
Memory-Tight Reductions for Practical
Key Encapsulation Mechanisms

Rishiraj Bhattacharyya

NISER, HBNI, India.
rishiraj.bhattacharyya@gmail.com

Abstract. The efficiency of a black-box reduction is an important goal
of modern cryptography. Traditionally, the time complexity and the suc-
cess probability were considered as the main aspects of efficiency mea-
surements. In CRYPTO 2017, Auerbach et al introduced the notion of
memory-tightness in cryptographic reductions and showed a memory-
tight reduction of the existential unforgeability of the RSA-FDH signa-
ture scheme. Unfortunately, their techniques do not extend directly to
the reductions involving intricate RO-programming. The problem seems
to be inherent as all the other existing results on memory-tightness are
lower bounds and impossibility results. In fact, Auerbach et al conjec-
tured that a memory-tight reduction for IND-CCA security of Hashed-
ElGamal KEM is impossible.

– We refute the above conjecture. Using a simple RO simulation tech-
nique, we provide memory-tight reductions of IND-CCA security of
the Cramer-Shoup and the ECIES version of Hashed-ElGamal KEM.

– We prove memory-tight reductions for different variants of Fujisaki-
Okamoto Transformation. We analyze the modular transformations
introduced by Hofheinz, Hövermanns and Kiltz (TCC 2017). In ad-
dition to the constructions involving implicit rejection, we present
a memory-tight reduction for the IND-CCA security of the trans-
formation QFO⊥m . Our techniques can withstand correctness-errors,
and applicable to several lattice-based KEM candidates.

Keywords: Memory-tight Reduction; Hashed-ElGamal; FO transfor-
mation

1 Introduction

Memory Efficiency of Black-box Reductions Black-box reduction is an im-
perative tool in modern cryptography. The security of any scheme S is typically
argued by an algorithm R. Given an adversary, AS against S, R with black-box
access to A is shown to solve some underlying hard problem P. The efficiency of
a black-box reduction is measured by the resources R uses, typically in terms of
A. Traditionally the reductions aimed at optimizing the time complexity and/or
the success probability [5,4,11]. However, Auerbach et al [3] observed that some
reductions which are tight in success probability and time complexity, require a

large amount of memory. If the underlying problem is memory sensitive (easier to
solve with larger memory), then a memory loose reduction does not rule out the
existence of an efficient adversary. They noted further that many of the standard
assumptions including LPN, SVP, Discrete Logarithm Problem in prime fields,
factoring are memory sensitive. Hence it is imperative to find memory-efficient
reductions when the security is based on the hardness of these problems.

Unfortunately, most of the existing results on memory-tight reductions are
lower bounds. In [3], authors ruled out memory-tight, restricted black-box re-
ductions for the security of multi-signatures from unique signatures, and mul-
ticollision resistance from collision resistance. In [21], Wang et al showed lower
bounds for a larger class of black-box reductions including the security of public-
key encryption and signature schemes in the multi-user setting. In [14], Demay
et al considered the indifferentiability notion in the memory restricted setting,
and proved the impossibility of domain extension of hash functions (even by one
bit).

On the other hand, to the best of our knowledge, the only positive result
so far is the memory-efficient reduction for RSA FDH in the Random Oracle
model [3]. The authors introduced new techniques for the random oracle model
and showed, using pseudo-random functions and the power of rewinding the
adversary once, one can prove a memory-tight reduction of the existential un-
forgeability of RSA-FDH from RSA assumption. Their technique seems to be
generally applicable for hash and sign paradigm, where the domain of the under-
lying trapdoor permutation enjoys some form of homomorphism (required for
applying Coron’s technique [12]).
Key Encapsulation Mechanisms. A Key Encapsulation Mechanism (KEM)
is a fundamental primitive to construct efficient public-key cryptosystem. Re-
search in KEM design has been rejuvenated in the last few years due to the on-
going effort to standardize post-quantum cryptographic algorithms. While con-
structions of IND-CCAsecure KEM in the “classical” setting have been known
for years (see [15] for a comprehensive treatment), the reductions were non-
tight, and required perfect correctness from the underlying public-key encryp-
tion scheme. There are numerous recent works on KEM in the quantum setting
[10,20,16,19,17]. However, not much progress has been made in the classical
setting until the work of Hofheinz, Hövermanns and Kiltz [16]. HHK revisited
the KEM version of Fujisaki Okamoto transformations and presented a modu-
lar analysis of multiple variants. Their results, notably include, tight reduction
(traditional sense) even when underlying public-key encryption scheme has some
correctness error.

1.1 Our Contributions

In this paper, we present memory-efficient reductions of the IND-CCA security
of hashed-ElGamal and other variants of Fujisaki-Okamoto transformations.

Memory-tight Reduction for Hashed-ElGamal Our starting point is the
following conjecture of Auerbach et al [3].

2

Conjecture 1 [3] Memory-tight Reduction for Hashed-ElGamal does not exist.

In this paper, we refute the above conjecture. We introduce a simple “map-
then-prf” technique to simulate the random oracle in a memory-efficient way.
Our technique programs the Random Oracle non-adaptively, avoiding the need
to tabulate the Random Oracle queries. We consider two versions of Hashed-
ElGamal KEM, ECIES [1,2] and HEG[13]. We summarize these results in the
following two informal theorems.

Theorem 2 (Informal). Let G be a prime-order cyclic group. Let F : {0, 1}λ+1×
G×G→ K be a prf. There exists a memory-tight reduction, in the random ora-
cle model, of the IND-CCA security of HEG over G and K from the gap-Diffie-
Hellman problem over G.

Theorem 3 (Informal). Let G,GT be prime-order cyclic groups and ê : G ×
G → GT be a bilinear map. Let F : {0, 1}λ × GT → K be a prf. There exists a
memory-tight reduction, in the random oracle model, of the IND-CCA security
of ECIES over G and K from the Computational-Diffie-Hellman problem over
G.

Memory-tight reduction for variants of Fujisaki-Okamoto Transforma-
tions. Fujisaki-Okamoto transformation and other related KEM constructions
have gained particular importance in recent years for their applications in con-
structing post-quantum KEM schemes. In particular, the modular analysis in
[16] has been applied widely in constructing lattice-based candidates. In this
paper, we prove memory-tight reduction for three variants of Fujisaki-Okamoto
transformations (described in Table 1).

We revisit the analysis in [16] and show techniques for memory-tight reduc-
tions for all the modules, even withstanding the correctness errors. We summa-
rize the results below.

– Transformations U 6⊥,U 6⊥m,U
⊥,U⊥m. In [16], the authors presented four closely

related modules to construct an IND-CCA secure KEM from a public-key
encryption scheme PKE. The security requirement from PKE depends on the
specific variant of U. In this paper, we show new RO simulation techniques
for all the four variants to convert corresponding the reductions in [16] into
memory-tight ones.

– Preprocessing Module T . In [16], the transformation T was presented as
the preprocessing module to convert (with a tight reduction) an IND-CPA se-
cure public-key encryption scheme PKE to a deterministic OW-PCVA secure
public-key encryption scheme. We observe that the RO simulation technique
of Auerbach et al [3], is sufficient for a memory-tight reduction for OW-PCA
security of T [PKE]. When applied with the new reductions for U6⊥ and U 6⊥,
this gives a memory-tight reduction for the IND-CCA security of KEM 6⊥ and
KEM6⊥m respectively.

– A new intermediate module V . The modules with explicit reject, (namely
U⊥m and U⊥) require security relative to a ciphertext verification oracle. Un-
fortunately, our technique only proves OW-PCA security of T . To bridge

3

the gap, we present a transformation V to convert a OW-PCA determinis-
tic public-key encryption scheme to a OW-PCVA deterministic public-key
encryption scheme via a memory-efficient reduction. When applied with T
and U⊥m, we get a memory efficient reduction (in the classical setting) for
the scheme QKEM⊥m of [16] (Table 4 in [15]).

Constructions Encap(pk) Decap(sk′, c)

KEM6⊥ = U 6⊥
[
T [PKE, G], H

]
m

$←−M
c = Enc(pk,m, G(m))
K = H(m, c)

m′ = Dec(sk, c)
if m′ 6=⊥ ∧c = Enc(pk,m′, G(m′)) then K = H(m′, c)
else K = H(s, c)

KEM6⊥m = U 6⊥m
[
T [PKE, G], H

]
m

$←−M
c = Enc(pk,m, G(m))
K = H(m)

m′ = Dec(sk, c)
if m′ 6=⊥ ∧c = Enc(pk,m′, G(m′)) then K = H(m′)
else K = H(s, c)

QKEM⊥m
= U⊥m

[
V
[
T [PKE, G], H′

]
, H
] m

$←−M
c1 = Enc(pk,m, G(m))
c2 = H′(m)
c = c1||c2
K = H(m)

Parse c = c1||c2, m′ = Dec(sk, c1)
if m′ 6=⊥ ∧c1 = Enc(pk,m′, G(m′)) ∧ c2 = H′(m′)

K = H(m′)
else

K =⊥
Table 1. Considered variants of Fujisaki-Okamoto Transformations. PKE =
(Keygen, Enc, Dec) is an IND-CPA secure public-key encryption scheme. In the column
Decap, s is a random string, sk′ = sk||s.

