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Abstract. Highly efficient non-interactive zero-knowledge arguments
(NIZK) are often constructed for limited languages and it is not known
how to extend them to cover wider classes of languages in general. In this
work we initiate a study on black-box language extensions for conjunctive
and disjunctive relations, that is, building a NIZK system for L � L̂ (with
� ∈ {∧,∨}) based on NIZK systems for languages L and L̂. While the
conjunctive extension of NIZKs is straightforward by simply executing
the given NIZKs in parallel, it is not known how disjunctive extensions
could be achieved in a black-box manner. Besides, observe that the simple
conjunctive extension does not work in the case of simulation-sound
NIZKs (SS-NIZKs), as pointed out by Sahai (Sahai, FOCS 1999). Our
main contribution is an impossibility result that negates the existence
of the above extensions and implies other non-trivial separations among
NIZKs, SS-NIZKs, and labelled SS-NIZKs.
Motivated by the difficulty of such transformations, we additionally
present an efficient construction of signature schemes based on unbounded
simulation-sound NIZKs (USS-NIZKs) for any language without language
extensions.

1 Introduction

1.1 Background
A non-interactive zero-knowledge argument system (NIZK) [8] is a beneficial
building block for constructing a wide variety of cryptographic schemes and
protocols. Very roughly, given an NP language L for certain relation R, i.e.,
L := {x | ∃w s.t. R(x,w) = 1}, a NIZK argument system for L allows a prover
(who owns a pair x,w such that R(x,w) = 1) to convince a verifier of the fact
that x ∈ L. The communication between the two parties is unilateral and the
verifier learns no new information about possible witnesses for x, except the fact
that there exists one. (That is enforced by the presence of a simulator which,
without any witness for x, produces an output that is indistinguishable from
the proof produced by a real prover.) A NIZK system is said to be correct if
an honest prover can always convince a verifier of a true statement. On the
other hand, the system is said to be sound if a (possibly malicious) prover
cannot convince an honest verifier of a false statement (except with negligible
probability). A simulation-sound NIZK (SS-NIZK) [50] is a strengthening of NIZK
whose soundness holds even in the presence of simulated proofs on arbitrary
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statements. SS-NIZKs receive much attention due to their usefulness in the
construction of public-key encryption schemes secure against adaptive chosen
message attacks [50]. Another application of SS-NIZKs is on building Threshold
Password-Authenticated Key Exchange [42]. Furthermore, they have recently
been used to build tightly secure CCA2 encryption in the multi-challenge and
multi-user setting [37] or to design tightly secure signature schemes [29].

Thanks to a considerable and prolonged effort by the community of cryptog-
raphers, there exist NIZK systems for NP-complete languages in several settings,
e.g., [8, 19, 25], and general constructions have been designed to strengthen them
to SS-NIZK, e.g., [17, 50]. Some of these settings provide very efficient NIZK
systems: Schnorr proofs [43], Groth-Sahai proofs [27], Quasi-Adaptive NIZKs
(QA-NIZKs) [32] that are designed for particular languages. However, when NIZK
systems are used for building advanced cryptographic schemes and protocols, it
is frequently assumed that a convenient language is covered by the NIZK, or
that the system can be extended to support such a language. For instance, the
general transformations from NIZK to unbound SS-NIZK (USS-NIZK) in [17,29]
(see Definition.2.5) require the NIZK support a disjunctive statement combining
two instances of certain specific languages.

Given the relevance of these works, where additional assumptions are made
on the languages supported by the NIZK systems, we study black-box language
extensions of NIZKs for conjunctive and disjunctive relations. More concretely,
we consider the question of whether for some language L̂, there exists a generic
compiler that on input a NIZK system for language L, produces a NIZK system
for L � L̂, where � ∈ {∧,∨}. Many non black-box techniques for disjunctive
language extension can be found in the literature, e.g., [2, 13, 14, 21, 24, 41, 46],
but not much is known in the case of black-box extensions, which are a relevant
area of study due to their potential for building efficient and more advanced
cryptographic primitives. In the settings where generic NIZKs for NP are not
very efficient, using a generic transformation from a less expressive (but more
efficient) NIZK may be a better approach than going through the Karp reduction.

Due to the commodity of NIZK in cryptographic design, there are strong
demands to construct efficient NIZKs from various assumptions, but this is not an
easy task. For instance, NIZKs for NP-complete languages based on lattice-based
assumptions were known only in relaxed scenarios such as designated-verifier
NIZKs [12] and preprocessing NIZKs [36], while very efficient NIZKs for limited
lattice-related languages are known in the standard common reference string
(CRS) model [5, 45, 48]. Very recently, Peikert and Shiehian finally developed
a NIZK for NP based on learning with errors (LWE) [44]. A natural question
is whether such efforts have to be done every time we want to use a new
assumption. A widely useful abstraction such as black-box constructions aims to
reduce the burden of cryptographic design. Its importance is remarkable in post-
quantum cryptography, where several new assumptions such as isogeny-based
assumptions [47, 51] and multi-variable problems [56] are under investigation.
Our impossibility results justify the design and study of approaches relying on
particular properties of the underlying assumptions.
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Note that some black-box language extensions are straightforward, e.g., a
conjunctive extension can be achieved by computing both proofs and concate-
nating them. Others are more involved, for example, a similar approach fails
in the case of disjunctive language extension, or, as pointed out by Sahai [50],
the conjunctive extension does not work in the case of USS-NIZKs. Contrary
to the case of conjunctive extensions, generic methods for achieving disjunction
of languages in the framework of NIZKs are not known. A black-box disjunc-
tive language extension could be a great tool for building more advanced and
secure NIZK systems. Observe that NIZKs for disjunctive languages have a vast
number of applications. Among them, an important example is the framework
of electronic voting [14], where disjunction is used to argue that a vote is valid.
In general, it is very useful in any secure function evaluation scenario where a
proof of a disjunctive relation is used to guarantee that the input to each wire
is either 0 or 1. Furthermore, disjunctive relations are used as a building block
for achieving tight security (they often simplify the simulation in the security
reduction).

1.2 Our Results

Our main contribution is a series of (im)possibility results about black-box
language extensions among different types of NIZK systems. In the case of impos-
sibility, the constructions ruled out by this work correspond to what we would
normally think of as “black-box language extensions”.

• There exists no generic compiler that, given two NIZK systems for hard
languages L and L̂, outputs a NIZK system for L ∨ L̂. This holds even if
we are given stronger types of NIZKs, i.e. labelled or simulation-sound, as
building blocks. This justifies existing non black-box approaches.

• It is hard to extend, in a black-box manner, a simulation-sound NIZK to
cover conjunctive and disjunctive languages, or to support labels.

• Unbound simulation-soundness is hard to obtain in a black-box manner.
This justifies that black-box constructions of simulation-sound NIZKs from
standard NIZKs [50] are bounded in the number of simulations.

As it is common in all standard black-box separations, our impossibility results
do not apply when extra ingredients are available. It is indeed an interesting open
problem to understand what the minimal additional functionalities to achieve
certain constructions are.

Additionally, we provide a construction of a secure digital signature scheme
from any USS-NIZK for a hard language in NP that does not require language
extensions. This construction is motivated by our previous impossibility results
and the observation that all constructions of signatures from USS-NIZK require
the underlying language be extended to support specific relations (see Table 1).

Figure 1 illustrates a more precise summary of our separations and contribu-
tions, which we further describe in the rest of this section.
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Fig. 1: Relations between variations of NIZK. Non-labelled edges correspond to straight-
forward black-box constructions. Separations labelled as (1) are implied by Theorem
3.1 (see Corollary 1). Those labelled as (2) are implied by Theorem 4.1 and hold in the
full-verification model (see Definition 4.1).

Impossibility of Black-Box Disjunctive Extension of various NIZKs.
As our first contribution, we show that there is no fully black-box disjunctive
language extension for NIZKs. We show this result in a stronger form by proving
the absence of reductions from a labelled USS-NIZK system (see Definition.2.3)
for L to a NIZK scheme for L ∨ L̂ (for any L̂). (Note that we focus on labelled
USS-NIZKs for its generality.) To explain the core idea of our argument, let
us define a legitimate crs as a crs generated with the underlying NIZK’s crs
generation algorithm. Roughly, our proof goes as follows: i) we show that the
prover algorithm of the disjunctive extension cannot invoke the underlying
NIZK’s prover on legitimate crs’s (or otherwise the resulting NIZK will not be
zero-knowledge); ii) we then argue that because all calls to the underlying prover
must be on non-legitimate crs’s, very roughly, their trapdoor is known to the
prover of the extended NIZK and thus, soundness is compromised. In Section 3
we formalize the previous intuition and rigorously consider other missing cases.

A bit more formally, we follow the oracle separation paradigm, cf., [9,23,31,49,
53] where we construct an oracle O relative to which there exists a language L and
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a secure labelled USS-NIZK system L for it, but for any language L̂, there does
not exist a NIZK system M for L∨L̂ that is zero-knowledge and sound at the same
time. Our contribution also includes a novel approach in the construction of an
adversary against simulation soundness, exploiting the simulability of the NIZK in
a reverse manner: simulating the zero-knowledge simulator with a real prover, as
we elaborate below. This technique bears similarity with the simulatable adversary
paradigm in [22] that exploits the duality of the zero-knowledge simulator and
the real prover to construct a meta-reduction [10, 15]. In our approach, we let
the adversary simulate the oracle so that a no-instance of the language can look
like a yes-instance with a certain witness. This can be done by redefining the
language in such a way that a no-instance and a yes-instance are swapped (we
call this instance swapping).

The way we simulate the oracle simplifies the analysis and results in eliminating
the use of PSPACE power from the adversary, which used to be essential in
standard approaches from the literature. We believe this new technique is of
independent interest and could be applicable to other impossibility results.

Impossibility of Black-Box Conjunctive Extension of USS-NIZK. It
is remarkable that a conjunctive language extension is hard to achieve in a
black-box way in the case of USS-NIZKs. Specifically, in Section 4, we show that
there is no fully black-box reduction [31, 49] from a USS-NIZK system L for a
hard language L to a USS-NIZK system M for the extended language L ∧ L̂,
for any arbitrary hard language L̂. (We refer to Theorem 4.1 for a more formal
statement.) Here, a hard language is, in short, a language that constitutes a
promise problem [18, 52] consisting of a pair of disjoint, efficiently sampleable,
and indistinguishable languages, L and C (see Definition 2.1). Our result also
applies to the case where the extended part of the language L̂ is trivial (i.e., in
BPP) as long as the inverse of its size is negligible in the security parameter.

