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Abstract. We describe a digital signature scheme MPSign, whose secu-
rity relies on the conjectured hardness of the Polynomial Learning With
Errors problem (PLWE) for at least one defining polynomial within an
exponential-size family (as a function of the security parameter). The
proposed signature scheme follows the Fiat-Shamir framework and can
be viewed as the Learning With Errors counterpart of the signature
scheme described by Lyubashevsky at Asiacrypt 2016, whose security
relies on the conjectured hardness of the Polynomial Short Integer So-
lution (PSIS) problem for at least one defining polynomial within an
exponential-size family. As opposed to the latter, MPSign enjoys a secu-
rity proof from PLWE that is tight in the quantum-access random oracle
model.
The main ingredient is a reduction from PLWE for an arbitrary defin-
ing polynomial among exponentially many, to a variant of the Middle-
Product Learning with Errors problem (MPLWE) that allows for secrets
that are small compared to the working modulus. We present concrete
parameters for MPSign using such small secrets, and show that they
lead to significant savings in signature length over Lyubashevsky’s Asi-
acrypt 2016 scheme (which uses larger secrets) at typical security lev-
els. As an additional small contribution, and in contrast to MPSign (or
MPLWE), we present an efficient key-recovery attack against Lyuba-
shevsky’s scheme (or the inhomogeneous PSIS problem), when it is used
with sufficiently small secrets, showing the necessity of a lower bound on
secret size for the security of that scheme.

1 Introduction

The Polynomial Short Integer Solution (PSIS) and Polynomial Learning With
Errors (PLWE) were introduced as variants of the SIS and LWE problems leading
to more efficient cryptographic constructions [LM06,PR06,SSTX09]. Let n,m, q ≥



2 and f ∈ Z[x] monic of degree n. A PSIS(f)
q,m instance consists in m uniformly

chosen elements a1, . . . , am ∈ Zq[x]/f , and the goal is to find z1, . . . , zm ∈ Z[x]/f
not all zero and with entries of small magnitudes such that z1a1 + · · ·+ zmam =
0 mod q. A PLWE(f)

q instance consists of oracle access to the uniform distribution
over Zq[x]/f × Zq[x]/f ; or to oracle access to the distribution of (ai, ai · s+ ei),
where ai is uniform in Zq[x]/f , ei ∈ Z[x]/f has random coefficients of small
magnitudes, and the so-called secret s ∈ Zq[x]/f is uniformly sampled but iden-
tical across all oracle calls. The goal is to distinguish between the two types of
oracles.

For any fixed f , the hardness of PSIS(f) and PLWE(f) has been less inves-
tigated than that of SIS and LWE. In particular, it could be that PSIS(f) and
PLWE(f) are easy, or easier, to solve for some defining polynomials f than for
others. To mitigate such a risk, Lyubashevsky [Lyu16] introduced a variant of
PSIS that is not parametrized by a specific polynomial f but only a degree n,
and is at least as hard as PSIS(f) for exponentially many polynomials f of de-
gree n. We will let it be denoted by PSIS∅. Further, Lyubashevsky designed a
signature scheme whose security relies on the hardness of this new problem, and
hence on the hardness of PSIS(f) for at least one f among exponentially many.
This signature scheme enjoys asymptotic efficiency, similar (up to a constant
factor) to those based on PSIS(f) for a fixed f . Later on, Rosca et al. [RSSS17]
introduced an LWE counterpart of PSIS∅: the Middle-Product Learning with Er-
rors problem (MPLWE). Similarly to PSIS∅, MPLWE is not parametrized by a
specific polynomial f but only a degree n, and is at least as hard as PLWE(f) for
exponentially many polynomials f of degree n. To illustrate the cryptographic
usefulness of MPLWE, Rosca et al. built a public-key encryption scheme whose
IND-CPA security relies on the MPLWE hardness assumption. A more efficient
encryption scheme and a key encapsulation mechanism ([SSZ17,SSZ19]) were
later proposed as a submission to the NIST standardization process for post-
quantum cryptography [NIS].

In [RSSS17], it was observed that several LWE/PLWE(f) techniques leading
to more cryptographic functionalities do not easily extend to MPLWE, possibly
limiting its cryptographic expressiveness. These include a polynomial leftover
hash lemma, the construction of trapdoors for MPLWE that allow to recover
the secret s, and the “HNF-ization” technique of [ACPS09] which would allow
to prove hardness of MPLWE with small-magnitude secrets. The leftover hash
lemma and trapdoor sampling questions were recently studied in [LVV19], with
an application to identity-based encryption, though only for security against
an adversary whose distinguishing advantage is non-negligible (as opposed to
exponentially small). On the HNF-ization front, the main result of [RSSS17]
was mis-interpreted in [Hir18] (see Theorem 1 within this reference), in that
the latter work assumed that the hardness result of [RSSS17] was for secrets
whose coefficients were distributed as those of noise terms (and hence of small
magnitudes). The main result from [Hir18] was a signature scheme with security
relying on MPLWE.
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1.1 Contributions

In this work, we give a reduction from PLWE(f) to a variant of MPLWE in which
the secret has small-magnitude coefficients. The reduction works for a family of
defining polynomials f that grows with the security parameter.

We then build an identification scheme which follows Schnorr’s general frame-
work [Sch89] and which can be upgraded to a signature scheme that is tightly
secure in the quantum-access random oracle model (QROM), using [KLS18].
We show that MPSign is unforgeable against chosen message attacks (UF-CMA),
which means that no adversary may forge a signature on a message for which
it has not seen a signature before. We did not manage to prove that there is
no adversary who may forge a new signature on a previously signed message,
i.e., that the scheme is strongly unforgeable against chosen message attacks
(UF-sCMA). Nevertheless, any UF-CMA secure signature can be upgraded to a
UF-sCMA secure signature using a one-time UF-sCMA secure signature [Kat10].
Such a one-time signature can be achieved easily by a universal one-way hash
function (by Lamport’s one-time signature) [Kat10] or key collision resistant
pseudo-random function (by Winternitz one-time signature) [BDE+11].

We provide concrete parameters for MPSign corresponding to level 1 security
of the NIST post-quantum standardization process (via the SVP core hardness
methodology from [ADPS16]), which take into account our tight QROM security
proof with respect to small secret MPLWE (rather than just taking in account
the classical ROM security proof as, e.g., in the Dilithium scheme parameter
selection [DKL+18]). We also provide parameters that achieve similar security
to those from [Lyu16], to allow for a reasonably fair comparison. The MPSign
verification key is larger but its signature size is twice smaller.

Our MPSign signature length savings over the scheme of [Lyu16] arise mainly
due to our use of much smaller secret key coordinates. Therefore, one could won-
der the reducing the size of the secret key coordinates in the scheme of [Lyu16]
would also give a secure signature scheme. As an additional small contribution,
we show that the answer is negative by presenting a simple efficient key recov-
ery attack on Lyubashevsky’s scheme with sufficiently small secret coordinates.
Our attack works (heuristically) when the underlying inhomogeneous variant
of PSIS∅ has a unique solution, and shows that a lower bound similar to that
shown sufficient in the security proof of [Lyu16] is also necessary for the security
of Lyubashevsky’s scheme (and the underlying inhomogeneous PSIS∅ problem)
with small secret coordinates.

Finally, we provide a proof-of-concept implementation in Sage, publicly avail-
able at https://github.com/pqc-ntrust/middle-product-LWE-signature.

1.2 Comparison with prior works

Our signature construction is similar to the one in [Hir18]. However, the proof
of the latter is incorrect: in its proof of high min-entropy of commitments
(see [Hir18, Lemma 7]), it is assumed that the middle n coefficients of the prod-
uct between a uniform a ∈ Zq[x] of degree < n and a fixed polynomial y of
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degree ≤ 2n, are uniform. In fact, this distribution depends on the rank of a
Hankel matrix associated to y and encoding the linear function from a to the
considered coefficients of the product. This Hankel matrix can be of low rank
and, when it is the case, the resulting distribution is uniform on a very small
subset of the range. Interestingly, the distribution of these Hankel matrices (for
a uniform y) was recently studied in [BBD+19], in the context of proving hard-
ness of an MPLWE variant with deterministic noise. We do not know how to
fix the error from [Hir18]. As a result, we use a different identification scheme
to be able to make our proofs go through. Concretely, the identification scheme
from [Hir18] used the Bai-Galbraith [BG14] compression technique to decrease
the signature size. We circumvent the difficulty by not using the Bai-Galbraith
compression technique.