Other Implications. Besides memory efficiency, we found two additional im-
plications of our work. This result refutes the folklore idea that the additional
hash present in the QKEM⊥m transformation is redundant in the classical setting
[15,16,17]. The second implication is that V composed with T gives a OW-PCVA
secure encryption scheme from an IND-CPA secure encryption scheme without
the γ-spread requirement of [16].

1.2 Overview of our Techniques.

Challenges with existing technique The memory-efficient technique to sim-
ulate an RO in [3] (and later suggested in [8] in the context of KEM) is to
evaluate a PRF on the input. However, in the IND-CCA security reduction for
key encapsulation mechanisms, the reduction often needs to adaptively program
the output of the RO. Evaluating the prf directly on the query input does not
provide the required programming capability.
For example, consider the basic construction of a Key Encapsulation Mecha-
nism from a deterministic public-key encryption scheme PKE = (Gen, Enc, Dec).
The public-key, secret-key of the KEM would be a key pair (pk, sk)← Gen. An
encapsulation involves choosing a random message m, and computing

c = Enc(pk,m), k = H(m, c).

The output of the encapsulation is (c, k). A traditional security proof assuming
H to be a random oracle would be to maintain a table containing the queries and

4

corresponding responses of H queries. Whenever the adversary makes a decap-
sulation query on ĉ, the reduction will check the table whether it contains an
entry (m̂, ĉ, ĥ) such that Enc(pk, m̂) returns ĉ. If such an entry exists, the answer

to the decapsulation query would be ĥ. Otherwise the reduction would return a
randomly sampled element ĥ′, and save (−, ĉ, ĥ′) in the list. The first entry will
be filled up when, in a future hash query, the adversary submits (m̂, ĉ) where
ĉ = Enc(pk, m̂).

Now consider a memory-efficient reduction where simulation of H is performed
using a prf F (k, .). A hash query on (m̂, ĉ) is returned with F (k, m̂, ĉ). The
problem arises when simulating the decapsulation query ĉ. As the entries are no
longer saved in a table, the reduction cannot find the required m̂ to complete the
prf evaluation! One may attempt to solve the issue by answering the hash query
with F (k, ĉ). In that case, the decapsulation queries can be answered. However,
two hash queries with the same ĉ but different m̂ would result in a collision!
Hence, this idea fails as well.

Core of our Idea: “injectively map and prf”. Our method originates from
the following observation. Let us call (m̂, ĉ) a good pair if ĉ = Enc(pk, m̂). In the
IND-CCA security game, the answer to a decapsulation query ĉ needs to match
with the response of a hash query (m̂, ĉ) only when (m̂, ĉ) is a good pair. When
answering hash queries on a good pair (m̂, ĉ), we can “program” the output to
be F (k,m0, ĉ) (m0 being any fixed message). For pairs which are not good, we
can query an independent prf F ′(k, m̂, ĉ) to compute the responses. Answer to
a decapsulation query on (a valid ciphertext) ĉ will simply be F (k,m0, ĉ). The
idea can be generalized as “ Apply an appropriate injective function φ on the
input, and then apply the prf”. As the composition of an injective function with
a prf results into a prf, we can use the arguments of [3]. This basic technique
can readily be applied to the Cramer-Shoup version of Hashed-ElGamal, as well
as the modules U6⊥, and U⊥.

Technique for U6⊥m,U
⊥
m. In these cases, the hash function is evaluated only

on m. Thus, the above idea is not applicable directly. However, as PKE is de-
terministic, the reduction can still construct a good pair by simply computing
ĉ = Enc(pk, m̂), and respond a hash query on m̂ by F (k, ĉ). We no longer need
to use the independent prf F ′, as the hash query only contains the message.

Interestingly, the technique works even if PKE has amall correctness errors.
Although, Enc(pk, .) is no longer injective, finding a collision in the output of
Enc(pk, .) implies finding a correctness error. Conditioned on no collision in the
output of Enc(pk, .), the argument of [3] goes through. However, one needs to be
careful here, as pointed out in [8]. In some definition of deterministic encryption,
it is easy to come up with a scheme where a ciphertext decrypts to a message
which in turn encrypts to a different ciphertext. To solve the issue, we require
that for every message m̂ there exists a single ciphertext ĉ that decrypts to m̂.
Our definition of deterministic encryption is carefully considered to maintain
this property. Moreover, the schemes generated by the transformation T of [16]
satisfies the definition.

5

Technique for ECIES. In the case of ECIES, we have a group G of prime
order q with a generator g ∈ G. A public-key is a random element X with
the corresponding secret-key x such that X = gx. The encapsulation involves

choosing a random y
$←− Zq and computing

Y = gy Z = Y x k = H(Z)

The output of the encapsulation is (Y, k). While ECIES is analogous to U 6⊥m, we
cannot find Y from Z! Hence, we cannot “map to ciphertext space” and apply
F .

Fortunately, the “map-then-prf” technique is not limited to mapping to the
ciphertext space. We note, when ECIES is implemented using a pairing friendly
curve, there exists a bilinear map ê : G × G → GT for some GT . Moreover,
by the bilinear property, ê(gx, gy) = ê(g, gxy). We simulate the random oracle
using F (k, ê(g, .)). The decapsulation oracle can maintain consistency by using
F (k, ê(X, .)).

2 Notations and Preliminaries

If S is a set |S| denotes the size of S. x
$←− S denotes the process of choosing

x uniformly at random from S. [n] denotes the set of first n natural numbers.
Composition of two functions is denoted by ◦. If F̂ = F ◦φ, then F̂ (x) = F (φ(x)).
Algorithms and Security Games. The algorithms and complexities consid-
ered in the papers are in the RAM model. The algorithms have access to memory
and constant number of registers, each having size of one word. For a determin-

istic (resp. probabilistic) algorithm A, y = A(x) (resp y
$←−A(x)) denotes y is

the (resp. uniformly sampled) output of A on input x. AO denotes that A has
access to O as an oracle. The oracles in this paper may be stateful ; stO denotes
the state of the RAM O. As followed in [3], A with oracle access to O cannot
access stO.
Security Games The results are proven in the framework of code based games
of [6]. A game G consists an algorithm consists of a main oracle, and zero or more
stateful oracles O1, O2, · · · , On. If a game G is implemented using a function f ,
we write G[f] to denote the game.

Complexity Measures. In this paper, we consider the following three com-
plexity measures of an algorithm.
Success Probability. The success probability of an algorithm A in game G

is defined by SuccA,G
def
= Prob[GA = 1].

Time Complexity. The time complexity of an algorithmA, denoted by Timeλ(A),
is the number of computation steps performed by A in the worst case over all
possible input of size λ. When A plays a security game G, the time complexity
of the game, denoted by LocalTimeλ(GA), is the time complexity of A plus the
number of queries A makes to the oracle. 1

1 In [3], authors defined the local time of the game only by the number of computations
of A. In this paper we explicitly include the number of queries made to the oracle.

6

Memory Complexity. Following [3,21], we define the memory complexity of
an algorithm A to be the size of the code plus the worst-case number of registers
used in memory at any step in computation, over all possible input of size λ and
random coins. LocalMemλ(GA) denotes the memory complexity of A (not the
oracles) in the security game G.
Reductions and Efficiency. We follow the definition of black-box reductions
proposed in [18]. A cryptographic primitive P is a family of efficiently com-
putable functions f : {0, 1}∗ → {0, 1}∗. Security of P is described using a game
G. An adversary A is said to P-break f with probability ε, if

SuccA,G[f] = ε.

We follow the following definition of a cryptographic reduction.

Definition 1. Let P,Q be cryptographic primitives and GP and GQ be the cor-
responding security games respectively. A reduction from P to Q is a pair of
algorithms C, R such that

– Cf ∈ Q for all f ∈ P
– For all f ∈ P, for all adversary A that Q-breaks Cf , the algorithm RA P-

breaks f .

Memory-Tight Reductions. Following [3,21], we define memory-tight reduc-
tions as follows.

Definition 2. A Cryptographic reduction (C, R) from P to Q is called memory-
tight, if for all f ∈ P,

SuccA,GQ[Cf] ≈SuccRA,GP [f]

LocalTimeλ(RA) ≈LocalTimeλ(A)

LocalMemλ(RA) ≈LocalMemλ(A)

Hardness Assumptions The security proofs of Hashed-ElGamal variants are
reduced from the Computational Diffie-Hellman and gap-Diffie-Hellman assump-
tion. Consider the CDH game described in figure 1.

Game CDH(q, g,G)

1 : x
$←− Z∗q

2 : y
$←− Z∗q

3 : z ← A(gx, gy)

4 : if z = gxy return 1

5 : else return 0

Oracle DDH(X,Y, Z)

1 : if ∃y such that Y = gy and Z = Xy

2 : return 1

3 : else

4 : return 0

Fig. 1. CDH game and gap-DH game. In gap-DH game, A has oracle access to DDH(·, ·, ·)

7

Definition 3. (gap-Diffie-Hellman Assumption) Let q be a prime. Let G = 〈g〉
be a cyclic group of order q. The (t, µ, ε) gap-Diffie-Hellman (gap-DH) assump-
tion states that for all adversary A that runs in times t and uses µ bites of
memory,

SuccADDH,CDH ≤ ε

The Computational Diffie-Hellman assumption is defined in the same way, except
the condition that A has no access to the DDH oracle.

