥""™) for some random element h € G.
Concretely, this implicitly sets y; = y%, for i > 2, in the original PS signature
scheme. The original proof of PS signatures in the generic group model readily
adapts to this particular settings. Actually, this instantiation has been recently
studied by McDonald [18]. In any case, the validity of o can be checked by simply
testing whether the following equation holds:

3

where g and {597}7:1 are parts of the public key. As in [22], we can compute
an element o < [[, 7 g¥" ™ that aggregates all the redacted messages but we



must then ensure that ¢ will not be used by an adversary to cheat the verifica-
tion procedure. Concretely, since the Verify algorithm now checks the following
equation: ‘
(o1, 5" -5 [[9¥ ™) = e(02,9),
ieT

one must intuitively ensure that ¢ has not been used to aggregate illicit
clements of the form §~% or g¥ ™, for some i € Z, which would lead to trivial
forgeries. Here, we can’t use the solution from [22] anymore because our secret
key is different, but primarily because it would entail a public key containing
O(n?) elements.

The first step of our new strategy is to notice that the following pairing

G= e(H gynﬂﬂ,&)
i€T
yn+1f'i+j,mj .
is of the form e(g€%7¢7 ,g) for an honestly generated . Since ZNZ =
(), we note that the first input of the resulting pairing can be computed without
the knowledge of gyn+1. In particular, it can be computed only from the 2n — 1
elements g¥', for i € [1,n] U [n + 2,2n], that we add to the public key.

Now, following [22], it might be tempting to conclude that there is an equiv-
alence here, namely that an ill-formed & will necessarily lead to a pairing G
involving gywrl or an element of the form ¢*¥", for some u > 0, that are not
provided in the public key.

Unfortunately, this is not true because, in the case where G is computed from
an ill-formed & « [[_, §¥ ™ (for example, one such that 3i € Z with m/ # 0),
we have: o

¢ =elg=" " 5)
with anq1 =) ,c7 mj. It is thus trivial for the adversary to select values mj, for
i € Z, that will cancel the coefficient a,, ;1 of y"*!. In such a case, it can create a
forgery using only the elements ¢¥", for i € [1,n]U[n+2,2n], which are provided
in the public key.

This solution therefore does not work as it is, but this does not mean that we
should completely discard it either. Instead, we will keep the same approach but
add some unpredictability in the coefficient a, 1 to thwart the previous attack.
To this end, we will generate the hash outputs ¢; « H(o1||o2||o||Z]|i), for i € Z,
and use them to compute a different pairing

i >y
e(Hgy +1 i 5) = e(gicticT ,9)-
i€Z

nl=iti o,

Here, our previous remark is still valid: for a honestly generated o, there is no
monomial in y™*!. But now, in the case of an ill-formed & as above, the coefficient
any1 of Yyt is > ez Ci - mj. Since ¢; depends on ¢ and so on mj, we see that
any strategy to choose the scalars m/ in such a way that a,11 = 0 is unlikely



to succeed as any change in a value of m} will lead to a completely new set of
values {¢; };cz. This solution is reminiscent of the approach to prevent rogue key
attacks in aggregate signature or multi-signature schemes (see e.g. [5]) but we
use it here for another purpose and with a significant difference. We can’t indeed
derive ¢; directly from the messages m; as it would prevent efficient proofs of
knowledge of m; but rather from the first elements (o1, 02,5) of the signature.
One of the difficulties of the security proof is to show that the adversary can’t
leverage this fact to create forgeries.

At this stage, we have an unforgeable redactable signature scheme. To achieve
unlinkability, we use exactly the same trick as in [22], namely we aggregate a
signature on a random message t under a dummy public key and then redact ¢
to perfectly hide the set {m;},.7. Together with the re-randomizability of the
PS signatures (that our variant inherits) this leads to an unlinkable redactable
signature scheme, as defined in Section 3.1.

The scheme.

— Keygen(1*,n): this algorithm generates (g,g) & G} x G} along with two
random scalars (z,y) & Zi and computes the following elements:
) X — g% ;
oY gy V1 <i<m
o Y, < g¥,Vie[l,nU[n+2,2n].
The secret key sk is then (z,y) whereas the public key pk is (H, g, 9, {Yi} "1,
{Y;}2m n+2,X, {Yi}ie,), where H: {0,1}* — Zy is the description of a hash
function.
— Sign(sk, {m;}",): to sign n messages my, .. M the signer selects a ran-

+Z =1¥"Mi and then outputs the

dom element oy & G1, computes o + o]
signature o = (01, 02).

— Derive(pk, o, {m;}"_,,Z): on input a signature o = (o1, 02) on {m;}" ,, the
public key pk and a subset Z C [1,n], this algorithm generates two random
scalars (r, t) & Z2 and computes:

. 01 +— of;
. 02 +— 02 (o))
e gt H ff/
Then, for all i '€ Z, computes the scalar ¢; < H(o1||ob]|’||Z]|i) that is

used to generate:
m;
US <~ H n+l—z H Yn+1 z+]
i€l jeT

where Z = [1,n] \ Z. Finally, the signer returns the derived signature o7 =
(017027037 ") on {m;}iez.

— Verify(pk, o, {m;}icz): this algorithm parses o as (01, 09,03,0) € G} x Ga,
setting o3 = 1g, and & = 1g, if 0 € G? (i.e. if 0 has not been derived).
If o1 = 1g,, then it returns L. Else, the algorithm tests if the following
equations hold, in which case it returns 1.



Loe(01, X 7 [Lieg Y7™) = e(02.9);
2. 6(0375) = e(HieI Y;;l—zaa:)v

where ¢; < H(o1]|o2||a]|Z]|7). If (at least) one of these equations is not sat-
isfied, then the algorithm returns 0.

Remark 2. 1) We note that the elements provided in the public key are sufficient
to compute derived signatures, and in particular the element ¥ since, for alli € 7
and j €Z, wehaven+1—i€[l,n]and n+1—1i+j € [l,n]U[n+2,2n].

2) We have defined o3 as [[;cz (Vi1 - [Lez Y, iy 416 for ease of expo-
sition but we note that applying directly this formula to compute this element
would be rather inefficient in most cases as it would entail |Z|(n — |Z| + 1) ex-
ponentiations. For all u € [1,n]U [n+ 2,2n], let us define t, =t ifu=n+1—1
for some ¢ € 7 and ¢,, = 0 otherwise. Then, ¢4 can also be written as follows:

I ty+Suy

uw€[1l,n]U[n+2,2n]

where s, = > ¢ -my, forall w € [1,n] U [n + 2,2n]. Computing o4
i€T,jeT:
j—i=u—m—1
this way requires at most 2n-1 exponentiations.