Lyubashevsky’s signature from [Lyu16] can also be viewed as secure under the
assumption that PLWE(f) is hard for at least one f among exponentially many
defining polynomials f , like ours. Indeed, it was proved secure under the assump-
tion that PSIS∅ is hard, it was proved that PSIS(f) reduces to PSIS∅ for exponen-
tially many defining polynomials f , and PLWE(f) (directly) reduces to PSIS(f).
Furthermore, MPLWE (both with small-magnitude secrets and uniform secrets)
reduces to PSIS∅, whereas the converse is unknown. Hence it seems that in terms
of assumptions, Lyubashevsky’s signature outperforms ours. However, the secu-
rity proof from [Lyu16] only holds in the random oracle model, as opposed to
ours which is tight in the quantum-access random oracle model (QROM). Recent
techniques on Fiat-Shamir in the QROM [LZ19,DFMS19] might be applicable
to [Lyu16], but they are not tight.

We now compare MPSign with LWE-based signature schemes and efficient
lattice-based signature schemes such as those at Round 2 of the NIST post-
quantum standardization process [NIS]: Dilithium [DKL+18], Falcon [PFH+19]
and Tesla [BAA+19]. Compared to LWE-based signatures, our proposal results
in much smaller values for the sum of sizes of a signature and a public key, with
much stronger security guarantees than the efficient schemes based on polyno-
mial rings. For example, scaling Dilithium with NIST security level 1 param-
eters to LWE requires multiplying the public key size by the challenge dimen-
sion n = 256, since for an LWE adaptation of Dilithium, the public key would
be a matrix with n columns instead of 1. For NIST security level 1, the public
key and signature sizes sum would be above 300kB for an LWE adaptation of
Dilithium, whereas the same quantity is 47KB for MPSign (see Table 2). Now,
compared to the Dilithium, Falcon and Tesla NIST candidates, security guar-
antees are different. The security of Dilithium and Tesla relies on the module
variants of PLWE and PSIS for a fixed polynomial [LS15]. In the case of Dilithium,
the known security proof in the QROM is quite loose [LZ19], unless one relies
on an ad hoc assumption like SelfTargetMSIS [KLS18]. Moreover, in the case
of Dilithium, the SIS instance is in an extreme regime: the maximum infinity
norm of the vectors to be found are below q/2, but their Euclidean norms may
be above q. Currently, no reduction backs the assumption that SIS is intractable
in that parameter regime. In Falcon, the public key is assumed pseudo-random,
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which is an adhoc version of the NTRU hardness assumption [HPS98]. Oppo-
sitely, the security of MPSign relies on the assumed PLWE hardness for at least
one polynomial among exponentially many. Overall, MPSign is an intermediate
risk-performance tradeoff between fixed-ring and LWE-based schemes.

2 Preliminaries

The notations in this paper are almost verbatim from [RSSS17] to maintain
consistency and facilitate comparison.

Let q > 1 be an integer. We let Zq denote the ring of integers modulo q and
by Z≤q the set {−q, . . . , q} of integers of absolute value less or equal to q. We
will write Rq to denote the group R/qZ.

Let n > 0. For a ring R, we will use the notation R<n[x] to denote the set of
all polynomials in R[x] with degree less than n. This notation may be extended
to any unstructured set S.

For any vector a = (a0, a1, . . . , an−1)T ∈ Zn, we let a denote the reversed
vector (an−1, an−2, . . . , a0)T ∈ Zn and we write ‖a‖∞ := maxi |ai|. When there
is no ambiguity, we identify a polynomial with its vector of coefficients.

For any matrix M ∈ Rm×n, we let σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) de-
note its singular values. We use the notation ‖M‖ to denote its largest singular
value σ1(M) and we denote by Im the m×m identity matrix.

For a distribution D on a set X, we denote by x
$← D the choice of an

element x according to D. For simplicity, when D is the uniform distribution
on X, we use the notation a $← X.

All logarithms used in this paper are in base 2.

2.1 Polynomials and matrices

For a polynomial f ∈ Z[x] of degree m ≥ 1 and a polynomial a ∈ Z<k[x], we
make use of the following matrices:

• Rotdf (a): the d×m matrix whose i-th row is given by the coefficients of the
polynomial xi−1 · a mod f ;

• Mf : the m×m matrix whose (i, j)-th element is the constant coefficient of
the polynomial xi+j−2 mod f ;

• Md
f : the d×m matrix obtained by keeping only the first d rows of Mf ;

• Toepd,k(a): the d×(k+d−1) matrix whose i-th row is given by the coefficients
of the polynomial xi−1 · a.

Note that Rotdf (a) = Toepd,k(a) · Rotk+d−1
f (1). Also, for any a′ ∈ Z[x] such that

a′ = a mod f , we have that Rotdf (a) = Rotdf (a′).
The expansion factor of a polynomial f ∈ Z[x] of degree m is defined as:

EF(f) = max
(
‖g mod f‖∞
‖g‖∞

: g ∈ Z<2m−1[x] \ {0}
)
.
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The following lemma provides bounds on the norms of the matrices Mf and
Rotdf (1), in terms of EF(f). A bound on ‖Mf‖ was first proved in [RSSS17,
Le. 2.8] and improved later in [LVV19, Le. 9]. The bound on ‖Rotkf (1)‖ can be
obtained by noticing that Rotkf (1) contains Ideg(f) as a submatrix and all its
other entries are bounded by EF(f).

Lemma 1. Let f ∈ Z[x] and k ≥ deg(f) ≥ d. Then

1. ‖Md
f ‖ ≤

√
d · EF(f)

2. ‖Rotkf (1)‖2 ≤ deg(f) + (k − deg(f)) · deg(f) · EF(f)2.

We now recall the middle-product of two polynomials and some of its elemen-
tary properties. Let us consider a pair of polynomials (a, b) ∈ Z<da [x]×Z<db [x].
Multiplying the two polynomials, we get a polynomial in Z<da+db−1[x]. If da +
db − 1 = d+ 2k for some integers d and k, then the middle-product of size d of
a and b is obtained by multiplying a and b, then deleting the coefficients of xi
for i ≤ k − 1 and i ≥ k + d and dividing the remaining by xk. Note that the
middle-product is an additive homomorphism when either of its inputs is fixed.

Definition 1 (Middle-Product). Let da, db, d, k be integers such that da +
db − 1 = d + 2k. The middle-product �d is the map from Z<da [x] × Z<db [x] to
Z<d[x] defined as: (a, b)→ a�d b = ba·b mod xk+d

xk
c.

Lemma 2 ([RSSS17, Le. 3.2]). Let d, k > 0. For all r ∈ Z<k+1[x], a ∈
Z<k+d[x] and b = r �d a, we have b = Toepd,k+1(r) · a.

Lemma 3 ([RSSS17, Le. 3.3]). Let d, k, n > 0. For all r ∈ Z<k+1[x], a ∈
Z<n[x] and s ∈ Z<n+d+k−1[x], we have r �d (a�d+k s) = (r · a)�d s.

2.2 Gaussian distributions

A symmetric matrix Σ ∈ Rn×n is positive definite if xtΣx > 0 for every non-zero
vector x ∈ Rn. For any non-singular matrix B ∈ Rn×n, the matrix Σ = BBt is
positive definite and we say that B =

√
Σ. Every positive definite matrix Σ has

a square root B = QD, where Σ = QD2Qt is the spectral decomposition of Σ.
Note that the square root of a positive definite matrix is not unique (B′ = BH
is also a square root of Σ for every orthogonal matrix H ∈ Rn×n). If Σ ∈ Rn×n
is a positive definite matrix, its inverse is also positive definite and, moreover,
the set of positive definite matrices is closed under addition.

For a positive definite matrix Σ ∈ Rn×n, we define the Gaussian function on
Rn of covariance matrix Σ as ρΣ(x) = exp(−πxtΣ−1x) for every x ∈ Rn. The
probability distribution whose density is proportional to ρΣ is called the Gaus-
sian distribution and is denoted DΣ . When Σ = s2 · In, we use the notations ρs
and Ds instead of ρΣ and DΣ , respectively.

Given a (full-rank) lattice Λ ⊂ Rn we define ρΣ(Λ) :=
∑
x∈Λ ρΣ(x). Using

this, we can now define the discrete Gaussian distribution over Λ of covariance
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parameter Σ as DΛ,Σ(x) = ρΣ(x)/ρΣ(Λ) for every x ∈ Λ. The dual of a lattice
Λ ⊂ Rn is Λ∗ := {y ∈ Rn : 〈y, x〉 ∈ Z for every x ∈ Λ}. For ε > 0, we define the
smoothing parameter ηε(Λ) as the smallest r > 0 such that ρ1/r(Λ∗ \ {0}) ≤ ε.
If Λ1 ⊆ Λ2 are two lattices, we have that ηε(Λ2) ≤ ηε(Λ1). We will use the
following standard results.