A very high level view of our proof strategy is similar to the one for the
impossibility of disjunctive extensions. However, since the simulation soundness
game is interactive, when oracle queries from M.PrvSim run by the challenger
cannot be seen by the adversary, it is more difficult to collect enough information
for producing a forgery and the details of the proof differ considerably. Another
important difference from the case of disjunction is that our impossibility result
about the conjunctive extension is limited to what we introduce as the full-
verification model (Definition 4.1). Namely, every proof that is created internally
with the prover algorithm must then be verified by the verification algorithm.

Implications and More. Our two impossibility results, in combination with a
simple analysis, allow us to discover other impossibility relations (see Figure 1). A
remarkable one is the impossibility of fully black-box construction of USS-NIZKs
from NIZKs (Corollary 3). Such an impossibility (even in the full-verification
model) enlightens the essential difference between bounded and unbounded
simulation soundness in the context of NIZKs.

Another remarkable result is fully black-box constructions of labelled USS-
NIZKs for L from USS-NIZK for L ∧ L̂ (Theorem 4.3) or L ∨ L̂ (Theorem 4.4).
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A heuristic way of attaching a label would be to involve it into a hash function
used somewhere in the proof function. While it is possible for particular types
of constructions such as those using Fiat-Shamir transformation [20], it is not
necessarily trivial in other cases such as Groth-Sahai proofs [27] and Quasi-
adaptive NIZKs [32] with structure-preserving property [4], even if the label is
left as a non-group string. Our construction can be seen as a feasibility result:
labelling is achievable in a black-box manner given USS and support for extended
(conjunctive or disjunctive) languages. If either of the properties is not provided,
labelling is not black-box achievable as shown in Figure 1.

Construction of Signatures without Language Extension. Motivated by
our previous results, we show that any USS-NIZK for any hard language in NP can
be used by itself without language extensions as a secure digital signature scheme.
Our construction retains almost the same computation and space complexity
and hence has a practical value. Concretely, given a USS-NIZK for any hard
language L, we construct a signature scheme that is unforgeable against adaptive
chosen message attacks. We emphasize that our result does not require L support
particular relations, which was required by related works on building signatures
from USS-NIZKs, e.g., [26, 34] (see Table 1). That is a sharp difference from
previous works, because our impossible results suggest that such specific relations
in the language cannot be achieved in a black-box way. Furthermore, the only
additional building block (used to create a signature scheme for arbitrary long
messages) other than USS-NIZK is an extended target-collision-resistant function
that is a “secret-key-free” primitive unlike “authenticating” ones used in the
literature. Note that, in theory, a signature scheme can be constructed solely from
NIZK by using its common-reference generator as a one-way function. However,
the resulting scheme suffers from a significant performance overhead [6] and,
unlike ours, does not allow us to conclude that upgrading a NIZK to an unbounded
simulation sound NIZK requires the use of a signature-like primitive.

Our general construction shares an idea with other works, e.g. [33]: the trap-
door for zero-knowledge simulation can be used as a signing-key and the simulated
proofs should work as signatures (because the simulation function can only be
invoked with the trapdoor), which are publicly verifiable with the crs bound
to the trapdoor. Unforgeability is argued based on the simulation soundness
property. Our result is quite general in terms of the language that the underlying
USS-NIZK must support.

1.3 Related Works

There exist several works for extending NIZKs to support disjunction of instances
without reductions to NP-complete languages. In [14] Cramer et al., presented
a very useful framework to extend any sigma-protocol to handle disjunctive
relations among instances. The idea is to split a challenge into two so that one
of them can be predicted in advance for simulating the ‘no’ side of the two
instances. This idea applies to a wide range of NIZK constructions based on the
Fiat-Shamir heuristic [20], splitting a crs into two shares allows similar ideas if
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Ref. Objective Statements proved on the underlying NIZK

[50] NIZK → OSS-NIZK R(x, ω)
[17] NIZK → USS-NIZK R(x, ω) ∨ (y=PRFs(vk) ∧ Com(s; r)=σ) ∨ (σ̂=PRG(s))
[29] NIZK → USS-NIZK R(x, ω) ∨ σ = SIGsk(vk)

[7] NIZK → SIG y = PRFs(m) ∧ Com(s; r) = σ

[34] USS-NIZK → LRSIG C = ENCpk(x||m;ω) ∧ y = TCRk(x)
[26] SE-SNARK → SoK R(x, ω) ∧ y = TCRk(m)

Table 1: Upper block: General transformations from NIZK to USS-NIZK. Lower block:
Constructions of various signature schemes based on non-interactive arguments. Under-
lined symbols are witnesses. OSS-NIZK stands for one-time simulation-sound NIZK.
R: relation associated to the original language. σ, σ̂: common reference strings. PRF:
pseudo-random function. PRG: pseudo-random generator. ENC: CPA-secure encryp-
tion. LRSIG: leakage-resilient signatures. TCR: target-collision-resistant function. SIG:
signature scheme. SoK: signature of knowledge.

some algebraic properties are available. Other works [21,41,46] follow an approach
based on Groth-Sahai proofs, which can be used to prove disjunctive statements,
e.g., [13,24]. Furthermore, Abdalla et al. [2] achieve disjunction through a smooth
projective hash proof system [16].

Many works also try to upgrade NIZK systems to achieve simulation-soundness.
Such upgrades usually require additional cryptographic primitives or the language
associated to the NIZK be extended. In Table 1 we exemplify some of these
transformations. The construction by Sahai in [50] is based on the generation of
multiple common-reference strings of the original NIZK. It is a fully black-box
construction that works for any NIZK systems and languages but results only in
bounded simulation soundness that allow preliminary bounded number of queries.
De Santis et al. built the first USS-NIZK in [17] by using a pseudo-random
function (PRF) and a commitment scheme, in combination with a general NIZK
that supports disjunction. The essential idea of this work is to prove that certain
statement is true or the PRF was computed correctly with a secret key that was
previously committed in the crs. Groth [24], followed by other works [3,13,29],
combined a signature scheme and a one-time signature scheme with a NIZK
system for satisfiability of relations over bilinear groups. Kiltz et al. combined
randomized PRFs with a QA-NIZK based on the Matrix DH and the Kernel
DH assumptions [35]. In summary, all these works for obtaining USS are non
black-box, since they require specific properties.

Our last contribution is motivated by our impossibility results and the ob-
servation that the attempts from the literature to build signature schemes from
USS-NIZKs require the language be extended or the use of additional primitives.
For example, Bellare and Goldwasser [7] construct a signature scheme by combin-
ing a PRF and a public-key encryption scheme (as a commitment scheme) with
a standard NIZK. Another attempt in [34] combines a labelled PKE scheme [16]
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with a USS-NIZK system to produce a signature scheme where messages are
embedded into a label of the encryption. Libert et al. [37, 38] combined a SS-
QA-NIZK system with a signature scheme to achieve new functionalities. Groth
and Maller [26] present a general framework for constructing signature of knowl-
edge (SoK) schemes based on succinct simulation extractable non-interactive
arguments of knowledge (SE-SNARK) requiring conjunctive extension.

2 Preliminaries
2.1 Notations

For a finite set X, we write x←X to denote that x is uniformly sampled from
set X. If we need to be explicit about random coins, r, used in the sampling,
we write x← X(r). For n ∈ N, we denote by Un the uniform distribution over
{0, 1}n. A positive function ε : N → [0, 1] ⊆ R is called negligible if for every
polynomial p(x) ∈ R[X] there exists a constant κ0 s.t. ∀κ ≥ κ0, ε(κ) < 1/p(x).

By y ← A(x) we denote a process of computation where A takes x as input
and outputs y. By AO, we denote oracle algorithm A that interacts with oracle
O. For oracle O, we use notation y ← O(x) also to represent a pair of input and
output, (x, y), when we need to be explicit about O. Variables with brackets
[ · ] match to any value. For instance, y ← O([x]) matches to any oracle query
whose output is y and we refer to the input value by x thereafter. When the
matched value will not be referred afterwards, we use ∗ and write y ← O(∗) to
mean that there exists an input to O that results in y. We also use the wildcard
[∗ 6= ⊥]← O(x) to denote that O outputs something other than ⊥ for input x.

Algorithms and oracles often implement several functions identified by an
input. By M(func, args) we mean that algorithm M works as a function specified
by func taking args as input. Dot notation M.func is used as well when inputs
are not important in the context.

2.2 Hard Language and Language Extension

We say that L is a hard language accompanied by C if L and C are efficiently
sampleable, disjoint, and hard to distinguish. Accordingly, (L, C) constitutes a
promise problem [18,52]. More formally:

Definition 2.1 (Hard Language). Let RL be an efficiently computable binary
relation. For fixed polynomials polyx and polyw, let Lκ := {x ∈ {0, 1}polyx(κ) | ∃w ∈
{0, 1}polyw(κ) : R(x,w) = 1}, and L := ∪κLκ. Let Cκ ⊆ {0, 1}polyx(κ) and
C := ∪κCκ. Given a negligible function εhd, we say L is εhd-hard (with respect to
C) if for every κ ∈ N, Lκ ∩ Cκ = ∅ and the following properties are satisfied:

• For all κ ∈ N, there exist efficiently sampleable distributions DLκ and DCκ
producing elements from Lκ and Cκ respectively.

• L and C are indistinguishable, w.r.t. DL = {DLκ}κ∈N and DC = {DCκ}κ∈N,
i.e., for every p.p.t. algorithm A and for all sufficiently large κ, it holds

|Pr [ x← DLκ : 1← A(x) ]− Pr [ x← DCκ : 1← A(x) ]| < εhd(κ) .
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When it is clear from the context, we will write x ← Lκ or x ← Cκ instead of
x← DLκ or x← DCκ respectively.