Correctness. We prove here that the Verify algorithm returns 1 for any sig-
nature o returned by the Sign or the Derive algorithm.

First, in the case where o has not been derived, we note that the sec-
ond verification equation is trivially satisfied as o3 and o are the neutral el-
ements of respectively G; and Gy. Moreover, in this case, we have e(o2,9) =

e(Uerz?:lyl'miv@ = e(oy, g XY M) = e(0y, X - T[], ¥;™), which con-
cludes the proof.

Let us now assume that o is an output of the Derive algorithm for some
subset Z. We have

(o1, X -5 [[ V™) = elo, g Zeez v gt [T ¥77)

1€T JET
= 6(0/17 §t+z+27:1 yl'mi)
= e((o})TH X v ML (o1)1, )
= ¢(0},9)
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and

(HYanH 175/) (Hyctl Ng‘H‘ZJgfyj-mj)

i€l i€l
e Y zy'm; ~
HYn+1 4 ez ]’g)
1€L
t+2jefyj'm.7 c;
:e(H[Yn+1—i 1, 9)
€L
m; ¢~
H n+l—1i HYn+1 H—] ag)a
i€L jET

which means that both equations are satisfied.

3.3 Security Analysis

By modelling H as a random oracle, we can prove the strong unforgeability (and
hence the basic unforgeability) of our construction in the generic group model.
We note that relying on a ¢-type assumption, as it was done in [21] for PS
signatures, seems extremely difficult here as the use of several powers of the
secret value y prevents to use the strategy from [21]. Fortunately, proving the
unlinkability of our scheme does not require such kinds of assumption as we show
that this property holds unconditionally. This is formally stated by the following
theorem, proven below.

Theorem 3. — In the random oracle and generic group models, our construc-
tion is strongly unforgeable.
— QOur construction is unconditionally unlinkable.

Proof of Strong Unforgeability.

Lemma 4. In the generic group model, no adversary can break the strong un-
qm+2+2n- (3n+2+2qR+4qD+qc)2

forgeability of our scheme with probability greater than o

where qg s a bound on the number of random oracle queries, qg is a bound on
the number of group oracle queries, qp is a bound on the number of ODerive
queries and qg is a bound on the number of OReveal queries.

Proof. In the generic group model, the adversary A has only access to the ele-
ments from the public key and the ones resulting from queries to the different
oracles. Each of these elements is associated with a polynomial whose formal
variables are the scalars unknown to the adversary (either the values from the
secret key or the random scalars r and ¢ used to derive signatures). Concretely,
the adversary has access to

= k= ({0} {0" }s0, 0 {8 Yo
_ (ng,ng(ﬂC-i-ZL 1¥7mk.0)) obtained, for k € [1,qg], via the OReveal oracle on
a set of messages {my;}7_; adaptively chosen by the adversary;

11



— (g"e, gre(e et i v mes) Gte [1ez, §yj'm“j,niezk Mez, (g ma)

gynﬂﬂ't’f}cf»’vi) obtained through ODerive queries, for ¢ € [1,qp], where

¢, is computed as described in Section 3.2, namely by hashing the first
three elements of the signature concatenated with Z, and i.

From these elements, A must create a signature o = (o1, 09, 03, 5) on a set
of messages {m;}icz (we may have Z = [1,n]) that would be considered as a
valid forgery by the strong unforgeability experiment. We note that we may have
(03,0) = (1g,, lg,) so we can consider a four-elements forgery without loss of
generality.

In this proof, we will use a register L to handle random oracle queries. For
each query z, we first check whether L[z] already contains a scalar y € Ly, in
which case we return the latter. Else, we generate a random y <& Z,, that is
returned to A and then stored in L[z].

In the generic group model, ¢ must have been created as a combination
of the elements above. This means that there are known scalars {(a1 ., 81,
Mitieonuint2,2n]s 02, {03iticion)y  1(Q ks Bak,bs Ya k) Yhel1,qn],be[1,2]5
{(as,e.0, 85,00, V5,06) eel1,qn)ver1,3] and {050} o145 sSuch that:

X dRr n .
— o] = > oy -yt + > Qg1 Tk + Qg2 re(z+ >yt mk,i) +
i€[0,n]U[n+2,2n] k=1 i=1
4D n . )
Molaser rp+asee - ri@+te+ >yt me) fases Y coily" Tt +
/=1 =1 i€y
>yt my]
JEL,
X 4R n .
— [oa] = > Bri -y + > Baga Tk + Bag2-re(@+ Yy -mi) +
1€[0,n]U[n+2,2n| k=1 =1
4D n i .
Y (Boen - ro+ B ri(x+te+ 2y -mei) 4+ Boes - o coaly™t T te+
=1 o i=1 i€T,
>yt my
J€Le
. dr n .
— [o3] = > Yii oY+ D Yaka Tk FYak2 Te(T A+ DY me) +
1€[0,n]U[n+2,2n] k=1 i=1

qp n X .
Y (51T se2 (@t + Yyt mes) Fsesc Y coaly™ Tt +
=1 =

— i=1 1€y
Z yn+17i+j . mj]

where 0; < ¢l and & < §l?). As o is expected to be a valid signature, the
following two conditions must be satisfied:

1. 6(0’1,)’2 o - Hieszimi) =e(02,9);

2. e(o3,9) = e(HieI erfklfi’a);

12



but these are just necessary conditions. The set {m,} returned by the adver-
sary must indeed also satisfy the following two conditions:

1. Vk € [1,qg], {mitiez € {mr,i}i—1;
2. Yl e [1, qD] either 7 75 I, or {mi}iez 75 {mf,i}iefe'

We here need to distinguish two cases:

— Case 1: [0] = 0;
— Case 2: [0] # 0.

Case 1. Here, we can only consider the first equation of the verification process
and get the following relation:

o]z + >y my) = [o2)]
ieT
As there is no monomial of degree 2 in = in [o3], we can conclude that
agpo=o0as090=0Vke[l,qgg| and £ € [1,¢p]. Similarly, there are no elements
of the form z - y* for v > 0, which implies that o;; = 0, Vi > 0, and that
ase3 =0Vl e [1,gp]. We can then significantly simplify [o1]:

4R 4D

!