Lemma 4 ([MR04, Le. 3.3]). For any full-rank lattice Λ ⊂ Rn and ε > 0, we
have ηε(Λ) ≤ λn(Λ) ·

√
ln(2n(1 + 1/ε))/π.

Lemma 5 ([LPSS14, Le. 5]). Let Σ1, Σ2 ∈ Rn×n two covariance matrices
and Λ1, Λ2 full-rank lattices in Rn such that 1 ≥ ηε((Σ−1

1 +Σ−1
2 )1/2 · (Λ1 ∩Λ2))

for some ε ∈ (0, 1/2). If x1
$← DΛ1,Σ1 and x2

$← DΛ2,Σ2 , then the statistical
distance between the distribution of x1 + x2 and DΛ1+Λ2,Σ1+Σ2 is less than 4ε.

Lemma 6 ([Ban95, Le. 2.10]). For any full-rank lattice Λ ⊂ Rn and σ > 0,
we have Prx←DΛ,σ (‖x‖∞ > σ · t) ≤ 2n · exp(−π · t2).

2.3 Polynomial and middle-product learning with errors

In this section we recall the formal definitions of PLWE and MPLWE and of the
distributions they make use of.

Definition 2 (PLWE distribution). Let f be a polynomial of degree m and
q ≥ 2. Let χ be a distribution over Z[x]/(f) and s a fixed element in Zq[x]/(f).
We define Pq,χ(s) as the distribution obtained by sampling a $← Zq[x]/(f), e $← χ,
and returning (a, b = a · s+ e) ∈ Zq[x]/(f)× Zq[x]/(f).

Definition 3 (PLWE). Let f be a polynomial of degree m and q ≥ 2. Let χ1
and χ2 be distributions over Zq[x]/(f). The decision PLWE(f)

q,χ1,χ2
problem con-

sists in distinguishing between arbitrarily many samples from Pq,χ1(s) and the
same number of uniform samples in Zq[x]/(f) × Zq[x]/(f), with non-negligible
probability over the choice of s $← χ2.

The hardness of PLWE was investigated in [SSTX09,LPR13,PRS17,RSW18],
among others. Of particular importance to the present work, it was observed
in [LPR13] that the reduction from uniform secret to small secret described
in [ACPS09] in the context of LWE also applies to PLWE.

Lemma 7. Let f be a polynomial of degree m and q ≥ m such that the factors
of f modulo q are distinct. Let χ1 and χ2 be distributions over Zq[x]/(f). Then
there is a ppt reduction from PLWE(f)

q,χ1,χ2
to PLWE(f)

q,χ1,χ1
.

The condition on q ensures that a uniform element in Zq/(f) is invertible
with non-negligible probability.

Definition 4 (MPLWE distribution). Let n, d > 0. Let χ be a distribution over
Z<d[x] and s ∈ Zn+d−1

q [x]. We define MPq,n,d,χ(s) as the distribution obtained by
sampling a $← Z<nq [x], e $← χ, and returning (a, b = a�ds+e) ∈ Z<nq [x]×Z<dq [x].
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Definition 5 (MPLWE). Let n, d > 0. Let χ1 and χ2 be distributions over
Z<dq [x] and Zn+d−1

q [x], respectively. The decision MPLWEq,n,d,χ1,χ2 problem con-
sists in distinguishing between arbitrarily many samples from MPq,n,d,χ1(s) and
the same number of uniform samples in Z<nq [x] × Z<dq [x], with non-negligible
probability over the choice of s $← χ2.

The PLWE (resp. MPLWE) assumption states that the advantage of any poly-
nomial time algorithm trying to solve the PLWE (resp. MPLWE) problem is neg-
ligible. The main result in [RSSS17] is a reduction from a variant of PLWE(f)

(for exponentially many f ’s with respect to parameter n) for which the noise
is drawn from a continuous distribution and the secret is uniformly distributed,
to a variant of the MPLWE problem for which the noise distribution is also
continuous and the secret is also uniformly distributed. In this work, we will
be interested in discrete noise distributions and secret distributions taking small
values compared to the modulus q. Compared to [RSSS17], discretizing the noise
distribution can be achieved via routine techniques and is more convenient both
for our proofs and application. Oppositely, having the secret distribution take
small values compared to q requires a new idea.

2.4 Cryptographic definitions

Pseudorandom functions. We will use a pseudorandom function to transform
an identification scheme to a deterministic signature scheme.

Definition 6. A pseudorandom function PRF is an efficiently computable map
PRF : K × {0, 1}n → {0, 1} where K is a finite key space and n, k are integers.
For any quantum adversary A trying to distinguish the output of the PRF from
a uniform output, we associate the advantage function

AdvPR
PRF(A) := |Pr(APRF(K,·) = 1|K ← K)− Pr(ARF(·) = 1)|

where RF : {0, 1}n → {0, 1} is a uniformly sampled function and A has only
classical access to the oracles PRF(K, ·) and RF(·).

Identification schemes. We recall some basic security properties of particular
identification schemes. We closely follow the notations used in [KLS18].

A canonical identification scheme is a protocol between two parties: a prover P
and a verifier V. The prover sends a commitment W and the verifier selects a
uniform challenge c and sends it to P. Upon receiving c, the prover sends back a
response Z to the verifier. After it receives Z, the verifier makes a deterministic
decision.

Definition 7 (Canonical identification scheme). A canonical identification
scheme is a tuple of classical ppt algorithms ID := (IGen,P,V).
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• The key generation algorithm IGen takes as input a security parameter λ
(in unary) and returns the public and secret keys (pk, sk). The public key
defines the set of challenges ChSet, the set of commitments WSet, and the
set of responses ZSet.

• The prover algorithm P consists of two sub-algorithms: P1 takes as input the
secret key sk and returns a commitment W ∈WSet and a state St; P2 takes
as inputs the secret key sk, a commitment W , a challenge c, and a state St
and returns a response Z ∈ ZSet ∪ {⊥}, where ⊥/∈ ZSet is a special symbol
indicating failure.

• The verifier algorithm V takes as inputs the public key pk and the conversa-
tion transcript (W, c, Z) and outputs 1 (acceptance) or 0 (rejection).

If Z =⊥, then we set (W, c, Z) = (⊥,⊥,⊥). The triple (W, c, Z) ∈ WSet ×
ChSet × ZSet ∪ {(⊥,⊥,⊥)} generated in this way is called a transcript. Given
the public key pk, the transcript is valid if V (pk,W, c, Z) = 1.

We say that ID has correctness error δ if for all public and secret keys gen-
erated by IGen, all possible transcripts in WSet × ChSet × ZSet with Z 6=⊥ are
valid and the probability that a honestly generated transcript is (⊥,⊥,⊥) is less
than δ.

We say that the canonical identification scheme ID has α bits of min-entropy
if

Pr
(pk,sk)←IGen(λ)

(H∞(W |(W,St)← P1(sk)) ≥ α) ≥ 1− 2−α.

We are interested in the following security properties.

Definition 8 (No-abort honest-verifier zero-knowledge). A canonical iden-
tification scheme ID is εzk-perfect no-abort honest-verifier zero-knowledge (εzk-
perfect na-HVZK) if there exists a ppt algorithm Sim which given only the public
key pk outputs (W, c, Z) such that the statistical distance between (W, c, Z) ←
Sim(pk) and (W, c, Z) ← Trans(pk) is at most εzk and the element c from
(W, c, Z)← Sim(pk) follows a uniform distribution conditioned on c 6=⊥.

Definition 9 (Lossiness). A canonical identification scheme is lossy (and we
call it LID) if there exists a lossy key generation algorithm LossyIGen that takes
as input λ and returns a public key pkls and no secret key such that the public
keys generated by IGen and LossyIGen are indistinguishable. In other words, for
any quantum adversary A, the following quantity is negligible:

AdvlossID (A) :=|Pr(A(pkls) = 1|pkls ← LossyIGen(λ))
− Pr(A(pk) = 1|(pk, sk)← IGen(λ))|.

Definition 10 (Lossy soundness). A canonical identification scheme is εls-
lossy-sound if, for every quantum adversary A, the following probability that A
could impersonate the prover is less than εls:

Pr

V(pkls,W ∗, c∗, Z∗) = 1

∣∣∣∣∣∣
pkls ← LossyIGen(λ);
(W ∗, St)← A(pkls);
c∗ ← ChSet;Z∗ ← A(St, c∗)

 .
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Digital signatures. We recall the definition of a digital signature.