Definition 2.2 (Extended Language). Given two languages L and L̂, and a
logical binary operator � ∈ {∧,∨}, an extended language (denoted by L � L̂) is
defined as the union ∪κ(Lκ � L̂κ) where Lκ � L̂κ := {(x, x̂) | (x ∈ Lκ) � (x̂ ∈ L̂κ)}.
The extension is said to be non-trivial if Lκ � L̂κ 6⊆ Lκ′ for any κ and κ′.

Note that, for any non-empty finite Lκ and L̂κ, we have Lκ � L̂κ 6⊆ Lκ. In this
work, we only consider non-trivial language extensions. A language extension of
a NIZK (with respect to operator �) consists of, given languages L and L̂ and a
NIZK scheme L for L, build a NIZK scheme M for L � L̂.

2.3 Non-Interactive Zero-Knowledge Argument System

In this section we present syntactical and security definitions for labelled NIZKs.
Fixing label ` to a default, e.g. the empty string, results in the standard definitions
for (non-labelled) NIZKs.

Definition 2.3 (Labelled Non-Interactive Argument System). A labelled
non-interactive argument system for language L associated to relation R is a
tuple of polynomial-time algorithms (Crs,Prv,Vrf) where:

• σ ← Crs(1κ) takes a security parameter and generates a crs, σ.
• π ← Prv(σ, x, `, w) takes σ, an instance x, a label `, and a witness w as input
and outputs a proof π or ⊥.

• b← Vrf(σ, x, `, π) takes σ, an instance x, a label `, and a proof π, and outputs
either 1 or 0 representing acceptance or rejection, respectively.

For correctness, it is required that there exists a negligible function εco in κ such
that, for all sufficiently large κ, all (x,w) ∈ {0, 1}polyx(κ) × {0, 1}polyw(κ) with
R(x,w) = 1, and all ` ∈ {0, 1}poly`(κ), it holds:

Pr [σ ← Crs(1κ); π ← Prv(σ, x, `, w) : 1 6= Vrf(σ, x, `, π)] < εco(κ) .

For soundness, it is required that there exists a negligible function ε in κ such
that, for any p.p.t. algorithm A and all sufficiently large κ:

Pr [ σ ← Crs(1κ) ; (x, `, π)← A(σ) : x 6∈ Lκ ∧ 1 = Vrf(σ, x, `, π) ] ≤ ε(κ) .

Definition 2.4 (Adaptive Zero-Knowledge). A labelled non-interactive ar-
gument system (Crs,Prv,Vrf) is adaptive zero-knowledge if there exists a pair of
p.p.t. algorithms CrsSim and PrvSim and a negligible function εazk in κ such that
for every p.p.t. algorithm A and for every sufficiently large κ,∣∣Pr

[
σ←Crs(1κ) : 1←AO1(·,·,·)(σ)

]
−Pr

[
(σ, τ)←CrsSim(1κ) : 1←AO0(·,·,·)(σ)

]∣∣
is lower than εazk(κ). Oracles O1, O0, on input (x, `, w) output ⊥ if R(x,w) = 0,
and otherwise, they return Prv(σ, x, `, w) and PrvSim(σ, x, `, τ) respectively.
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We say it is a non-adaptive multi-theorem zero-knowledge if the above holds
when the adversary A is limited interact with O only before σ is generated.

Definition 2.5 (Unbounded Simulation Soundness). A labelled non-inte-
ractive zero-knowledge argument system Π := (Crs,Prv,Vrf,CrsSim,PrvSim) for
language L is unbounded simulation sound if there exists a negligible function εss
in κ such that, for any p.p.t. algorithm A,

AdvUSS
Π,A(κ) := Pr

[
(σ, τ)← CrsSim(1κ)
(x, `, π)← APrvSim(σ,·,·,τ)(σ)

: (x, `) 6∈ Q ∧ x 6∈ Lκ
∧ 1 = Vrf(σ, x, `, π)

]
< εss(κ)

holds, where Q is a list of queries sent to PrvSim.

A non-interactive argument system that is zero-knowledge and unbounded simu-
lation sound is called USS-NIZK.

We next present two lemmas related to the behavior of a zero-knowledge
simulator. They state that the simulator must produce valid proofs for an
overwhelming amount of yes-instances of the language (due to the zero-knowledge
property) and valid proofs for an overwhelming amount of no-instances of the
language (due to the hardness of the language).

Definition 2.6 (Yes-instance simulation correctness). A non-interactive
argument system Π = (Crs,Prv,Vrf,CrsSim,PrvSim) for language L is yes-
instance simulation correct if, for any x ∈ Lκ and ` ∈ {0, 1}poly`(κ), the probability

εyes(κ) := Pr[(σ, τ)← CrsSim(1κ) : 0 = Vrf(σ, x,PrvSim(σ, x, `, τ))]

is negligible in κ. The NIZK system Π is perfectly yes-instance simulation correct
if εyes(κ) = 0.

Lemma 2.1. εyes(κ) ≤ εzk(κ) + εco(κ).

Definition 2.7 (No-instance simulation correctness). A non-interactive
argument system Π = (Crs,Prv,Vrf,CrsSim,PrvSim) for εhd-hard language L
accompanied by C is no-instance simulation correct if for every ` ∈ {0, 1}poly`(κ),
the probability

εno(κ) := Pr[(σ, τ)← CrsSim(1κ) ; x← DCκ : 0 = Vrf(σ, x,PrvSim(σ, x, `, τ))]

is negligible in κ. Π is perfectly no-instance simulation correct if εno(κ) = 0.

Observe that the yes-instance simulation correctness is universally quantified
for all x ∈ Lκ. However, the same is too restrictive in the case of no-instance
simulation correctness, because, in general, a proof simulator may not produce
valid proofs for a small set of no-instances without violating zero-knowledge.

Lemma 2.2. εno(κ) ≤ εzk(κ) + εco(κ) + εhd(κ).

We refer to the full version of this paper for a formal proof of the lemmas [1].



Black-Box Extension of NIZK Arguments 11

2.4 Fully Black-Box Constructions and Separation

We follow the framework of fully black-box constructions and separation in [31,49].
We say that there is a fully black-box construction of primitive A based on
primitive B if, given L securely implementing B as an oracle, there exists an
oracle machine M such that ML securely implements A.

On the other hand, to show the absence of a fully black-box construction, we
use the so-called single oracle separation technique [31]. That is, there is no fully
black-box construction of primitive A based on B if there exists an oracle O and
an oracle machine L such that LO securely implements B, but any oracle machine
M such that MO implements A, is insecure. In Section 3, we show an oracle O
such that LO is a NIZK system for L, but any construction MO of a NIZK system
for language L∨ L̂ is insecure (no matter what L̂ is, as long as it is hard). As we
investigate constructions that do not rely on particular structures or properties,
we treat L as a black-box as well. (Therefore, it would be more precise to denote
the language as LO but we abuse notation and use L instead.)

By A ⇒ B, we mean that there exists a fully black-box construction of B
based on A. A fully black-box separation is denoted by A 6⇒ B. If a separation
holds for a restricted class of black-box constructions, we denote it by A 6⇒∗ B.
Though separations for restricted classes of black-box constructions can bring
insight to a particular problem, rigorously, they are weaker than fully black-box
separations, so we make it explicit.

3 Disjunctive Language Extension

We show that given a NIZK system with strong properties such as labelling and
unbound simulation soundness, it is hard to disjunctively extend the language,
even when compromising labelling or simulation soundness.

Theorem 3.1. (LBL-USS-NIZK 6⇒ OR-NIZK) Let L̂ be a hard language. There
does not exist a fully black-box construction M that converts any labelled USS-
NIZK system L (for some language L), into a NIZK scheme for L ∨ L̂ that is
correct, adaptive zero-knowledge, and sound.

Given the straightforward implications among NIZK, USS-NIZK, and LBL-
USS-NIZK, Theorem 3.1 implies that no black-box disjunctive language extension
is possible with respect to NIZK, USS-NIZK, or LBL-USS-NIZK.

Corollary 1. It holds NIZK 6⇒ OR-NIZK, and USS-NIZK 6⇒ OR-USS-NIZK,
and LBL-USS-NIZK 6⇒ LBL-OR-USS-NIZK.

In the rest of this section, we prove Theorem 3.1. For that, we first describe
an oracle used for constructing a hard language and a labelled USS-NIZK for it.

Definition 3.1 (Oracle O). Oracle Oκ is equipped with two injections Hc :
{0, 1}κ → {0, 1}2κ and Hx : {0, 1}κ+1 → {0, 1}2κ, and a permutation Hp :
{0, 1}6κ → {0, 1}6κ. Let H−1

c , H−1
x and H−1

p be their respective inverse functions
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that output ⊥ for inputs having no preimages. Oracle Oκ provides three language-
related functionalities SmplYes, SmplNo, and Promise, and four NIZK-related
functionalities, Crs, Prv, PrvSim and Vrf that:

• Oκ(SmplYes, w)→ x : Compute x← Hx(1||w), and output x.
• Oκ(SmplNo, w)→ x : Compute x← Hx(0||w), and output x.
• Oκ(Promise, x)→ 0/1 : Output 0 if ⊥ ← H−1

x (x). Output 1, otherwise.

• Oκ(Crs, τ)→ σ : Compute σ ← Hc(τ) and output σ.
• Oκ(Prv, σ, x, `, w)→ π/⊥ : Output π ← Hp(σ||x||`). (?)
• Oκ(PrvSim, σ, x, `, τ)→ π/⊥ : Output π ← Hp(σ||x||`). (??)
• Oκ(Vrf, σ, x, `, π)→ 0/1 : Output 1 if (σ||x||`) = H−1

p (π), else 0.

(?) Output ⊥ instead if ⊥ ← H−1
c (σ), x 6= Hx(1||w), or ` 6∈ {0, 1}2κ.

(??) Output ⊥ instead if σ 6= Hc(τ), ⊥ ← H−1
x (x), or ` 6∈ {0, 1}2κ.

We denote by O an oracle consisting of a set of Oκ for all κ ∈ N. Given an
input, O defines κ based on the size of the second argument and checks if all
other arguments follow the appropriate size. On a successful check, it forwards
the input to Oκ and outputs the result, otherwise O outputs ⊥. By O we denote
the set of all possible oracles O.

