
A New Paradigm for Public-Key Functional
Encryption for Degree-2 Polynomials

Romain Gay?

Cornell Tech, NY
romain.gay@cornell.edu

Abstract. We give the first public-key functional encryption that sup-
ports the generation of functional decryption keys for degree-2 polyno-
mials, with succinct ciphertexts, whose semi-adaptive simulation-based
security is proven under standard assumptions. At the heart of our new
paradigm lies a so-called partially function-hiding functional encryption
scheme for inner products, which admits public-key instances, and that
is sufficient to build functional encryption for degree-2 polynomials. Do-
ing so, we improve upon prior works, such as the constructions from Lin
(CRYPTO 17) or Ananth Sahai (EUROCRYPT 17), both of which rely
on function-hiding inner product FE, that can only exist in the private-
key setting. The simplicity of our construction yields the most efficient
FE for quadratic functions from standard assumptions (even those satis-
fying a weaker security notion). The interest of our methodology is that
the FE for quadratic functions that builds upon any partially function-
hiding FE for inner products inherits the security properties of the latter.
In particular, we build a partially function-hiding FE for inner products
that enjoys simulation security, in the semi-adaptive setting, where the
challenge sent from the adversary can be chosen adaptively after see-
ing the public key (but before corrupting functional decryption keys).
This is in contrast from prior public-key FE for quadratic functions from
Baltico et al. (CRYPTO 17), which only achieved an indistinguishability-
based, selective security. As a bonus, we show that we can obtain security
against Chosen-Ciphertext Attacks straightforwardly. Even though this
is the de facto security notion for encryption, this was not achieved by
prior functional encryption schemes for quadratic functions, where the
generic Fujisaki Okamoto transformation (CRYPTO 99) does not apply.

1 Introduction

Functional Encryption [O’N10,BSW11](in short: FE) is a general paradigm where
restricted decryption keys are generated, that let users learn specific functions of
? Supported in part by NSF Award SATC-1704788 and in part by the Office of the Di-
rector of National Intelligence (ODNI), Intelligence Advanced Research Projects Ac-
tivity (IARPA), via 2019-19-020700006. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Gov-
ernment. The U.S. Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright annotation therein.

the encrypted data. Namely, each decryption key skf is associated with a func-
tion f , and the decryption of an encrypted message x with skf recovers f(x), and
nothing else. The scheme must be resistant to any collusion of decryption keys
skf for different functions f : such group of keys should not learn anything more
than the information leaked by each key skf , individually. This security property
makes FE schemes both hard to build and extremely useful, provided the class of
function they handle is large. In fact, it has been shown [BV15,AJ15] that gen-
eral purpose functional encryption gives a construction of Indinstiguishability
Obfuscation [BGI+01,GGG+14](in short: iO) for all circuits, a powerful object
that has been remarkably successful at providing an all-purpose tool for solv-
ing cryptographic problems [SW14]. Surprisingly, even FE for smaller classes of
functions are powerful. Recently, [LT17] has shown that succinct FE supporting
degree-3 functions is sufficient to build iO, together with additional assumptions
on the existence of special kind of pseudo-random generators 1. However, there
is no construction of such FE schemes from standard, well understood assump-
tions. All known constructions rely on either multilinear maps, or iO itself. Can
we build FE for rich classes of functions from standard assumptions?

Beyond the case of predicate encryption [BW07,KSW08,GVW15], little is
known about standard-based FE constructions. [ABDP15] gave the first con-
struction of FE for inner products, where the encryption of a vector x ∈ Zn,
together with a decryption key associated with vector y ∈ Zn, yields the in-
ner product of x and y. That is, their scheme can generate decryption keys
that compute a weighted sum on encrypted data. They prove selective secu-
rity, a useful but artificial security notion where the adversary has to commit
to its challenge ciphertext beforehand. Later, [ALS16] gave constructions with
full security (aka adaptive security, where the adversary can request decryption
keys and the challenge ciphertext adaptively). Both constructions use standard
assumptions (DDH, LWE, DCR). Note that inner products already capture con-
stant depth circuits, by simply expressing circuits as polynomials, and encrypting
all the monomials (of constant degree). However, for most applications, and in
particular to obtain iO, one needs to recursively apply the FE scheme to it-
self. This bootstrapping requires the ciphertexts to be succinct, that is, their
size should only depend on the underlying message, and not on the function
to be evaluated. Following this quest for succinct FE for richer classes of func-
tions, [BCFG17] (concurrently [AS17,Lin17] in the private-key setting), gave
the first construction of succinct FE that supports the evaluation of quadratic
functions on ciphertexts. All of these constructions are proven secure under an
indistinguishability-based security definition, which is cumbersome to use, and
is too weak to meaningful security for some functionality. Moreover, all these
schemes either achieve only selective security, or assume the generic group model.

Our contributions. We build the first simulation-secure FE in the semi-
adaptive setting, whose security relies on a standard assumption, that supports
a functionality beyond inner products, or predicate encryption. In our scheme,
1 Namely, the existence of pseudo-random generators of block-wise locality 3.

2

ciphertexts are associated with two vectors x ∈ Zn and y ∈ Zm, and decryption
keys are associated with a matrix F ∈ Zn×m. The decryption of a ciphertext ctx,y
with a decryption key skF recovers x>Fy ∈ Z. The ciphertext size is O(n+m)
group elements, and security relies on pairings (DLIN).

Scheme: public-key security assumption
[AS17] 7 SEL-IND GGM
[Lin17] 7 SEL-IND SXDH
[BCFG17] 3 SEL-IND SXDH & 3-PDDH
[BCFG17,DGP18] 3 AD-IND GGM
ours 3 SAD-SIM DLIN

Fig. 1. Quadratic FE. Here, {AD,SAD,SEL}-{IND,SIM} stands for {adaptive,semi-
adaptive,selective}-{indistinguishability,simulation} security. GGM stands for Generic
Group Model.

To build our quadratic FE, we deploy a new paradigm that uses at its core
a so-called partially function-hiding inner-product FE, where decryption keys
partially hide their underlying function (in the case of inner product, their un-
derlying vector). This approach allows us to obtain public-key FE, as opposed
to prior work [AS17,Lin17] relying on full-fledged function-hiding inner-product
FE, which is inherently private-key.

We then build a partially function-hiding inner-product FE with simula-
tion security. This security notion implies its indistinguishability-based counter-
part, and drastically simplifies the proof compared to previous works relying on
indistinguishability-secure inner-product FE (for instance [Lin17]). This simplic-
ity is illustrated by short ciphertexts and keys (see Fig.2). We obtain simulation
security in the semi-adaptive setting, where an adversary is restricted to choose
its challenge before querying any secret keys. This is the best we can hope for: a
simple extension of [BSW11,AGVW13] shows that adaptively simulation secure
partially function-hiding inner-product FE are impossible to achieve from stan-
dard assumptions (note this impossibility result doesn’t apply to schemes proved
in the generic group model, such as the inner-product FE from [KLM+18]).
As shown in [BSW11], indistiguishability-based security is inadequate for some
functionality. For instance, if a ciphertext encrypts the seed of a PRG, and each
functional decryption key is associated with one position of the output of the
PRG, simulation-based security ensure that only the output of the PRG is re-
vealed, whereas indistinguishability-based security is essentially useless, since it
only proves that an encryption of a seed is computationally indistinguishable
from an encryption of seed’ if PRG(seed)=PRG(seed’). This example is relevant
in the context of quadratic FE, since our construction is expressive enough to
evaluate the output of a PRG (see Remark 1). This indicates that simulation
security is qualitatively stronger than its indistinguisahbility-based counterpart.

3

Scheme: |ct| |sk| sec., assump.
[BCFG17] 2n|G1|+ (2m+ 2)|G2| 2|G1|+ |G2| AD-IND, GGM

[BCFG17] (6n+ 1)|G1|+ (6m+ 1)|G2| |G1|+ [G2|
SEL-IND,

SDXH & 3-PDDH
[DGP18] (2n+ 1)|G1|+ 2m|G2| G2 AD-IND, GGM
ours (4n+ 2m+ 2)|G1|+m|G2| (3n+ 2m+ 2)|G2| SAD-SIM, DLIN

Fig. 2. Efficiency comparison between public-key quadratic FE, where cipher-
text encrypt (x,y) ∈ Zn × Zm and decryption keys are associated with F ∈
Zn×m. {AD,SAD,SEL}-{IND,SIM} stands for {adaptive,semi-adaptive,selective}-
{indistinguishability,simulation} security. GGM stands for Generic Group Model.
SXDH stands for Symmetric eXternal Diffie Hellman, 3-PDDH stands for 3-Party Deci-
sional Diffie Hellman, DLIN stands for Decisional LINear, both of which are standards
assumptions in pairing groups.