Definition 11 (Digital signature). A digital signature scheme SIG with cor-
rectness error δ ≥ 0 consists of a triple of ppt classical algorithms (G,S,V) such
that for every pair of outputs (sk, vk) of G(1λ) and any message M ,

Pr[V(vk,M, S(sk,M)) = 0] ≤ δ

where the probability is taken over the randomness of algorithms S and V.
The algorithm G is called the key-generation algorithm, S is called the signing

algorithm, V is called is the verification algorithm. The elements sk and vk are
the signing and verification keys.

Definition 12 (Unforgeability). A signature scheme SIG := (G,S,V) is said
to be unforgeable against one-per-message chosen message attack (UF-CMA1) in
the quantum random oracle model if for every ppt quantum forger F having
quantum access to the random oracle and classical access to the signing oracle,
the probability that after seeing the public key and

{(M1,S(sk,M1)), . . . , (MQ,S(sk,MQ))}

for any Q (Q = poly(n)) adaptively chosen distinct messages Mi of its choice,
forger F can produce M∗ /∈ {Mi} and σ∗ such that V(vk,M∗, σ∗) = 1, is negli-
gibly small. The probability is taken over the randomness of G,S,V and F , and
is denoted by AdvUF-CMA1

SIG (F).

One can extend this definition to the scenario where the attacker may have
access to more than one signature for any of poly(n) adaptively chosen mes-
sages {Mi}. In that case, if no quantum adversary F can produce a valid signa-
ture for a message M∗ /∈ {Mi}, we say that the signature scheme is unforgeable
against chosen message attack (UF-CMA).

In the strong corresponding UF-CMA/UF-CMA1 experiments, the adversary
may return a forgery for a message which has already been queried to the signing
oracle, but with a different signature.

As showed in [BPS16], a UF-CMA1 signature scheme can be combined with
a pseudo-random function to obtain a signature scheme that is UF-CMA, and
the conversion is tight (further, the upgrade preserves strongness). As observed
in [KLS18], this transformation still applies when the attacker is quantum and
is given quantum access to the random oracle.

From identification schemes to digital signatures: Fiat-Shamir. The
Fiat-Shamir heuristic is a technique to convert an identification scheme ID :=
(IGen,P,V) to a digital signature scheme SIG := (G = IGen,S,V) in the random
oracle model (ROM).

The main result in [KLS18] is a security statement of the signature scheme
obtained via the Fiat-Shamir transformation in the setup where the adversary
has quantum access to the random oracle, but classical access to the signing
oracle.
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S (sk,M)
1: i = 0
2: while Z =⊥ and i ≤ km do
3: i = i+ 1
4: (W,St) := P1(sk)
5: c := H(W‖M)
6: Z := P2(sk,W, c, St)
7: end while
8: if Z =⊥ then
9: σ =⊥
10: else
11: σ = (W,Z)
12: end if
13: output σ

V (pk,M, σ)
1: c := H(W‖M)
2: output V(pk,W, c, Z) ∈ {0, 1}

Fig. 1: The signature SIG obtained via Fiat-Shamir transform

Theorem 1 ([KLS18, Th. 3.1]). Consider an identification scheme ID which
is lossy, εzk-perfect na-HVZK, has α bits of entropy and is εls-lossy sound and
the signature scheme SIG obtained by applying the Fiat-Shamir transform to the
identification scheme ID, as in Figure 1.

For any quantum adversary A against UF-CMA1 security that issues at most
QH quantum queries to the random oracle and QS classical signing queries, there
exists a quantum adversary B against ID such that

AdvUF-CMA1
SIG (A) ≤ AdvlossID (B) + 8(QH + 1)2 · εls + kmQS · εzk + 2−α+1.

and Time(B)=Time(A)+kmQH .
Moreover, if we de-randomize the signature scheme in Figure 1 by using

a pseudo-random function PRF, then for any quantum adversary A against
UF-CMA security that issues at most QH quantum queries to the random oracle
and QS classical signing queries, there exists a quantum adversary B against ID
and a quantum adversary C against the PRF such that

AdvUF-CMA
DSIG (A) ≤ AdvlossID (B)+8(QH+1)2 ·εls+kmQS ·εzk+2−α+1 +AdvPR

PRF(C).

The de-randomized version of the signature scheme DSIG := (IGen,DS,V) ob-
tained from Fiat-Shamir transformation is given in Figure 2. Here, the PRF
key K is also a part of the secret key in the signature scheme.

3 Hardness of middle-product LWE with small secrets

As mentioned earlier, a main obstacle towards building a signature scheme di-
rectly from MPLWE with the Fiat-Shamir with aborts methodology is the need of
smaller secrets. In this section, we show that MPLWE remains at least as hard as

11



DS ((sk,K),M)
1: i = 0
2: while Z =⊥ and i ≤ km do
3: i = i+ 1
4: (W,St) := P1 (sk; PRFK(0‖i‖M))
5: c := H(W‖M)
6: Z := P2 (sk,W, c, St; PRFK(1‖i‖M))
7: end while
8: if Z =⊥ then
9: σ =⊥
10: else
11: σ = (W,Z)
12: end if
13: output σ

V (pk,M, σ)
1: c := H(W‖M)
2: output V(pk,W, c, Z) ∈ {0, 1}

Fig. 2: The de-randomized signature DSIG obtained via Fiat-Shamir transform

PLWE for numerous parametrizing polynomials f , when the secret s is sampled
from a specific distribution χs that produces small secrets with overwhelming
probability.

Let q ≥ 2, n ≥ d > 0, T > 0 and k := n + d − 1. By Ji ∈ Zi×i we denote
the matrix with 1’s on the anti-diagonal and 0’s everywhere else. Let E(T, d, n)
denote the set of all monic polynomials g(x) ∈ Z[x] with constant coefficient
coprime to q, degree m ∈ [d, n], and σm(Mf ) ≥ T .

Theorem 2. For any polynomial f ∈ E(T, d, n) and 1 ≥ α ≥ 2
√
n

qT , there is
a ppt reduction from PLWE(f)

q,DZm,αq,DZm,αq
to MPLWEq,n,d,DZd,α′′q,DZk,α′q

, where
α′ = αn

√
2n · EF(f)2 and α′′ = α

√
2d · EF(f).

Proof. We first reduce PLWE(f) to a variant of MPLWE where the dependence
on f lies both in the secret and error distributions. Using the same idea as in
[RSSS17, Le. 3.7] except for the fact that now we do not rerandomize the secret
to make it uniform, we know that there is a ppt reduction from PLWE(f)

q,χe,χs to
MPLWEq,n,d,χ′e,χ′s where χ

′
e = Jd ·Md

f ·χe and χ′s = Jn+d−1 ·Rotd+n−1
f (1)·Mf ·χs.

We now make the following notations: Bs := Jk · Rotkf (1) · Mf · αqIm and
Be := Jd ·Md

f · αqIm, and Σs := Bs ·Bts ∈ Rk×k and Σe := Be ·Bte ∈ Rd×d, re-
spectively. This means that there is a a ppt reduction from PLWE(f)

q,DZm,αq,DZm,αq

to MPLWEq,n,d,DZd,Σe
,DZk,Σs

. We now have, using Lemma 1, that

‖Σs‖ ≤ (αq)2 · ‖Rotd+n−1
f (1)‖2 · ‖Mf‖2

≤ (αq)2 ·
(
m+ (d+ n− 1−m) ·m · EF(f)2)m · EF(f)2

≤ (αq)2 · (n+ (n− 1) · n · EF(f)2)n · EF(f)2

≤ (αq)2 · n3 · EF(f)4 < (α′q)2
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and

‖Σe‖ ≤ (αq)2 · ‖Md
f ‖2 ≤ d · (αq · EF(f))2 < (α′′q)2.

Since ‖Σs‖ < (α′q)2 and ‖Σe‖ < (α′′q)2, there exist two symmetric positive
definite matrices Σ′s and Σ′e such that Σs + Σ′s = (α′q)2Ik and Σe + Σ′e =
(α′′q)2Id. We now replace the rerandomization to uniform of the reduction
of [RSSS17, Le. 3.7] by a rerandomization to a Gaussian distribution. We first
sample t $← DZk,Σ′s . For any MPLWEq,n,d,DZd,Σe

,DZk,Σs
sample (ai, bi), we sample

e′
$← DZd,Σ′e and output (a′i, b′i) = (ai, bi + ai �d t+ e′i). If (ai, bi) is uniform, so

is (a′i, b′i). If bi = ai �d s+ ei, then

b′i = ai �d s+ ei + ai �d t+ e′i = ai �d (s+ t) + (ei + e′i).

