
Bringing Order to Chaos: The Case of
Collision-Resistant Chameleon-Hashes

David Derler1, Kai Samelin2, and Daniel Slamanig3

1 DFINITY, Zurich, Switzerland
david@dfinity.org
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Abstract. Chameleon-hash functions, introduced by Krawczyk and Ra-
bin at NDSS 2000, are trapdoor collision-resistant hash-functions para-
metrized by a public key. If the corresponding secret key is known, arbi-
trary collisions for the hash function can be efficiently found. Chameleon-
hash functions have prominent applications in the design of crypto-
graphic primitives, such as lifting non-adaptively secure signatures to
adaptively secure ones. Recently, this primitive also received a lot of at-
tention as a building block in more complex cryptographic applications
ranging from editable blockchains to advanced signature and encryption
schemes.
We observe that in latter applications various different notions of collision-
resistance are used, and it is not always clear if the respective notion
does really cover what seems intuitively required by the application.
Therefore, we revisit existing collision-resistance notions in the literature,
study their relations, and—using the example of the recent redactable
blockchain proposals—discuss which practical impact different notions of
collision-resistance might have. Moreover, we provide a stronger, and ar-
guably more desirable, notion of collision-resistance than what is known
from the literature. Finally, we present a surprisingly simple and efficient
black-box construction of chameleon-hash functions achieving this strong
notion.

1 Introduction

A chameleon-hash function (CH) is a trapdoor collision-resistant hash-function
parameterized by a public key. If the corresponding secret key is known, arbi-
trary collisions for the hash function, i.e., distinct messages m 6= m′ yielding the
same hash value h, can be efficiently found. Over the years, they have proven to
be a very useful tool in theory, as well as practice. Exemplary, CHs are used to
construct on/offline signatures [17,26,42], and to generically lift non-adaptively
secure signature schemes to adaptively secure ones (cf. [42]), see e.g., Hohen-
berger and Waters [35]. If CHs are tightly-secure, they are used to generically
construct tightly-secure signatures [12]. Likewise, CHs are used to generically
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construct strong one-time signatures as shown by Mohassel [39], inspired by a
concrete construction from Pedersen commitments by Groth [30]. Zhang [46]
shows how to construct IND-CCA secure public-key encryption from tag-based
encryption (TBE) or identity-based encryption (IBE) and CHs. Bellare and Ris-
tov made the interesting discovery that chameleon-hashes and Σ-protocols, i.e.,
three round public-coin honest-verifier zero-knowledge proofs of knowledge, are
equivalent [10,11]. CHs are also used to construct sanitizable signatures [3,14,15],
i.e., signatures where a designated entity can modify certain parts of a signed
message without invalidating the respective signature under controlled condi-
tions. Furthermore, CHs have been used by Steinfeld et al. [44] to extend Schnorr
and RSA signatures to the universal designated-verifier setting [43]. Also, dif-
ferent flavors of chameleon-hashing such as (hierarchical) identity-based [5,7] or
policy-based chameleon-hash functions [21,41] have been studied.

In a more applied setting, CHs have shown to be valuable to construct in-
tegrity measurement and remote attestation mechanisms (denoted chameleon
attestation) [2], and are used in vehicular ad-hoc networks (VANETs) [33] or
handover authentication in mobile networks [18]. More recently, CHs have been
used as a means to rewrite blocks in blockchains by replacing the hash function to
chain blocks and/or to hash transactions by chameleon-hashes [4,21], to which we
come back in Sect. 5. This brief discussion already shows that chameleon-hashes
are used in a wide spectrum of different applications requiring different strength
of the respective chameleon-hash. Consequently, authors often introduce some
ad-hoc notion of collision-resistance for their applications, or even ignore that
applications might require a stronger notion. Subsequently, we briefly discuss
the different notions which are most commonly found in the literature.