Key Encapsulation Mechanism A key encapsulation mechanism KEM con-
sists of three algorithms; Gen, Encap, Decap. The key generation algorithm Gen

takes a security parameter 1λ as input and outputs a public key pk and a se-
cret key sk. The encapsulation algorithm Encap, on input pk, outputs a key-
ciphertext pair (c,K), where K ∈ K for some non-empty set K. c is said to be
the encapsulation of K. The deterministic decapsulation algorithm Decap takes
an encapsulation c as input along with sk, and outputs a key K ∈ K. A KEM is
called δ-correct if

Prob[Decap(sk, c) 6= K|(pk, sk)← Gen; (c,K)← Encap(pk)] ≤ δ

IND-CCA security of a Key Encapsulation Mechanism We recall the
IND-CCA security game for a Key Encapsulation Mechanism in Figure 2.
The IND-CCA advantage of an adversary A against KEM is defined as

AdvIND-CCA
A,KEM

def
=

∣∣∣∣SuccA,IND-CCA −
1

2

∣∣∣∣ .

Game IND-CCA

1 : (pk, sk)← Gen(1λ)

2 : b
$←− {0, 1}

3 : (c∗,K∗0)← Encap(pk)

4 : K∗1
$←− K

5 : b′ ← ADecap(c∗,K∗b)

6 : if b = b′ return 1

7 : else return 0

Oracle Decap(c)

1 : if c = c∗return ⊥
2 : K ← Decap(sk, c)

3 : return K

Fig. 2. IND-CCA game for KEM

Game COR

1 : (pk, sk)← Gen(1λ)

2 : m← A(pk, sk)

3 : c← Enc(pk,m)

4 : if m 6= Dec(sk, c) return 1

5 : else return 0

Fig. 3. Correctness
game for PKE

Public-Key Encryption A public-key encryption scheme consists of three
algorithms, PKE = (Gen, Enc, Dec). There are three sets associated with PKE,

8

the message spaceM, the randomness space R, and the ciphertext space C. The
key generation algorithm takes the security parameter as input and outputs a
public-key, secret-key pair (pk, sk). The encryption algorithm takes the public

key pk, and a message m ∈ M as input, samples a random string r
$←− R, and

outputs a ciphertext.c← Enc(pk,m, r). The decryption algorithm Dec, on input
sk and a ciphertext c, outputs a message m = Dec(sk, c) ∈ M or a special
symbol ⊥/∈M. We say, c is an invalid ciphertext, if Dec(sk, c) =⊥.

Deterministic Public Key Encryption. We call a public-key encryption
scheme PKE deterministic, if the algorithm Enc is deterministic and for every
message m ∈M, there exists a unique c ∈ C such that Dec(sk, c) = m. We write
c← Enc(pk,m) for deterministic encryption.

Correctness. Following [16], we define the correctness of a public-key encryp-
tion scheme by the security game COR in Figure 3.

Definition 4. Let δ : N → [0, 1] be an increasing function. Consider the game
COR in Figure 3. A public-key encryption scheme PKE is called δ-correct, if for
all adversary A with running time bounded by t,

SuccA,COR[PKE] ≤ δ(t)

where the probability is taken over the randomness of Gen and A. Moreover, we
say PKE is strongly δ correct, if ∀ t, δ(t) ≤ δ.

Game OW-PCVA

1 : (pk, sk)← Gen(1λ)

2 : m
$←−M

3 : c← Enc(pk,m)

4 : m′ ← APCO,CVO(pk, c)

5 : if m′ = Dec(sk, c) return 1

6 : else return 0

Procedure PCO(m, c)

1 : if m = Dec(sk, c) return 1

2 : else return 0

Procedure CVO(c)

1 : m← Dec(sk, c)

2 : if m ∈M return 1

3 : else return 0

Fig. 4. Game OW-PCVA. In the game OW-PCA (resp. OW-VA), A has oracle access
to only PCO (resp. CVO).

Security. Following [16], we define three security games for a public-key en-
cryption scheme, OW-PCA, OW-VA, and OW-PCVA in Figure 4. In OW-PCA
game, the adversary has oracle access to PCO. In the OW-VA game, the adversary
has oracle access to CVO. In OW-PCVA game, the adversary has oracle access to
both PCO and CVO. For ATK ∈ {PCA,VA,PCVA}, we define the corresponding
advantages of an adversary A against PKE as

AdvOW-ATK
A,PKE

def
= Prob[OW-ATK[PKE]A = 1]

9

Random Oracles. An (idealized) function F :; {0, 1}δ → {0, 1}ρ is said to be
a Random Oracle, if for all x ∈ {0, 1}δ, the output F(x) is independently and
uniformly distributed over {0, 1}ρ.

Pseudo-random Functions

Definition 5. Let F : {0, 1}λ × {0, 1}δ → {0, 1}ρ be a deterministic algorithm
and let A be an algorithm. The prf advantage of A is defined as

Advprf
A,F

def
= |Succ(RealA)− Succ(RandomA)|.

F is said to implement a family of (t, d, ε)-pseudo-random functions if for all
adversary A that runs in time t and uses memory d,

Advprf
A,F ≤ ε

Simulating Random Oracle using PRF. If a game G is defined in the
random oracle model, then one procedure of the game defines the random oracle
H : {0, 1}δ → {0, 1}ρ. The standard technique to implement the random oracle
procedure is via lazy sampling. However, the lazy sampling technique requires
O(qh · λ) additional memory where qh is the number of H queries made by the
adversary. In [3], the authors formalized the technique, originally suggested in
[7], of simulating the Random Oracle using a prf. Let G[H] be a game where H

Game Real

Procedure main

1 : k
$←− {0, 1}λ

2 : b← AOF

3 : if b = 0

4 : return 1

5 : else

6 : return 0

7 : endif

Procedure OF (x)

1 : return F (k, x)

Game Random

Procedure main

1 : b← AOF

2 : if b = 0

3 : return 1

4 : else

5 : return 0

6 : endif

Procedure OF (x)

1 : y
$←− {0, 1}ρ

2 : return y

Fig. 5. PRF security game

RO simulation by
lazy sampling

Procedure main

Procedure H(x)

1 : if H(x) =⊥

2 : H(x)
$←− {0, 1}ρ

3 : endif

4 : return H(x)

RO simulation using PRF

Procedure main

1 : k
$←− {0, 1}κ

Procedure H(x)

1 : return F (k, x)

Fig. 6. Memory Efficient simulation of
Random Oracle

is a random oracle used in G. Let G[F] be the same game where the random
oracle is implemented using a prf F . Specifically, the oracle H is implemented
using F (k, .) for a randomly sampled key k.

10

Lemma 1 (RO simulation using prf [3]). For all adversary A against G
making at most qh queries to the random oracle, there exists a BF against F in
the prf game such that∣∣SuccAH,G[H] − SuccAH,G[F]

∣∣ ≤ Advprf
BF ,F

Moreover, it holds that

LocalTime(BF) = LocalTime(A) + LocalTime(G) + qh

LocalMem(BF) = LocalMem(A) + LocalMem(G)

3 Memory-tight Reductions for Hashed-ElGamal

3.1 Cramer-Shoup Variant

Procedure Gen(1λ)

1 : (q, g,G)← DH(1λ)

2 : x
$←− Z∗q

3 : pk = (g, gx)

4 : sk = x

5 : return (pk, sk)

Procedure Encap(pk)

1 : (g, h) = pk

2 : y
$←− Z∗q

3 : Y = gy

4 : Z = hy

5 : K = H(Y,Z)

6 : return (Y,K)

Procedure Decap(sk, Y)

1 : x = sk

2 : Z = Y x

3 : K = H(Y,Z)

4 : return K

Fig. 7. HEG: Cramer-Shoup Version of Hashed-ElGamal KEM. H : G × G → K is a
cryptographic hash function

In this section we present a memory-tight reduction of Cramer-Shoup version
of hashed-ElGamal Key Encapsulation mechanism [13]. We describe the scheme
in Figure 7. G is a cyclic group of prime order q. Let H : G×G→ K be a hash
function. Our main result in this section is the following theorem.

Theorem 4. Let q be a prime and G be any gap group of order q. Let DDH be
the Decisional Diffie Hellman oracle on G. Let DH be the Diffie Hellman instance
generation algorithm over G. Let F : {0, 1}λ ×{0, 1}×G×G→ K be a prf. Let
Π be the HEG KEM scheme over G and K, with security parameter λ.