The matrices Σs, Σ′s, Σe and Σ′e are all symmetric, so they are in particu-
lar orthogonally diagonalizable. Moreover, since Σs and Σ′s (resp. Σe and Σ′e)
commute, it means that Σs and Σ′s (resp. Σe and Σ′e) are simultaneously diag-
onalizable. We can hence write Σs = UDsU

t and Σ′s = UD′sU
t for two diagonal

matrices Ds and D′s such that (α′q)2Ik = Ds + D′s and an orthogonal matrix
U ∈ Rk×k. Similarly, we can write Σe = V DeV

t and Σ′e = V D′eV
t, where De

and D′e are diagonal, De + D′e = (α′′q)2Id and V ∈ Rd×d is orthogonal. Since
the smoothing parameter is invariant to rotations, we can write

η2−k(
√
Σ−1
s +Σ′−1

s · Zk) = η2−k(
√
U(D−1

s +D′−1
s )U t · Zk)

= η2−k(U
√
D−1
s +D′−1

s · Zk)

= η2−k(
√
D−1
s +D′−1

s · Zk).

Using Lemma 4, we have that

η2−k(
√
D−1
s +D′−1

s · Zk) ≤ max
i

√
1/σi(Σs) + 1/((α′q)2 − σi(Σs)) ·

√
k + 1.

We showed that σ1(Σs) ≤ (αq)2σ1(Mf )2σ1(Rotd+n−1
f (1))2 ≤ (α′q)2/2, which

means that (α′q)2 − σi(Σs) ≥ σi(Σs) for any i ≤ k and thus 1/σi(Σs) +
1/(α′q)2 − σi(Σs) ≤ 2/σi(Σs) ≤ 2/σk(Σs) for any i ≤ k.

Using the bound on the smallest singular value of Mf , we now get that
σk(Σs) ≥ (αq)2σm(Mf )2σm(Rotn+d−1

f (1))2 ≥ (αq)2 · T 2, which guarantees that

η2−k(
√
D−1
s +D′−1

s · Zk) ≤

√
2

(αq)2 · T 2 ·
√
k + 1 ≤ 1

for α ≥ 2
√
n

q·T . As a consequence, using Lemma 5, the statistical distance between
the distribution of s+ t and DZk,α′q is < 4 · 2−d = 4ε as k > d.

Similarly, we have η2−d(
√
Σ−1
e +Σ′−1

e · Zd) ≤ 1 and the statistical distance
between the distribution of ei + e′i and DZd,α′′q is also ≤ 4ε. This completes the
proof. �
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We notice that in contrast with the reduction from [RSSS17], the above
reduction requires a lower bound on the noise parameter α which is used in order
to approximate the distribution of the sum of two random discrete variables as
in Lemma 5. The following result provides a concrete exponentially large family
of polynomials f for which we manage to bound from below the smallest singular
value of the matrix Mf .

Lemma 8. Let f = xm + P (x) ∈ Z[x] with m ≥ 2 and deg(P ) ≤ m/2. Then
σm(Mf ) ≥ 1

2+
√
m·EF(f) .

Proof. By reordering the rows of Mf , the singular values stay the same and we
can viewMf as a block of four matrices D1 ∈ Zbm/2c×bm/2c, D2 ∈ Zdm/2e×dm/2e,
0 ∈ Zdm/2e×bm/2c and T ∈ Zbm/2c×dm/2e in the following way:

Mf =
[
D1 T
0 D2

]
.

The matrices D1 and D2 are diagonal, 0 is the all-0 matrix and T is an upper
triangular matrix. We now use the definition σm(Mf ) = min(‖Mf · y‖2 : y ∈
Rm, ‖y‖2 = 1). Let y ∈ Rm such that σm(Mf ) = ‖Mf · y‖2 and ‖y‖2 = 1. The
vector y can be written as y = (yt0|yt1)t, with y0 ∈ Rbm/2c and y1 ∈ Rdm/2e. On
the one hand, we have:

‖Mf · y‖2 ≥ ‖D1 · y0 + T · y1‖2 ≥ ‖D1 · y0‖2 − ‖T · y1‖2

≥ ‖y0‖2 − ‖T‖ · ‖y1‖2

≥ ‖y‖2 − ‖y1‖2 − ‖Mf‖ · ‖y1‖2

≥ 1− (1 +
√
m · EF(f)) · ‖y1‖2,

where the last inequality is by Lemma 1. On the other hand, we also have

‖Mf · y‖2 ≥ ‖D2 · y1‖2 ≥ ‖y1‖2.

This provides the bound

σm(Mf ) ≥ max
(
1− (1 +

√
m · EF(f)) · ‖y1‖2, ‖y1‖2

)
≥ 1

2 +
√
m · EF(f)

.

ut

An elementary computation shows that for any polynomial as in the above
Lemma 8, we have EF(f) ≤ 3

4m
2‖P‖2

∞ (see also [LM06, Se. 3.1] for a similar
but more general statement). This implies the following corollary of Theorem 2.

Corollary 1. Fix S > 0. For any degree m ≥ 2 polynomial f = xm + P (x) ∈
Z[x] with constant coefficient coprime with q such that deg(P ) ≤ m/2 and
‖P‖2

∞ ≤ 4S/3 and any 1 ≥ α ≥ 2
√
n · (2 +

√
nS)/q there is a ppt reduction from

PLWE(f)
q,DZm,αq,DZm,αq

to MPLWEq,n,d,DZd,α′′q,DZk,α′q
, where α′ = αn

√
2n · S2 and

α′′ = α
√

2d · S.
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4 An attack on Inhomogeneous PSIS∅ with small secrets

In contrast to our hardness result for MPLWE with small secret coordinates
shown in the previous section, here we show a simple efficient attack on the
Inhomogeneous PSIS∅ problem from [Lyu16] with sufficiently small secret coor-
dinates (such that it has a unique solution). Our algorithm gives a key recovery
attack against a small secret variant of the signature scheme of [Lyu16], and
shows that a lower bound on the size of the secret key coordinates similar to that
in the security proof of [Lyu16] is necessary for the security of that signature
scheme. MPSign achieves lower signature size than [Lyu16], by using small se-
cret coordinates. The attack presented below shows that a similar improvement
in signature size cannot be securely achieved in [Lyu16], stressing an MPSign
advantage over the approach of [Lyu16].

We recall the definition of the Inhomogeneous PSIS∅ problem (which we
denote by I-PSIS∅) from [Lyu16]. The hardness of that problem underlies the
security of the key generation algorithm in the signature scheme of [Lyu16]. We
note that our definition below is the ‘exact’ case of the ‘approximate’ definition
in [Lyu16] (with the parameters of [Lyu16, Def. 3.3] set as c = 1, s = β and
d1 = d2 = d). This restriction makes our attack even stronger since a solution
to the exact problem is also a solution to the ‘approximate’ problem.

Definition 13 (I-PSIS∅). Let n, d > 0. An instance of the I-PSIS∅q,n,d,k,β prob-
lem consists of (a1, . . . , ak, t), where ai

$← Z<nq [x] for i = 1, . . . , k and t =∑k
i=1 ai · si ∈ Z<n+d−1

q [x], where si
$← [−β, β]<d[x] for i = 1, . . . , k. A solution

to the problem is k elements (s′1, . . . , s′k) with s′i ∈ [−β, β]<d[x] for i = 1, . . . , k
such that

k∑
i=1

ai · s′i = t.

Note that the public key of the signature scheme of [Lyu16] consists of an
instance of I-PSIS∅, and a solution is a valid secret key.

Our attack on I-PSIS∅ works in the case where s1, . . . , sk is the unique solu-
tion, and consists of a simple greedy algorithm that exploits the zero triangles in
the Toeplitz matrices associated with the polynomials ai, to reduce the problem
to a sequence of k-dimensional knapsack subproblems: for each r < d, we recover
the k-tuple of coefficients of xr in the polynomials si(x) for i = 1, . . . , k. When
k is small (as is the case for efficient parameter sets), the attack is efficient.