[o1] = a10+ g Qg1 Tk + E Qse1 Ty
k=1 =1

Now, we note that any monomial of degree 1 in x in [03] also involves some
i or 1. We must then have oy o = 0, meaning that any monomial on the left
hand side also involves some rj or 7"2. This allows us to conclude that 8;; =0
Vi and that 3503 = 0 V¢ € [1,¢p]. Finally, the factor (z + . y*-m;) in the

i€T

previous relation means that any monomial in [o3] is at least of degree 1 in x or
y. This means that Sy 51 = 851 =0,V k € [1,qg] and ¢ € [1,¢p]. We can then
also simplify [o9]:

dr n 4D n
[o2] = Z Bakz rr(z + Z y'omy) + Z Bz - ro(x+te + Z Yy me)
k=1 i=1 =1 i=1

In our case, there are no terms in ¢, in the left member of the equation, which
means that 852 = 0Vl € [1,¢gp]. We can therefore also remove the monomials
involving 7 in [o}].

At this stage, we have:

4R
— o) = > aapa T

k=1
qRrR n .

= [oa] = X0 Bakz el + X0y mpa).
k=1 =1

13



This implies that a4 k1 = Bak,2, Vk € [1,qr]. Moreover, for any k such that
oy 1 # 0, we must have m; = my,; Vi € Z, in which case o would not be a valid
forgery. The only other possibility is a4 1 = 0 Vk € [1, gg| but, here again, this
would mean that o is not a valid forgery. Hence, no adversary can output a valid
forgery in Case 1.

Case 2. Let us now consider the second case, and more specifically the second
equation of the verification process (which is not trivial in this case):

[os] = [G1(D_ e -y )
=
where ¢; = H(o1||o2||7||Z||¢). As there are no terms in z-y*, for u > 0, in [o3],
we can conclude that d; = 0. This means that the coefficients of all monomials
involving z in [o3] are zero: yar2 = Y5402 = 0, V k € [1,qr] and £ € [1,qp].
Similarly, we note that we can remove the monomials involving rj or r; as there
are not present in the right member. We thus get:

. ap . o
— [o3] = > Yy D Ysese D coqly" T e Yyt T T amy ]
i€[0,n]U[n+2,2n] =1 i€Zy JET,
_ n . 4D X
—[0]=>" 03y + X Ose(tet+ D0y muy).
i=0 =0 jeT,

Let us define, for all i € [0,n], 5, = d3,; + > 05,0 - my,;. Then, [o]
L€[1,qp]:iE€T,
can be written as follows:

n aD
G1= 0,y + Y G50 te.
i=0 =0
We note that the coefficient of the monomial y"** of [7](> ;7 ci - y" ™)

is exactly ) ¢;- 03 ;. As there is no monomial of degree n + 1 in [o3], we know
€T

that this sum is necessarily 0 but we need to show that this can be true only if

3. = 0 Vi € Z. This will be done at the end of this proof where we will show

that the event ) ¢; - d5; = 0 and 3j € Z such that d; ; # 0 is very unlikely.
€T i
Right now, we assume this result and so consider that 5§,¢ =0,Viel

4D
[0] = Z Jgiy' + Zfsw "t
=0

i€[0,n\T

We can now focus on the first equation of verification :

o1l + 6+ S mi) = o]
=
Although the relation is not the same as in Case 1 because [0] is not neces-
sarily 0, some parts of the previous analysis are still relevant. In particular, for
the same reasons as above, we have:
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—oup2=0s502=0a503=0,VEke[lqr|and {€[l,qp;
—ay; =0,V >0;
— f1,i=0Viand 5.3 =0Vl € [1,qp].

We can then simplify both o1 and oy as follows:

4R 4D ,

= lo1]= > aup1 i+ Y asen- Ty
k=1 =1
dRrR n . 4D

—[oo] = > (Baka -7k + Bakz - re(x+ 3y -mpa)) + Y (Bsen -1y + Bsez
k=1 =1 =1

n .
rp(x +te+ D0yt me))

i=1
‘We must now distinguish two subcases:

— Case 2.1: 3¢ € [1,¢p] such that 5, # 0.
— Case 2.2: V£ € [1,¢qp],d5,0 = 0.

In the first case, we have ay 1 = 0 for all k € [1,¢r] as there are no terms
in 7k -ty in [o2]. We must therefore also have 84,1 = Bak2 = 0, Vk € [1,qr].
This means that, V¢ € [1, ¢p],

as 1 To(T+ Z 835y 05,0 - te + Zyz - m;)
1€[0,n]\T i€l

n
=B Ty Boua (@ te+ > Y mey)
=1

which implies that as¢1 = B5.,2. Hence, my; = m;, Vi € Z, and 95 = 1
(assuming that as 1 7# 0 as this is trivial otherwise). ¢ can then be a valid
forgery only if Z # Zy, for such a ¢. However, we recall that [o3] and [o] must
satisfy:

los] = [6](D_ o -y™ )
ieT
On the right hand side, the monomials involving t, are exactly ¢; -y 177 - t,,
for i € Z. On the left hand side, they are 7543 - co; - y" ' - ¢, for i € Z,.
Since H returns non-zero scalars, this equation can be satisfied only if Z C Z,.
However, since Z # Z,, we know that there is at least one index i* such that
i* € Zp and i* ¢ 7. For this index, the monomial 5 ¢ 3 - ¢/ 4= -y"“_i* -ty has no
counterpart in the right member of the equation, which means that 53 = 0
and therefore that f5¢2 = 0. In case 2.1, the adversary can then succeed only
by using [o1] = 0, which makes the forgery o invalid.
Let us now consider the case 2.2. Here, the situation is simpler as we have:

4R 4D ,
= o1l = > qupa i+ Y asen -y
k=1 =1
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4r n

X qpD
= [oo] = > (Baka -7k + Bag2 -me(x+ Dy -mpa)) + D0 Bsen 14
=1 /=1

k=1 =

~BFl= X .y

i€[0,n]\T

From [o1](z + [0] + > 4" - m;) = [02], we can deduce that ay 1 = Bak2,
i€T
Vk € [1, gg]. Therefore, either my; = m; for all i € Z or a4 1 = 0. The former
case means that the forgery is invalid so we can assume that o 1 = Ba k2 =0,
Vk € [1,qgr]. There are then no longer terms involving x in [o3], which implies
that [o1] must be zero and so that o is also invalid.