Let A be any adversary in the IND-CCAgame of Π. Suppose A makes qH
hash queries and qD decapsulation queries. Then, in the random oracle model,
there exists an adversary BDH in the gap-DH game, and an adversary BF such
that

AdvIND-CCA
A,Π ≤ Advgap-DH

BDH ,G + Advprf
BF ,F

11

Moreover, it holds that

LocalTime(BDH) ≈LocalTime(A) + (qH + qD) · LocalTime(F) + qH

LocalMem(BDH) ≈LocalMem(A) + LocalMem(F) + 7λ+ 1

LocalTime(BF) ≈LocalTime(A) + LocalTime(DH) + (qH + qD)

LocalMem(BF) ≈LocalMem(A) + LocalMem(DH) + 11λ+ 2

Before proving the Theorem 4, we construct a prf F̂ : {0, 1}λ×G×G→ K that
we shall use in the proof.

Construction of F̂ . Let DDH be the decisional Diffie-Hellman oracle such that
DDH(X,Y, Z) = 1, if (X,Y, Z) is a valid Diffie-Hellman tuple.

Construction 5 Let G be a group of prime order q and let g be a generator
of G. Fix X ∈ G. Let F : {0, 1}λ × {0, 1} × G × G → K. We define F̂X :
{0, 1}λ ×G×G→ K as follows

F̂X(k, Y, Z) =

{
F (k, 0, Y, Z) if DDH(X,Y, Z) = 0
F (k, 1, Y, g) if DDH(X,Y, Z) = 1

In order to use the map then prf technique, we need the following lemma.

Lemma 2. If F is a prf, then F̂X is a prf. Moreover, for every adversary BF̂
against F̂X , there exists a BF against F such that,

Advprf
BF ,F = Advprf

BF̂ ,F̂

LocalTime(BF) = LocalTime(BF̂) + q

LocalMem(BF) = LocalMem(BF̂) + 2λ.

where q is the number of queries made by BF̂ .

Proof. Fix X ∈ G. Note that for every Y ∈ G, there exists a unique Z ∈ G such
that DDH(X,Y, Z) = 1. We define ψX : G×G→ {0, 1} ×G×G as

ψX(Y, Z) =

{
(0, Y, Z) if DDH(X,Y, Z) = 0
(1, Y, 0λ) if DDH(X,Y, Z) = 1

It is easy to verify that ψX is an injective function. Moreover, F̂X = F ◦ ψX .
Let O be the oracle of BF . BF chooses x ∈ Z∗q , set X = gx and invokes BF̂ .

For every query (Y, Z) of BF̂ , BF checks whether Y x = Z, computes ψX(Y, Z)
accordingly and queries O. The response of the oracle is passed to BF̂ . When BF̂
outputs a bit b, BF outputs b. This perfectly simulates the prf game of F̂X .

We assume the computation time of ψX is constant. In order to simulate the
prf game of F̂X , BF needs to compute ψX for q many times. Moreover, BF needs
store x and a temporary variable for passing the values. The lemma follows. ut

12

The Reduction. Theorem 4 is proven via a sequence of games. Formal descrip-
tion of the games are given in Figure 8, and Figure 9.

G0 G1

1 : (pk, sk)← Gen(1λ)

2 : Parse pk = (g,X)

3 : Parse sk = x

4 : y∗
$←− Z∗q

5 : b
$←− {0, 1}

6 : Y ∗ = gy
∗

7 : Z∗ = Y ∗
x

8 : K∗0 = H(Y ∗, Z∗) K∗0
$←− K

9 : K∗1
$←− K

10 : b∗ ← ADecap,H(pk, Y ∗,K∗b)

11 : if b = b∗return 1

12 : else return 0

13 : endif

Procedure H(Y,Z) in G0

1 : if H(Y,Z) is undefined

2 : H(Y,Z)
$←− K

3 : endif

4 : return H(Y,Z)

Procedure Decap(Y) in G0,G1

1 : if Y = Y ∗return ⊥
2 : Z = Y x

3 : K = H(Y,Z)

4 : return K

Procedure H(Y,Z) in G1

1 : if Z = Y x ∧ Y = Y ∗

2 : return K∗0

3 : else

4 : if H(Y,Z) is undefined

5 : H(Y,Z)
$←− K

6 : endif

7 : return H(Y,Z)

8 : endif

Fig. 8. The games G0 and G1. In game G1, Line 9 in replaced by the boxed statement

Game G0. The game G0 is the original IND-CCA game.

AdvIND-CCA
A,Π

def
=

∣∣∣∣Prob[GA0 = 1]− 1

2

∣∣∣∣ .
Game G1: We predefine K∗0 = H(Y ∗, Z∗) by sampling a random element from the
keyspace K. Y ∗ is the challenge ciphertext sent in the KEM game and Z∗ = Y ∗x.
The hash oracle is modified to return K∗0 for the input (Y ∗, Z∗). As K∗0 is still
uniformly chosen at random, and the hash oracle output is consistent, there is
no change in the distribution of adversary’s view.

Prob[GA0 = 1] = Prob[GA1 = 1]

Game G2. In this game the oracles H and Decap are changed. We replace the
random oracle by a prf F̂X : {0, 1}λ×G×G→ K. By Lemma 1, there exists an
adversary BF̂ such that∣∣Prob[GA1 = 1]− Prob[GA2 = 1]

∣∣ ≤ Advprf

BF̂ ,F̂X

Game G3. We rewrite the prf evaluation of F̂X using a prf F as defined in
Construction 5. In the procedure Decap of the game G2, Step 2 (Z = Y x)
ensures that F̂X(k, Y, Z) in that procedure always evaluates to F (k, 1, Y, g). As
the view of the adversary remains unchanged,

Prob[GA2 = 1] = Prob[GA3 = 1]

13

Game G4: In this game, we set a flag Flag and abort on the event that A queries
H on (Y ∗, Z∗) where Y ∗ is the challenge in the KEM game and (X,Y ∗, Z∗) is a
valid diffie hellman tuple. By the fundamental lemma of game playing proofs∣∣Prob[GA3 = 1]− Prob[GA4 = 1]

∣∣ ≤ Prob[Flag = 1].

In the game G4, the adversary A is unable to compute H(Y ∗, Z∗) using either
the hash oracle or the decapsulation oracle. The decapsulation oracle outputs
⊥ whenever the input Y is equal to Y ∗. The hash oracle aborts for the input
(Y ∗, Z∗). This implies that the bit b is independent from the adversary’s view.
Hence

Prob[GA3] =
1

2
.

To bound Prob[Flag = 1], we construct an algorithm BDH against the
gap-DH security of G. BDH simulates game G4 for A.

gap-DH adversary BDH . Formal code of BDH is given in Figure 10. BDH
simulates G4. In order to execute line 1 of the game G4, BDH uses the DDH oracle.
By the definition of gap-DH game, X and Y ∗ are uniformly and independently
distributed. Hence the simulation of G4 is perfect. Flag = 1 implies that A
queried H(Y, Z) where Y = Y ∗ and DDH(X,Y ∗, Z) = 1. BDH returns that Z and
wins the gap-DH game. Hence,

Prob[Flag = 1] = Advgap-DH
BDH ,G

Collecting the probabilities, we get

AdvIND-CCA
A,Π ≤ Advgap-DH

BDH ,G + Advprf

BF̂ ,F̂

Efficiency of BDH . BDH runs A, queries DDH oracle for qH many times, com-
putes the prf F for (qH + qD) many times. O(poly(λ)) is the cost of other
operations in G4.

LocalTime(BDH) ≈LocalTime(A) + (qH + qD)LocalTime(F) + qH

The last qH term in the right-hand side of the above equation is to denote the
number of queries made to the DDH oracle.
Memory Efficiency of BDH . BDH needs to save the code of A, and F . In
addition, counting the registers in G4,

LocalMem(BDH) ≈LocalMem(A) + LocalMem(F) + 7λ+ 1

So far, we have proven that there exist adversaries BDH and BF̂

AdvIND-CCA
A,Π ≤ Advgap-DH

BDH ,G + Advprf

BF̂ ,F̂

14

G2

1 : (pk, sk)← Gen(1λ)

2 : Parse pk = (g,X)

3 : Parse sk = x

4 : k
$←− {0, 1}λ

5 : y∗
$←− Z∗q

6 : b
$←− {0, 1}

7 : Y ∗ = gy
∗

8 : Z∗ = Y ∗
x

9 : K∗0
$←− K

10 : K∗1
$←− K

11 : b∗ ← ADecap,H(pk, Y ∗,K∗b)

12 : if b = b∗return 1

13 : else return 0

14 : endif

Procedure H(Y,Z)

1 : if Z = Y x ∧ Y = Y ∗

2 : return K∗0

3 : else

4 : K = F̂X(k, Y, Z)

5 : return K

6 : endif

Procedure Decap(Y)

1 : if Y = Y ∗return ⊥
2 : Z = Y x

3 : K = F̂X(k, Y, Z)

4 : return K

G3

1 : (pk, sk)← Gen(1λ)

2 : Parse pk = (g,X)

3 : Parse sk = x

4 : k
$←− {0, 1}λ

5 : y∗
$←− Z∗q

6 : b
$←− {0, 1}

7 : Y ∗ = gy
∗

8 : Z∗ = Y ∗
x

9 : K∗0
$←− K

10 : K∗1
$←− K

11 : b∗ ← ADecap,H(pk, Y ∗,K∗b)