In more detail, let t(x) =
∑k
i=1 ai(x) · si(x) ∈ Z<n+d−1

q [x] be the target
polynomial in an instance of I-PSIS∅. We denote by tr, ai,r and si,r the coefficient
of xr in the polynomials t(x), ai(x), si(x), respectively. We observe that for any
r = 0, . . . , d−1, the coefficient tr depends only on the coefficients of xj for j ≤ r
of the si’s, namely we have

tr =
k∑
i=1

r∑
j=0

ai,j · si,r−j =
k∑
i=1

ai,0 · si,r +
k∑
i=1

r∑
j=1

ai,j · si,r−j . (1)
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Given an instance (a1, . . . , ak, t) of the I-PSIS∅q,n,d,k,β problem, our algorithm
works as follows:

1 For r = 0, . . . , d− 1:
(a) Find some vector s′∗,r := (s′1,r, . . . , s′k,r) ∈ [−β, β]k such that

tr =
k∑
i=1

ai,0 · s′i,r +
k∑
i=1

r∑
j=1

ai,j · s′i,r−j . (2)

(b) If no such vector s′∗,r exists, return ⊥.
2 Return (s′1, . . . s′k), where s′i =

∑d−1
j=0 s

′
i,jx

j for i = 1, . . . , k.

Lemma 9. Suppose q is prime. With probability ≥ 1 − (4β + 1)k/q over the
choice of a1, . . . , ak, the solution (s′1, . . . , s′k) = (s1, . . . , sk) to the I-PSIS∅q,n,d,k,β
problem is unique, and the above algorithm returns this solution in time (2β +
1)k · poly(n, d, log q).

Proof. It follows from (1) that the solution (s′1, . . . , s′k) = (s1, . . . , sk) satisfies (2)
for each r and hence can be output by the algorithm. Now suppose, towards a
contradiction, that the algorithm outputs ⊥ or a different solution (s′1, . . . , s′k) 6=
(s1, . . . , sk). Then let r∗ ≥ 0 denote the least iteration r of the algorithm where
the solution s′∗,r∗ := (s′1,r∗ , . . . , s′k,r∗) to (2) for r = r∗ is not equal to s∗,r∗ :=
(s1,r∗ , . . . , sk,r). From (2), we have

tr∗ =
k∑
i=1

ai,0 · s′i,r∗ +
k∑
i=1

r∑
j=1

ai,j · si,r∗−j =
k∑
i=1

ai,0 · si,r∗ +
k∑
i=1

r∑
j=1

ai,j · si,r∗−j ,

and hence
k∑
i=1

ai,0 · (si,r∗ − s′i,r∗) = 0.

As a consequence, the vector v∗ := (s1,r∗ − s′1,r∗ , . . . , sk,r∗ − s′k,r∗) 6= 0 sat-
isfies

∑k
i=1 ai,0v

∗
i = 0, and v∗ ∈ [−2β, 2β]k. We claim that such a non-zero

vector v∗ exists with probability at most (4β + 1)k/q over the uniform choice
of the ai,0’s. Indeed, since q is prime, the probability that a fixed non-zero vec-
tor v ∈ [−2β, 2β]k satisfies

∑k
i=1 ai,0vi = 0 is 1/q. A union bound over all

≤ (4β+ 1)k non-zero vectors in [−2β, 2β]k provides the claim. Therefore, the al-
gorithm outputs the unique solution (s′1, . . . , s′k) = (s1, . . . , sk) with probability
at least 1−(4β+1)k/q. The run-time follows since Step 1(a) in the algorithm can
be implemented by an exhaustive search through all (2β + 1)k possible values
for s′∗,r. ut

We observe that the run-time can be reduced to 2O(k) · poly(n, d, log q) using a
lattice closest vector algorithm to solve the k-dimensional knapsack problems.

By Lemma 9, our algorithm for I-PSIS∅q,n,d,k,β succeeds with high probability
when β is at least slightly smaller than q1/k/4, and runs in polynomial time
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when k = O(1), even for very high degrees n and d. In comparison, the hard-
ness reduction for I-PSIS∅q,n,d,k,β in [Lyu16, Le. 3.4] requires the lower bound
β > 2λ/(kd)−1 · q1/k·(1+n/d) (where λ denotes the security parameter and is such
that the success probability of the I-PSIS∅ attacker handled by the reduction
is > 2−λ). Our attack gives an efficient key recovery attack against the signature
scheme of [Lyu16] with small secrets β. For instance, the recommended param-
eters of the latter scheme have k = 6 and q ≈ 230 and β ≈ 211.5, but β < 23

will suffice for our attack to succeed. Moreover, heuristically, we expect that our
algorithm will succeed with even larger β corresponding to a unique solution.
The run-time is likely in practice to be in the order of minutes on a typical
laptop 9, using LLL lattice reduction for solving the 6-dimensional knapsack in-
stances; even a brute-force search of each knapsack instance would take in the
order of only (2β)k < 230 arithmetic operations. For the above parameters, our
LLL-based implementation solved 7 out of 10 (resp. 2 out of 10) instances with
β = 7 (resp. β = 8), taking about 3 minutes on a 3.1GHz Intel Core i5 CPU.

5 A signature scheme based on small secrets MPLWE

In this section, we build an identification scheme based on the middle-product
learning with errors with small secrets assumption. Then, we show that Theo-
rem 1 is applicable to our construction by checking all the theorem assumptions,
as in [KLS18]. As a consequence, by the Fiat-Shamir transformation, we obtain
a digital signature scheme that is secure under the middle-product learning with
errors with small secrets assumption in the quantum random oracle model.

5.1 The identification scheme

We first present in Figure 3 an identification scheme which makes use of the
middle-product of polynomials.

We use an extendable output function Sam, i.e., a function on bit strings
in which the output can be extended to any required length. If we want the
deterministic output y of Sam on input x to be uniformly distributed on the
set S, we write y $← S := Sam(x).

The key generation starts by choosing a random string ρ and expanding it
into a uniform polynomial a ∈ Z<nq [x] using the function Sam. The public key
consists of a sample (a, b) drawn from the MPq,n,d+k,χ(s) distribution, where
both the secret s and the error e follow a Gaussian distribution of parameter
α′q, respectively α′′q.

In the first step of the protocol, the prover chooses two polynomials y1 and
y2 whose coefficients are bounded in absolute value by a′, respectively a′′, and
sends to the verifier the polynomial w = a �d y1 + y2. The verifier chooses a
random challenge from the challenge space

DH := {c ∈ {0, 1,−1}<k+1[x] with ‖c‖1 = κ}
9 https://github.com/pqc-ntrust/middle-product-LWE-signature
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and sends it back to the prover. The challenge space consists of polynomials
of small norms and the parameter κ is chosen such that the cardinality of the
challenge space is large. The prover now applies rejection in order to make sure
that his answer doesn’t leak information about the secret key. Concretely, the
prover computes z1 = c �n+d−1 s + y1 and z2 = c �d e + y1 and checks if
‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′. If so, it accepts to send his answer (z1, z2) to the
verifier. Otherwise, it aborts. We provide concrete parameters with which our
scheme can be instantiated in practice in the next section.

IGen
1: ρ $← {0, 1}256

2: a $← Z<nq [x] := Sam(ρ)
3: s $← DZn+d+k−1,α′q

4: e $← DZd+k,α′′q

5: b = a�d+k s+ e
6: pk = (ρ, b)
7: sk = (ρ, s, e)
8: output (pk, sk)

P1 (sk)
1: y1

$← Z<n+d−1
≤a′ [x]

2: y2
$← Z<d≤a′′ [x]

3: w = a�d y1 + y2
4: output W = w, St = (w, y1, y2)

P2(sk,W = w, c, St = (w, y1, y2))
1: z1 = c�n+d−1 s+ y1
2: z2 = c�d e+ y2
3: if ‖z1‖∞ > A′ or ‖z2‖∞ > A′′

then
4: (z1, z2) =⊥
5: end if
6: output Z = (z1, z2)

V (pk,W = w, c, Z = (z1, z2))
1: a $← Z<nq [x] := Sam(ρ)
2: if w = a�d z1 + z2 − c�d b, ‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′ then
3: output 1
4: else
5: output 0
6: end if

Fig. 3: The identification scheme (IGen,V,P = (P1,P2))

Lemma 10. If A′ + ‖c �n+d−1 s‖∞ ≤ a′ and A′′ + ‖c �d e‖∞ ≤ a′′, then
the identification scheme is perfectly na-HVZK, i.e., its transcripts are publicly
simulatable and εzk = 0.