Another benefit of our new approach is that many properties of the un-
derlying partially function-hiding inner-product FE can be lifted to the overall
quadratic FE. This is case of the semi-adaptive simulation-based security, but we
also show that if the partially function-hiding inner-product FE is secure against
Chosen-Ciphertext Attacks (CCA-security), then so is the resulting quadratic
FE. CCA-security is the de facto security notion for encryption, as it captures
active or man-in-the-middle attacks, as opposed to CPA security. However, pre-
vious quadratic FE only prove CPA security. Note that generic transformation,
such as Fujisaki Okamoto transform [FO99], cannot be applied here, since it
relies on hybrid encryption, which is incompatible with functional encryption,
which permits selective computation on encrypted data, as opposed to the all-or-
nothing access provided by typical encryption. The CHK transform [CHK04] has
been extended in [GPSW06] to obtain CCA-security for Attribute-Based Encryp-
tion (ABE) with some delegatability property. This property has been relaxed
in [YAHK11]. However, these techniques only apply to ABE, where a decryption
secret key recovers the encrypted plaintext entirely, or not at all, which is differ-
ent in nature from the Functional Encryption we are studying here, where only
partial information about the plaintext is recovered. The only generic transfor-
mation that seems to apply in our case is the dual encryption methodology from
[NY90], which has the disadvantage of doubling the size of ciphertexts, and rely-
ing on (simulation-sound) non-interactive zero knowledge proofs. [BBL17] avoids
using the Naor Yung paradigm, and builds the first CCA-secure FE (beyond the
case of ABE), which handles inner product, and is based on efficient hash-proof
systems. Their security proof crucially relies on structural (linearly homomor-
phic) properties of hash proofs system, which is tailored to FE for inner products.
Indeed, none of these techniques seem to be applicable to existing quadratic FE,
such as [BCFG17]. Our construction strikes by its simplicity: it suffices to build a
CCA-secure partially function-hiding inner-product FE, which can be simply ob-
tained by adding an Quasi-Adaptive Non-Interactive Zero Knowledge argument
for the simple language of DDH tuples, without doubling the size of the cipher-

4

text as required by Naor Yung dual encryption methodology. Instantiating these
with arguments from [KW15] only adds 2 group elements in the ciphertexts, and
requires no extra assumption. Surely, this is made easy by the use of pairings,
which are not used by [BBL17]. In fact, we do not consider CCA-security to be
the main technical contribution of this paper, but rather an illustration of the
interest of building quadratic FE from inner-product FE, as is done in our new
paradigm.

Technical overview.

Quadratic FE. Our quadratic FE uses a pairing group G1 × G2 → GT , where
the encryption of x,y contains an encryption Enc1(x; r) of x under randomness
r, that consists of elements in G1, and an encryption Enc2(y; s) of y under
randomness s, which consists of elements in G2. Thanks to the pairing e : G1 ×
G2 → GT , we can compute the product of Enc1(x, r) and Enc2(y, s) to obtain
the output x>Fy in the group GT , masked by some extra terms, that can be
expressed as the inner product of a vector that only depends on the input x,y,
and the randomness r, s used by the encryption, together with another vector
which only depends on the secret key of these encryptions, and the matrix F.
Both vectors have a dimension that is linear in the dimension of the vectors x
and y. Thus, as in [AS17,Lin17], we can use an inner-product FE to compute
the masking term. Such inner-product FE needs to be function-hiding, since
revealing the secret key would compromise the security of the encryptions Enc1
and Enc2. However, function-hiding FE is an inherently private-key primitive,
since a public encryption would allow to recover the function underlying each
decryption key, simply by encrypting well-chosen vectors and decrypting them
using the decryption key. To obtain a public key quadratic FE, we make the
crucial observation that the underlying function-hiding FE for inner products is
only used for vectors that lie in some specific subspace. Thus, we create, and make
public, a restricted encryption key that can only generate ciphertexts for these
vectors, while still providing some meaningful function-hiding. In particular, we
obtain a public-key inner-product FE where decryption keys partially hide their
underlying vector, which turns out to be sufficient for the security proof of the
quadratic FE. Roughly speaking, the security of the inner-product FE proves
that only the masking terms are revealed, along with some partial information
on the secret keys that do not compromise security of the encryptions Enc1,
Enc2. Thus, we obtain security of the quadratic FE using the security of the
latter encryptions.

Partially function-hiding inner-product FE. We now highlight the construction
of our new public-key, partially function-hiding inner-product FE. Our starting
point is the FE for inner products from [ALS16], where decrypting an encryption
Enc(x) of a vector x with a decryption key KeyGen(y) associated with vector y
yields the inner product x>y. Their scheme is not function-hiding since y is part
of the decryption key generated by KeyGen(y). As in [Lin17, Section 6.3], we use

5

the fact that the decryption computes the inner product of Enc(x) and KeyGen(y)
to obtain x>y. Namely, we replace the vector y in each decryption key by an
ALS encryption of y, and x in each ciphertext is replaced by an ALS decryption
key for x (see Fig.3). Function-Hiding (hiding y) follows from the security of
the inner ALS FE, whereas security (hiding x) follows from the security of the
outter ALS FE. [Lin17] uses a similar approach, where the entire decryption key
is encrypted using an outter inner-product FE (see Fig.3), and the underlying
inner-product FE [ABDP15] are only selective indistinguishability secure.

ours [Lin17]
ctx = Encout

(
KeyGenin(x)

)
ctx = KeyGenout

(
Encin(x)

)
sky = KeyGenout

(
Encin(y)

)
sky = Encout

(
KeyGenin(y)

)

Fig. 3. Function-Hiding FE for inner products. In the leftmost column (resp. right-
most column) (Encout,KeyGenout) and (Encin,KeyGenin) are two independent instances
of [ALS16] (resp. [ABDP15]) FE for inner products.

To make our scheme public-key, we publish a restricted secret key for the
inner layer FE that lets KeyGenin(x) run on vectors x that lie in some subspace.
To be of use in our quadratic FE scheme, our function-hiding FE needs to be
simulation secure (this is stronger than the classical indistinguishability based
security for FE). We prove simulation security using the simulation security of
[ALS16], which was proved in [AGRW17,Wee17] in the selective setting.

CCA-security. As a bonus, we show that we can easily obtain CCA-security
for our partially function-hiding inner-product FE, and that security property is
transferred to the overall quadratic FE. We use Quasi-Adaptive Non-Interactive
arguments for the simple language of DDH tuples, which must fulfill one-time
simulation-soundness, in order to boost the security of our partially function-
hiding FE for inner products to handle Chosen Ciphertext Attacks. This QANIZK
argument can be instantiated with [KW15, Section 3.3], which only adds two
group elements in the ciphertexts (this is the case k = 1 in their paper) and
rely on the Kernel assumption, implied by SXDH (this is competitive with Fiat
Shamir NIZKs, and does not rely on the random oracle model). Recall that prior
constructions fail to obtain CCA-security even in the random oracle model, since
the Fujisaki Okamoto transform, which relies on hybrid encryption (that is in-
compatible with functional encryption, where only a partial information on the
plaintext is recovered during decryption), is of no help here.

Conclusion, and perspective. Summarizing, we exhibit a new paradigm to
build quadratic FE from partially function-hiding FE for inner products, a newly

6

introduced primitive that bypasses impossibility results of public-key function-
hiding FE. This gives stronger, desirable security guarantees that were previ-
ously not achieved. Moreover, its simplicity is appealing, not only because it
gives constructions that outperform previous standard-based schemes in terms
of ciphertext size, but also because it transfers properties from inner-product FE
to quadratic FE. An important exception is adaptive security. Even though there
are adaptively-secure inner-product FE (in fact we claim, without proof, that our
semi-adaptive partially function-hiding FE for inner products can be extended
to the adaptive, indistinguishability-based setting, up to doubling the size of
the ciphertexts, as done in [LV16]), our quadratic FE fails at achieving adaptive
security. Despite this shortcomings, we are optimistic this new approach will
shed light on the largely unexplored domain of building functional encryption
for richer functionalities from standard assumptions.

Road-map. The rest of this paper is organized as follows. After giving some
relevant technical preliminaries in Section 2, we define partially function-hiding
public-key FE for inner products, and generically use it to build a quadratic FE,
in Section 3. Then, in Section 4, we give concrete instances of such partially
function-hiding FE for inner products, using standard assumptions on pairing
groups.