12 : if b = b∗return 1

13 : else return 0

14 : endif

Procedure H(Y,Z)

1 : if Z = Y x

2 : if Y = Y ∗

3 : return K∗0

4 : else

5 : K = F (k, 1, Y, g)

6 : endif

7 : else

8 : K = F (k, 0, Y, Z)

9 : endif

10 : return K

Procedure Decap(Y)

1 : if Y = Y ∗return ⊥
2 : Z = Y x

3 : K = F (k, 1, Y, g)

4 : return K

G4

1 : (pk, sk)← Gen(1λ)

2 : Parse pk = (g,X)

3 : Parse sk = x

4 : k
$←− {0, 1}λ

5 : y∗
$←− Z∗q

6 : b
$←− {0, 1}

7 : Y ∗ = gy
∗

8 : Z∗ = Y ∗
x

9 : K∗0
$←− K

10 : K∗1
$←− K

11 : b∗ ← ADecap,H(pk, Y ∗,K∗b)

12 : if b = b∗return 1

13 : else return 0

14 : endif

Procedure H(Y,Z)

1 : if Z = Y x

2 : if Y = Y ∗

3 : Flag=1

4 : Abort

5 : endif

6 : K = F (k, 1, Y, g)

7 : else

8 : K = F (k, 0, Y, Z)

9 : endif

10 : return K

Procedure Decap(Y)

1 : if Y = Y ∗return ⊥
2 : -

3 : K = F (k, 1, Y, g)

4 : return K

Fig. 9. IND-CCA game of HEG: highlighted statements are the modifications from the
previous game

Applying Lemma 2, we get the adversary BF such that

Advprf

BF̂ ,F̂
= Advprf

BF ,F

Hence, there exist adversaries BDH and BF such that

AdvIND-CCA
A,Π ≤ Advgap-DH

BDH ,G + Advprf
BF ,F

The following lemma finds the efficiency of BF

15

Algorithm BDH(g,X, Y ∗)

1 : Set pk = (g,X)

2 : k
$←− {0, 1}λ

3 : K∗
$←− K

4 : b∗ ← ADecap,H(pk, Y ∗,K∗)

5 : output ⊥ .

Procedure Decap(Y)

1 : if Y = Y ∗return ⊥
2 : K = F (k, 1, Y, g)

3 : return K

Procedure H(Y,Z)

1 : if DDH(X,Y, Z) = 1

2 : if Y = Y ∗

3 : Flag = 1

4 : Output Z

5 : else

6 : K = F (k, 1, Y, g)

7 : endif

8 : else

9 : K = F (k, 0, Y, Z)

10 : endif

11 : return K

Fig. 10. Diffie Hellman adversary BDH

Lemma 3.

LocalTime(BF) ≈LocalTime(A) + LocalTime(DH) + 2(qH + qD)

LocalMem(BF) ≈LocalMem(A) + LocalMem(DH) + 11λ+ 2

3.2 ECIES

Let G = 〈g〉 be a cyclic group of prime order q, equipped with a pairing ê :
G × G → GT . Let H : G → K be a hash function. In this section, we present
a memory tight reduction of the underlying Key Encapsulation Mechanism of
ECIES from the Computational Diffie-Hellman assumption over G. We describe
the ECIES KEM scheme in Figure 11. Our main result in this section is the

Procedure Gen(1λ)

1 : (q, g,G)← DH(1λ)

2 : x
$←− Z∗p

3 : pk = (g, gx)

4 : sk = x

5 : return (pk, sk)

Procedure Encap(pk)

1 : (g,X) = pk

2 : y
$←− Z∗p

3 : Y = gy

4 : Z = Xy

5 : K = H(Z)

6 : return (Y,K)

Procedure Decap(sk, Y)

1 : x = sk

2 : Z = Y x

3 : K = H(Z)

4 : return K

Fig. 11. ECIES KEM. H : {0, 1}λ ×G→ K is a cryptographic hash function

following theorem.

16

Theorem 6. Let q be a prime and G be a group of order q equipped with a
pairing ê : G × G → GT . Let DH be the Diffie Hellman instance generation
algorithm over G. Let F : {0, 1}λ×GT → K be a prf. Let Π̂ be the ECIES-KEM
scheme over G and K, with security parameter λ.

Let A be an adversary in the IND-CCAgame of Π̂. Suppose A makes qh hash
queries and qD decapsulation queries. Then, in the random oracle model, there
exists an adversary BDH in the CDH game, and an adversary BF such that

AdvIND-CCA
A,Π̂ ≤ AdvCDH

BDH ,G + Advprf
BF ,F

Moreover, it holds that

LocalTime(BDH) ≈LocalTime(A) + (qH + qD)LocalTime(F)+

(qD + 3qH)LocalTime(ê)

LocalMem(BDH) ≈LocalMem(A) + LocalMem(F) + 7λ+ 1

LocalTime(BF) ≈LocalTime(A) + LocalTime(DH) + (qH + qD)

(qH + qD)LocalTime(ê)

LocalMem(BF) ≈LocalMem(A) + LocalMem(DH) + 12λ+ 2

The reduction to prove Theorem 6 is almost the same as in the previous
section. The only difference is in the construction of the intermediate prf F̂
and the reduced CDH-adversary BDH . As the details are almost same to the
reduction of HEG, we only describe F̂ and BDH here. The reader is referred to
the full version of the paper [9] for the rest of the reduction.

Construction 7 (Construction of F̂ .) Let G be a group of prime order q
and let g be a generator of G. Let ê : G × G → GT be a bilinear map. Let
F : {0, 1}λ ×GT → K. We define F̂ : {0, 1}λ ×G→ K as follows

F̂ (k, Z) = F (k, ê(g, Z))

Lemma 4. If F is a prf, then F̂ is a prf. Moreover, for every adversary BF̂
against F̂ , there exists a BF against F such that,

Advprf
BF ,F = Advprf

BF̂ ,F̂

LocalTime(BF) = LocalTime(BF̂) + q · LocalTime(ê)

LocalMem(BF) = LocalMem(BF̂) + 2λ.

where q is the number of queries made by BF̂ to its oracle.

Description of BDH : the adversary to game CDH. Formal code of BDH
is given in Figure 12. BDH gets (g,X, Y ∗) as input, where X,Y ∗ are distributed
uniformly over G. Flag = 1 implies that A queried H(Z) where (X,Y ∗, Z) is

17

Algorithm BDH((g,X, Y ∗))

1 : Set pk = (g,X)

2 : k
$←− {0, 1}λ

3 : K∗
$←− K

4 : b∗ ← ADecap,H(pk, Y ∗,K∗)

5 : output ⊥ .

Procedure Decap(Y)

1 : if Y = Y ∗return ⊥
2 : K = F (k, ê(X,Y))

3 : return K

Procedure H(Z)

1 : if ê(g, Z) = ê(X,Y ∗)

2 : Flag = 1

3 : Output Z

4 : else

5 : K = F (k, ê(g, Z))

6 : return K

7 : endif

Fig. 12. Diffie Hellman adversary BDH

a valid Diffie Hellman tuple. If Flag is set for some query made by A, BDH
returns that corresponding Z and wins the CDH game.
Efficiency of BDH . BDH runs A, computes the pairing ê(., .) oracle for qD+3qH
many times, computes the prf F for (qH + qD) many times. As the rest of the
steps in the algorithm takes O(poly(λ)) time,

LocalTime(BDH) ≈LocalTime(A) + (qH + qD)LocalTime(F)+

(qD + 3qH)LocalTime(ê)

Memory Efficiency of BDH . BDH needs to save the code of A, ê, and F .
Counting the registers, we get

LocalMem(BDH) =LocalMem(A) + LocalMem(F) + 7λ+ 1

4 Transformation V : OW-PCA PKE to OW-PCVA PKE

In this section, we introduce a transformation V to construct OW-PCVA secure
deterministic PKE from a OW-PCA secure PKE. Our main result is a memory-
tight reduction of V . The main application of V will be in Section 5, where
we shall use V to get a memory-tight reductions of the IND-CCA security of
QKEM⊥ and QKEM⊥m.

4.1 The Transformation

We start with a deterministic δ-correct OW-PCA secure public key encryption
scheme, PKE = (Gen, Enc, Dec). LetM= {0, 1}n be the message space, and C be
the ciphertext space. Let H′ :M→ {0, 1}η be a hash function. The transformed
scheme is described as PKE1 = (Gen, Enc1, Dec1).
Our main result of this section is the following theorem.

18

Procedure Enc1(pk,m)

1 : c1 = Enc(pk,m)

2 : c2 = H
′(m)

3 : c = c1||c2
4 : return c

Procedure Dec1(sk, c)

1 : Parse c = (c1, c2)

2 : m′ = Dec(sk, c1)

3 : if m′ =⊥ ∨ H
′(m′) 6= c2 ∨ Enc(pk,m′) 6= c1

4 : return ⊥
5 : else return m′

Fig. 13. OW-PCVA secure encryption scheme PKE1 = V [PKE]

Theorem 8. Let PKE = (Gen, Enc, Dec) be a deterministic δ correct OW-PCA
secure public key encryption scheme. Let M be the message space, and C be the
ciphertext space of PKE. Let PKE1 be the transformed public encryption scheme.
Let F ′ : {0, 1}λ×C → {0, 1}η be a prf. Let A be any adversary in the OW-PCVA
game of PKE1. Suppose A makes qh′ queries to H′. Let qP denote the number of
plaintext checking queries and qV denote the number of validity checking queries
made by A.