We now need to bound the probability of some bad events that would make
our simulation in the generic group model incorrect. The first one is the event
where the adversary returns a forgery (oy,09,03,0) for a set Z, where o was
generated using some scalars 55@7 as described above, such that

1. 3j € T such that d3 ; # 0;
2. Ziel’c’i . (5{311» =0, with ¢; H(01H0'2H5||IH1) € Z;

We distinguish two cases. Either A has queried o1]||o2||7||Z]]¢, Vi such that

:/s,i = 0, or there is at least one such index for which the corresponding string has

not been queried to the random oracle before A outputs its forgery. In the second

case, at least one random ¢; € Zj is generated after the adversary has returned

the forgery o, which means that the second condition can only be satisfied with
probability at most Il]

So let us focus on the first case. In the generic group model, each set of values
{5{)))1»}1-61 generates a different element o. As ¢ is taken as input by the random
oracle H to generate the random, non-zero scalars ¢;, this means that {(5{))71-}1-61
is distributed independently of {c;}iez. The probability that > ¢; - d3,; = 0

i€Z
with some non-zero d3 ; is then at best 1% for a given set of values {03, }iez-
Now, we note that the sum ) c; - 05 ; needs at least two non-zero terms to be
i€z
equal to zero because ¢; # 0. 'el’his means that any tentative by the adversary to
satisfy both conditions consume at least two queries to the random oracle. We
can therefore bound the probability of A succeeding in this second case by %—Z,
which is negligible as long as A makes only a polynomial number of queries to
the random oracle. In the end, the probability that this bad event occurs is at
most L2t2
2p

The second event we need to bound is the one where two of the formal polyno-
mials used above evaluate to the same value. Indeed, the two elements associated
with these polynomials would be equal in practice but would be considered as
different by our simulation. The number of polynomials involved in our proof
is 3n 4+ 2 4+ 2qr + 49p + qqg, each of them being of degree at most 2n. Using

the Schwartz-Zippel lemma, we can bound the probability of such an event by
2n-(3n+2+2qr+4qp+49c)>
2p

, which is negligible.
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Proof of Unlinkability. We here prove that a derived signature oz on {m;};cz
is distributed independently of the original signature o = (01, 09,03,5) and of
the set of redacted messages {m;}, 7.

Let h = g¥ be some random element of G, t be a random scalar and s be
such that o7y = g°. We can then define u =t + Zjef Y - m; along with:

— o]+ h;
— ol Rt Eiez Vi mi L pu
! Cy u.
= 05 < [[Liez Yaia—i™
=~/

o« g“.

We note that:

(H eriki)u = H( 7’lu+177;)c’i = H[va+17i ’ H Y7:n+jlfi+j]q'

i€T i€T i€T JET

Therefore o’ = (01, 0%, 0%,0") is exactly the derived signature that one would
get by running the Derive algorithm with scalars ¢ and 7 = 2. Moreover, o’ is
distributed as a valid output of this algorithm since both ¢ and r are random.

Now, we note that the scalar u is random because t is random, so the four
elements of o/ are distributed independently of o and {m;} which concludes
the proof.

i€l

4 Group Signature with Time-bound Keys

In this section, we recall and extend the definition of a group signature scheme
with time-bound keys from [13]. There are three main differences with the latter
paper. Firstly, as we explain in the introduction, we associate each signing key
usky with a set of active time periods T and not just an expiry time. This means
that the user k can issue valid group signatures for all time periods ¢t € T, which
are not necessarily contiguous. Concretely, the user can be considered as revoked
at some time period ¢ ¢ T and then be automatically reinstated at a later period
t' € Ti. This definition clearly generalizes the previous ones [11,13] that only
consider expiry time. Our second difference is that we allow OOpen queries for
the adversary during the anonymity game. Such queries were indeed forbidden
in [13], resulting in a weaker notion of anonymity. Finally, our group manager
does not need to provide the so-called “expiration information” for each period,
which simplifies both the management process and the signature algorithm. Our
group members indeed only need to know the current time period (and their
original signing key) to issue a signature and in particular do not need to update
their signing key with such information at each time period.

4.1 Syntax

As in [13], our group signature is composed of the following algorithms, involving
three types of entities: the group manager, the users and the verifiers.
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— GKeygen: on input a security parameter 1* and a bound n on the number
of time periods, this algorithms generates the group key pair (gsk, gpk) and
initializes a register Reg. The group public key gpk is then considered as
known by all the other parties.

— Join: this is a two-party interactive protocol between the group manager
and a new group member k. Both of them take as input gpk along with the
set of active time periods 732 for this user. The group manager additionally
takes as input gsk along with the current version of Reg. After successful
completion of this protocol, the user obtains his group signing key usk;, that
contains in particular his secret key sk and T whereas the group manager
stores a revocation token rty and 7 in Reglk].

— Sign: on input a group signing key usky, the group public key gpk, the current
time period ¢ and a message m, this algorithm returns a group signature o.

— Revoke: on input (gsk, gpk), Reg, a time period ¢ and a set R of users to
revoke, this algorithm returns a revocation list RL; specific to this period.

— Verify: on input gpk, a time period ¢, a revocation list RLy, a group signature
o and a message m, this algorithms returns either 1 (valid) or 0 (invalid).

— Open: on input gsk, Reg, a group signature o, a message m and a period ¢,
this algorithm returns either a user identifier k or a failure message L.

Remark 5. Previous works [11,13] distinguish two kinds of revocation, the nat-
ural revocation that automatically excludes the users from the group once their
expiry time has passed and the premature revocation that is called to exclude
users before their expiry time. This terminology is coherent with their setting
but not with ours where each user may alternate between periods of activity and
inactivity. We then rather consider, for each time period ¢, a set of active users
(i.e. those such that ¢ € T;) and a set of inactive ones. A user k is then said to
be revoked at period t only if the Revoke algorithm has been run on a set R 3 k
and ¢, which corresponds to the premature revocation in [11,13]. In particular,
the revocation list RL; is independent of the set of inactive users.

4.2 Security Model

A group signature should achieve correctness, anonymity, traceability and non-
frameability as defined below. Our definitions are adapted from [13] and include
the differences discussed at the beginning of this section. We refer to [13] for a
formal definition of correctness but it intuitively requires that an honestly gener-
ated signature, issued by an active and non-revoked group member, is considered
as valid by the verification algorithm and can be opened by the group manager.