2 Preliminaries

2.1 Notations

For any set S, we denote by a ←R S a uniformly random element a in S.
PPT stands for Probabilistic Polynomial Time. For any PPT algorithm A, we
denote by x← A a random output from A. We use ≈c to denote computational
indistinguishability, and ≡ to denote equality between distributions.

2.2 Pairing groups.

Let PGGen be a PPT algorithm that on input the security parameter 1λ, returns
a description PG = (G1,G2,GT , p, P1, P2, e) where for all s ∈ {1, 2, T}, Gs is an
additive cyclic group of order p for a 2λ-bit prime p. G1 and G2 are generated by
P1 and P2 respectively, and e : G1×G2 → GT is an efficiently computable (non-
degenerate) bilinear map. Define PT := e(P1, P2), which is a generator of GT ,
of order p. We use implicit representation of group elements. For s ∈ {1, 2, T}
and a ∈ Zp, define [a]s = a · Ps ∈ Gs as the implicit representation of a in Gs.
More generally, for a matrix A = (aij) ∈ Zn×mp we define [A]s as the implicit
representation of A in Gs:

[A]s :=

a11 · Ps ... a1m · Ps
an1 · Ps ... anm · Ps

 ∈ Gn×ms .

7

Given [a]1 and [b]2, one can efficiently compute [a · b]T using the pairing e. For
matrices A and B of matching dimensions, define e([A]1, [B]2) := [AB]T . For
any matrix A,B ∈ Zn×mp , any group s ∈ {1, 2, T}, we denote by [A]s + [B]s =
[A+B]s.

For any prime p, we define the following distributions. The DDH distribution
over Z2

p: a ←R Zp, outputs a :=
(
1
a

)
. The DLIN distribution over Z3×2

p : a, b ←R

Zp, outputs A :=

a 0
0 b
1 1

.

Definition 1 (DDH assumption). For any adversary A, any group s ∈ {1, 2, T}
and any security parameter λ, let

AdvDDH
Gs,A(λ) := |Pr[1← A(PG, [a]s, [ar]s)]− Pr[1← A(PG, [a]s, [u]s)]|,

where the probabilities are taken over PG ←R GGen(1λ, d), a←R DDH, r ←R Zp,
u←R Z2

p, and the random coins of A. We say DDH holds in Gs if for all PPT
adversaries A, AdvDDH

Gs,A(λ) is a negligible function of λ.

Definition 2 (SXDH assumption). For any security parameter λ and any
pairing group PG = (G1,G2,GT , p, P1, P2, e) ←R PGGen(1λ), we say SXDH
holds in PG if DDH holds in G1 and G2.

Definition 3 (bilateral DLIN). For any adversary A, any security parameter
λ, let

AdvDLIN
A (λ) := |Pr[1← A

(
PG, {[A]s, [Ar]s, }s∈{1,2}

)
− Pr[1← A

(
PG, {[A]s, [u]s}s∈{1,2}

)
]|,

with where the probabilities are taken over PG ←R GGen(1λ, d), A←R DLIN,
r ←R Z2

p, u ←R Z3
p, and the random coins of A. We say bilateral DLIN holds

relative to PG if for all PPT adversaries A, AdvDLIN
A (λ) is a negligible function

of λ.

2.3 Functional Encryption.

A functional encryption scheme for a functionality F : X → Z is a tuple of PPT
algorithms:

– Setup(1λ,F): on input the security paramter λ, the functionality F , returns
a public key pk (which is implicitly an input of all other algorithms), and a
master secret key msk.

– Enc(x ∈ X): returns ctx, an encryption of x.
– KeyGen(msk, f ∈ F): returns skf , a decryption key for f .
– Dec(ctx, skf): deterministic algorithm that returns a value in Z, or ⊥ if it

fails.

An FE scheme is said to be private-key if Enc requires msk as additional
input, otherwise, it is public-key.

8

Correctness. For any security paramter λ, any functionality F : X → Z, any
x ∈ X , and f ∈ F , Pr[Dec(ctx, skf) = f(x)] = 1, where the probability is taken
over (pk,msk)← Setup(1λ,F), ctx ← Enc(x), skf ← KeyGen(msk, f).

Security. We recall the notion of simulation security, which implies its indistin-
guishability counterpart. Both notions were originally introduced in [BSW11,O’N10].
We work in the semi-adaptive setting, where the adversary sends its challenge x
before querying any secret keys, but after receiving the public key. Semi-adaptive
security has been introduced in [CW14] in the context of Attribute-Based En-
cryption, and subsequently studied in [GKW16]. It implies traditional selective
security (where the adversary sends x before seeing the public key and query-
ing secret keys), and is implied by the full-fledged adaptive security (where the
adversary can query secret keys before sending its challenge x). We give both
Chosen-Plaintext Attack (CPA) and Chosen-Ciphertext Attack variants of sim-
ulation security.

Definition 4 (Simulation CPA security). For any FE scheme FE for func-
tionality F , any security parameter λ, any PPT simulator S := (S̃etup, Ẽnc, K̃eyGen),
and any PPT stateful adversary A, we define the following two experiments.

RealCPA-FEA (1λ):
(pk,msk)← Setup(1λ,F)
x? ← A(1λ, pk)
ct? ← Enc(x?)
α← AOKeyGen(·)(ct?)

IdealCPA-FEA,S (1λ):

(p̃k, m̃sk)← S̃etup(1λ,F)
x? ← A(1λ, p̃k)
ct? ← Ẽnc(m̃sk)
α← AOKeyGen(·)(ct?)

In the real experiment, the key generation oracle OKeyGen, when given as in-
put f ∈ F , returns KeyGen(msk, f). In the ideal experiment, the key genera-
tion oracle OKeyGen, when given as input f ∈ F , computes f(x?), and returns
K̃eyGen(m̃sk, f, f(x?)).

We say an FE scheme is CPA-SIM secure if there exists a PPT simulator
S := (S̃etup, Ẽnc, K̃eyGen) such that for all PPT adversaries A, we have:

AdvCPA-SIMFE,A (λ) := |Pr[1← RealCPA-FEA (1λ)]− Pr[1← IdealCPA-FEA,S (1λ)]| = negl(λ).

Definition 5 (Simulation CCA security). For any FE scheme FE for func-
tionality F , any security parameter λ, any PPT simulator S := (S̃etup, Ẽnc, K̃eyGen, D̃ec),
and any PPT stateful adversary A, we define the following two experiments.

RealCCA-FEA (1λ):
(pk,msk)← Setup(1λ,F)
x? ← A(1λ, pk)
ct? ← Enc(x)
α← AOKeyGen(·),ODec(·,·)(ct?)

IdealCCA-FEA,S (1λ):

(p̃k, m̃sk)← S̃etup(1λ,F)
x? ← A(1λ, p̃k)
ct? ← Ẽnc(m̃sk)
α← AOKeyGen(·),ODec(·,·)(ct?)

In the real experiment, the oracle OKeyGen, when given as input f ∈ F , returns

9

KeyGen(msk, f); the oracle ODec, given as input a ciphertext ct different from the
challenge ciphertext ct? and a function f ∈ F , computes skf ← KeyGen(msk, f),
and returns Dec(ct, skf). If ODec is queried on an input that contains the chal-
lenge ciphertext ct?, it returns ⊥.

In the ideal experiment, the oracle OKeyGen, when given as input f ∈ F ,
computes f(x?), and returns K̃eyGen(m̃sk, f, f(x?)). The oracle ODec, when given
as input a ciphertext ct different from the challenge ciphertext ct? and a function
f ∈ F , returns D̃ec(m̃sk, f, ct). If ODec is queried on an input that contains the
challenge ciphertext ct?, it returns ⊥.

We say an FE scheme is CCA-SIM secure if there exists a PPT simulator
S := (S̃etup, Ẽnc, K̃eyGen, D̃ec) such that for all PPT adversaries A, we have:

AdvCCA-SIMFE,A (λ) := |Pr[1← RealCCA-FEA (1λ)]− Pr[1← IdealCCA-FEA,S (1λ)]| = negl(λ).

2.4 Quasi-adaptive Non-Interactive Zero-Knowledge

This part is taken almost verbatim from [KW15]. Quasi-Adaptive NIZK (QA-
NIZK) proofs are NIZK proofs where the common reference string (CRS) is
allowed to depend on the specific language for which proofs have to be generated
[JR13]. The CRS is generated in a specific way and contains a fixed part par,
produced by an algorithm Genpar, and a language-dependent part crs. However,
for the zero-knowledge property there should exist a single simulator for the
entire class of languages.