Proof. Figure 4 (left) shows how to generate a real transcript using the secret
key sk, and Figure 4 (right) shows how to simulate a transcript using only the
public key pk. The identification scheme is perfectly na-HVZK if every pair of
polynomials (z1, z2) ∈ Z<n+d−1

≤A′ [x] × Z<d≤A′′ [x] has the same probability to be
generated in the Trans algorithm as in the Sim algorithm. This is indeed the
case: our choice of parameters guarantees that z1 − c �n+d−1 s ∈ Z<n+d−1

≤a′ [x]

18



and z2 − c �d e ∈ Z<d≤a′′ [x] and moreover, for any secret key (s, e) and any pair
(z1, z2), we have that
Pr(z1 = c�n+d−1 s+ y1|y1

$← Z<n+d−1
≤a′ [x])

= Pr(y1 = z1 − c �n+d−1 s|y1
$← Z<n+d−1
≤a′ [x])

and

Pr(z2 = c�d e+ y2|y2
$← Z<d≤a′′ [x]) = Pr(y2 = z2 − c�d s|y2

$← Z<d≤a′′ [x]).

As a consequence, the probability of producing z1 and z2 in Trans such that
‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′ and not returning ⊥ is ( 2A′+1

2a′+1 )n+d−1( 2A′′+1
2a′′+1 )d,

which means that the outputs of Trans and Sim have the same distribution. ut

Trans (sk)
1: a $← Z<nq [x] := Sam(ρ)
2: y1

$← Z<n+d−1
≤a′ [x]

3: y2
$← Z<d≤a′′ [x]

4: w = a�d y1 + y2

5: c $← DH
6: z1 = c�n+d−1 s+ y1
7: z2 = c�d e+ y2
8: if ‖z1‖∞ > A′ or ‖z2‖∞ > A′′ then
9: output ⊥
10: else
11: output (z1, z2, c)
12: end if

Sim (pk)
1: a $← Z<nq [x] := Sam(ρ)
2: with probability

1− ( 2A′+1
2a′+1 )n+d−1( 2A′′+1

2a′′+1 )d
3: output ⊥
4: c $← DH
5: z1

$← Z<n+d−1
≤A′ [x]

6: z2
$← Z<d≤A′′ [x]

7: output (z1, z2, c)

Fig. 4: The transcript Trans and the simulation Sim algorithms

Lemma 11. The scheme has correctness error δ = 1− ( 2A′+1
2a′+1 )n+d−1( 2A′′+1

2a′′+1 )d.

Proof. First, we show that the verification procedure always accepts a honest
transcript if (z1, z2) 6=⊥. Assume that (z1, z2) 6=⊥. It means that ‖z1‖∞ ≤ A′

and ‖z2‖∞ ≤ A′′. Now we prove that

a�d z1 + z2 − c�d b = a�d y1 + y2.

Because of Lemma 3, we have that

a�d z1 =a�d (c�n+d−1 s+ y1)
=a�d (c�n+d−1 s) + a�d y1

=(a · c)�d s+ a�d y1
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and

c�d b =c�d (a�d+k s+ e)
=c�d (a�d+k s) + c�d e
=(c · a)�d s+ c�d e.

Overall, we obtain:

a�d z1 + z2 − c�d b
= ((a · c)�d s+ a�d y1) + (c�d e+ y2)− ((c · a)�d s+ c�d e)
= a�d y1 + y2.

Since Sim outputs ⊥ with the same probability as Trans, we know that the
probability to have (z1, z2) =⊥ is exactly δ. ut

Lemma 12. The identification scheme ID is lossy.

Proof. In the lossy key generation algorithm LossyIGen (Figure 5), we generate
the public key (a, b) uniformly. The public keys generated by IGen and LossyIGen
are indistinguishable by the MPLWE assumption. Indeed, for any quantum ad-
versary A against ID, there exists an adversary B trying to distinguish MPLWE
samples from uniform ones such that the loss advantage AdvlossID (A) is equal to
the advantage of B. ut

Lemma 13. The identification scheme ID has d·log(2a′′+1) bits of min-entropy.

Proof. Indeed, for every commitment ω, we have that:

Pr
a,y1,y2

(a�d y1 + y2 = ω) ≤ max
a,y1

Pr
y2

(y2 = ω − a�d y1) ≤ 1
(2a′′ + 1)d ,

where the first probability is taken over the uniform choice of a ∈ Z<nq [x], y1 ∈
Z<n+d−1
≤a′ [x] and y2 ∈ Z<d≤a′′ [x]. In the second one, the probability is taken over

the uniform choice of y2 ∈ Z<d≤a′′ [x] and the maximum is taken over all a ∈ Z<nq [x]
and y1 ∈ Z<n+d−1

≤a′ [x]. ut

Lemma 14. The identification scheme ID is εls-lossy-sound, where

εls ≤
1
|DH |

+ (4A′ + 1)n+d−1 · (4A′′ + 1)d · |DH |2 · q−d.

Proof. We show that relatively to a lossy key pkls generated by the LossyIGen
algorithm in Figure 5, not even an unbounded quantum adversary can imper-
sonate the prover. This reduces to the computation of the following probability
taken over the uniform choice of a ∈ Z<nq [x], b ∈ Z<d+k

q [x] and c ∈ DH :

P := Pr(∃ z1 ∈ Z<n+d−1
≤A′ [x], z2 ∈ Z<d≤A′′ [x] : a�d z1 + z2 − c�d b = w).
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LossyIGen
1: ρ $← {0, 1}256

2: a $← Z<nq [x] := Sam(ρ)
3: b $← Z<d+k

q [x]
4: output pkls = (a, b)

Fig. 5: The LossyIGen algorithm

Let S denote the set of pairs (a, b) such that there exists at most one c for
which there exist small z1, z2 such that a�d z1 + z2 − c�d b = w. We can write
P ≤ P1 + P2, where

P1 = Pr((a, b) ∈ S) · 1
|DH |

≤ 1
|DH |

and

P2 ≤ Pr((a, b) /∈ S) · 1
≤ Pr(∃ c 6= c′, z1, z2, z

′
1, z
′
2 : a�d (z1 − z′1) + z2 − z′2 − (c− c′)�d b = 0)

= Pr(∃ ec ∈ DH −DH \ {0}, e1 ∈ Z<n+d−1
≤2A′ , e2 ∈ Z<d≤2A′′ :

a�d e1 + e2 − ec �d b = 0),

where a and b are uniformly sampled in Z<nq [x], respectively Z<d+k
q [x], c, c′ ∈

DH , z1, z1 ∈ Z<n+d−1
≤A′ [x], and z2, z

′
2 ∈ Z<d≤A′′ [x] and DH − DH denotes the set

{d− d′ | d, d′ ∈ DH}.
Let us fix (ec 6= 0, e1, e2). The rank of Toep(ec) is maximum for ec 6= 0, which

means that the function b 7→ ec �d b maps an element b from the uniform dis-
tribution on Z<d+k

q [x] to an element b′ from the uniform distribution on Z<dq [x].
We can now write:

Pr(a�d e1 + e2 − ec �d b = 0) = Pr(b′ = a�d e1 + e2) = q−d,

where the first probability is taken over the uniform choice of a ∈ Z<nq [x] and
b ∈ Z<d+k

q [x] and the second one is taken over the choice of a ∈ Z<nq [x] and
b′ ∈ Z<dq [x]. We conclude that P2 ≤ (4A′+ 1)n+d−1 · (4A′′+ 1)d · |DH |2 · q−d. ut

5.2 The signature scheme

In Figure 6, we present our digital signature scheme which is obtained by the
de-randomized Fiat-Shamir transform of the identification scheme ID. The cor-
rectness of the signature scheme follows (see [KLS18, p. 11]) from the correctness
of the underlying identification scheme (Lemma 11). The scheme is UF-CMA se-
cure in the quantum random oracle model, as discussed in Subsection 2.4.
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The signature scheme relies on a hash function H : {0, 1}∗ → DH , which
outputs elements with small norms and will be modelled by a random oracle in
the security proof. We refer to [DDLL13] for an efficient method to construct
such a hash function.