PKE1 is δ-correct. Moreover, in the random oracle model, there exists an
adversary B in the OW-PCA game of PKE1, and an adversary BF ′ in the prf
game of F ′, such that

AdvOW-PCVA
A,PKE1

≤ AdvOW-PCA
B,PKE + 2 ·Advprf

BF ′ ,F ′ +
qV
2η

+ 2δ(1 + qh′ + qP + qV)

Moreover it holds that

LocalTime(B) ≈LocalTime(A) + qh′LocalTime(Enc)

+ (1 + qh′ + qV + qP)LocalTime(F ′) + qP

LocalMem(B) ≈LocalMem(A) + LocalMem(F ′)

+ LocalMem(Enc) + 8λ

LocalTime(BF ′) ≈LocalTime(A) + LocalTime(Gen) + (qV + qP)LocalTime(Dec)

+ (1 + qV + qP + qh′)(1 + 2 · LocalTime(Enc))

LocalMem(BF ′) ≈LocalMem(A) + LocalMem(Gen) + +LocalMem(Enc)

+ LocalMem(Dec) + 11λ+ 1

Similar to previous section, we first construct a prf F̂ .

4.2 Construction of F̂

Construction 9 Fix a public key pk of PKE. Let F ′ : {0, 1}λ × C → {0, 1}η.
We define F̂ as

F̂ (k,m) = F ′(k, Enc(pk,m))

19

In order to use the map then prf technique, we need the following lemma.

Lemma 5. Fix pk. For every prf-adversary BF̂ against F̂ , there exists a BF ′
against F ′ such that,

Advprf

BF̂ ,F̂
≤ Advprf

BF ′ ,F ′ + δ(q)

LocalTime(BF ′) = LocalTime(BF̂) + q · LocalTime(Enc)

LocalMem(BF ′) = LocalMem(BF̂) + 3λ.

where q is the number of queries made by BF̂ .

The main difference in Lemma 5 with the ones in the previous section is the
decryption error of PKE. In other words, we can not claim that Enc(pk, .) is an
injective function. However, if BF̂ can query with messages m1,m2 such that
Enc(pk,m1) = Enc(pk,m2), implying a decryption error for either m1 or m2.

Proof. First, we prove that if F ′ is a prf, then F̂ is a prf. Let O be the oracle of
BF ′ . BF ′ runs Gen to receive pk, sk, and invokes BF̂ . For every query m of BF̂ ,
BF ′ , computes c = Enc(pk,m), and checks whether m = Dec(sk, c). If the check
fails BF ′ aborts. If the check succeeds, BF ′ queries O(c), and the response of the
oracle is passed to BF̂ . When BF̂ outputs a bit b, BF outputs b.

If BF ′ aborts on inputm, then correctness error occurs in Dec(sk, Enc(pk,m)).
By assumption, probability of this event is bounded by δ(q). Conditioned on that
BF ′ does not abort, the output of Enc(pk,m) are unique for all m queried by
BF̂ . In that case, BF ′ perfectly simulates the prf game of F̂ . When O is a random
function, the simulation implements a random function. When O is implemented
by F ′, BF ′ implements F̂ . Thus we get,

SuccBF̂ ,prf[F̂] = SuccBF ′ ,prf[F ′] + Prob[BF ′ aborts] ≤ SuccBF ′ ,prf[F ′] + δ(q)

=⇒ Advprf

BF̂ ,F̂
≤ Advprf

BF ′ ,F ′ + δ(q)

In order to simulate the prf game of F̂ , BF needs to run Enc for q many
times. Moreover, BF needs store pk, sk and a temporary variable for passing the
values. The lemma follows.

4.3 Proof of Theorem 8

It is obvious that the correctness holds. We prove rest of Theorem 8 via a se-
quence of games. Formal description of the games are given in the Figure 14 and
Figure 15.
Game G0. G0 is the OW-PCVA security game of PKE1.

AdvOW-PCVA
A,PKE1

= Prob[GA0 = 1]

Game G1. In this game, we replace H′ by prf F̂ . By Lemma 1, there exists
adversary, BF̂ such that∣∣Prob[GA1 = 1]− Prob[GA0 = 1]

∣∣ ≤ Advprf

BF̂ ,F̂
(1)

20

G0, G1-G7

1 : (pk, sk)
$←− Gen

2 : m∗
$←−M

3 : k′
$←− {0, 1}λ

4 : c2 = H
′(m∗)

5 : c1 = Enc(pk,m∗)

6 : c∗ = (c1, c2)

7 : m← APCO,CVO,H′(pk, c∗)

8 : if m∗ = m return 1

9 : else return 0

Game G0

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′1 = Enc(pk,m′)

4 : c′2 = H
′(m′)

5 : c′ = c′1||c′2
6 : if m′ = m and c′ = c

7 : return 1

8 : else

9 : return 0

Procedure H′(m)

1 : if H
′(m) is undefined

2 : H
′(m)

$←−M
3 : endif

4 : return H
′(m)

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′1 = Enc(pk,m′)

4 : c′2 = H
′(m′)

5 : c′ = c′1||c′2
6 : if m′ ∈M and c′ = c

7 : return 1

8 : else

9 : return 0

Fig. 14. The main function of games G0-G7. The boxed statement is not executed in
G0. Right hand side figure describes the oracles in G0

Game G2. In this game, we modify the PCO(m, c = (c1, c2)) oracle simulation.
Instead of the decryption, m′ = Dec(sk, c1), and equality check m = m′, we
only check whether, c1 = Enc(pk,m). Notice, the condition c2 = F̂ (k′,m) re-
mains unchanged. Conditioned on correctness error does not happen, c′1 = c1 =
Enc(pk,m) implies that m′ = Dec(sk, c′1) = m. Hence, this change does not
affect the transcript distribution until correctness error occurs in PKE.

∣∣Prob[GA1 = 1]− Prob[GA2 = 1]
∣∣ ≤ δ(qP)

Game G3. In this game we replace F̂ as defined. The change is syntactical and
does not change the distribution of any output.

Prob[GA2 = 1] = Prob[GA3 = 1]

Game G4. In this game, we change how the oracles PCO and CVO responds.
For a PCO(m, c) query, we no longer encrypt m to compute c′2. Instead, we run
the plaintext checking oracle PCO, provided for PKE, to check correctness of
(m, c1). If c1 is indeed a valid ciphertext of m, then by deterministic property
of PKE, F ′(k, Enc(pk,m)) is equal to F ′(k, c1). Hence we only check whether
F ′(k, c1) = c2. The change in PCO is syntactical, and does not change output
distribution of the oracle.

Similarly, in CVO, we change the computation of c′2, which is now computed
as F (k′, c1). If c1 = c′1, then the change is syntactical and has no effect in the

21

Game G1

Procedure H′(m)

1 : h′ = F̂ (k′,m)

2 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′1 = Enc(pk,m′)

4 : c′2 = F̂ (k′,m′)

5 : c′ = c′1||c′2
6 : if m′ = m and c′ = c

7 : return 1

8 : else

9 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′1 = Enc(pk,m′)

4 : c′2 = F̂ (k′,m′)

5 : c′ = c′1||c′2
6 : if m′ ∈M and c′ = c

7 : return 1

8 : else

9 : return 0

Game G2

Procedure H′(m)

1 : h′ = F̂ (k′,m)

2 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : c′2 = F̂ (k′,m)

3 : if c′2 = c2 ∧ Enc(pk,m) = c1

4 : return 1

5 : else

6 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′1 = Enc(pk,m′)

4 : c′2 = F̂ (k′,m′)

5 : c′ = c′1||c′2
6 : if m′ ∈M and c′ = c

7 : return 1

8 : else

9 : return 0

Game G3

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : c′1 = Enc(pk,m)

3 : c′2 = F ′(k′, c′1)

4 : if c′2 = c2 ∧ c′1 = c1

5 : return 1

6 : else

7 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′1 = Enc(pk,m′)

4 : c′2 = F ′(k′, c′1)

5 : c′ = c′1||c′2
6 : if m′ ∈M and c′ = c

7 : return 1

8 : else

9 : return 0

Fig. 15. The oracles in G1,G2,G3

check in Step 5. If c1 6= c′1, the condition in Step 5 rejects irrespective of the
value of c′2. Hence, this change does not change the output distribution of the
oracles as well.

Prob[GA3 = 1] = Prob[GA4 = 1]

Game G5. We change the description of the oracle CVO(c). We raise a flag Bad,
if c′2 = c2 but c1 is not a valid ciphertext of PKE, i.e m′ /∈M or c1 6= Enc(pk,m′)
where m′ = Dec(c1). However, we do not change the output of the oracle. CVO(c)
still return 0 when Bad is set.