For public parameters par produced by Genpar, let Dpar be a probability dis-
tribution over a collection of relations R = {Rρ} parametrized by a string ρ with
an associated language Lρ = {y : ∃x s.t. Rρ(y, x) = 1}. We now recall the tag
definition of QANIZK for Dpar, in its tag-based variant.

Definition 6 (QANIZK Argument). A Quasi-adaptive Non-Interactive Zero
Knowledge Argument (QANIZK) Π for a language distribution Dpar consists of
five PPT algorithms Π = (Genpar,Gencrs,Prove,Sim,Ver):

– Genpar(1
λ): returns the public parameters par.

– Gencrs(par, ρ): returns a common reference string crs, and a trapdoor trap.
We assume that crs implicitly contains par and ρ, and that it defines a tag
space T .

– Prove(crs, τ, x, y): on input the crs, a tag τ ∈ T , a witness x and a statement
y, it returns a proof π.

– Ver(crs, τ, y, π): on input crs, a tag τ ∈ T , a statement y, and a proof π, it
returns 1 or 0, where 1 means that π is a valid proof of y ∈ Lρ, with respect
to tag τ .

– Sim(crs, trap, τ, y): returns a proof π for some y ∈ Y (not necessarily in Lρ).

We require that the algorithms satisfy the following properties:

10

Perfect completeness. For all λ, all par output by Genpar(λ), all ρ output by
Dpar, all (x, y) with Rρ(y, x) = 1, all τ ∈ T , we have:

Pr[Ver(crs, τ, y, π) = 1|(crs, trap)←R Gencrs(par, ρ);π ←R Prove(crs, τ, x, y)] = 1.

Pr

[
Ver(crs, τ, y, π) = 1

∣∣∣∣ (crs, trap)←R Gencrs(par, ρ)
π ←R Prove(crs, τ, x, y)

]
= 1.

Perfect zero-knowledge. For all λ, all par output by Genpar(λ), all ρ output
by Dpar, all (crs, trap) output by Gencrs(par, ρ), all (x, y) with Rρ(y, x) = 1,
all tags τ ∈ T , the distributions

Prove(crs, τ, x, y) and Sim(crs, trap, τ, y)

are the same (where the coin tosses are taken over Prove,Sim).
Simulation Soundness. For all PPT adversaries A and any QANIZK argu-

ment Π the following advantage

AdvΠA(λ) := Pr

Ver(crs, τ?, y?, π?) = 1
∧y? /∈ Lρ ∧ τ? /∈ Tsim

∣∣∣∣∣∣
par←R Genpar(λ), ρ←R Dpar

(crs, trap)←R Gencrs(par, ρ)
(y?, τ?, π?)← ASimO(·,·)(crs)


is negligible, where SimO(τ, y) returns π := Sim(crs, trap, τ, y) and sets Tsim :=
Tsim ∪ {τ}, where Tsim is initially empty.

One-time Simulation Soundness. For any PPT adversary A and QANIZK
argument Π, we define AdvOT-Π

A (λ) as AdvΠA(λ), except the adversary can
only make one query to the oracle SimO.

3 Quadratic FE from Inner-Product FE

In this section we build a functional encryption scheme for bounded-norm quadratic
functions, namely, for the functionality Fquad,B : [0, B]n×[0, B]m → [0, n·m·B3],
X := [0, B]n × [0, B]m, Z := [0, n ·m ·B3], such that each F ∈ Fquad,B is repre-
sented by a matrix in [0, B]n×m, and for all (x,y) ∈ [0, B]n× [0, B]m, the output
of the function is x>Fy ∈ [0, n ·m ·B3]. We consider B,n,m all polynomials in
the security parameter.

Our quadratic FE is built from a so-called partially function-hiding inner
product FE. After giving an overview of the quadratic FE, we define partially
function-hiding inner-product FE in Section 3.1, and we use it build a simulation-
secure quadratic FE in Section 3.2, based on the DLIN assumption in a type-3
pairing group e : G1 ×G2 → GT .

Overview of the quadratic FE. To encrypt the pair of vectors x and y, we provide
an encryption of x which contains group elements from G1, and an encryption
of y, which contains group elements from G2. Equipped with a pairing e : G1 ×
G2 → GT , we multiply these encryptions to obtain the desired value in GT . A

11

natural starting point is to use the ElGamal encryption [ElG84]. That is, the
ciphertext ctx,y includes the encryption of x ∈ Zn in G1: ctx = (c1 := [r]1, c2 :=
[x+ar]1) with randomness r ←R Zp, public key [a]1 ∈ Gn1 and secret key a ∈ Znp ;
and an ElGamal encryption of y ∈ Zm in G2: cty = (c3 := [s]2, c4 := [y+ bs]2),
with randomness s ←R Zp, public key [b]2 ∈ Gm2 , and secret key b ∈ Zmp .
Decryption computes the product c>2 Fc4, using the pairing, to recover:

[x>Fy + (ar)>Fy + x>Fbs+ (ar)>Fbs)︸ ︷︷ ︸
extra terms

]T ,

where the output [x>Fy]T is masked by extra terms, which can be expressed as

the inner product between

r · ys · x
r · s

 and

 F>a
Fb

a>Fb

.

Note that the first vector only contains elements known to the encryptor
(the randomness used by the encryption and the input vectors x and y), while
the second vector only contains elements known to the decryption key generator
(the master secret key msk = (a,b), and the input F to the key generation
algorithm). Besides, the dimension of both vectors are linear in n+m. Thus, to
compute these extra terms (without compromising succinctness), we use an FE

for inner products IPFE.Enc, IPFE.KeyGen, and we add IPFE.Enc

r · ys · x
r · s

 to the

ciphertext ctx,y, and we define skF = IPFE.KeyGen

 F>a
Fb

a>Fb

. This underlying

inner-product FE needs to be function-hiding, since revealing the vector input
to IPFE.KeyGen, which contains the master secret key msk = (a,b), would be
fatal for the security of the ElGamal encryptions. However, function-hiding FE
is an inherently private-key primitive, since a public encryption would allow to
recover y from the decryption key sky, simply by encrypting sufficiently many
well-chosen vectors x and decrypting them using sky.

To obtain a public-key quadratic FE, we use an encryption scheme that has
more structure than ElGamal, namely, Damgård ElGamal [Dam92]. This gives
the possibility to relax the function-hiding property required from the inner-
product FE, and bypass the impossibility result for public-key function-hiding
FE.

Namely, the ciphertext ctx,y contains a Damgård ElGamal encryption in G1:
ctx = (c1 := [ar]1, c2 := [x+Uar]1) with randomness r ←R Zp, public key ([a]1 ∈
G2

1, [Ua]1 ∈ Gn1), and secret key U ∈ Zn×2p ; and a Damgård ElGamal encryption
of y ∈ Zm in G2: cty = (c3 := [bs]2, c4 := [y + Vbs]2), with randomness
s ←R Zp, public key ([b]2 ∈ G2, [Vb]2 ∈ Gm2), and secret key V ∈ Zm×2p .
Decryption computes the product c>2 Fc4, using the pairing, to recover:

[x>Fy + (ar)>(U>F)(y +Vbs) + x>(FV)(bs)︸ ︷︷ ︸
extra terms

]T ,

12

where the output [x>Fy]T is masked by extra terms, which can be expressed as

the inner product between
(
ar ⊗ (y +Vbs)

x⊗ bs

)
and

(
vect(U>F)
vect(FV)

)
, where for any

vector x ∈ Znp , y ∈ Zmp , and matrix M ∈ Zn×mp , we denote by vect(M) ∈ Znmp
the vector such that the inner product of x⊗ y with vect(M) is x>My.

As before, the first vector only contains elements known to the encryptor (the
randomness used by the encryption, the input vectors x and y, and the public
keys), while the second vector only contains elements known to the decryption
key generator (the master secret key msk = (U,V), and the input F to the key
generation algorithm). Besides, the dimension of both vectors are linear in n+m.

As before, to compute these extra terms, we use an FE for inner products

IPFE.Enc, IPFE.KeyGen, and we add IPFE.Enc

(
ar ⊗ (y +Vbs)

x⊗ bs

)
to the cipher-

text ctx,y, and we define skF = IPFE.KeyGen

(
vect(U>F)
vect(FV)

)
.

Now, we make the crucial observation that the underlying function-hiding
FE for inner products is only used for vectors that lie in some specific subspace,
strictly included in the whole space, namely, vectors (column) spanned by the

matrix: M :=

(
a⊗ (Idm|Vb) 0

0 Idn ⊗ b

)
, where Idn (resp. Idm) denotes the

identity matrix of dimension n (resp. m). Thus, we create, and make public, a
restricted key that can only generate ciphertexts for these vectors, while still
providing some meaningful function-hiding. Namely, we prove that only M>y
leaks from a decryption key sky (in addition to what is supposed to leak by
correctness of the scheme), which turns out to be sufficient for the security proof
of the overall quadratic FE. [Lin17] also builds quadratic FE from function-
hiding FE for inner products, but it uses [ABDP15] encryption of x and y in
the ciphertext, and it requires a full-fledged function-hiding FE, which can only
be private-key.