A query to O is successful if the answer is not ⊥ (or not 0 in the case of
O.Vrf). We say that a common reference string σ is valid (with respect to O) if
there exists τ that satisfies σ = Hc(τ). Given σ (without τ), it is easy to assure
its validity by checking that O(Prv, σ, x, `, w) is different from ⊥, where x can be
any yes-instance and w its corresponding witness.

The oracle O can be seen as a set consisting of entries of the form (cmd, args,
output) where command cmd is one of {SmplYes,SmplNo,Promise,Crs,Prv,PrvSim,
Vrf}, args denotes inputs for each command, and output is the answer. Inputs
and outputs may include wildcards such as ∗. Then, a set S of entries of this
form is called a partial oracle as it can be seen as an oracle that accepts only
limited inputs. A partial oracle S is called consistent if there exists another set S′
such that S ∪S′ forms a complete oracle in O. Otherwise S is called inconsistent.
A hybrid oracle, denoted as S := S1|S2| · · · , is an oracle that combines partial
oracles S1, S2, . . . in such a way that, given a query of the form (cmd, args), it
first searches S1 for matching entry (cmd, args, [output]) and returns output if it
exists. If no such entry is found in S1, it searches S2 and so forth. Note that a
hybrid oracle may not be consistent.

Let L be an oracle machine that, given O as an oracle, forwards its input to O
and outputs whatever O outputs. LO implements a hard promise problem and a
NIZK argument system for it. (Some trivial syntactical adjustments are needed
to fit to the definition of NIZK in 2.3 and 2.4.) The following lemma holds for LO.



Black-Box Extension of NIZK Arguments 13

Lemma 3.1. With probability 1 over the choice3of O ∈ O, LO implements a
hard promise problem (L, C) for Lκ := {x | ∃w ∈ {0, 1}κ s.t. x = Hx(1||w)} and
Cκ := {x | ∃w ∈ {0, 1}κ s.t. x = Hx(0||w)}. It also implements a non-interactive
zero-knowledge argument system for L that is perfectly correct, perfectly yes-
instance and no-instance simulation correct. Furthermore, it is adaptive zero-
knowledge and unbound simulation-sound against uniform adversaries given oracle
access to O a polynomial number of times.

By design of the oracle, adversaries that interact with it can only win if some
bad events occur. It is not hard to see that these events occur with negligible
probability. We refer to the full version of this paper for a formal proof [1].

We make some remarks about our design choices for O and the properties
of L. It was shown in [11, 55] that a simpler witness-indistinguishable oracle
suffices to construct a simulation sound NIZK. It is however essential for their
construction that the oracle supports an NP-complete language (or a specific
disjunctive language). The NIZK implemented by the above L is deterministic
but one can make it probabilistic so that (simulated) proofs have κ-bit entropy
simply by attaching κ-bit randomness to the proof. The simulation soundness of
LO will not be directly used in our proof of impossibility. What is important here
is to see that O suffices to construct a USS-NIZK for L.

Intuition for the impossibility. If the construction M is such that, M.Crs generates
some σj by calling O.Crs and encoding them into σ̃ (we name such crs’s legitimate),
we claim that the prover algorithm M.Prv cannot use them. Otherwise, the
adaptive zero-knowledgeness will be compromised. That is, every crs that used
when proving a given statement, should be generated within the prover algorithm
(except for some eccentric cases that we explain later). A crucial observation
is that, to prove disjunction for an instance (x, x̂), it may be the case that
(x, x̂) ∈ Cκ × L̂κ and the no-instance x cannot be proven with a legitimate crs
whose trapdoor is unknown to the prover. On the other hand, using a legitimate
crs only for yes-instances contradicts the zero-knowledgeness of the underlying
scheme (or the hardness of L), because the zero-knowledge simulator does not
know whether the given x is a yes or a no-instance.

Let us elaborate on this point. In the next, let q(κ) be a (non-constant)
polynomial in the security parameter that upper-bounds the number of queries
to O that MO performs in each invocation. Let c > 1 be a constant. Consider the
adaptive zero-knowledge game where an adversary submits disjunctive instances
(xj , x̂j) for j = 1, . . . , qc (for certain integer c) to the challenger that produces
proofs either by M.Prv (in the real world) or M.PrvSim (in the simulated world).
The adversary verifies the proofs by M.Vrf which may make verification queries
O.Vrf on the left-hand instance, xj . Consider the case where instances (xj , x̂j)
3 Technically, for every machine A, there exist a set of measure 0 of oracles for which A
has a significant advantage either against the hardness of the language or the NIZK
system. As it is standard after the application of the Borel-Cantelli Lemma, given
that there exist countably many machines, for a measure 1 sets of oracles in O we
can say that for all p.p.t. machines A our result holds.
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are taken from Cκ×L̂κ as pairs of (no, yes) instances, and the challenger responds
with M.Prv in the real-world. We then define (real, no, yes) as the distribution of
all crs’s (over the choice of instances and coins of M) that are given as input to
O.Vrf to verify the left-hand instances xj for j = 1, . . . , qc. We define (sim, no, yes)
similarly for the case the challenger respond with M.PrvSim in the simulated-
world. Switching yes and no according to whether xj (and x̂j , resp.) are chosen
from Lκ or Cκ (L̂κ or Ĉκ, resp.), we have

(real, no, yes)
(§)
≈ (sim, no, yes)

(†)
≈ (sim, yes, yes)

(‡)
≈ (sim, yes, no)

(§)
≈ (real, yes, no)

where ≈ denotes indistinguishability of distributions and (§) is given by the
zero-knowledge property and (†) and (‡) are given by the hardness of L and L̂
respectively. (Observe that M.PrvSim could be used to distinguish between L
and C if the indistinguishability denoted by (†) did not hold). Also, observe that
(real, no, yes) does not contain a legitimate crs, because the real prover algorithm
cannot prove on a no-instance with a legitimate crs whose trapdoor is not given.
Because legitimate crs’s can be identified (we refer to the learning-phase defined
below for more details), and given the above indistinguishability relations, the
same is true for (real, yes, no): it does not contain legitimate crs’s. Therefore, even
if a witness for xj is given, the prover must not use legitimate crs’s to prove xj .

We then argue that a NIZK system that does not use the legitimate crs for
proving a given statement cannot be sound. We construct an adversary that runs
the prover algorithm, M.Prv, on (x∗, x̂∗) ∈ Cκ × Ĉκ and performs an instance
swapping to fool it as if x∗ was taken from Lκ. This is done by giving M.Prv
a random fake witness, w∗, for x∗ and simulating O on queries involving x∗.
Concretely, if M.Prv makes O.SmplYes queries on the fake witness w∗ (to check its
correctness), we simulate the answer by returning x∗. If O.Prv queries are made
on x∗ under a crs, σj , we replace the query with O.PrvSim using a trapdoor τj for
σj . This is possible because (as we have argued above) all crs’s used within M.Prv
must have been internally generated, so their trapdoors are known. There could
be a case where a legitimate crs is used to prove x∗. Recall that (real, yes, no)
does not include legitimate crs’s, i.e., proofs with a legitimate crs will not be
verified by M.Vrf. Yet, M.Prv may create and verify proofs with a legitimate crs
for internal use only. Therefore, the adversary must fool M.Prv by simulating
such proofs with random strings and answering accordingly to the respective
verification queries. Once M.Prv is done, the resulting proof π̃ should pass the
final verification since all proofs πj embedded in π̃ are genuine and independent
of the fake witness.

Nevertheless, the above sketch ignores the possibility of a trivial legitimate
crs whose trapdoor is also embedded to σ̃ and available in public. Algorithm
M.Prv may use a trivial trapdoor for no-instances and a relevant witness for
yes-instances. But the witness we give to the algorithm is a fake one that does
not work properly. To handle such a case, the adversary must find the trivial
trapdoors in advance and use them for proofs. Although we do not know how
the trivial trapdoors are encoded into σ̃, they can be extracted by running M.Prv
on a number of instances and observing the trapdoors used therein. Since there
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can be a bounded number of trivial legitimate crs’s embedded in σ̃, sufficiently
repeating the proofs on random instances exhausts them with high probability.

Breaking Soundness. In the following proof, we construct adversary A attacking
soundness of M (against a challenger B) and use the above observation about
the legitimate crs to lower bound the success probability of A.

[Soundness Game for OR-NIZK M]
At the beginning, oracle O is chosen from O. Then challenger B and adversary
A engage in the following procedures.
Step 1: Setup Phase.
The challenger generates a common reference string by σ̃ ← MO(Crs, 1κ).
Let Qleg be the list of legitimate crs’s and their corresponding trapdoors (σj , τj)
that have been generated in this phase, as σj ← O(Crs, τj).

Step 2: Self-Learning Phase.
Given σ̃, for every i = 1, . . . , qc, adversary A uniformly samples instance
(xi, x̂i) and the corresponding witness (wi,⊥) from Lκ × Ĉκ and it computes
π̃i ← MO(Prv, σ̃, (xi, x̂i), (wi,⊥)) and bi ← MO(Vrf, σ̃, (xi, x̂i), π̃i).
Let Qtriv be the list of trivial pairs of crs and trapdoor, (σj , τj), that appeared in
a computation like [∗ 6= ⊥]← O(PrvSim, σj , ∗, ∗, τj) or σj ← O(Crs, τj) during
some execution of M in this phase.

Step 3: Forgery Phase.
Sample (x∗, x̂∗) ∈ Cκ × Ĉκ as w∗ ← {0, 1}κ, x∗ ← O(SmplNo, w∗) and x̂∗ ← Ĉκ
Let x̄ := O(SmplYes, w∗) and apply instance swapping:
Let O′ be the partial oracle given by the entries (SmplYes, w∗, x∗), (SmplNo, w∗, x̄),
and (Prv, ∗, x̄, ∗, w∗,⊥). Run MO′′(Prv, σ̃, (x∗, x̂∗), (w∗,⊥)) where O′′ is an algo-
rithm that simulates an oracle in O as follows.
[Algorithm O′′] Initialize Qintl as an empty list.
- If a given query is defined in O′, return the output accordingly.
- Given (Crs, [τj ]), return σj ← O(Crs, τj) and record (σj , τj) to Qintl.
- Given (Prv, [σj ], x∗, [`j ], w∗) with valid σj :
(a) if (σj , [τj ]) ∈ Qtriv ∪Qintl:
return πj ← O(PrvSim, σj , x∗, `j , τj) and add (Prv, σj , x∗, `j , w∗, πj) to O′.