Prob[GA4 = 1] = Prob[GA5 = 1]

22

Game G4

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if PCO(m, c1) = 1

3 : c′2 = F ′(k′, c1)

4 : if c′2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′1 = Enc(pk,m′)

4 : c′2 = F ′(k′, c1)

5 : if c′2 = c2 ∧m′ ∈M∧ c′1 = c1

6 : return 1

7 : else

8 : return 0

Game G5 G6

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if PCO(m, c1) = 1

3 : c′2 = F ′(k′, c1)

4 : if c′2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′1 = Enc(pk,m′)

4 : c′2 = F ′(k′, c1)

5 : if c′2 = c2

6 : if m′ /∈M or c′1 6= c1

7 : Bad = 1

8 : return 0 return 1

9 : else

10 : return 1

11 : endif

12 : else

13 : return 0

Game G7

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if PCO(m, c1) = 1

3 : c′2 = F ′(k′, c1)

4 : if c′2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : c′2 = F ′(k′, c1)

3 : if c′2 = c2

4 : return 1

5 : else

6 : return 0

Fig. 16. The oracles in G4,G5,G6,G7. PCO is the plaintext checking oracle for PKE.

Game G6. In game G6, CVO(c) returns 1, when Bad is set. Rest of the games
remain unchanged. By the fundamental lemma of game playing proofs,∣∣Prob[GA5 = 1]− Prob[GA6 = 1]

∣∣ ≤ Prob[Bad]

Note, in the game G6, the oracle CVO returns 1, if and only if c2 = F ′(k′, c1).
Game G7. We rewrite the description of CVO(c). We no longer run Dec and Enc.
The oracle CVO(c) parses c as c1||c2, and returns 1 if c2 = F ′(k′, c1) and returns
0 otherwise. Rest of the game remain unchanged. As the output distribution of
all the procedures in G7 is same as that in G6.

Prob[GA6 = 1] = Prob[GA7 = 1]

23

Bounding Prob[GA
7 = 1]. In Figure 17, we construct an adversary B against

OW-PCA security of PKE. B receives (pk, c∗), invokes A(pk, c∗) and perfectly
simulates the game G7 for A. When A returns a message m, B returns m.

Prob[GA7 = 1] = AdvOW-PCA
B,PKE

Algorithm BPCO(.)(pk, c)

1 : k′
$←− {0, 1}λ

2 : c2 = F ′(k′, c′)

3 : c∗ = c||c2
4 : m← APCO(.),CVO(.),H′(pk, c∗)

5 : return m

Procedure CVO(c)

1 : Parse c = c1||c2
2 : c′2 = F ′(k′, c1)

3 : if c′2 = c2

4 : return 1

5 : else

6 : return 0

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = F ′(k′, c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if PCO(m, c1) = 1

3 : c′2 = F ′(k′, c1)

4 : if c′2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Fig. 17. OW-PCA adversary B

Efficiency of B. Algorithm B runs A, queries PCO for qP many times, runs Enc
for qh′ many times, and computes F ′ for (1 + qh′ + qV + qP) many times. Rest
of the steps take O(poly(λ)) time.

LocalTime(B) =LocalTime(A) + qh′LocalTime(Enc)

+ (1 + qh′ + qV + qP)LocalTime(F ′) +O(poly(λ)) + qP

The last qP term in the right hand side denotes the number of queries made to
PCO.
Memory Efficiency of B. B needs to save the code of A, Enc, and F ′. In
addition, there are following λ size registers, c∗, c1, c2, k

′,m, c, c′2, h
′.

LocalMem(B) =LocalMem(A) + LocalMem(F ′)

+ LocalMem(Enc) + 8λ

Bounding Prob[Bad]. To bound Prob[Bad], we construct a prf adversary

B(1)F ′ against F ′. Recall that Bad occurs when for a CVO(c) query, we get

c′2 = c2 and (m′ /∈M or c′1 6= c1)

24

where c = c1||c2, m′ = Dec(sk, c1), c′1 = Enc(pk,m′), and c′2 = F ′(k′, c1).

Case m′ ∈ M and c′1 6= c1. In this case correctness error occurs in PKE.
Probability of this event is bounded by δ(qV).

Case m′ /∈ M. In this case, for an invalid ciphertext c1 in PKE, A can
produce a c2 such that c2 = F ′(k′, c1). As A has no direct access to F ′(k′, .)
evaluation, and c1 is an invalid ciphertext, there is no H ′(m) or PCO(m, c) query
in the transcript for which F ′(k′, c1) was evaluated. Notice that, in PCO(m, c)
evaluates F ′(k′, c1) only when PCO(m, c1) = 1, which can not occur here. So,
Bad = 1 implies that A can “guess” the output of F ′(k′, c1) for some c1 ∈ C.
For random function this can happen with probability qV

2η . If Bad happens in
significantly more probability in G5, that can be used to break the prf security
of F ′.

Formal description of B(1)F ′ is given in Figure 18. B(1)F ′ perfectly simulates game
G5 with the help of its oracle OF ′ . If A ever submits a CVO(c) query for which

Bad occurs, B(1)F ′ outputs 1 and halts. If no such query is made, then at the end

of the simulation, B(1)F ′ outputs 0. If OF ′ is a random function, then for a fixed

B(1)

F ′

1 : (pk, sk)
$←− Gen

2 : m∗
$←−M

3 : c2 = OF ′(m
∗)

4 : c1 = Enc(pk,m∗)

5 : c∗ = (c1, c2)

6 : Bad = 0

7 : m← APCO,CVO,H′(pk, c∗)

8 : if Bad = 1

9 : Output 1

10 : else

11 : Output 0

Procedure H′(m)

1 : c = Enc(pk,m)

2 : h′ = OF ′(c)

3 : return h′

Procedure PCO(m, c)

1 : Parse c = c1||c2
2 : if Enc(pk,m) = c1

3 : c′2 = OF ′(c1)

4 : if c′2 = c2

5 : return 1

6 : endif

7 : endif

8 : return 0

Procedure CVO(c)

1 : Parse c = c1||c2
2 : m′ = Dec(sk, c1)

3 : c′1 = Enc(pk,m′)

4 : c′2 = OF ′(c1)

5 : if c′2 = c2

6 : if m′ /∈M or c′1 6= c1

7 : Bad = 1

8 : return 0

9 : else

10 : return 1

11 : endif

12 : else

13 : return 0

Fig. 18. The PRF adversary B(1)

F ′

CVO(c) query, Prob[B(1)F ′ = 1] is at most 1
2η . Taking union bound over all the

CVO(c) queries made by A, when OF ′ is a random function, Prob[B(1)F ′ = 1] is at

most qV
2η . When OF ′ is the prf F ′, Prob[B(1)F ′ = 1] is exactly Prob[Bad] in G5.

Advprf

B(1)

F ′ ,F
′
≥

∣∣∣Prob[Bad]− qV
2η
− δ(qV)

∣∣∣
=⇒ Prob[Bad] ≤ Advprf

B(1)

F ′ ,F
′
+
qV
2η

+ δ(qV)

25

Efficiency of B(1)F ′ . B
(1)
F ′ runs A once, algorithm Gen once, algorithm Enc for

(1 + qh′ + qP + qV) times, and Dec for qV times. Additionally B(1)F ′ queries the
oracle OF ′ for (1 + qh′ + qP + qV) times.

LocalTime(B(1)F ′) ≈LocalTime(A) + LocalTime(Gen) + qV · LocalTime(Dec)

+ (1 + qh′ + qP + qV)(1 + LocalTime(Enc))

B(1)F ′ needs to save the code of A, Gen, Enc, and Dec. In addition, it needs to save
eight λ size and a flag of a single bit. registers.

LocalMem(B(1)F ′) ≈LocalMem(A) + LocalMem(Gen) + LocalMem(Enc)

+ LocalMem(Dec) + 8λ+ 1

Finishing the proof of Theorem 8. Collecting the probabilities of the games,

we have proven so far, there exist adversaries B,BF̂ , and B(1)F ′ , such that

AdvOW-PCVA
A,PKE1

≤ AdvOW-PCA
B,PKE + Advprf

BF̂ ,F̂
+ Advprf

B(1)

F ′ ,F
′
+
qV
2η

+ δ(qV) + δ(qp)

Applying Lemma 5, we get a B(2)F ′ such that,

AdvOW-PCVA
A,PKE1

≤AdvOW-PCA
B,PKE + Advprf

B(2)

F ′ ,F
′
+ Advprf

B(1)

F ′ ,F
′
+
qV
2η

+

δ(qV) + δ(qp) + δ(1 + qh′ + qP + qV)

Efficiency of B(2)F ′ is bounded using following lemma.

Lemma 6.

LocalTime(B(2)F ′) ≈LocalTime(A) + LocalTime(Gen) + (qV + qP)LocalTime(Dec)

+ (2 + 2qV + 2qP + qh′)LocalTime(Enc) + (1 + qh′ + qP + qV)

LocalMem(B(2)F ′) ≈LocalMem(A) + LocalMem(Gen) + LocalMem(Enc)

+ LocalMem(Dec) + 11λ

Merging B(1)F ′ and B(2)F ′ into one adversary BF ′ , and taking upper bound of their
efficiencies, we get Theorem 8.