3.1 Partially Function-Hiding Inner-Product FE

A partially function-hiding functional encryption for inner products is defined
with respect to a pairing group PG := (G1,G2, P1, P2, e) ← PGGen(1λ), a full
rank matrixM ∈ Zn×mp , with n > m, and such thatM>M ∈ Zm×mp is invertible;
and a tag space T . It consists of the following PPT algorithms:

– Setup(1λ,PG, [M]1): returns the public key pk (implicitly input of all other
algorithms), and the master secret key msk. We assume pk contains a de-
scription of [M]1 and T .

– Enc(t ∈ Zmp , τ ∈ T): returns a ciphertext ctMt, associated with vector Mt ∈
Znp and tag τ .

– Enc′(msk, [x]1 ∈ Gn1 , τ ∈ T): returns a ciphertext ctx, associated with vector
x ∈ Znp and tag τ .

– KeyGen(msk,y ∈ Znp): returns a decryption key sky.

13

– Dec(τ, ctx, sky): deterministic algorithm that returns a value in GT , or ⊥ if
it fails.

Note that Enc is public key, and can only encrypt vectors in the span of
[M]1, while Enc′ needs the msk, but can encrypt any vector [x]1 ∈ Gn1 . Another
crucial difference is that Enc′ works on vector of group elements, while Enc
needs to get the exponents as input. We require these two encryption algorithms
agree on the their common input space, namely: for all t ∈ Zmp and τ ∈ T ,
Enc(t, τ) is identically distributed from Enc′(msk, [Mt]1, τ), where (pk,msk) ←
Setup(1λ,PG, [M]1).

To build quadratic FE in Section 3, we require a tag-free partially function-
hiding inner-product FE (which corresponds to the case T := {ε}). The latter
can be obtained generically from any tag-based partially function-hiding inner-
product FE, using one-time signature.

Correctness. For all t ∈ Zmp , y ∈ Znp , τ ∈ T , Pr[Dec(τ, ctMt, sky) = [(Mt)>y]T] =

1, where the probability is taken over (pk,msk)← Setup(1λ,PG, [M]1), ctMt ←
Enc(t, τ), sky ← KeyGen(msk,y).

Security. We define simulation security for partially function-hiding inner-
product FE, which captures the fact that the only information that leaks from a
ciphertext ctx and keys sky is x>y, and some partial information on y, namely,
M(M>M)−1M>y. We give both CPA and CCA variant of security notions.

Definition 7 (partially function-hiding, CPA Simulation security). For
any inner-product FE scheme FE, any PPT simulator S := (S̃etup, Ẽnc, K̃eyGen),
and any PPT stateful adversary A, we define the following two experiments.

RealCPA-FEA (1λ):
(pk,msk)← Setup(1λ,PG, [M]1)
(τ?,x)← A(1λ, pk)
ct? ← Enc′(msk, [x]1, τ

?)
α← AOKeyGen(·)(ct?)

IdealCPA-FEA,S (1λ):

(p̃k, m̃sk)← S̃etup(1λ,PG, [M]1)

(τ?,x)← A(1λ, p̃k)
ct? ← Ẽnc(m̃sk, τ?)
α← AOKeyGen(·)(ct?)

In the real experiment, the key generation oracle OKeyGen, when given as in-
put y ∈ Znp , returns KeyGen(msk,y). In the ideal experiment, when OKeyGen is
given as input y ∈ Znp , it computes x>y, ỹ := M(M>M)−1M>y, and returns

K̃eyGen(m̃sk,x>y, ỹ).
We say an FE scheme is partially function-hiding simulation-secure if there

exists a PPT simulator S := (S̃etup, Ẽnc, K̃eyGen) such that for all PPT adver-
saries A, we have:

AdvCPA-PFH-SIMFE,A (λ) := |Pr[1← RealCPA-FEA (1λ)]−Pr[1← IdealCPA-FEA,S (1λ)]| = negl(λ).

14

Definition 8 (partially function-hiding, CCA Simulation security). For
any inner-product FE scheme FE, any PPT simulator S := (S̃etup, Ẽnc, K̃eyGen, D̃ec),
and any PPT stateful adversary A, we define the following two experiments.

RealCCA-FEA (1λ):
(pk,msk)← Setup(1λ,PG, [M]1)
(τ?,x)← A(1λ, pk)
ct? ← Enc′(msk, [x]1, τ

?)
α← AOKeyGen(·),ODec(·,·,·)(ct?)

IdealCCA-FEA,S (1λ):

(p̃k, m̃sk)← S̃etup(1λ,PG, [M]1)

(τ?,x)← A(1λ, p̃k)
ct? ← Ẽnc(m̃sk, τ?)
α← AOKeyGen(·),ODec(·,·,·)(ct?)

In the real experiment, OKeyGen(y ∈ Znp) returns KeyGen(msk,y). The oracle
ODec(τ, ct,y) returns ⊥ if τ = τ?; otherwise, it computes sky ← KeyGen(msk,y),
and returns Dec(τ, ct, sky).

In the ideal experiment, OKeyGen(y ∈ Znp) computes x>y, ỹ := M(M>M)−1M>y,

and returns K̃eyGen(m̃sk,x>y, ỹ). The oracle ODec(τ, ct,y) returns ⊥ if τ 6= τ?;
otherwise, it computes ỹ := M(M>M)−1M>y, and returns D̃ec(τ, ct, ỹ).

We say an FE scheme is CCA partially function-hiding, simulation secure
if there exists a PPT simulator S := (S̃etup, Ẽnc, K̃eyGen, D̃ec) such that for all
PPT adversaries A, we have:

AdvCCA-PFH-SIMFE,A (λ) := |Pr[1← RealCCA-FEA (1λ)]−Pr[1← IdealCCA-FEA,S (1λ)]| = negl(λ).

3.2 Quadratic FE from Partially Function-Hiding Inner-Product FE

We describe our quadratic FE in Fig.4, for the functionality Fquad,B . Its security
relies on the security of the underlying partially function-hiding inner-product
FE, the bilateral DLIN assumption, and the DDH assumption in G1.

Correctness. By correctness of the underlying inner-product FE, we have:

d =

(
r ⊗

(
y
s

)
x⊗ s

)>
M>

(
vect(U>F)
vect(FV)

)
=

(
ar ⊗ cty
x⊗Bs

)>(
vect(U>F)
vect(FV)

)
= (Uar)>Fcty + x>FVBs,

which corresponds exactly to the extra terms obtained when computing ct>xFcty,
that is, we have: ct>xFcty = x>Fy + d. Finally, Dec computes the discrete log
of [x>Fy]T , which is efficient since the output x>Fy is bounded by n ·m · B3,
which is a polynomial in the security parameter.

Theorem 1 (Simulation security of the quadratic FE). The quadratic
FE from Fig.4 for the functionality is simulation CPA (resp. CCA) secure if the

15

Setup(1λ,Fquad,B):
PG := (G1,G2, g1, g2, p, e) ← PGGen(1λ), a ←R DDH, B ←R DLIN,
U←R Zn×2

p , V←R Zm×3
p

M :=

(
a⊗ (Idm|VB) 0

0 Idn ⊗B

)
, (pkIPFE,mskIPFE) ←

SetupIPFE(1
λ,PG, [M]1)

Return pk := ([Ua]1, [VB]2, pkIPFE), msk := (U,V,mskIPFE)

Enc(x,y):
r ←R Zp, ctx := x + Uar, s ←R Z2

p, cty := y + VBs,

ctIPFE := EncIPFE

(
pkIPFE,

(
r ⊗

(
y
s

)
x⊗ s

))
Return ctx,y := ([ctx]1, [cty]2, ctIPFE)

KeyGen(msk,F):

skIPFE ← KeyGenIPFE

(
mskIPFE,

(
vect(U>F)
vect(FV)

))
Return skF := (F, skIPFE)

Dec
(
ctx,y := ([ctx]1, [cty]2, ctIPFE), skF := (F, skIPFE)

)
:

[d]T ← DecIPFE(ctIPFE, skIPFE), [v]T := e([ctx]
>
1 , [Fcty]2)− [d]T

If v ∈ [0, n ·m ·B3], return log([v]T). Otherwise, return ⊥.