(b) else:
return πj ← {0, 1}6κ; add (Prv, σj , x∗, `j , w∗, πj), (Vrf, σj , x∗, `j , πj , 1) to O′.

- For every other query, forward it to O and return the output.

When M outputs a proof π̃∗, A outputs (x∗, x̂∗) and π̃∗ as a forgery.

Step 4: Final Verification Phase.
Challenger B outputs 1 (interpreted as the adversary wins) if x∗ 6∈ Lκ, x̂∗ 6∈ L̂κ
and 1← MO(Vrf, σ̃, (x∗, x̂∗), π̃∗); otherwise, it outputs 0 (the adversary loses).
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Lemma 3.2. The above adversary A wins the simulation soundness game of MO

with non-negligible probability if M is non-adaptive multi-theorem zero-knowledge
and correct.

We will use the following lemma in the proof of Lemma 3.2. It states that if
an event happens for n successive independent attempts, the probability that it
suddenly does not happen is upper-bounded by an inverse polynomial of n. We
use this lemma to claim that, during the challenge phase, the adversary observes
all trivial σj embedded in σ̃ generated by the challenger.

Lemma 3.3 ( [54, Fact 4.6.1]). Let X1, · · ·Xn+1 be independent Bernoulli
random variables, where Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for i =
1, · · · , n+ 1, and some p ∈ [0, 1]. Let E be the event that the first n variables are
sampled at 1, and Xn+1 is sampled at 0. Then, Pr[E] ≤ 1

e·n , where e ' 2.71 is
the base of the natural logarithm.

Proof. (of Lemma 3.2) We analyze the probability that the forged proof passes
the verification in the above game. Let ρzk(κ) and ρco(κ) denote upper-bounds
for non-adaptive multi-theorem zero-knowledge and correctness for M as defined
in Definitions 2.3 and 2.4, respectively. We consider these parameters as universal
for all O. Let P be the probability that challenger B outputs 1 in the final
verification phase, which is taken over the choice of O and coin flips by B and A.

Our goal is to show that P is not negligible. Towards that goal, we consider
a sequence of games (where each game is identical to the precedent, except for
the mentioned details) that introduces arbitrarily small (though not necessarily
negligible) differences in the considered probability and eventually reach the
situation where B outputs 1 trivially. We denote the probability for the same
event in Game i by Pi. In the first games (Game 0 to Game 6) we exclude events
that happen only with negligible probability, simplifying the next transitions.
Under the condition that these events do not happen, O′′ simulates an oracle in
O that successfully produces a correct proof on a yes instance (of the disjunctive
relation). In the succeeding games (Game 7 to 9), we replace oracle O by O′′,
relying on the zero-knowledge property and the hardness of the languages. In the
last Game 9, the adversary does nothing but creating a proof for a yes instance,
which must be accepted with high probability.

Game 0: The above soundness game. So P0 = P .

Game 1: For every successful query to O.PrvSim or O.Prv with respect to some
σj , query O.Crs that generates σj must have been made in advance within the
same execution of M or in the setup phase. Similarly, for every successful query
to O.Vrf for verifying a proof, a query to O.PrvSim or O.Prv that outputs the
queried proof must have been made in advance. If any of these are not the case,
the game halts.

Game 2: Modify the final verification to skip the check x∗ 6∈ Lκ and x̂∗ 6∈ L̂κ.

Game 3: Halt the game if A observes bi = 0 in the self-learning phase.
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Game 4: The game halts if there has been a query on w∗ or x∗ or x̄ made by M
invoked in the setup and self-learning phases.

Game 5: The game halts if any of randomly assigned πj at step (b) of O′′ appear
as a result of other O.Prv or O.PrvSim queries by the end of the forgery phase.

Game 6: The game halts if, O′′ receives a query (PrvSim, [σj ], x∗, [`j ], [τj ]) that
there exists (Prv, σj , x∗, `j , w∗, [πj ]) in O′, and πj 6= π′j 6= ⊥ holds for π′j ←
O(PrvSim, σj , x∗, `j , τj). The modification is to exclude a case where a trapdoor
τj for some σj suddenly appears for the first time in the forgery phase while σj
itself has appeared so far.

Claim 3.2. |P0 −P6| < ε(κ) + qcρco(κ) + 2/(eqc−1), for a negligible function ε(κ).
Proof. We include a formal proof in the full version of this paper [1].

Game 7: Replace O in the setup and self-learning phase with algorithm O′′ with
partial oracle O′ defined at the end of the forgery phase after Game 4.

Since queries defined in O′ involve x∗ or x̄, they do not appear in the setup
and forgery phase. Any queries to O′′ not defined in O′ are answered by O. Thus,
this modification does not introduce any relevant change and we have P7 = P6.
Game 8: In this game, we use O′′ instead of O also in the final verification phase.

Claim 3.3. |P8 − P7| < 7/eqc−1 + (3q2 + 2qc+2)/26κ + 2q/2κ + ε̂ind(κ) + 3ρzk(κ).
Proof. See the end of this section.

Game 9: We then modify O′′ so that it no longer uses O. Instead, it uses a random
partial oracle R such that, O′′ = O′||R is an oracle in Oκ.

Since all queries to O′′ from M.Vrf in Game 8 that answered by O are consistent
with the partial oracle O′, the replacement by a consistent R does not change
the distribution of the view of M.Vrf. Therefore, P9 = P8.

Now O′′ is an oracle in Oκ and in Game 8, the adversary is creating a proof π̃∗ on
a (yes,no)-instance (x∗, x̂∗) with a correct witness with respect to O′′. Therefore,
the created proof will be accepted unless except for the correctness error. We
thus have P9 > 1− ρco(κ).

By summing up the above differences of probabilities, we have

P > 1−
(
9/(eqc−1) + ε̂ind(κ) + 3ρzk(κ) + (qc + 1)ρco(κ) + ε(κ)

)
.

Accordingly, if M is correct, zero-knowledge, language L̂ is hard and constant c
is set so that the second term of the right-hand-side of the above inequality is
small enough, A is successful in breaking the soundness of M with non-negligible
probability in κ. �

Proof. (of Claim 3.3) The view in the verification phase changes only if M.Vrf
makes one of the following queries whose output differs in O and O′′.
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• A query (PrvSim, [σj ], x∗, [`j ], [τj ]) such that for πj ← O(PrvSim, σj , x∗, `j , τj),
there exists (Prv, σj , x∗, `j , w∗, [π′j ]) in O′, with πj 6= π′j .

• A query that is not in O′ but results in a πj that already appears in O′.
• A query included in O′.

We can bound (by a negligible function) the probability that the first two
types of queries from above occur, by following similar arguments as for the
transitions to Game 6 and Game 5 respectively. However, the third case requires
careful analysis. In the following, we briefly present our idea for bounding the
probability. First observe that O′ includes two types of queries: those involving
witness w∗ and those where randomly assigned proofs are verified. Informally,
the first type of query will occur with low probability because, otherwise, M.Vrf
would have a valid witness for a given instance, what contradicts zero-knowledge
or the hardness of the language. The second type of query must also occur
with low probability because, as discussed at the beginning of this section: a
legitimate non-trivial σj cannot be used to prove a given instance, or otherwise
zero-knowledgeness will be lost.

More concretely, to bound the probability of the first type of query happening,
the same argument as that for Game 6 can be applied. We consider queries done
by M.Vrf instead of M.Prv in the self-learning phase and the verification phase
but the analysis remains the same. This gives us an upper-bound of 2q/(eqc). The
second type of query can be can be bounded as in the transition to Game 5, except
for additional q queries made during the verification itself. We can establish a
bound of q(3q + 2qc+1)/26κ. Finally, for the third type of query, observe that
they can be splitted into: i) queries including w∗ and ii) queries for verifying a
randomly assigned proof. Queries of type i), are all of the form (SmplYes, w∗),
(SmplNo, w∗), (Prv, ∗, x̄, ∗, w∗), and (Prv, ∗, x∗, ∗, w∗). Queries of type ii) are of
the form (Vrf, ∗, x∗, ∗, [πj ]). Let AskW (respectively VerPi) denote the event that
queries of type i) (respectively ii)) occur.

We first bound the probability that AskW happens. Let Game 8.0 be Game 8.
Let AskW8.i denote the event that AskW happens in Game 8.i (defined below).
It is important to observe that, at this point, the view produced by O′′ with O′
is consistent, i.e., there exists a partial oracle that produces the same view, and
in the forgery phase a correct proof on a (yes,no)-instance is being created with
a correct witness with respect to the partial oracle.

Game 8.1: Replace M.Crs in the setup phase and M.Prv in the forgery phase
respectively by M.CrsSim and M.PrvSim. Note that the trapdoor output by
M.CrsSim is given to M.PrvSim.

We can show that |Pr[AskW8.0]−Pr[AskW8.1]| < ρzk(κ) by constructing a zero-
knowledge distinguisher from adversary A. We then claim that Pr[AskW8.1] ≤
q/2κ. This is justified by the fact that M.PrvSim no longer takes w∗ as input
and hence the view of M.Vrf in the final verification is independent of w∗.
Therefore, the event happens only by chance among q queries. We have that
Pr[AskW] = Pr[AskW8.0] < ρzk(κ) + q/2κ.
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We now bound the probability of event VerPi. Suppose that we run an
execution of MO′′(Vrf, σ̃, x̃, π̃) on certain input and suppose that it makes a
verification query of the form (Vrf, σj , x∗, `j , πj) to O′′. There are two options,
either this query causes event VerPi or not, depending on whether πj is a randomly
assigned proof. However, we cannot decide which one is the case, event VerPi
is not observable. This will be an obstacle if we try to construct an adversary
against zero-knowledgeness as we did in previous cases. Alternatively we consider
an event, VerCrs, that is observable and happens almost whenever VerPi happens.
Suppose that a query (Vrf, σj , x∗, `j , πj) happens in the final verification phase.
We would like to see if proof πj was randomly assigned in step (b) of O′′ or not.
Observe that it is the case only if (σj , [τj ]) 6∈ Qtriv∪Qintl. Furthermore, if σj is not
an internally generated crs, it must have been generated in the setup phase. Also,
as σj appears in the final verification, it should have appeared in a verification
during the self-learning phase as well. We define VerCrs as the event that in the
final verification, MO(Vrf, σ̃, (x∗, x̂∗), π̃∗), a query of the following form is done:
(Vrf, [σj ], x∗, [`j ], [πj ]), satisfying `j ∈ {0, 1}2κ, (σj , [τj ]) 6∈ Qtriv, and σj ∈ Qnt
where Qnt is a list of all σj queried in the self-learning phase but not included in
Qtriv. This way, event VerCrs is observable based on the view in the self-learning
phase. Yet, VerCrs can differ from VerPi when a σj generated in the setup phase
appears for the first time in the final verification. However, applying Lemma 3.3,
we can upper-bound the probability for such event by q/eqc. We thus have

Pr[VerPi] ≤ Pr[VerCrs] + q/eqc .