As in [13], we ensure anonymity of users as long as their secret key do not
leak. This is quite standard for group signature with revocation lists as the re-
vocation tokens for a user can usually be generated from his secret key. This
therefore corresponds to the notion of selfless-anonymity [6]. We nevertheless

2 We associate each time period with an integer ¢ in [1,7n]. We can then talk of “time
period t” without loss of generality.
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consider an anonymity definition that extends the notion of backward unlinka-
bility to our setting. That is, we even allow revocation of challenge users (those
targeted by the adversary) at any time period ¢ different from the one of is-
suance of the challenge group signature. We thus ensure both backward and
forward unlinkability.

Our traceability and non-frameability notions are standard. Intuitively, the
former ensures that any group signature valid for a period ¢ can be linked back
to a group member k active at this time period whereas the latter ensures that
k has indeed taken part in the generation of this signature.

All these security definitions make use of the following oracles that define H
(resp. C) as the set of honest (resp. corrupt) users. As the corrupt entities differ
according to the experiments, we consider several oracles to add new members
to the groups. All of them associate a group member to a unique index k and
then return L if they are run on an existing k.

— OAdd(k,Tx) is an oracle that can be used to add a new honest user k for
the set of time periods 7. It runs Join with the corresponding inputs, thus
generating a group signing key along with the associated revocation tokens.
It does not return any data but adds k to H.

— OJy(k, Tx) is an oracle that plays the user’s side of the Join protocol. It can
be used by an adversary A playing the role of a corrupt group manager to
add a new user k for the time periods 7.

— OJgr(k, Tx) is the counterpart of the OJy oracle that can be used by a
corrupt user to join the group. k is then added to C.

— OCor(k) is an oracle that returns the group signing key of an honest user k.
k is then removed from H and added to C.

— O8Sign(i,m,t) is an oracle that returns Sign(gpk, usk;, m,t), provided that
k is an honest user that has already joined the group.

— O0pen(c,m,t) is an oracle that returns Open(gsk, gpk,Reg, o, m, t).

— ORevoke(R,t) is an oracle that returns Revoke(gsk, gpk, Reg, R,t). The ad-
versary may adaptively run several times this algorithm for the same time
period t.

— OChy(ig,i1,m,t) is an oracle that takes as inputs the index of two honest
users active at the time period ¢ and returns Sign(gpk, usk;, ,m,t).

In both the traceability and the non-frameability experiments, by including
Reg in the adversary input we mean that it has read access to this register. We
could also provide write access but this would require a more intricate Join pro-
tocol where the new user would sign the entry of the register with a specific key,
as in [3] for example. We believe this would unnecessarily complicate our security
model and so only consider this simpler scenario in our paper. Should the need
arise, it would be straightforward to upgrade our model and our construction to
handle write access.

Let A be a probabilistic polynomial adversary. A group signature scheme
with time-bound keys is

— anonymous if Adv®"(A) = | Pr[Exp%*(1*) = 1] — 1/2| is negligible for any A;
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Exp%'(]1") — Anonymity Security Game
4% {0,1}

=

(gsk, gpk,Reg) + GKeygen()

b* «— AOAdd,OCor,(’)Sign,(’)Dpeu,ORevoke,OChb (gpk)

If O0pen is queried on the output of OChy, then return 0

If OCor has been run on an input of OChy, then return 0

If both OChy(ko, k1, m,t) and ORevoke(R,t) are queried, with
{ko,k1} "R # 0, then return 0

7. Return (b =b")

tra

Exp’7”(1*) — Traceability Security Game

S otk N

1. (gsk, gpk) < GKeygen()

(O’, m, t) P AOAdd,OJg}\{,OCor,ODpen,ORevoke,OSign(
If 0 < Verify(gpk,RL¢, 0, m,t), then return 0
If 1<+ Open(gsk, gpk, Reg, o, m,t), then return 1

If k£ + Open(gsk, gpk, Reg, o, m,t) and ¢t ¢ T, then return 1
Return 0

gpk, Reg)

S o N

Epo{(lA) — Non-Frameability Security Game

1. (gsk, gpk) + GKeygen(pp)

(0_’ m, t) «— AOAdd,OJU,OCor,OOpen,ORevoke,OSign(
k < Open(gsk, gpk, Reg, o, m, t)

If 0 < Verify(gpk,RL, o, m,t), then return 0
If OSign returned o, then return 0

If & ¢ H, then return 0

Return 1

gsk, Reg)

N Uk L

Fig. 2. Security Games for Group Signature

— traceable if Adv'™(A) = Pr[Exp/{®(1*) = 1] is negligible for any A;
— non-frameable if Adv™ (A) = Pr[Epo{(lA) = 1] is negligible for any \A.

5 Instantiation from Redactable Signature

5.1 Our Construction

Intuition. The core idea behind our construction is rather simple once we have
identified redactable signature as a suitable building block for group signature
with time-bound keys. However, there are still some issues to address to get a
scheme achieving the strong security properties of Section 4.

Indeed, the core idea is that any user k joining the group for a set of time
periods 7}, receives a redactable signature on a set of n messages {m;}?_, where
m; = 0 if i ¢ Tg. This leads to a very compact group signing key that essentially
consists of this signature. To issue a group signature at a time period 7, a member
only has to run the Derive algorithm on the subset Z = {i} to get a redacted
signature ¢’. The latter can be straightforwardly used by the verifier to check
if this member is active at this time period, as this signature would be valid on
“0” otherwise. To achieve non-frameability while allowing revocation, it might
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be tempting to follow [22] and simply add a signature on a secret value sky. As
in [20] the knowledge of g*** would then be enough to revoke (or, alternatively,
open) signatures issued by k. Unfortunately, this would prevent revocation for
specific time periods and in particular backward and forward unlinkability. We
therefore proceed differently and define m; = sky for any i € Ti. This way we
can revoke a user for any time period ¢ (and only for this time period) by simply
providing a way to test whether the redacted signature ¢’ (derived on {i}) is
valid on sk.

The scheme. Our construction heavily relies on the redactable signature scheme
described in Section 3.2 that we refer to as Y.

— GKeygen(1*,n): This algorithms runs X .Keygen(1*,n) to get a pair (z,y)
along with pk = (H,g,9, {Yi}q, {Yi}?’;nﬁ,)?, {}71}?:1)- It then sets gsk =
(z,y) and gpk = pk, and initializes a register Reg.