Formalizing Chameleon-Hashes. The concept of chameleon-hashing dates
back to the notion of trapdoor commitments introduced by Brassard et al. [13],
and was firstly coined chameleon-hashing by Krawczyk and Rabin [37] with an
instantiation based on the well-known trapdoor-commitment scheme by Peder-
sen [40]. Later, Ateniese and de Medeiros in [6] observed that the initial collision-
resistance notion (which we denote W-CollRes) is rather weak (it does not give
the adversary access to any collisions), and, more importantly, it is also satis-
fied by chameleon-hashes suffering from a key-exposure problem. Namely, when
seeing a single collision for some hash h, it allows to publicly extract the secret
trapdoor. Thus, any further guarantees are lost. While this is a desirable property
for the initial use in chameleon signatures [37], and is also sufficient for the lifting
compiler to adaptively secure signatures [42] (as no collision is ever revealed),
it is too weak for many other applications. The key-exposure freeness definition
in [6] is for the specific case of public-coin chameleon-hashing (where verifying
the chameleon-hash is essentially re-computing it). To address this, Ateniese et
al. [4] introduced a related notion called enhanced collision-resistance (which
we denote E-CollRes) for the generalized case of secret-coin chameleon-hashing
(which is the setting that we also consider). The latter notion allows the ad-
versary to see collisions, but it is not allowed to see any collision for the target
hash, i.e., the hash corresponding to the collision it computes. Hence, once a
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single collision for a hash h is seen, an adversary can find arbitrary collisions
for that particular hash h. Recently, Khalili et al. [36] have pointed out issues
regarding the practicality of the concrete random-oracle model instantiation4,
proposed by Ateniese et al. in [4], and propose alternative constructions in the
standard model. In another work Camenisch et al. [15] proposed an alternative
collision-resistance notion which allows the adversary to see arbitrary collisions
also for the target hash, but not for the target message, i.e., the message used
in the collision output by the adversary has never been queried. In other words,
once a collision for a message m is seen, an adversary is allowed to find arbitrary
other hashes h′ with the queried messages. Arguably, this notion seems more
realistic as it is better compatible with practical applications (e.g., one can often
make the messages unique by appending a tag/nonce), and thus we denote it as
standard collision-resistance (or S-CollRes).

Motivation and Contribution. The previous discussion already illustrates
that there are many different collision-resistance notions. While this does not
necessarily point to an issue, we observe that it is not always clear whether the
respective notion does really cover what is required by the respective application.
Moreover, it is not clear if the last notion discussed above (S-CollRes) is already
the most desirable notion, or, if even stronger notions are achievable, and do have
practical relevance. Motivated by these observations, we provide the following
contributions:

Relations among Properties. We discuss the different security notions of chame-
leon-hashes, and rigorously study relations among them. Most importantly, we,
for the first time, clarify the picture of existing collision-resistance notions by
showing implications, and separations, (cf. Figure 1 for an overview). In the
course of showing separations, we also provide a construction of a chameleon-
hash satisfying the E-CollRes notion, which clearly demonstrates weaknesses of
this notion.

F-CollRes S-CollRes W-CollRes

E-CollRes

+

\ \

\\ \

Fig. 1. Relations between CH collision-resistance properties

4 The requirement for an invertible encoding into the group introduces an enormous
efficiency penalty, and thus their instantiation is incomplete. Moreover, it is possible
that their schemes do meet our stronger definition of full collision-resistance, but we
neither prove nor disprove this statement here.
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Stronger Notion. We find that the strongest existing collision-resistance notions,
i.e., E-CollRes and S-CollRes (which are incomparable), might still be too weak
for practical applications, see, e.g., Sect. 5. In particular, even if S-CollRes is
satisfied, the hash values might still be malleable leaving space for potential real-
world attacks. Consequently, we propose a stronger notion coined full collision-
resistance (or F-CollRes for short), which enforces that the adversary cannot
(except with negligible probability) output any new collisions and covers what
one intuitively expects from collision-resistance.

Black-Box Construction. We present a simple black-box construction of a chame-
leon-hash function satisfying this strong F-CollRes notion. Considering the com-
plexity of existing constructions in [4,36] which only achieve the weaker notion
of E-CollRes, this is somewhat surprising. To recall, the construction from Ate-
niese et al. [4] starts from a public-coin chameleon-hash function that satisfies
W-CollRes, uses an IND-CPA secure encryption scheme to encrypt the random-
ness of the chameleon-hash and then uses a true-simulation extractable (tSE)
NIZK [25], which is in turn based on a NIZK and an IND-CCA secure public-
key encryption scheme, to prove that the ciphertext is an encryption of the
randomness. The constructions from Khalili et al. [36], which avoid the afore-
mentioned issues with [4], are based on another new public-coin chameleon-
hash function that satisfies W-CollRes and then either uses Groth-Sahai NIZK
proofs [32] and the IND-CCA secure Cramer-Shoup encryption scheme [20] or a
succinct non-interactive argument of knowledge (SNARK). Both constructions
in [36] basically follow the generic template in [4]. In contrast, our black-box
construction of a F-CollRes chameleon-hash is constructed from perfectly correct
(multi-challenge) IND-CPA secure encryption, e.g., ElGamal encryption, and a
simulation-sound extractable non-interactive zero-knowledge proof (SSE-NIZK),
e.g., applying the compiler of Faust et al. [27] to a Fiat-Shamir transformed Σ-
protocol. The basic idea is that the chameleon-hash is the encryption c of the
message m and the randomness of the chameleon-hash is a NIZK proof s.t. ei-
ther c correctly encrypts m under the pk of CH or one knows the secret key
sk corresponding to pk. Interestingly, already a perfectly-binding commitment
(without any hiding) is sufficient to achieve the F-CollRes notion, but instead a
multi-challenge IND-CPA secure encryption scheme as a perfectly-binding com-
mitment is used to additionally achieve the indistinguishability property of the
CH, i.e., that fresh and adapted hashes are indistinguishable, a notion that is
considered standard for chameleon-hashes.