Now, let Game 8.0′ be Game 8 and let VerCrs8.i′ denote the event that VerCrs
happens in Game 8.i′, where:

Game 8.1′: Replace M.Crs and M.Prv with M.CrsSim and M.PrvSim, respectively.

We claim that |Pr[VerCrs8.0′ ]−Pr[VerCrs8.1′ ]| < ρzk(κ)+2q/eqc. To show this, we
construct a zero-knowledge adversary that, given σ̃, first executes the self-learning
phase, and sends (x∗, x̂∗) and (w∗,⊥) to the challenger. On receiving π̃∗, the
adversary runs MO′′(Vrf, σ̃, (x∗, x̂∗), π̃∗) and outputs 1 if event VerCrs happens. It
outputs 0, otherwise. If the challenger is working with M.Crs and M.Prv, the view
in the final verification (up to the point when event VerCrs happens) distributes
as in Game 8.0′. On the other hand, if the challenger is working with M.CrsSim
and M.PrvSim, the view in the final verification distributes as in Game 8.1′.

In the above argument, the adversary cannot perfectly capture event VerCrs
since the lists Qtriv and Qnt that the adversary obtains from its own self-learning
and uses to capture event VerCrs can be different from the ones defined for
O′′. This issue can be handled as follows. First, regarding σj in Qtriv, it suffices
to consider those included also in Qleg. This is justified by observing that the
condition (σj , [τj ]) 6∈ Qtriv ∪Qintl is equivalent to (σj , [τj ]) 6∈ (Qtriv ∩Qleg) ∪Qintl,
because every σj ∈ Qtriv that appeared during the final verification and is not
present in Qleg must be in Qintl. Let Q′triv be the lists the adversary obtained. If
Q′triv ∪Qleg and Qtriv ∪Qleg differ, there exists (σj , τj) ∈ Qleg that does not appear
a self-learning but does in the other self-learning. We can apply Lemma 3.3 to
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upper-bound the probability of having different Qtriv and Q′triv by q/eqc (the same
argument applies to Qnt). This results in adding 2q/eqc to the bound, as claimed.
We recall that, up to this point, (x∗, x̂∗) ∈ Lκ × Ĉκ with respect to oracle O′.
Game 8.2′: Sample x̂∗ from L̂κ, that is, (x∗, x̂∗) is chosen from (yes,yes)-instances.
Any change in event VerCrs can be reduced to distinguishing L̂ and Ĉ. We
have |Pr[VerCrs8.1′ ]− Pr[VerCrs8.2′ ]| < ε̂ind(κ) where ε̂ind(κ) is the advantage of
distinguishing L̂ and Ĉ.
Game 8.3′: Sample x∗ from Cκ. That is, (x∗, x̂∗) is chosen from (no,yes)-instances.
Due to the indistinguishability of L and C, |Pr[VerCrs8.2′ ]−Pr[VerCrs8.3′ ]| < q/2κ.
(Note that language L is implemented by oracle O.)
Game 8.4′: Replace M.CrsSim and M.PrvSim by M.Crs and M.Prv, respectively.
Note that to use M.Prv, one needs a witness, which in this case is known. It is
actually (⊥, ŵ), where ŵ is a witness for x̂ (received as input).
We have |Pr[VerCrs8.3′ ]− Pr[VerCrs8.4′ ]| < ρzk(κ) + 2q/eqc.

Since w∗ is no longer given, a valid proof πj on x∗ with a legitimate non-
trivial σj that triggers event VerCrs8.4′ can be created only by chance by guessing
a relevant trapdoor or the witness, cases that have been already excluded in
previous games. Therefore, we conclude that Pr[VerCrs8.4′ ] = 0.

By summing up the above probabilities, we have

Pr[VerPi] < Pr[VerCrs] + q/eqc < ε̂ind(κ) + q/2κ + 2ρzk(κ) + 5q/eqc.

Finally, we have

|P8 − P7| < 2q/eqc + q(3q + 2qc+1)/26κ + Pr[AskW] + Pr[VerPi]
< 7/eqc−1 + (3q2 + 2qc+2)/26κ + 2q/2κ + ε̂ind(κ) + 3ρzk(κ). �

4 Conjunctive Language Extension

In this section, we consider non-labelled NIZKs. For that purpose, we drop the
labels from the definition of O in the previous section. The internal random
function Hp is adjusted to Hp : {0, 1}4κ → {0, 1}4κ.

We consider a class M of constructions where every M ∈ M satisfies the
constraint that, roughly, all internally generated proofs πj must be verified in
the process of verifying the resulting proof. We call such M a construction in the
full verification model. In the following, we use symbol 6⇒∗ to denote separations
that hold in the full verification model.

Definition 4.1. (Class of constructions with full verification.)M := {M} is a
class of black-box constructions of NIZK with respect to O such that, for every algo-
rithm M ∈M, the following condition is met: For all sufficiently large κ > 0, for
every O ∈ Oκ, σ̃, x̃, w̃, and query/answer pair [πj 6= ⊥]← O(Prv, [σj ], [xj ], [wj ])
observed during the execution of [π̃ 6= ⊥]← MO(Prv, σ̃, x̃, w̃), there exists a query
O(Vrf, σj , xj , πj) during the execution of MO(Vrf, σ̃, x̃, π̃).
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The condition captures the idea of properly using O as a proof system because
whatever was proven internally by a prover is then verified by a verifier. Requiring
“every” internal proof to appear also at verification is in fact needed for technical
reasons. We construct an adversary that simulates proofs πj by looking for query-
answer pairs of O obtained during the challenge phase. However, such a view is
only with respect to M.Vrf executed by the adversary itself and those with respect
to M.PrvSim are not available, because they are executed by the challenger. So if
only a subset of the internal proofs are verified in M.Vrf, the adversary cannot
simulate the distribution of the internal proofs needed to run M.PrvSim. We do
not know how to prove the separation if this condition is relaxed to, for instance,
“at least one”. It carries a resemblance to the constraint used in [23, footnote 9]
to show a black-box separation of semantically secure encryption from chosen
ciphertext secure ones. Their result applies to a class of constructions where, for
every decryption query, there must exist a corresponding encryption query, or no
encryption query can be made during decryption (a.k.a. the shielding model).

The following theorem can be proven by following a similar approach as the
one used in the proof of Theorem 3.1. We refer to the full version of this paper [1]
for a formal proof.

Theorem 4.1. (USS-NIZK 6⇒∗ AND-USS-NIZK in the full verification model.)
Given any two hard languages L and L̂ and any USS-NIZK system L for L,
there exists no fully black-box construction of USS-NIZK scheme M in class
M for L ∧ L̂ that is non-adaptive multi-theorem zero-knowledge and unbounded
simulation sound.

4.1 Constructing AND-USS-NIZK from labelled USS-NIZK

Contrary to the impossibility in the previous section, conjunctive language
extension is possible for USS-NIZKs if they support labels. Exploiting the integrity
of labels, an easy solution could be the following: to prove an instance (x1, x2)
under a label ` we can define a label for the USS-NIZK scheme `′ := x1||x2||`
and run the prover algorithm in both pairs (x1, `

′) and (x2, `
′). Such a simple

transformation works, as long as the underlying USS-NIZK can handle the longer
labels that we defined. We provide a transformation that is valid independently of
the label space of the underlying NIZK as long as it supports poly-length labels.

For a bitstring s, let f(s) be a Merkle encoding of s [39] as defined by
f(s) := s||tag(s), where tag(s) is a bitstring representing the bit length of s minus
its hamming weight. The length of f(s) is exactly len(s) + dlog2(len(s))e. Now,
let I(s) := {i | f(s)i = 1} where f(s)i is the i-th bit of f(s). It then holds that,
I(s) is not empty for any s, and for different s, s′, I(s) 6⊆ I(s′) and vice versa.

Theorem 4.2. (LBL-SS-NIZK ⇒ LBL-AND-SS-NIZK.) Given any two lan-
guages L and L̂ and two labelled USS-NIZKs for both L and L̂, there exists a
fully black-box construction of labelled USS-NIZK for language (L ∧ L̂).

Proof. Let Π1 and Π2 be two labelled USS-NIZKs for L1 and L2, respectively. We
construct a LBL-USS-NIZK, Π̃, for L1∧L2 with labels of length len(`) := poly`(κ).
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Let ui be the label bit-size supported by Πi and let u = min(u1, u2). We
require u be polynomial in κ so that polynomial number of random independent
samplings from {0, 1}u produces collisions with negligible probability. Let v :=
len(x1) + len(x2) + len(`) where len(xb) (b = 1, 2) denotes the bit length of the
instances in Lb at security parameter κ. Let n := v + dlog2(v)e.
• Given κ as input, Π̃.Crs runs σbi ← Πb.Crs(1κ) for b ∈ {1, 2} and i ∈ [n] and
outputs σ̃ := (σ11, σ21, . . . , σ1n, σ2n).

• Given σ̃, x̃ = (x1, x2), a label ` and w̃ = (w1, w2), Π̃.Prv chooses a random
u-bitstring r ← {0, 1}u and computes πbi ← Πb.Prv(σbi, xb, r, wb) for every
i ∈ I(x̃||`). It produces π̃ by concatenating all the previous proofs with r.