— Join: To join the group for the set of time periods 7y, a new user k first
selects a random secret key skj, < Z, and sends (g%*,g***) to the group
manager. He then proves knowledge of skj using for example the Schnorr’s
algorithm [24]. If the proof is valid and if e(g***, ) = e(g, §°**), it selects a

random scalar r and returns (o1, 02) + (97, [9* - (gSkk)EfGTk y]]r). Note that
this is a valid redactable signature on a set {m;}?_;, with m; = sk, if i € T
and 0 otherwise. The user is then able to check the validity of (o1,092) by
running the Y.Verify algorithm. It then sets uskj as {skg, (01,02), Tr}. In
the meantime, the group manager stores g°* and 7 in Reg[k].

— Sign: to sign a message m for the current time period ¢, the user runs
X .Derive(pk, (o1,02),{m;} 1, {t}) with {m;}?; defined as above. It then
gets a derived o7 = (0}, 0%,0%,0") for T = {¢} and must now prove that
it is valid on a message m; = sk # 0. As the second equation defined in
Y Verify can be tested with the sole knowledge of oz, this means that he
must simply prove knowledge of ski such that:

(01, X -5 Y ) = e(02,9)

Concretely, it generates a <~ Z, and computes K = e(al,fﬁ)“ along with
¢ + H(K,oz,m) and s = a + ¢ - skg. It then outputs the group signature
o+ (01,¢,5).

— Revoke: For each user k to revoke for the time period ¢, the group manager
recovers g+ from Reg[k] and adds (7°%*)¥" to RL,.

— Verify: To verify a group signature o = (01, 02,03,0,¢,S) on a message m
for a time period t, the verifier first checks whether the second equation of
Y Verify is satisfied. That is, (01,02, 03,0) must verify

e(o3,9) = e(Yi, 4, 0)
where ¢; < H(o1||oz2]|o]|{t}||t). It then checks whether m; = 0 by testing if
the following equation holds:

e(o1, X - 0) = e(02,9)
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in which case it returns 0. Else, it verifies the proof of knowledge by com-
puting K' < e(01,Y;)* - [e(02,7) - e(o7, X - 7)]7¢ and checking if ¢ =
H(K', o7, m). If the proof is correct, then the signature is valid but it could
have been generated with a revoked key.
For each element Tzk in RL;, this algorithm then tests whether e(al,ﬁk) =
e(02,9) - e(o7*, X - 7). If one of these conditions is satisfied, the algorithm
returns 0. Else it returns 1.
— Open: For each active user k at time period ¢, this algorithm recovers gk
from Reg[k] and tests whether e(oy, §%) = [e(02,9) - (o7}, X - 5)]Y" " until
it gets a match, in which case it returns the corresponding identifier k.

Remark 6. As the size of the group signature is the usual benchmark in the
literature, we chose to present the version of our construction that optimizes
it. However, this version requires to perform operations in G to generate the
NIZK in the group signature. This may be a problem if one favours computa-
tional complexity as operations in G are notoriously less efficient than their
counterparts in G1. In such a case, one can use a standard trick (e.g. [2,4])
which consists in adding the element Uik"‘ € G to the group signature and then
proving knowledge of skj directly in Gp. This shifts all computations from Gy
to Gy, improving efficiency at the cost of a small increase of the group signature
size. The security proofs can be straightforwardly adapted to this new version.

Remark 7. We note that we are in a very favourable case when evaluating the
XY Derive algorithm in the Sign protocol. Indeed, we have |Z| = |{t}| = 1 and
all the involved messages are either 0 or skz. Computing o thus only requires
two exponentiations in G2 as we have & = ¢" - ([Lic 7\ 1 Y;)*. Moreover, the

latter product P; = HjeTk\{t} )N/J can be efficiently updated from one active time

period 4 to the next one i’ as Py = P;-Y; - }N/i,_l. For the same reasons, o3 can be
computed with essentially 2 exponentiations in G;. This complexity is therefore
much lower than the generic one of our Derive algorithm. We provide more
details in the next section.

5.2 Security Analysis

The security of our group signature scheme is stated by the next theorem, proved
below.

Theorem 8. In the random oracle model, our group signature is

— non-frameable under the SDL assumption;

— anonymous under the EDDH assumption and the non-frameability of our
construction;

— traceable under the unforgeability of the redactable signature scheme X.
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Proof of Anonymity. The unlinkability property of a redactable signature
scheme X' implies that the set of redacted messages ({m;},;.7) is perfectly hidden
but does not provide any guarantee for the messages in {m;};cz. In each of
our group signatures, the latter set is exactly {ski}, where sky is the group
member’s secret key. We can’t therefore only rely on the unlinkability of X' to
prove anonymity and will then build a more intricate proof.

Game 1. Our first game is exactly the anonymity experiment where the adversary
A is expected to win with probability e.

Game 2. In our second game, we proceed as usual except that our reduction R
makes a guess on the time period t* targeted by the adversary. If OChy is run
on a different time period, then R aborts. The new success probability is then
at least =.

Game 3. In this game, the reduction R now makes a guess on the user k* targeted
by the adversary. If OCh,, is run with k, # k*, then R aborts. The new success
probability is then at least n%;’ where ¢ is a bound on the number of group
members.

Game 4. In this game, R proceeds as in the previous game except that it stores
all the signatures issued on behalf of k* by OSign in a specific list L and deletes
the information contained in Reg[k*]. Upon receiving an OOpen query, it first
proceeds as usual but then tests whether the signature to open belongs to L. In
such a case, it returns k*. Else, it returns L.

Game 5. In this last game, R generates two random elements o; and oy and
defines ¢ < ¢° and o3 « Y\ _,., where ¢; < H(o1||ob||0’||Z]|t*) and s is
random. It then returns (oy,09,03,0) along with a simulated proof (c,s’) of
validity when A queries the oracle OCh; for the time period t*. As this group
signature is perfectly independent of the users targeted by A, the latter can only
succeed with probability negligibly close to %

Game 3 — Game 4. The only difference between Game 3 and Game 4 is the
opening of signatures issued on behalf of k*. As we keep track of all signatures
returned by OSign, there can be a problem only if the adversary manages to
forge a valid group signature which can be traced back to £*. In such a case our
reduction will fail to correctly simulate the opening process as it will return L
instead of k*.