Applications. We discuss how our stronger notion allows to strengthen the secu-
rity of existing applications and in particular will discuss what problems may be
caused by different notions of collision-resistance within recent applications to
redactable blockchains [4,21]. Here, either the hash function to chain blocks in a
blockchain or the hash functions to aggregate transactions within single blocks
(usually by means of a Merkle-tree) are replaced by a chameleon-hash function.
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2 Preliminaries

Notation. With λ ∈ N we denote our security parameter. All algorithms im-
plicitly take 1λ as an additional input. We write a ←r A(x) if the output of a
probabilistic algorithm A with input x is assigned to a and use a ← A(x) if A
is deterministic. An algorithm is efficient, if it runs in probabilistic polynomial
time (PPT) in the length of its input. All algorithms are PPT, if not explicitly
mentioned otherwise. If we want to make the random coins used by an algorithm
A explicit, we use the notation a ←r A(x; ξ). We write (a; ξ) ←r A(x), if we
need to access the random coins ξ internally drawn by A. Most algorithms may
return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. Returning out-
put ends execution of an algorithm or an oracle. To make the presentation in the
security proofs more compact, we occasionally use (a,⊥) ←r A(x) to indicate
that the second output is either ignored or not returned by A. If S is a finite
set, we write a ←r S to denote that a is chosen uniformly at random from S.
M denotes a message space of a scheme, and we generally assume that M is
derivable from the scheme’s public parameters or its public key. For a list we
require that there is an injective, and efficiently reversible, encoding, that maps
the list to {0, 1}∗. A function ν : N→ R≥0 is negligible, if it vanishes faster than
every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0.

2.1 Building Blocks

We now present the building blocks we require. These include key-verifiable
multi-challenge IND-CPA (mcIND-CPA) secure public-key encryption schemes
Ω, digitall signature schemes Σ, and non-interactive zero-knowledge proofs Π.

Public-Key Encryption Schemes. Subsequently, we define public-key en-
cryption schemes.

Definition 1 (Public-Key Encryption Scheme). A public-key encryption
scheme Ω consists of five algorithms {PGΩ,KGΩ,Enc,Dec,KVfΩ}, such that:

PGΩ. The algorithm PGΩ outputs the public parameters of the scheme:

ppΩ ←r PGΩ(1λ).

It is assumed that ppΩ is an implicit input to all other algorithms.
KGΩ. The algorithm KGΩ outputs the key pair, on input ppΩ:

(skΩ, pkΩ)←r KGΩ(ppΩ).

Enc. The algorithm Enc gets as input the public key pkΩ, and a message m ∈M
to encrypt. It outputs a ciphertext c:

c←r Enc(pkΩ,m).
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Expmc-IND-CPA
A,Ω (λ):

ppΩ ←r PGΩ(1λ)
(skΩ, pkΩ)←r KGΩ(ppΩ)
b←r {0, 1}
a←r AEnc′(pkΩ,·,·,b)(pkΩ)

where Enc′ on input pkΩ,m0,m1, b:
If m0 /∈M∨m1 /∈M∨ |m0| 6= |m1|:
c← ⊥

Else:
c←r Enc(pkΩ,mb)

return c
return 1, if a = b
return 0

Fig. 2. Multi-Challenge IND-CPA Security

Dec. The deterministic algorithm Dec outputs a message m ∈M∪{⊥} on input
skΩ, and a ciphertext c:

m← Dec(skΩ, c).

KVfΩ. The deterministic algorithm KVfΩ decides whether a given public key pkΩ

corresponds to a given secret key skΩ:

d← KVfΩ(pkΩ, skΩ).