5 Memory-tight Reductions for Fujisaki-Okamoto
Transformation and Variants

In this section, we prove memory-tight reduction of the IND-CCA security of four
different variants of the Fujisaki-Okamoto transformation, following the modular
approach of [16]. Before describing the exact transformations we consider, first
we recall the modules introduces in [16].

26

5.1 Brief Overview of Modules from [16]

We recall the modules in the top-down fashion. First we describe the transforma-
tions from a public key encryption scheme to a key encapsulation mechanisms.

Transformations Encap(pk) Decap(sk′, c)
& Security Implications

U6⊥(OW-PCA⇒ IND-CCA) (c = Enc1(pk,m),K = H(m, c))
m

$←−M
H(m, c) if m 6=⊥
H(s, c) if m =⊥

U6⊥m(det + OW-CPA⇒ IND-CCA) (c = Enc1(pk,m),K = H(m))
m

$←−M
H(m) if m 6=⊥
H(s, c) if m =⊥

U⊥(OW-PCVA⇒ IND-CCA) (c = Enc1(pk,m),K = H(m, c))
m

$←−M
H(m, c) if m 6=⊥
⊥ if m =⊥

U⊥m(det + OW-VA⇒ IND-CCA) (c = Enc1(pk,m),K = H(m))
m

$←−M
H(m) if m 6=⊥
⊥ if m =⊥

Table 2. Variants of transformation U. In the column Decap, s is a random string,
sk′ = sk||s, and m = Dec1(sk, c).

Outer Modules: U6⊥, U6⊥
m, U⊥, U⊥

m Let PKE1 = (Gen1, Enc1, Dec1) be a
public key encryption scheme with the message space M and let H : M → K
be a hash function. Table 2 describes the variants of module U to construct
a KEM using PKE1 and H. The transformations yield KEM of two categories.
Transformations U 6⊥ and U 6⊥m are in the category of implicit rejection, as the de-
capsulation algorithms in these transformations do not output ⊥, when queried
with an invalid ciphertext. Transformation U⊥, U⊥m are in the category of ex-
plicit rejection, implying that the decapsulation algorithms, given any invalid
ciphertext, indeed output ⊥.

Inner Module: T Let PKE = (Gen, Enc, Dec) be an IND-CPA secure public key
encryption scheme. Let M= {0, 1}n be the message space, C be the ciphertext
space, and R be the randomness space. Let G : M → R be a hash function.
The transformation T results in a deterministic public key encryption scheme
PKE = T [PKE, G]. Formal description of T is given in Figure 19.

Procedure Enc(pk,m)

1 : c = Enc(pk,m; G(m))

2 : return c

Procedure Dec(sk, c)

1 : m′ = Dec(sk, c)

2 : if m′ =⊥ ∨ Enc(pk,m′; G(m′)) 6= c

3 : return ⊥
4 : else return m′

Fig. 19. Encryption scheme PKE = T [PKE]

27

5.2 Considered Variants and the reductions

We consider three other variants of FO transformations. The variants and their
modular decomposition are listed in Table 3. For each transformation we start
with an IND-CPA secure public key encryption PKE. We prove memory-tight
reduction for each of the modules next.

Category Transformation Modular Decomposition

Implicit Rejection
KEM6⊥ U6⊥

[
T [PKE, G], H

]
KEM6⊥m U 6⊥m

[
T
[
PKE, G

]
, H]

]
Explicit Rejection QKEM⊥m U⊥m

[
V
[
T [PKE, G], H′

]
, H
]

Table 3. Variants of FO transformations and their modular breakup

Memory-tight Reduction for T : IND-CPA⇒ OW-PCA

Theorem 10. Let A be any adversary in the OW-PCA game of PKE. Suppose
A makes qg queries to G. Let qp denote the number of plaintext checking queries
made by A. Then, in the random oracle model, there exists adversaries B in the
IND-CPA game against PKE, and BF in the prf game, such that

AdvOW-PCA
A,PKE ≤ 3 ·AdvIND-CPA

B,PKE + Advprf
BF ,F +

2qg + 1

|M|
+ δ(qp + qg)

LocalTime(B) ≈LocalTime(A) + (qg + qp)LocalTime(F)

LocalMem(B) ≈LocalMem(A) + LocalMem(F)

The proof of the above theorem follows exactly from the proof of analogous
Theorem 3.2 of [16] and using the random oracle simulation by a prf F . Moreover,
from [16], we get that, if PKE is strongly δ correct, then PKE is δ(qg+qp) correct
where δ(x) = xδ.
Memory-tight Reduction for V : OW-PCA ⇒ OW-PCVA. It follows from
Theorem 8.
Memory-tight Reduction for variants of U Table 2 lists four variants of
U with different security implications. The memory-efficient reductions of these
implications are in principle same as the proofs presented in [16]. The only
difference is in the simulation of the Random Oracle H. In Table 4, we write the
precise functions to be used to simulate the random oracles in the reductions.
We assume the message space of the underlying encryption scheme to be {0, 1}µ.
PCO(m, c) returns 1 if c decrypts to m. CVO(c) returns 0 if c decrypts to ⊥.

Acknowledgements. We thank Eike Kiltz for encouraging us to write up
and submit the work. We are thankful to the reviewers for their comments on
this and the previous versions of the paper. The author is supported by SERB
ECR/2017/001974.

28

Transformation Key Derivation
RO simulation in
Hash Query

RO Simulation in
Decap query

U6⊥ K = H(m, c) if PCO(m, c) = 1
K = F (k, 0, 0µ, c)

else
K = F (k, 1,m, c)

K = F (k, 0, 0µ, c)

U⊥ K = H(m, c) if PCO(m, c) = 1
K = F (k, 0, 0µ, c)

else
K = F (k, 1,m, c)

if CVO(c) = 0
K =⊥

else
K = F (k, 0, 0µ, c)

U6⊥m K = H(m) K = F (k, Enc1(pk,m)) K = F (k, c)

U⊥m K = H(m) K = F (k, Enc1(pk,m)) if CVO(c) = 0
K =⊥

else
K = F (k, c)

Table 4. Random Oracle Simulation for U6⊥, U 6⊥m, U⊥, U⊥m. We assume M = {0, 1}µ
is the message space of the underlying encryption scheme

References

1. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHIES: An encryption scheme
based on the Diffie-Hellman problem. Contributions to IEEE P1363a, September
1998.

2. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001,
volume 2020 of LNCS, pages 143–158. Springer, Heidelberg, April 2001.

3. Benedikt Auerbach, David Cash, Manuel Fersch, and Eike Kiltz. Memory-tight
reductions. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 101–132. Springer, Heidelberg, August 2017.

4. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in
a multi-user setting: Security proofs and improvements. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274. Springer, Heidelberg,
May 2000.

5. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How
to sign with RSA and Rabin. In Ueli M. Maurer, editor, EUROCRYPT’96, volume
1070 of LNCS, pages 399–416. Springer, Heidelberg, May 1996.

6. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006.

7. Daniel J. Bernstein. Extending the Salsa20 Nonce. Workshop Record of Symmetric
Key Encryption Workshop 2011, 2011.

8. Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification. Cryptol-
ogy ePrint Archive, Report 2018/526, 2018. https://eprint.iacr.org/2018/526.

29

https://eprint.iacr.org/2018/526

9. Rishiraj Bhattacharyya. Memory-tight reductions for practical key encapsulation
mechanisms. Cryptology ePrint Archive, 2020. https://eprint.iacr.org/2020/

075.
10. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,

and Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and
Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69.
Springer, Heidelberg, December 2011.

11. Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another look at tightness.
In Ali Miri and Serge Vaudenay, editors, SAC 2011, volume 7118 of LNCS, pages
293–319. Springer, Heidelberg, August 2012.

12. Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer, Heidelberg,
August 2000.

13. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003.

14. Gregory Demay, Peter Gaži, Martin Hirt, and Ueli Maurer. Resource-restricted
indifferentiability. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 664–683. Springer, Heidelberg, May
2013.

15. Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor,
9th IMA International Conference on Cryptography and Coding, volume 2898 of
LNCS, pages 133–151. Springer, Heidelberg, December 2003.

16. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer, Heidelberg,
November 2017.

17. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-
CCA-secure key encapsulation mechanism in the quantum random oracle model,
revisited. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 96–125. Springer, Heidelberg, August 2018.

18. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility be-
tween cryptographic primitives. In Moni Naor, editor, TCC 2004, volume 2951 of
LNCS, pages 1–20. Springer, Heidelberg, February 2004.

19. Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822
of LNCS, pages 520–551. Springer, Heidelberg, April / May 2018.

20. Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the
Fujisaki-Okamoto and OAEP transforms. In Martin Hirt and Adam D. Smith,
editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 192–216. Springer,
Heidelberg, October / November 2016.

21. Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka. Memory
lower bounds of reductions revisited. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 61–90. Springer,
Heidelberg, April / May 2018.

30

https://eprint.iacr.org/2020/075
https://eprint.iacr.org/2020/075

	Memory-Tight Reductions for Practical Key Encapsulation Mechanisms