However, such an adversary can be trivially converted into an adversary
against non-frameability. Indeed, the latter property provides at least the same
oracle queries and inputs than in the anonymity experiment. If we denote by €4
the advantage of the adversary in Game 4, we then get < < Adv™ (A) + ¢4
Game 4 — Game 5. Let us consider a EDDH instance ({g* ?Qg,l{gb‘cl};;_ol,
{901 }E’Q; {gd»cl 32?) € GITL et and ({Eava}i€[1,2n2]\]n27n,n2+n[a {gci}%gi,’g'd) €
Gé”z_m“ along with g*. We show that any adversary able to distinguish Game
4 from Game 5 can be used to solve the associated problem. In our proof, we
will implicitly define ski+ = a and proceed as usual for all the other users. We
therefore only need to explain how to generate the group public key and to deal

with oracle queries involving this user.
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To avoid confusion with the elements provided in the EDDH instance, we will
denote the generators of G; and G5 in our group public key by respectively Yj
and Y. Let k = L?—fj We note that we have k > n and 0 < n? — kt* < n as
t* € [1,n]. This in particular implies that n? +k(t —t*) ¢|n? —n,n? +n| Vt # t*.

First, the reduction R generates a random z € Z, and define the elements
of the public key as follows:

- (%, %) « (¢ )

X @ ")

I vi<i<m
,Vie[l,n]U[n+2,2n)].

— Y«
TL2 c(2— ,*
LY g +h(i—t*)

We note that all the necessary elements are provided in the EDDH instance,
no matter the value of ¢t*, thanks to the definition of k£. R can now answer all
the oracle queries involving k*:

— (OAdd: As explained above, R implicitly defines skg« = a and then issues a
signature (o1,02) < ((Y0)",[(Y0)” - (IL;e7, ¥3)*]") for some random r. All
the involved elements are provided in the EDDH instance.

— OCor: Since Game 3, we know that this oracle is not used on k*, so R can
answer any such queries.

— O8Sign: A group signature issued at time period ¢ on behalf of £* is a derived
signature for Z = {i} along with a non-interactive proof of knowledge of
skg+ = a. As the latter can be simulated, it only remains to explain how to
generate the derived signature oz = (01, 0%,0%,0").

The reduction generates a random r and s and acts as if the scalar t =
s— Y a-cf, leading to:
JETE\ 4}
o o)+ (Yo);

o o e (YT Oy,
o0+ (Yo)t- ]I Y= (Yo)®
JETE\{i} B
e ATEIr | | Y#—&-l—i—i—j]q =Y, 11
JETK\{i}

where ¢; < H(ol||ob]|a"||Z]]7). All these values can be generated from our
EDDH instance. We note that both r and ¢ are correctly distributed as s is
random. Our reduction then returns the resulting signature oz along with a
simulated proof of knowledge (c, s').

— ORevoke: Since Game 3, we know that this oracle is not queried on a list of
users containing k* for the time period t*. If RL; does not contain k*, then
R proceeds as usual. Else, this means that £* is revoked for a time period
t # t* and R then returns Y% = ﬁ“'c7lz+k(t7t*>.

— OO0pen : we proceed as explained in Game 4.

— OChy, : Since Game 3, we know that R must return a group signature on
behalf of k* for the time period t*. We set o] = (Yp)? (which implicitly
defines r = b) and acts as if t = S>> a-cF7. This gives us:

FJET\ "}

n2—kt*
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.5/<_(}70)t, I f/jazgd;

JET\{t*}
/ vt yoa Cyx _( ck("Jrlft*))dct*
ooy Yoo ]I n+1—t*+j] =g .
JETK\{t*}

Moreover we set o, = (Y2)* - g*.
First, note that o} is perfectly distributed. All the required elements are
provided in the EDDH instance, in particular because n? — k - t* < n.

There are then only two cases. If z = a -0 - 4 b- d, then we have
t+(7;+a'ck‘t*+ > a~ck’7)
ab = (d}) JETINTY and we are playing Game 4. If 2 is ran-

dom then o} and ¢ are random and independent elements and we are playing
Game 5. We then have ¢, < AdvEPPH(A) 4 ¢5.

In the end, we have .= < Adv™ (A) + AdvEPPH(A) + €5 with a negligible e,
which concludes our proof.

Proof of Non-Frameability. Intuitively, as our group signatures contain a
proof of knowledge of the user’s secret key, any adversary framing an honest
user must have first recovered his secret key. We will use this fact to solve the
SDL problem.

Indeed, let (g,9%) € G; and (g,¢?%) € Gy be a SDL instance. We make a guess
on k*, the honest user that A aims to frame and implicitly sets his secret key
ski+ = a. We abort if this guess is wrong.

By using g% and g%, and by simulating the proof of knowledge of a, we can
perfectly simulate the Join protocol. We then explain how we can deal with
OSign queries for a time period . Our reduction R generates random u, v < Ly,
and computes o < g% and oy « g“(*t?).(¢*)*¥" whichsetst =v— Y.  a-y

JETR\{i}
in the Derive process. It then remains to send 0’ = g* and o3 = Y,/_;, where
c; < H(a||ob|o”]|Z]])7) along with a simulated proof of knowledge.

Eventually, the adversary returns a group signature o = (01,09, 03,0,¢, )

for a time period ¢ that can be traced back to k* which means that e(oy,g%) =

[e(02,9) -e(o7, X -3)]" . Therefore, we have e(oq,Y) = e(02,9) -e(o7, X - &)
and thus e(oy, X - 5 - )71‘1) = e(02,9). The proof of knowledge contained in o is
then a proof of knowledge of a that R can extract to solve the SDL problem.
Any adversary A succeeding against the non-frameability of our scheme with
probability € can then be used to solve the SDL problem with probability 2,

where ¢ is a bound on the number of group members.

Proof of Traceability. A successful adversary A against traceability returns
a valid group signature for a time period ¢ that either foils the opening process
(i.e. Open returns L) or that is traced back to a user k that is inactive at this
time period (i.e. t ¢ Ti). We show in this proof that both cases lead to a forgery
against the underlying redactable signature scheme Y.