Definition 2 (Correctness). A public key encryption scheme Ω is called cor-
rect, if for all security parameters λ ∈ N, for all ppΩ ←r PGΩ(1λ), for all
(skΩ, pkΩ)←r KGΩ(ppΩ), for all m ∈M, for all c←r Enc(pkΩ,m), we have that
m = Dec(skΩ, c) and that for all skΩ

′ we have that KVfΩ(pkΩ, skΩ
′) = 1 =⇒

m = Dec(skΩ
′, c).

Definition 3 (Multi-Challenge IND-CPA Security). A public-key encryp-
tion scheme Ω is multi-challenge IND-CPA secure (mcIND-CPA), if for any
PPT adversary A there exists a negligible function ν such that:∣∣∣Pr

[
ExpmcIND-CPA

A,Ω (λ) = 1
]
− 1/2

∣∣∣ ≤ ν(λ).

The corresponding experiment is depicted in Figure 2.

Bellare et al. have shown, via a hybrid argument, that mcIND-CPA is equivalent
to standard, i.e., “single-message”, IND-CPA [8]. We opted for using mcIND-CPA,
because it allows writing our proofs down more compactly, improving readability.

Digital Signature Schemes. Subsequently, we define signature schemes.

Definition 4 (Digital Signatures). A digital signature scheme Σ consists of
four algorithms {PGΣ,KGΣ,SgnΣ,VrfΣ} such that:
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PGΣ. The algorithm PGΣ outputs the public parameters

ppΣ ←r PGΣ(1λ).

We assume that ppΣ contains 1λ and is implicit input to all other algorithms.
KGΣ. The algorithm KGΣ outputs the public and private key of the signer, where

λ is the security parameter:

(skΣ, pkΣ)←r KGΣ(ppΣ).

SgnΣ. The algorithm SgnΣ gets as input the secret key skΣ and the message
m ∈M to sign. It outputs a signature:

σ ←r SgnΣ(skΣ,m).

VrfΣ. The deterministic algorithm VrfΣ outputs a decision bit d ∈ {0, 1}, indi-
cating if the signature σ is valid, w.r.t. pkΣ and m:

d← VrfΣ(pkΣ,m, σ).

Definition 5 (Correctness). A digital signature scheme Σ is called correct, if
for all security parameters λ ∈ N, for all ppΣ ←r PGΣ(1λ), for all (skΣ, pkΣ)←r

KGΣ(ppΣ), for all m ∈M, VrfΣ(pkΣ,m,SgnΣ(skΣ,m)) = 1 is true.

We require existential unforgeability under adaptively chosen message attacks
(eUNF-CMA security). In a nutshell, unforgeability requires that an adversary
A cannot (except with negligible probability) come up with a signature for a
message m∗ for which the adversary did not see any signature before, even if
the adversary A is allowed to adaptively query for signatures on messages of its
own choice.

ExpeUNF-CMA
A,Σ (λ)

ppΣ ←r PGΣ(1λ)
(skΣ, pkΣ)←r KGΣ(ppΣ)
Q ← ∅
(m∗, σ∗)←r ASgn′Σ(skΣ,·)(pkΣ)

where Sgn′Σ on input skΣ and m:
σ ←r SgnΣ(skΣ,m)
set Q ← Q∪ {m}
return σ

return 1, if VrfΣ(pkΣ,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Fig. 3. Unforgeability
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Definition 6 (Unforgeability). We say a digital signature scheme Σ scheme
is unforgeable, if for every PPT adversary A, there exists a negligible function
ν such that:

Pr
[
ExpeUNF-CMA

A,Σ (λ) = 1
]
≤ ν(λ).

The corresponding experiment is depicted in Figure 3.

For Construction 1, we require that the size of signatures is independent of the
size of the signed messages.

Non-Interactive Proof Systems. Let L be an NP-language with associated
witness relation R, i.e., such that L = {x | ∃w : R(x,w) = 1}. A non-interactive
proof system allows to prove membership of some statement x in the language
L. More formally, such a system is defined as follows.

Definition 7 (Non-Interactive Proof System). A non-interactive proof sys-
tem Π for language L consists of three algorithms {PGΠ,PrfΠ,VfyΠ}, such that:

PGΠ. The algorithm PGΠ outputs public parameters of the scheme, where λ is
the security parameter:

crsΠ ←r PGΠ(1λ).

PrfΠ. The algorithm PrfΠ outputs the proof π, on input of the CRS crsΠ, state-
ment x to be proven, and the corresponding witness w:

π ←r PrfΠ(crsΠ, x, w).