• Given σ̃, x̃, ` and π̃ as input, the verification algorithm Π̃.Vrf verifies the
proofs included in π̃ on the corresponding σbi, b ∈ {1, 2}, i ∈ I(x̃||`). It
accepts the proof if and only if all verifications succeed.

Simulators are constructed accordingly and zero knowledge holds immediately
from Π1 and Π2. For unbound simulation soundness, suppose that, after seeing
simulated proofs π̃j for chosen label-instance pairs (x̃j , `j), an adversary outputs
a proof π̃∗ (consisting of π∗bi and r∗) on a fresh (x̃∗, `∗). Let b∗ ∈ {1, 2} be s.t.
x∗b∗ is a no-instance with respective language, which exists if the above is a valid
forgery for the conjunction. Now, if there exists j s.t. r∗ = rj , let i∗ be such that
i∗ ∈ I(x̃∗||`∗) and i∗ 6∈ I(x̃j ||`j). Otherwise, r∗ is fresh, let i∗ be any index from
I(x̃∗||`∗). Observe that (π∗b∗i∗ , x∗b∗ , r∗) is a forgery against Πb∗ with respect to
σi∗ , if every rj is unique as expected. That is because the chosen (x∗b∗ , r∗) is a
fresh instance-label pair and x∗b∗ is a no-instance of the respective language. �

4.2 Implications and Language Preserving Reductions

We first show that a labelled USS-NIZK for L can be constructed from (non-
labelled) USS-NIZK for L ∧ L̂.

Theorem 4.3. (AND-USS-NIZK ⇒ LBL-USS-NIZK) Given any NIZK system
for L ∧ L̂ that is unbounded simulation sound and adaptive zero-knowledge, there
exists a fully black-box construction of LBL-USS-NIZK for L.

Proof. Let Π := {Crs,Prv,Vrf,CrsSim,PrvSim} be a USS-NIZK for L ∧ L̂. It is
assumed that L̂ is efficiently and uniformly sampleable (with witnesses) and
includes a sufficiently large number of instances. We construct a LBL-USS-
NIZK Π̃ for L with labels len(`) := poly`(κ) as follows. Let n be n := len(`) +
dlog2(len(`)))e and function I as defined before.

• Given κ, Π̃.Crs outputs σ̃ := (σ1, . . . , σn), where σi ← Π.Crs(1κ).
• Given σ̃, instance x ∈ L, a label ` and a witness w, Π̃.Prv samples a random
yes-instance x̂← L̂κ with corresponding witness ŵ. It then creates a proof π̃
by concatenating x̂ with all proofs Π.Prv(σi, (x, x̂), (w, ŵ)) for i ∈ I(`).

• The verification algorithm Π̃.Vrf verifies the proofs in π̃ with the corres-
ponding σi in i ∈ I(`). It accepts π̃ only if all verifications succeed.
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Simulators are constructed accordingly and the zero knowledge property of Π̃
is inherited from the one by Π. For simulation soundness, consider an adversary
who produces a proof π̃∗ on a fresh (x∗, `∗), where x∗ is a no-instance of L. If a
proof on (x∗, `) was never asked by the adversary for any `, π̃∗ cannot be valid
due to the USS of Π. Otherwise, observe that if π̃∗ = (x̂∗, {π̃∗i }i∈I(`∗)) is valid,
the USS of Π is compromised, because there must exist an index i s.t. (x∗, x̂∗)
has not been proven with respect to σi, but π̃∗i is a valid proof for that instance.
Observe that the above reasoning requires that the probability of collisions when
sampling x̂← L̂κ is negligible, which is guaranteed by the assumption on L̂. �

Corollary 2. AND-USS-NIZK ⇒ LBL-AND-USS-NIZK
If L̂ is a hard language we can reduce OR-USS-NIZK to LBL-USS-NIZK.
Theorem 4.4. (OR-USS-NIZK⇒ LBL-USS-NIZK) Any NIZK system for L∨L̂
for a hard language L̂ that is unbound simulation sound and adaptive zero-
knowledge, can be transformed into a LBL-USS-NIZK for L in a black-box way.
Proof. (Sketch) The transformation is analogous to the one provided in the proof
of Theorem 4.3. The difference is that x̂ is chosen to be a no-instance from Ĉκ and
its witness ŵ together with x̂ is included in the proof π̃. The verifier algorithm
checks that x̂ ∈ Ĉκ using ŵ. Everything else remains unchanged. �

Finally, the following result holds in the full verification model.
Corollary 3. (NIZK 6⇒∗ USS-NIZK in the full verification model.) There does
not exist an oracle machine M such that for every language L and for every
NIZK Π for L, MΠ,L is a USS-NIZK for L.
Proof. Suppose that a USS-NIZK for L is black-box constructable from a NIZK
for L in the full verification model. Then, by applying the construction to
L := (L′ ∧ L̂′), we can construct a USS-NIZK for (L′ ∧ L̂′) from a NIZK for
(L′ ∧ L̂′). Since USS-NIZK implies NIZK, we could start from a USS-NIZK for
L′ to construct a USS-NIZK for (L′ ∧ L̂′), which contradicts Theorem 4.1. �

5 Signatures from USS-NIZK w/o Language Extension
We begin with a simple yet useful case where a USS-NIZK system Π for hard
language L is perfectly no-instance simulation correct, i.e., Π.PrvSim works for
any no-instances in C. Let H be a family of functions H := {Hκ : Kκ×Mκ → C′κ}
that maps messages inMκ to a subset of no-instances C′κ ⊆ Cκ. We construct a
signature scheme Σ := (Setup,Sign, Vrf) as follows.

Σ.Setup(1κ) :
(σ, τ)← Π.CrsSim(1κ)
K ← Kκ
pk := (σ,K)
sk := τ

return (pk, sk)

Σ.Sign(pk, sk,m) :
(σ,K)← pk

τ ← sk

x← Hκ(K,m)
σ ← Π.PrvSim(σ, x, τ)
returnσ

Σ.Vrf(pk,m, σ) :
(σ,K)← pk

x← Hκ(K,m)
b← Π.Vrf(σ, x, σ)
return b
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Since each message is mapped to a no-instance exclusively, simulation soundness
is literally translated into EUF-CMA: It is hard to find new message m∗ (new
no-instance x∗) and valid signature σ∗ (valid proof π∗) after seeing signatures σi
(simulated proofs πi) for arbitrary messages mi (arbitrary no-instances xi). Due
to space constraint, we only show a formal statement below.

Theorem 5.1. The above Σ is a EUF-CMA secure signature scheme for message
spaceMκ if, Π is a perfectly no-instance simulation correct USS-NIZK system
for hard language L accompanied by C, and H is a family of efficiently sampleable
injections fromMκ to any C′κ ⊆ Cκ.

Now we proceed to more general case. We first introduce building blocks and
establish some technical lemmas before presenting the construction.
Extended Target-Collision-Resistant Functions. A family of functions {H} is
target-collision-resistant if any p.p.t. adversary A wins in the following experiment
only with negligible probability, say εtcr: A chooses an input x and it is given a
random key K; A wins if it can produce a different input x′ such that H(K,x) =
H(K,x′). This notion was extended by Halevi and Krawczyk [28] in such a way
that the adversary is allowed to select a different key for the second evaluation,
i.e., the probability that the adversary comes up with a new x′ and K ′ satisfying
H(K,x) = H(K ′, x′) is upper bound by a negligible function εetcr. Hülsing
et al. [30] considered a further extension called multi-target extended target-
collision-resistant (m-eTCR) hash functions, where the above experiment is hard
even if the adversary is allowed to choose several targets. More precisely:

Definition 5.1. A family of functions H = {H : {0, 1}k(κ) × {0, 1}m(κ) →
{0, 1}h(κ)}κ∈N (for certain polynomials k,m, h in κ) is said to be εmetcr-multi-
target extended target-collision-resistant if for every p.p.t. adversary A and every
sufficiently large κ, it holds that

Pr
[

(x̂, K̂)← AKey(·)(1κ) : ∃(xi,Ki) ∈ Q such that x̂ 6= xi and
H(K̂, x̂) = H(Ki, xi)

]
< εmetcr(κ)

where Key(·) is an oracle that on input xi ∈ {0, 1}m(κ), samples Ki uniformly at
random from {0, 1}k(κ), stores the pair (xi,Ki) in Q and returns Ki.

Clearly, εmetcr ≤ q · εetcr holds for up to q queries. Though we use m-eTCR
in our construction for simplicity of the argument, the same argument holds
with standard single-target eTCR with polynomial loss in the security bound.
We also note that, according to [40], eTCR can be constructed easily from
TCR by appending the key to the output. That is, H(K,m)||K is extended
target-collision-resistant if H is target-collision-resistant.

Given a message m, we will output a no-instance by computing x = H(K,m)
for a randomly chosen K ∈ K and then returning DC(x). One could expect that
the output of eTCR functions distributes uniformly over all possible values, but
collision-resistance is not enough to guarantee such a property. (Consider an



Black-Box Extension of NIZK Arguments 25

eTCR family of functions that output bitstrings where the last bit is constantly
zero, i.e., non-uniform.) To overcome this limitation, we assume an additional
property on the m-eTCR family: εreg-regularity. Roughly, every function in the
family must be statistically close to the uniform distribution over its output.

Definition 5.2. We say a family of functions H = {H : {0, 1}k(κ)×{0, 1}m(κ) →
{0, 1}h(κ)}κ∈N is εreg-regular if for every sufficiently large κ and every x ∈
{0, 1}m(κ), the distribution Dx defined as Dx := (K ← {0, 1}k(κ) ; returnH(K,x))
is statistically close to the uniform distribution over {0, 1}h(κ). More precisely,

∆(Dx, Uh(κ)) := 1
2

∑
α∈{0,1}h(κ)

∣∣Pr[Dx = α]− Pr[Uh(κ) = α]︸ ︷︷ ︸
1/2h(κ)

∣∣ < εreg(κ) .

The following lemma allows us to argue that the distribution of no-instances
produced from messages is indistinguishable from yes-instances.