KeyGen
1: ρ $← {0, 1}256

2: a $← Z<nq [x] := Sam(ρ)
3: s $← DZn+d+k−1,α′q

4: e $← DZd+k,α′′q

5: b = a�d+k s+ e
6: vk = (b, ρ)
7: sk = (s, e,K, ρ)
8: output (sk, vk)

Sign (sk = (s, e,K, ρ),M)
1: a $← Z<nq [x] := Sam(ρ)
2: i = 0
3: while (z1, z2) =⊥ and i ≤ km do
4: i = i+ 1
5: y1

$← Z<n+d−1
<a′ [x] := Sam(K‖M‖i‖0)

6: y2
$← Z<d<a′′ [x] := Sam(K‖M‖i‖1)

7: w = a�d y1 + y2
8: c := H(w‖M)
9: z1 = c�n+d−1 s+ y1
10: z2 = c�d e+ y2
11: if ‖z1‖∞ > A′ or ‖z2‖∞ > A′′ then
12: (z1, z2) =⊥
13: end if
14: end while
15: output (z1, z2, c)

Verify (vk = (b, ρ),M, (z1, z2, c))
1: a $← Z<nq [x] := Sam(ρ)
2: w = a�d z1 + z2 − c�d b
3: if c = H(w‖M), ‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′ then
4: output 1
5: else
6: output 0
7: end if

Fig. 6: The signature scheme

The key generation algorithm samples a $← Z<nq [x] using the extendable
function Sam seeded with a 256-bit seed ρ, and then two small secret polynomials
s

$← DZn+d+k−1,α′q and e $← DZd+k,α′′q. It outputs (b = a �d+k s + e, ρ) as the
verification key vk and (s, e,K, ρ) as the signing key sk, K being a random key
for the pseudorandom function Sam(K‖·) used in the signature algorithm.

To sign a message M , we first recompute a $← Z<nq [x] := Sam(ρ), generate
deterministic masking parameters y1

$← Z<n+d−1
<a′ [x] := Sam(K‖M‖i‖0) and

y2
$← Z<d<a′′ [x] := Sam(K‖M‖i‖1), where i is the repetition index and compute

w = a �d y1 + y2. Then we compute c := H(w‖M), z1 = c �n+d−1 s + y1
and z2 = c �d e + y2. A potential signature is now (z1, z2, c). In order to make
the signature pair (z1, z2) independent of the signing key, we perform rejection
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sampling on potential signatures before outputting the right one. A potential
signature (z1, z2, c) is output if both ‖z1‖∞ ≤ A′ and ‖z2‖∞ ≤ A′′.

To check if (z1, z2, c) is a valid signature for a messageM , we first recompute
a

$← Z<nq [x] := Sam(ρ) and w = a�dz1+z2−c�db and we accept if ‖z1‖∞ ≤ A′,
‖z2‖∞ ≤ A′′ and c := H(w‖M).

6 Concrete parameters

In this section we give sample parameters with which our digital signature scheme
can be instantiated. The choice of parameters takes into account the correctness
error probability, the security and the efficiency of our scheme.

The signing acceptance probability is set to p = 1/3 as in [Lyu16] for a fair
comparison.

The security proof of the scheme from [Lyu16] uses the random oracle model,
while the security of our scheme, which is based on Theorem 1, holds in the more
powerful quantum random oracle model.

In terms of efficiency, we focus on minimizing the size of a signature. Our
signature size is (n + d − 1) dlog(A′)e + d dlog(A′′)e + κ(dlog(k + 1)e + 1) bits.
The optimal value of d/n for minimizing the signature length is close to 0.5.
As d/n reduces below 0.5, the signature dimension drops. Due to the lossiness
condition, d/n and log q are inversely proportional, so we have to increase n to
maintain security, which means that overall the signature length will increase.
If d/n increases towards 1, log q reduces but the signature dimension increases
and we cannot reduce the signature length.

The size of our public key (a, b) is 256 + (d+ k)dlog(q)e. Since for our lossi-
ness property in the security proof we need a much larger q than the one used
in [Lyu16], our public key becomes larger than the public key used in [Lyu16].
On the other hand, our scheme has significantly shorter signatures. Our savings
in MPSign signature length over the scheme in [Lyu16] arise largely from the
smaller secret key coordinates in MPSign. As our attack of Section 4 shows, such
savings are not possible in the scheme of [Lyu16] due to the insecurity of PSIS∅
with sufficiently small secret coordinates.

In order to set concrete parameters for our scheme achieving λ bits of se-
curity, we need to bound from above the advantage of any adversary trying to
attack the UF-CMA security of MPSign in the quantum random oracle model
by 2−λ. By Theorem 1 and Lemma 12, it is enough to bound Adv, AdvPRPRF(C)
and 2−d log(2a′+1)+1 by 2−λ/5 and 8(QH + 1)2 · εls by 2−λ+1/5, where the no-
tations are those from Section 5 and Adv stands for the advantage of an ad-
versary trying to solve the MPLWEq,n,d+k,χ1,χ2 problem, where both χ1 and
χ2 are discrete Gaussians of parameters α′′q, respectively α′q. As it is stan-
dard in lattice-based cryptography, we further neglect the noise amplification in
Theorem 2 and assume that the MPLWE problem with very small secret (with
‖s‖∞ ≈ 1) is concretely as hard as the PLWE(f) problem with very small secret.
Indeed, there are no known attacks on the MPLWE with small secrets prob-
lem that exploit the very small secret when generic algebraic attacks on LWE
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are protected against (see, e.g., [AG11,ACF+15a,ACF+15b]). Since the discrete
Gaussian distributions of the error and secret have small standard deviation,
we assume that we can safely replace them by a corresponding centered bino-
mial distribution, as has been done in many practical lattice-based encryption
schemes (see [ADPS16,SSZ19,BDK+19], among others).

We use [APS15] in order to estimate both the classical and quantum bit
complexities of the primal attack against the PLWE(f) problem associated to a
polynomial f of maximum degree n from the family. The cost models we choose
are bkz.sieve for classical security, respectively bkz.qsieve for quantum security.

We present in Table 1 a comparison between the efficiency of MPSign and the
scheme described in [Lyu16]. For the same Hermite factor δ0 = 1.005 (driving
the security level), by choosing n = 2500, d = 1300, k = 512 for our scheme, we
manage to shorten the size of a signature by a factor of 2.1 and the size of the
secret key by a factor of 11 at the cost of doubling the size of the public key.

MPSign [Lyu16]
public key size 19 KB 9.6 KB
secret key size 0.7 KB 8.8 KB
signature size 13 KB 27 KB
q ≈ 287 ≈ 230

Table 1: Efficiency of MPSign

In the first column of Table 2, we provide concrete parameters for MPSign
that satisfy both classical and quantum level 1 NIST requirements. Concretely,
they achieve λ ≥ 143 for classical adversaries and λ ≥ 130 for quantum ad-
versaries. The second column contains parameters for λ = 89 bits of quantum
security, corresponding to a Hermite factor δ = 1.005.

7 Implementation

We implemented MPSign in Sage (Python) as a proof-of-concept and the source
code is publicly available.10 For the experiments, we used a MacBook Pro with
Intel i7-8559U CPU at 2.7 GHz. Turbo-boost and hyperthreading were both
disabled. For a fair comparison, we also implemented the scheme from [Lyu16]. It
is expected that both implementations are slower than if they were implemented
with a system language (such as C) with an aim for optimization. Nonetheless,
since both implementations use the same Gaussian sampler, the same hash to
challenge function, and the same polynomial multiplication algorithm, we believe
that the comparison is relatively fair.

We instantiate MPSign and the scheme from [Lyu16] with corresponding pa-
rameters achieving δ = 1.005. (for MPSign these parameters may be found in
10 https://github.com/pqc-ntrust/middle-product-LWE-signature
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λ = 143 λ = 89
n 3800 2500
d 1910 1300
k 512 512
q ≈ 290.9 ≈ 287.3

κ 53 53
|DH | ≈ 2294 ≈ 2294

logA′ ≈ 21.0 ≈ 20.4
logA′′ ≈ 19.4 ≈ 18.9
δ 1.004 1.005
α′q 2

√
π 2

√
π

α′′q 2
√
π 2

√
π

public key size 26.9 KB 19.5 KB
secret key size 1.06 KB 0.74 KB
signature size 20.1 KB 12.8 KB

Table 2: Sample parameters for MPSign

Table 2). In both benchmarks we iterated 1000 times, each time with a differ-
ent seed and a different message to sign. The results of our comparison may be
found in Table 3. The data are for the average cost in milliseconds. Our scheme
is almost twice faster than the one from [Lyu16] in key generation and verifica-
tion, and four times faster in signing. This is mainly due to the fact that the
scheme from [Lyu16] requires scalar multiplications over vectors of polynomi-
als, while our scheme involves a single middle-product (over a somewhat longer
polynomial).

[Lyu16] MPSign
min ave max min ave max

key generation 22.3 25.9 46.7 14.6 16.3 27.1
signing 111 418 5771 28.3 99.6 713

verification 15.0 30.8 53.0 16.3 18.8 28.6

Table 3: Performance comparison, in ms
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