Fig. 4. Quadratic FE: Quad. Here, IPFE := (SetupIPFE,EncIPFE,Enc
′
IPFE,KeyGenIPFE,DecIPFE)

is a (tag-free) partially function-hiding inner-product FE, as defined in Section 3.1.

underlying inner-product FE is partially function-hiding CPA (resp. CCA) simu-
lation secure, assuming the bilateral DLIN assumption and the DDH assumption
in G1.

Namely, for any PPT adversary A, there exist PPT adversaries B1, B2, and
B3 such that:

AdvCPA-SIMQuad,A ≤ AdvDDH
G1,B1

(λ) + AdvDLIN
PG,B2

(λ) + AdvCPA-PFH-SIMIPFE,B3
(λ) +

4

p
.

Besides, for any PPT adversary A′, there exist PPT adversaries B′1, B′2, and
B′3 such that:

AdvCCA-SIMQuad,A′ ≤ AdvDDH
G1,B′

1
(λ) + AdvDLIN

PG,B′
2
(λ) + AdvCCA-PFH-SIMIPFE,B′

3
(λ) +

4

p
.

Proof. We prove the second part of the theorem, that is, CCA security. The
CPA security proof is a straightforward simplification, hence omitted. Let A be
a PPT adversary against the CCA security of Quad. We use a sequence of hybrid
games Gamei for i ∈ {1, 2, 3, 4}, defined in Fig.5, and we denote the advantage
εi := Pr[1 ← Gamei(A, 1λ)]. We show that these games are computationally
indistinguishable: RealCCA-Quad

A (1λ) ≡ Game1 ≈c Game2 ≈c Game3 ≈c Game4 ≈s

16

IdealCCA-Quad
A,S (1λ), for the PPT simulator S := (S̃etup, Ẽnc, K̃eyGen, D̃ec) defined

in Fig.6.

Game1: is as RealCCA-Quad
A (1λ), except the encryption algorithm Enc′ is used

instead of Enc. Since these algorithms are identically distributed on input vectors
in the span on [M]1, this does not change the advantage of A:

Pr[1← RealCCA-Quad
A (1λ)] = ε1.

Game2: we use the DDH assumption in G1 to switch the distribution of the
vector [ar]1 in the challenge ciphertext to uniformly random over G2

1. Namely,
we build a PPT adversary B1 against the DDH assumption such that

ε2 − ε1 ≤ AdvDDH
G1,B1

(λ).

Upon receiving the DDH challenge (PG, [a]1, [c]1), B1 samples U ←R Zn×2p ,
V ←R Zm×3p , B ← DLIN, computes [M]1 as defined in Fig.4, and runs (pkIPFE,

mskIPFE) ← SetupIPFE(1
λ,PG, [M]1), tanks to which it can simulate the pub-

lic key pk for A, and answer its queries to OKeyGen and ODec. When A sub-
mits its challenge (x,y), B1 samples s ←R Z2

p, computes [ctx]1 := [x + Uc]1,

[cty]2 := [y + VBs]2, [z]1 :=

[
c⊗ cty
x⊗Bs

]
1

and returns the challenge ciphertext

([ctx]1, [cty]2,Enc
′
IPFE(mskIPFE, [z]1)) to A. When [c]1 is a real DDH challenge,

that is, of the form [c]1 := [ar]1 for some r ←R Zp, B1 simulates Game1, whereas
it simulates Game2 when [c]1 is uniformly random over G2

1.

Game3: we use the bilateral DLIN assumption to switch the distribution of the
vector [Bs]2 to uniformly random over G3

2. Namely, we build a PPT adversary
B2 such

ε3 − ε2 ≤ AdvDLIN
PG,B2

(λ).

Upon receiving the DLIN challenge (PG, {[B]s, [t]s}s∈{1,2}), B2 samples U ←R

Zn×2p , V ←R Zm×3p , a ←R DDH, computes [M]1 as defined in Fig.4, and runs
(pkIPFE,mskIPFE) ← SetupIPFE(1

λ,PG, [M]1), tanks to which it can simulate the
public key pk for A, and answer its queries to OKeyGen and ODec. When A sub-
mits its challenge (x,y), B samples c ←R Z2

p, computes [ctx]1 := [x + Uc]1,

[cty]2 := [y+Vt]2, [z]1 :=

[
c⊗ (y +Vt)

x⊗ t

]
1

and returns the challenge ciphertext

([ctx]1, [cty]2,Enc
′
IPFE(mskIPFE, [z]1)) toA. When {[t]s}s∈{1,2} is a real DLIN chal-

lenge, that is, of the form [t]s := [Bs]s for some s ←R Z2
p, B2 simulates Game2,

whereas it simulates Game3 when [t]s is uniformly random over G2
s.

Game4: we use the simulator (S̃etupIPFE, ẼncIPFE, K̃eyGenIPFE, D̃ecIPFE) of IPFE,
as described in Fig.5. Namely, there exists a PPT adversary B3 such that

ε4 − ε3 ≤ AdvCCA-PFH-SIMIPFE,B3
(λ).

17

Game1, Game2, Game3, Game4 :

PG ← GGen(1λ), a←R DDH, B←R DLIN, U←R Zn×2
p , V←R Zm×3

p

M :=

(
a⊗ (Idm|VB) 0

0 Idn ⊗B

)
(pkIPFE,mskIPFE)← SetupIPFE(1

λ,PG, [M]1), pk′ := pkIPFE, msk′ := mskIPFE

(p̃kIPFE, m̃skIPFE)← S̃etupIPFE(1
λ,PG, [M]1), pk′ := p̃kIPFE, msk′ := m̃skIPFE

pk := ([Ua]1, [VB]2, pk
′), msk := (U,V,msk′)

(x,y)← A(pk)
ct? ← OEnc(x,y)
α← AOKeyGen(·),ODec(·,·)(ct?)

OEnc(x,y):

r ←R Zp, c := ar, c←R Z2
p , ctx := x+Uc

s←R Z2
p, t := Bs, t←R Z3

p , cty := y +Vt

ctIPFE := Enc′IPFE

(
mskIPFE,

[
c⊗ cty
x⊗ t

]
1

)
ctIPFE := ẼncIPFE

(
m̃skIPFE

)
Return ([ctx]1, [cty]2, ctIPFE)

OKeyGen(F):
skF := KeyGen(msk,F)

dF := ct>x Fcty − x>Fy,vF := M(M>M)−1M>
(
vect(U>F)
vect(FV)

)
skF := K̃eyGenIPFE

(
m̃skIPFE, dF,vF

)
Return skF

ODec(ct := ([c1]1, [c2]2, ctIPFE),F):

skF := KeyGenIPFE

(
mskIPFE,

(
vect(U>F)
vect(FV)

))
, [d]T ← DecIPFE(ctIPFE, skF)

vF := M(M>M)−1M>
(
vect(U>F)
vect(FV)

)
, [d]T ← D̃ecIPFE(m̃skIPFE, ctIPFE,vF)

[v]T := [c>1 Fc2]T − [d]T
If v ∈ [0, n ·m ·B3], return v; otherwise, return ⊥.

Fig. 5. Games for the security proof of the quadratic FE from Fig.4. In each procedure,
the components inside a solid (dotted, gray) frame are only present in the games
marked by a solid (dotted, gray) frame. (S̃etupIPFE, ẼncIPFE, K̃eyGenIPFE, D̃ecIPFE) is a
PPT simulator for the partially function-hiding SEL-SIM secure inner-product FE:
IPFE.

18

S̃etup(1λ,Fquad):
PG ← GGen(1λ), a←R DDH, B←R DLIN, U←R Zn×2

p , V←R Zm×3
p

M :=

(
a⊗ (Idm|VB) 0

0 Idn ⊗B

)
, (p̃kIPFE, m̃skIPFE) ←

S̃etupIPFE(1
λ,PG, [M]1)

Return p̃k :=
(
[Ua]1, [VB]2, p̃kIPFE

)
, m̃sk :=

(
U,V, m̃skIPFE

)
Ẽnc(m̃sk):
ctx ←R Znp , cty ←R Zmp
Return ctx,y :=

(
[ctx]1, [cty]2, ẼncIPFE

(
m̃skIPFE

))
K̃eyGen(m̃sk,F,x>Fy):

dF := ct>x Fcty − x>Fy, vF := M(M>M)−1M>
(
vect(U>F)
vect(FV)

)
Return K̃eyGenIPFE

(
m̃skIPFE, dF,vF

)
D̃ec(m̃sk, ct,F):

vF := M(M>M)−1M>
(
vect(U>F)
vect(FV)

)
, [d]T ← D̃ecIPFE(m̃skIPFE, ct,vF),

[v]T := [ct>x Fcty]T − [d]T .
If v ∈ [0, n ·m ·B3], return v; otherwise, return ⊥.