Lemma 5.1. Let Lκ be a εhd-hard language (with respect to Cκ) with sampling
distributions (DLκ ,DCκ) where DCκ : {0, 1}h(κ) → Cκ (for certain polynomial
h in κ). Let H = {H : Kκ × Mκ → {0, 1}h(κ)}κ∈N be a εmetcr-multi-target
extended target-collision-resistant function family that is εreg-regular. Consider
the distribution Dm defined as K ← Kκ; returnDCκ(H(K,m)). For every m ∈Mκ

and every sufficiently large κ, ∆(Dm,DCκ) < εreg(κ).

Proof. Observe that for every pair of random variables X,Y and every function
F whose domain is the range of X and Y , it holds4 ∆(F (X), F (Y )) ≤ ∆(X,Y ).
In our case, for every m ∈Mκ and every sufficiently large κ,

∆(Dm,DCκ) =∆(K ← Kκ ; returnDCκ(H(K,m)), x← Uh(κ) ; returnDCκ(x))
≤∆(K ← Kκ ; returnH(K,m), Uh(κ)) < εreg(κ) . �

We expect that distribution DCκ is close to an injection, having small collision
probability. This implies that instances in C have a short witness.

Definition 5.3 (Collision probability). A function f : {0, 1}m(κ) → {0, 1}n(κ)

for some polynomials m,n in κ is said have εcp-collision probability (for some
function εcp in κ) if for every sufficiently large κ, it holds∣∣{x ∈ {0, 1}m(κ) : ∃y ∈ {0, 1}m(κ) such that x 6= y ∧ f(x) = f(y)

}∣∣ < εcp(κ) · 2m(κ) .

Let (Lκ, Cκ) be a εhd-hard promise problem over efficiently sampleable dis-
tributions (DLκ ,DCκ) where DCκ : {0, 1}h(κ) → Cκ (for certain polynomial h
in κ) has εcp-collision probability. Let H := {Hκ : Kκ ×Mκ → {0, 1}h(κ)}κ∈N
be a εmetcr-multi-target extended target-collision-resistant function family that
is εreg-regular. Let Π := (Crs,Prv,Vrf,CrsSim,PrvSim) be a simulation sound
non-interactive zero-knowledge proof system.

Figure 2 defines the signature scheme Σ := (Setup,Sign,Vrf). For correctness
we only show the bound here.
4 We abuse notation and write F (X) to denote the composition F ◦ X, i.e., the
distribution x← X ; returnF (x).
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• Σ.Setup(1κ) :

(σ, τ)←Π.CrsSim(1κ)
pk := (σ,Hκ,DCκ)
sk := τ

return (pk, sk)

• Σ.Sign(pk, sk,m) :

K ← Kκ
y := DCκ(Hκ(K,m))
π ← Π.PrvSim(σ, y, τ)
σ := (π,K)
returnσ

• Σ.Vrf(pk,m, σ) :

parse σ as (π,K)
y := DCκ(Hκ(K,m))
returnΠ.Vrf(σ, y, π)

Fig. 2: Construction of signature scheme from SS-NIZK

Theorem 5.2 (Correctness). The signature scheme Σ defined above is correct.
Concretely, for every message m ∈Mκ and for every sufficiently large κ,

Pr [ (pk, sk)← Σ.Setup(1κ) ; σ ← Σ.Sign(pk, sk,m) : 1 = Σ.Vrf(pk,m, σ) ] >
1− εzk(κ)− εco(κ)− εhd(κ)− 2εreg(κ) .

Proof. For every m ∈Mκ,

Pr [ (pk, sk)← Σ.Setup(1κ) ; σ ← Σ.Sign(pk, sk,m) : 1 = Σ.Vrf(pk,m, σ) ]

= Pr
[

K ← Kκ;(σ, τ)← Π.CrsSim(1κ)
y := DCκ(Hκ(K,m));π ← Π.PrvSim(σ, y, τ)

: 1 = Π.Vrf(σ, y, π)
]

which, by Lemma 5.1 (and for every sufficiently large κ) is greater or equal than

Pr
[
y ← DCκ ;(σ, τ)← Π.CrsSim(1κ)

π ← Π.PrvSim(σ, y, τ)
: 1 = Π.Vrf(σ, y, π)

]
− 2εreg(κ)

which, by Lemma 2.2, is greater than 1− εzk(κ)− εco(κ)− εhd(κ)− 2εreg(κ). �

Theorem 5.3 (Unforgeability). The signature scheme Σ defined above is
existentially unforgeable against adaptive chosen message attacks. In particular,
for every p.p.t. adversary A against the EUF-CMA experiment of Σ that makes
at most q queries to its signing oracle, there exists a p.p.t. algorithm B such that

AdvEUF-CMA
Σ,A (κ) ≤ AdvUSS

Π,B(κ) + εmetcr(κ) + qεcp(κ) + 2qεreg(κ)

and Time(B) ≈ Time(A) + poly(κ) where poly(κ) is independent of Time(A).
(Note that factor q multiplies to statistical errors only.)

Proof. For every adversary A against the signature scheme, we build an attacker
B against the simulation soundness of the underlying Π primitive. B is given
the security parameter κ and a common reference string σ and oracle access
to Π.PrvSim(σ, ·, τ), where τ is the trapdoor associated to σ. B wins the game
if it can produce a valid proof on a no-instance that was not queried to its
oracle. B sends the public key pk = (σ,Hκ,DCκ) to A. A is allowed to ask
for valid signatures of messages of its choice. On input mi, B produces a valid
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signature by sampling Ki ← Kκ, computing yi = DCκ(Hκ(Ki,mi)) and calling
its oracle, getting πi = Π.PrvSim(σ, yi, τ). Now, B returns σi = (πi,Ki) as to
A as a signature for mi. Eventually, A will come up with a pair (m̂, σ̂) such
that m̂ 6= mi for every i. At this moment, B parses σ̂ as (π̂, K̂) and computes
ŷ = DCκ(Hκ(K̂, m̂)) and returns (ŷ, π̂) as the solution for its challenge.

Note that B succeeds in simulating the EUF-CMA experiment correctly. Some
signing queries can result into invalid signatures (although only with negligible
probability), i.e., for some indices i, it is possible to have Π.Vrf(σ, yi, πi) = 0. But
this is not a problem, since in the real EUF-CMA experiment this event occurs
with the same probability. We define the bad event, Bad ≡ ‘There exists i such
that yi = ŷ’. Note that, if Bad does not occur, then B wins if so does A. More
precisely, Pr[B wins] ≥ Pr[A wins | ¬Bad] ≥ Pr[A wins]−Pr[Bad] or equivalently,
Pr[A wins] ≤ Pr[B wins]+Pr[Bad]. Note that Pr[Bad] ≤ max

p.p.t. M
{Pr[EM ]}, where

for a fixed M , the probability of event EM is defined as

Pr
[

(σ, τ)← Π.CrsSim(1κ)
(m̂, (K̂, π̂))←MSign(·)(σ,Hκ,DCκ)

: ∃(mi,Ki, πi) ∈ Q such that
DCκ(Hκ(Ki,mi)) = DCκ(Hκ(K̂, m̂))

]
where Sign(·) is an oracle that, on input mi, samples Ki ← Kκ, computes
yi = DCκ(Hκ(Ki,mi)) and πi = Π.PrvSim(σ, yi, τ), adds (mi,Ki, πi) to Q and
outputs (πi,Ki). For every p.p.t. M , there exists a p.p.t. M̄ such that the above
probability is upper-bounded by the following (M̄ is given the trapdoor τ):

Pr
[

(σ, τ)← Π.CrsSim(1κ)
(m̂, K̂)← M̄Key(·)(σ, τ,H,DCκ)

: ∃(mi,Ki) ∈ Q such that
DCκ(Hκ(Ki,mi)) = DCκ(Hκ(K̂, m̂))

]
where Key(·) is an oracle that, on input mi, samples Ki ← Kκ adds (mi,Ki)
to Q and returns Ki. Note that the sampling of the (σ, τ) using Π.CrsSim
requires polynomial time, and therefore, that operation can be included inside
the machine M̄ . Then, we have that max

p.p.t. M
{Pr[EM ]} ≤ max

p.p.t. M̄

{
Pr[ĒM̄ ]

}
where

the probability of event ĒM̄ for a fixed algorithm M̄ is defined as

Pr
[

(m̂, K̂)← M̄Key(·)(1κ, Hκ,DCκ) : ∃(mi,Ki) ∈ Q such that
DCκ(Hκ(Ki,mi)) = DCκ(Hκ(K̂, m̂))

]
.

Now, let Xκ be the set of inputs to DCκ that share an image, i.e.,

Xκ = {x ∈ {0, 1}h(κ) : ∃y ∈ {0, 1}h(κ) such that x 6= y ∧ DCκ(x) = DCκ(y)} .

Since DCκ has εcp-collision probability, we have |Xκ| ≤ εcp · 2h(κ). Now, the
probability of Bad is upper-bounded by

max
p.p.t. M̄

{
Pr
[

(m̂, K̂)← M̄Key(·)(1κ, Hκ,DCκ) : ∃(mi,Ki) ∈ Q such that
Hκ(Ki,mi) = Hκ(K̂, m̂)

]}
+

max
p.p.t. M̄

{
Pr
[
⊥ ← M̄Key(·)(1κ, Hκ,DCκ) : ∃(mi,Ki) ∈ Q such that

Hκ(Ki,mi) ∈ Xκ

]}
.
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The εmetcr-multi-target extended target-collision-resistance of function Hκ guar-
antees that the first summand of the above expression is upper-bounded by
εmetcr(κ). On the other hand, if machine M̄ performs q queries to its oracle Key(·),
the second summand is upper-bounded by q(2εreg(κ) + εcp(κ)), because, thanks
to the εreg-regularity of Hκ, for every m ∈Mκ (and for sufficiently large κ),

Pr [K←Kκ :Hκ(K,m) ∈ Xκ ] < Pr
[
x←{0, 1}h(κ) : x ∈ Xκ

]
+ 2εreg(κ)

upper-bounded by εcp(κ)+2εreg(κ), so we apply the union bound over all q queries.
For every adversary A against the signature scheme, the described B is an

adversary against the simulation soundness of the underlying NIZK such that

AdvEUF-CMA
ΣΠ ,A (κ) ≤ AdvUSS

Π,B (κ) + εmetcr(κ) + qεcp(κ) + 2qεreg(κ) . �
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