We construct a reduction R that acts as an adversary in the unforgeability
experiment for X', with the goal to output a valid forgery by using A. R then
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gets a public key pk that it sets as the group public key. To answer OJg s query,
R simply extracts the user’s secret signing key from the proof of knowledge
and then queries the signing oracle for Y. All the other queries are trivial to
address as R does not need to know the secret key (x,y). In the end, A returns
a valid group signature o = (o4, ¢, s) that corresponds to one of the two cases
mentioned above. In all cases, the fact that o is valid implies that oy is a valid
derived signature for the subset {¢} and on some message m; whose knowledge
is proven by (¢, s). We can then extract m; from this proof and distinguish two
cases. In all cases m; # 0, otherwise the group signature would be rejected by
the verification algorithm.

— Case 1: Open returns | on o. As this algorithm tests whether m; = sky for
every registered member k, this means that m; ¢ L; = {0, {skx }1}. However,
every query to the signing oracle of X' was on sets of messages {m/}" ; with
mj € L;. This means that oy and m; constitute a valid forgery against Y.

— Case 2: Open returns k with ¢ ¢ 7. This case means that m; = ski. However,
as t ¢ Tp, R has queried for this user a signature on a set {m}} , with
m; = 0. Therefore, here again, o) and m; necessarily constitute a forgery
against 3.

Both cases then lead to a forgery against . An adversary against the trace-
ability of our construction can then be used to attack the unforgeability of X
with the same success probability, which concludes our proof.

6 Efficiency

6.1 Redactable Signature

We compare in Table 1 the efficiency of our unlinkable redactable signature
with the recent one from [22]. Regarding the public key and the signature sizes,
the comparison is provided both in terms of group elements and in bits, by
implementing our bilinear groups using the BLS12 curve from ZCash [7]. The
latter corresponds to a 128-bits security level, yielding elements of 256 bits (Z,),
382 bits (Gy), 763 bits (G2) and 4572 bits (Gy).

Table 1 shows that the main features of these two schemes are essentially the
same (constant size derived signature, O(k) verification complexity, etc) except
in the case of the public key. In [22], pk contains O(n?) elements whereas it
only contains O(n) elements in our scheme. The concrete improvement is thus
extremely significant, except for very small values of n.

6.2 Group Signature with time-bound keys

We compare in Tables 2 and 3 the efficiency of our construction with the one of
the most efficient scheme [13] from the state-of-the-art, using the same bilinear
groups as above. We nevertheless note that this comparison has some limitations
as our schemes do not have exactly the same features. For example, we allow
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pk o Sign Derive Verify
n2+n+2(G
5 WUl +nG2 | 2G1 + 2G2 2(
. 2 n—=k+ 1)61
[22] = 191(11 . +n 4+ 2) — 9990 bits 1ro + les 136, kel + 2p2
bits
(1 + 211)@1
Ours +(n+1)G: 3G1 + 16, 1ry + ley i(gf_l?:_l'_—:;gel—' k(e j__;? +H)
= 382(4n + 3) bits| = 1909 bits 2 P2

Table 1. Complexity of our redactable rignature scheme and the one from [22]. The
costs of Derive and Verify are provided for a set {m;}icz of k elements. Here, H
denotes the evaluation of a hash function, r; denotes the generation of a random element
in G;, e; denotes an exponentiation in G, for ¢ € {1,2}, and pir denotes an equation
involving k pairings.

OO0pen queries in our anonymity experiment (hence achieving so-called CCA
anonymity) contrarily to [13], but have a less efficient opening process. Similarly,
our signing key can be associated with any set of time periods (thus offering a
better granularity) and do not need to be updated, contrarily to [13], but we need
a larger group public key. We also rely on different computational assumptions.
In all cases, these tables show that our whole authentication process (issuance of
group signature and verification) is more efficient regarding both computational
complexity and the size of the elements. We believe this is a very interesting
feature of our scheme as this authentication process is the usual bottleneck of
use-cases involving group signatures.

pk usk Update RL o

1Zp + 1G1 + 6G1 + 1Go +

(13] 8G1 + 3G (1G1 + 2Z,)m | (1G + 2Z,)m RQ2G1+1G) 117,
— 5345 bits | 25?);288947” = 3821;8894'" — 1527R bits| = 5871 bits
(1+2n)G1 3G1 + 1G2 +

2G1 + Zp RGo

Ours +(n+1)G2 _ 2Zyp

- 382&: +3) | Z 1020 bits = 763R bits | = 2421 bits

Table 2. Size complexities of our group signature scheme and [13]. Update here refers
to the information (called expiration information in [13]) required to update the group
signing key at each time period whereas RL is the size of the revocation list (only
required by the verifiers) to revoke R users. We use the same notations as in the
previous table and define m = log n.

Sign Verify
[13] 2361 —|— 162 + 1p6 —|— 1p5 —|— H 2461 + 1p2 + 2p8 —|— H
Ours 6e; + 2e2 + 2H + 1p1 3e1 + 1ps + 2H +2p2

Table 3. Computational complexities of our group signature scheme and [13].
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As several parameters depend on n, it might be interesting to evaluate the
concrete complexity in real-world scenarios. For example, in the case of a transit
pass, it seems reasonable to consider time periods of one day for efficient revoca-
tion. A value n ~ 1000 allows then to issue group signing keys for the next three
years. Such a value of n only impacts our public key, that would represent 191
KB, which is within the reach of any smartphone. If this is a problem in more
constrained environments, we note that this large public key is only necessary
to run Derive. In an alternative solution, the group manager could simply send,
for each time period, the elements Hjef Y;, Hjef Y, 41-it; and Y, 41—, that are
sufficient, for all group members, to run this algorithm. This would dramatically
reduce the size of the public key for the group members and for the verifiers.
This would not be a disadvantage compared to [13] as the latter already requires
to send (larger) update information at each time period.

Conclusion

In this paper, we have proposed an extension of group signature with time-
bound keys that allows for a better revocation granularity while removing the
need to update member’s secret keys at each time period. This has two impor-
tant practical consequences. Firstly, by providing a way to precisely limit the
signing rights of a group member we make group signature even more suitable
for real-world applications, as most of the latter are unlikely to grant unlim-
ited access to users. This in particular limits the need for premature revocation
whose complexity increases with the number of revoked members. Secondly, this
simplifies key management for both the group manager (that no longer needs to
publish expiration information at the beginning of each period) and the group
members (that no longer need to recover this information).

We have also shown in this paper that we can implement such a complex
primitive with remarkable efficiency. Our group signatures are indeed only 300
Bytes long, which is rather surprising as (efficient) revocation for group signature
is usually quite hard to achieve. This was made possible by a variant of a recent
redactable signature scheme that we have introduced and that we believe to be
of independent interest.
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