Fig. 6. PPT simulator for the security proof of the quadratic FE from Fig.4. Here,
(S̃etupIPFE, ẼncIPFE, K̃eyGenIPFE, D̃ecIPFE) is a PPT simulator for the partially function-
hiding, simulation secure inner-product FE, IPFE, used in the quadratic FE.

Adversary B3 samples a←R DDH, B←R DLIN, U←R Zn×2p , V ←R Zm×3p , and
simulates A’s view straightforwardly, using the fact that for all x ∈ Znp , y ∈ Zmp ,
F ∈ Zn×mp , c ∈ Z2

p, t ∈ Z3
p, we have:(

c⊗ cty
x⊗ t

)>(
vect(U>F)
vect(FV)

)
= ct>xFcty − x>Fy,

where ctx = x+Uc, and cty = y +Vt.

IdealCCA-Quad
A,S (1λ): is as Game4, except that ctx and cty in the challenge ciphertext

are uniformly distributed. We show that these two games are statistically close.
Namely, we show that the vectors Uc and Vt are statistically close to uniformly
random over Z2

p and Z3
p, respectively.

To prove so, we use the following basis of Z2
p and Z3

p: (a|a⊥) and (B|b⊥) with
a ←R DDH, B ←R DLIN, and a⊥ ∈ Z2

p, b⊥ ∈ Z3
p are such that a>a⊥ = 0 and

B>b⊥ = 0. Such basis exist assuming a and B are both full rank, which happens
with probability at least 1 − 2

p over the choice of a ←R DDH and B ←R DLIN.
We have: U> := au>0 + a⊥u>1 , and V> := BV0 + b⊥v>1 , with u0,u1 ←R Znp ,

19

V0 ←R Z2×m
p , and v1 ←R Zmp . We will show that u1 and v1 only appear in

the adversary view as (c>a⊥)u1 in ctx, and as (t>b⊥)v1 in cty. Since we have
ctx = x + u0(c

>a) + u1(c
>a⊥) and cty = y + V>0 (B

>t) + v1(t
>b⊥), when

c>a⊥ 6= 0, and t>b⊥ 6= 0, the vectors ctx and cty are uniformly random over
Z2
p and Z3

p, respectively. With probability 1− 2
p over the choice of c←R Z2

p and
t←R Z3

p, we have c>a⊥ 6= 0, and t>b⊥ 6= 0, which proves

ε4 ≤ Pr
[
1← IdealCCA-Quad

A (1λ)
]
+

4

p
.

We now show that u1 and v1 only appear in ctx and cty, as indicated above.
In the public key, we have a>U> = a>(au>0 +a⊥u>1) = (a>a)u>0 , and B>V> =
B>(BV0 + b⊥v>1) = (B>B)v>0 . The information needed to simulate OKeyGen

and ODec is contained in F, ctx, cty, x>Fy, M, and

M>
(

vect((au>0 + a⊥u>1)F)
vect(F(BV0 + b⊥v>1)

>)

)
= M>

(
vect(au>0 F)
vect(FBV0)

)
,

where the equality holds by definition of M. That is, the only information about
u1 and v1 is contained in ctx, cty, which concludes the proof. ut

4 Partially-Hiding Inner Product FE

In this section we build a partially-hiding, simulation-secure inner-product FE
scheme, as defined in Section 3.1, based on the SXDH assumption. Together with
the generic construction from Section 3, this gives the quadratic FE advertised
in Section 1, Fig.2.

Overview of the partially-hiding inner-product FE. We now highlight the con-
struction of our new partially-hiding public-key FE for inner products. Our start-
ing point is the FE for inner products from [ALS16], described in Fig.7. It is not

pk = [a], [Ua] //[a]←R G2, U←R Zd×2
p

Enc(x ∈ Zn) =
[

ar
x+Uar

]
∈ Gn+2 //r ←R Zp

KeyGen(y ∈ Zn) =
(
y,

(
−U>y

y

))
∈ Zn × Zn+2

p

Fig. 7. FE for inner products, from [ALS16].

function-hiding since y is part of the decryption keys generated by KeyGen. As
in [Lin17, Section 6.3], we use the fact that the decryption computes the inner

20

product of Enc(x) and KeyGen(y) to obtain [x>y] ∈ G. Namely, we replace the
vector y in each decryption key by an ALS encryption of y, and x in each ci-
phertext is replaced by an ALS decryption key for x (see Fig.3). Function-Hiding
(hiding y) follows from the security of the inner ALS FE, whereas security (hid-
ing x) follows from the security of the outter ALS FE. Note that we use the fact
that the KeyGen algorithm from [ALS16] FE can act on vectors in G2, and the
multiplications can be computed using the pairing e : G1 ×G2 → GT to recover
the inner product of x and y in GT .

To make our scheme public-key, we need to publish a restricted secret key
for the inner layer FE that lets KeyGenin(x) run on vectors x spanned by the
matrix M described in Section 3 (recall that M is a full rank, n times m matrix,
with n > m). If we denote the master secret key of the inner layer FE by
msk := U ∈ Zd×2p , the restricted key would simply be U>M.

We prove simulation security, which is necessary to be of use in our quadratic
FE scheme, and which is stronger than the classical indistinguishability based
security for FE. To do so, we use the simulation security of [ALS16], which was
proven in [AGRW17,Wee17]. We obtain simulation security in the semi-adaptive
setting, where the adversary sends its challenge before querying any secret keys,
but after receiving the public key. This is the best we can hope for, since a
straightforward adaptation of the results from [BSW11,AGVW13] show that
simulation security is impossible in the adaptive setting (where the adversary
can query secret keys before sending its challenge ciphertext).

[Lin17] also builds function-hiding FE from a two layered FE encryption, but
uses [ABDP15] instead of [ALS16], and only obtains indistinguishability security,
in the private key setting (see Fig.3).

Our partially-hiding, simulation-secure inner-product FE is described in Fig.8.

Correctness. For all t ∈ Zmp and y ∈ Znp , we have:

 ar(
−V>Mt

Mt

)
+Uar

>
−U

>
(

bs
y +Vbs

)
(

bs
y +Vbs

)
 =

(
−V>Mt

Mt

)>(
bs

y +Vbs

)

= (Mt)>y.

The first equality uses the correctness of the outer ALS encryption, while the
second equality uses the correctness of the inner ALS encryption. We conclude
using the completeness of the QANIZK argument.

Remark 1 (Large inputs). First, we observe that the encryption algorithm of our
partially function-hiding inner product FE can take as input arbitrary vectors
x ∈ Znp , as opposed to x ∈ [0, B]n for a polynomially bounded B. The decryption
is in two step: first Declarge(Enc(x),KeyGen(msk,y)) for arbitrary vectors x ∈ Znp
and y ∈ Znp , recovers [x>y]T . The second step solves the discrete logarithm to
recover x>y. The second step is only efficient for polynomially bounded output,
whereas the first step handles arbitrary large inputs.

21

Setup(1λ,PG, [M]1 ∈ Gn×m1):

a,b ←R DDH, (crs, trap)← Gencrs(par, [a]1) , U ←R Z(n+2)×2
p ,

V←R Zn×2
p

Return pk :=
(
[a]1, [Ua]1, [V

>M]1, [M]1, crs
)
, msk := ([b]2,V,U)

Enc(t ∈ Zm, τ):

r ←R Zp, c := ar, π ← Prove(crs, τ, [c]1, r)

Return ct :=

 c(
−V>Mt

Mt

)
+Uc


1

, π


Enc′(msk, [x]1 ∈ Gn1 , τ):

r ←R Zp, c := ar, π ← Prove(crs, τ, [c]1, r)

Return ct :=

 c(
−V>x

x

)
+Uc


1

, π


KeyGen(msk,y ∈ Znp):
s←R Zp

Return [sky]2 :=

−U
>
(

bs
y +Vbs

)
(

bs
y +Vbs

)


2

∈ Gn+4
2

Dec(τ, [sky]2, ct):

Parse ct :=

([
c
c′

]
1

, π

)
, with [c]1 ∈ G2

1.

If Ver(crs, τ, π, [c]1) = 0, then return ⊥. Return e

([
c
c′

]>
1

, [sky]2

)
∈

GT .

Fig. 8. simulation-secure, partially function-hiding inner-product FE. The compo-
nents highlighted in gray are only present in the CCA secure scheme. Here, we use
a QANIZK argument Π := (Genpar,Gencrs,Prove, Sim,Ver), where par = PG, a pairing
group PG = (G1,G2,GT , p, P1, P2, e). Given ρ := [a]1, the language Lρ is defined as
Lρ =

{
[c]1 ∈ G2

1 : ∃r ∈ Zp s.t.c = ar
}
.

22

The second observation we make is that for all y ∈ Znp , KeyGen(msk,y) out-
puts a vector or group elements [d]2 ∈ G`2, for some dimension `. The algorithm
K̃eyGen from the simulator of our scheme described in Fig.??, when given as
input m̃sk, ỹ, and x>y, first computes d ∈ Z`p, and then returns [d]2 as the
functional decryption key for y. Moreover, it is a linear function in its input ỹ

and x>y. Thus, we can run K̃eyGen(m̃sk, [ỹ]2, [x
>y]2) to get the functional de-

cryption key [d]2. Otherwise stated, we achieved a slightly stronger simulation
security than in Definition 7, since the simulator only requires to know the value
[ỹ]2 and x>y]2 in G2, as opposed to the values ỹ and x>y over Zp.

Consequently, the quadratic FE from Section 3 that builds upon our par-
tially function-hiding inner product FE inherits the same properties. Therefore,
it can be use to encrypt random vectors u ∈ Znp , and v ∈ Zmp . Each functional
decryption key corresponds to a pair of indices (i, j) ∈ [n]× [m], and the decryp-
tion outputs [uivj]T . Simulation security ensures that the adversary view can
be simulated from [uivj]2 only, which are pseudorandom by the DDH assump-
tion in G2. This allows users to evaluate outputs of a PRG over GT , which is
unachievable with an indistinguishability-based quadratic FE.

Theorem 2 (Security). The inner-product FE described in Fig.8 is partially-
hiding, CPA simulation-secure, assuming the SXDH assumption. Moreover, if
the QANIZK argument Π is one-time simulation sound, then the FE is CCA
simulation-secure. Namely, for any PPT adversary A, there exist PPT adver-
saries B1 and B2 such that:

AdvCPA-PFH-SIMIPFE,A (λ) ≤ AdvDDH
G1,B1

(λ) + 2Qsk ·AdvDDH
G2,B2

(λ) +
1 +Qsk

p
,

where Qsk denotes the number of queries to OKeyGen. Moreover, for any PPT
adversary A′, there exist PPT adversaries B′1, B′2 and B′3 such that:

AdvCCA-PFH-SIMIPFE,A (λ) ≤ AdvDDH
G1,B′

1
(λ) + 2(Qsk +QDec) ·AdvDDH

G2,B′
2
(λ)

+QDec ·AdvOT-Π
B′

2
(λ) +

1 +Qsk +QDec

p
,

where Qsk denotes the number of queries to OKeyGen, and QDec denotes the number
of queries to ODec.

The proof of Theorem 2 is given in the full version of this paper.

23

References

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional
encryption schemes for inner products. In PKC 2015, LNCS 9020, pages
733–751. Springer, Heidelberg, March / April 2015.

AGRW17. M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product
functional encryption from pairings. In EUROCRYPT 2017, Part I, LNCS
10210, pages 601–626. Springer, Heidelberg, April / May 2017.

AGVW13. S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional
encryption: New perspectives and lower bounds. In CRYPTO 2013, Part II,
LNCS 8043, pages 500–518. Springer, Heidelberg, August 2013.

AJ15. P. Ananth and A. Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO 2015, Part I, LNCS 9215, pages 308–
326. Springer, Heidelberg, August 2015.

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for
inner products, from standard assumptions. In CRYPTO 2016, Part III,
LNCS 9816, pages 333–362. Springer, Heidelberg, August 2016.

AS17. P. Ananth and A. Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In EURO-
CRYPT 2017, Part I, LNCS 10210, pages 152–181. Springer, Heidelberg,
April / May 2017.

BBL17. F. Benhamouda, F. Bourse, and H. Lipmaa. CCA-secure inner-product
functional encryption from projective hash functions. In PKC 2017, Part II,
LNCS 10175, pages 36–66. Springer, Heidelberg, March 2017.

BCFG17. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional en-
cryption for quadratic functions with applications to predicate encryption.
In CRYPTO 2017, Part I, LNCS 10401, pages 67–98. Springer, Heidelberg,
August 2017.

BGI+01. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vad-
han, and K. Yang. On the (im)possibility of obfuscating programs. In
CRYPTO 2001, LNCS 2139, pages 1–18. Springer, Heidelberg, August
2001.

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and
challenges. In TCC 2011, LNCS 6597, pages 253–273. Springer, Heidelberg,
March 2011.

BV15. N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In 56th FOCS, pages 171–190. IEEE Computer So-
ciety Press, October 2015.

BW07. D. Boneh and B. Waters. Conjunctive, subset, and range queries on en-
crypted data. In TCC 2007, LNCS 4392, pages 535–554. Springer, Heidel-
berg, February 2007.

CHK04. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from
identity-based encryption. In EUROCRYPT 2004, LNCS 3027, pages 207–
222. Springer, Heidelberg, May 2004.

CW14. J. Chen and H. Wee. Semi-adaptive attribute-based encryption and im-
proved delegation for Boolean formula. In SCN 14, LNCS 8642, pages
277–297. Springer, Heidelberg, September 2014.

Dam92. I. Damgård. Towards practical public key systems secure against chosen
ciphertext attacks. In CRYPTO’91, LNCS 576, pages 445–456. Springer,
Heidelberg, August 1992.

24

DGP18. E. Dufour Sans, R. Gay, and D. Pointcheval. Reading in the dark: Classify-
ing encrypted digits with functional encryption. Cryptology ePrint Archive,
Report 2018/206, 2018. https://eprint.iacr.org/2018/206.

ElG84. T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In CRYPTO’84, LNCS 196, pages 10–18. Springer,
Heidelberg, August 1984.

FO99. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In CRYPTO’99, LNCS 1666, pages 537–554.
Springer, Heidelberg, August 1999.

GGG+14. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sa-
hai, E. Shi, and H.-S. Zhou. Multi-input functional encryption. In EU-
ROCRYPT 2014, LNCS 8441, pages 578–602. Springer, Heidelberg, May
2014.

GKW16. R. Goyal, V. Koppula, and B. Waters. Semi-adaptive security and bundling
functionalities made generic and easy. In TCC 2016-B, Part II, LNCS 9986,
pages 361–388. Springer, Heidelberg, October / November 2016.

GPSW06. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In ACM CCS 06, pages
89–98. ACM Press, October / November 2006. Available as Cryptology
ePrint Archive Report 2006/309.

GVW15. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for
circuits from LWE. In CRYPTO 2015, Part II, LNCS 9216, pages 503–523.
Springer, Heidelberg, August 2015.

JR13. C. S. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear
subspaces. In ASIACRYPT 2013, Part I, LNCS 8269, pages 1–20. Springer,
Heidelberg, December 2013.

KLM+18. S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu.
Function-hiding inner product encryption is practical. In SCN 18, LNCS
11035, pages 544–562. Springer, Heidelberg, September 2018.

KSW08. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In EUROCRYPT 2008,
LNCS 4965, pages 146–162. Springer, Heidelberg, April 2008.

KW15. E. Kiltz and H. Wee. Quasi-adaptive NIZK for linear subspaces revisited.
In EUROCRYPT 2015, Part II, LNCS 9057, pages 101–128. Springer, Hei-
delberg, April 2015.

Lin17. H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 599–629.
Springer, Heidelberg, August 2017.

LT17. H. Lin and S. Tessaro. Indistinguishability obfuscation from trilinear maps
and block-wise local PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages
630–660. Springer, Heidelberg, August 2017.

LV16. H. Lin and V. Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In 57th FOCS, pages
11–20. IEEE Computer Society Press, October 2016.

NY90. M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd ACM STOC, pages 427–437. ACM
Press, May 1990.

O’N10. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556.

25

https://eprint.iacr.org/2018/206
http://eprint.iacr.org/2010/556

SW14. A. Sahai and B. Waters. How to use indistinguishability obfuscation: de-
niable encryption, and more. In 46th ACM STOC, pages 475–484. ACM
Press, May / June 2014.

Wee17. H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited.
In TCC 2017, Part I, LNCS 10677, pages 206–233. Springer, Heidelberg,
November 2017.

YAHK11. S. Yamada, N. Attrapadung, G. Hanaoka, and N. Kunihiro. Generic
constructions for chosen-ciphertext secure attribute based encryption. In
PKC 2011, LNCS 6571, pages 71–89. Springer, Heidelberg, March 2011.

26

	A New Paradigm for Public-Key Functional Encryption for Degree-2 Polynomials