VfyΠ. The deterministic algorithm VfyΠ verifies the proof π by outputting a bit
d ∈ {0, 1}, w.r.t. to some CRS crsΠ and some statement statement x:

d← VfyΠ(crsΠ, x, π).

Definition 8 (Correctness). A non-interactive proof system is called correct,
if for all λ ∈ N, for all crsΠ ←r PGΠ(1λ), for all x ∈ L, for all w such that
R(x,w) = 1, for all π ←r PrfΠ(crsΠ, x, w), it holds that VfyΠ(crsΠ, x, π) = 1.

In the context of (zero-knowledge) proof-systems, correctness is sometimes also
referred to as completeness. In addition, we require two standard security notions
for zero-knowledge proofs of knowledge: zero-knowledge and simulation-sound
extractability. We define them analogously to the definitions given in [22].

Informally speaking, zero-knowledge says that the receiver of the proof π
does not learn anything except the validity of the statement.

Definition 9 (Zero-Knowledge). A non-interactive proof system Π for lan-
guage L is zero-knowledge, if for any PPT adversary A, there exists an PPT
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ExpZero-Knowledge
A,Π,SIM (λ)

(crsΠ, τ)←r SIM1(1λ)
b←r {0, 1}
b∗ ←r APb(·,·)(crsΠ)

where P0 on input x, w:
return π ←r PrfΠ(crsΠ, x, w), if R(x,w) = 1
return ⊥

and P1 on input x, w:
return π ←r SIM2(crsΠ, τ, x), if R(x,w) = 1
return ⊥

return 1, if b∗ = b
return 0

Fig. 4. Zero-Knowledge

simulator SIM = (SIM1,SIM2) such that there exist negligible functions ν1 and
ν2 such that∣∣∣∣Pr

[
crsΠ ←r PGΠ(1λ) : A(crsΠ) = 1]−

Pr
[
(crsΠ, τ)←r SIM1(1λ) : A(crsΠ) = 1

]∣∣∣∣ ≤ ν1(λ),

and that ∣∣∣Pr
[
ExpZero-Knowledge

A,Π,SIM (λ) = 1
]
− 1/2

∣∣∣ ≤ ν2(λ),

where the corresponding experiment is depicted in Figure 4.

Simulation-sound extractability says that every adversary who is able to come
up with a proof π∗ for a statement must know the witness, even when seeing sim-
ulated proofs for adaptively chosen statements potentially not in L. Clearly, this
implies that the proofs output by a simulation-sound extractable proof-systems
are non-malleable. Note that the definition of simulation-sound extractability

ExpSimSoundExt
A,Π,E (λ)

(crsΠ, τ, ζ)←r E1(1λ)
Q ← ∅
(x∗, π∗)←r ASIM(·)(crsΠ)

where SIM on input x:
obtain π ←r SIM2(crsΠ, τ, x)
Q ← Q∪ {(x, π)}
return π

w∗ ←r E2(crsΠ, ζ, x
∗, π∗)

return 1, if VfyΠ(x∗, π∗) = 1 ∧ R(x∗, w∗) = 0 ∧ (x∗, π∗) /∈ Q
return 0

Fig. 5. Simulation Sound Extractability
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of [30] is stronger than ours in the sense that the adversary also gets the trap-
door ζ as input. However, in our context this weaker notion (previously also used
e.g. in [1,25]) suffices.

Definition 10 (Simulation-Sound Extractability). A zero-knowledge non-
interactive proof system Π for language L is said to be simulation-sound ex-
tractable, if for any PPT adversary A, there exists a PPT extractor E = (E1, E2),
such that∣∣∣∣Pr
[
(crsΠ, τ)←r SIM1(1λ) : A(crsΠ, τ) = 1]−

Pr
[
(crsΠ, τ, ζ)←r E1(1λ) : A(crsΠ, τ) = 1

]∣∣∣∣ = 0,

and that there exist a negligible function ν so that

Pr
[
ExpSimSoundExt

A,Π,E (λ)
]

= 1 ≤ ν(λ),

where the corresponding experiment is depicted in Figure 5.

3 Chameleon-Hashes, Revisited

In this section we present the formal framework for chameleon-hashes, their
security properties with a special focus on the collision-resistance notion and
then show relations and separations between the security properties.

3.1 Framework

We now present the framework for chameleon-hashes. We rely on the most recent
comprehensive framework by Camenisch et al. [15], which is, in turn, based upon
work done by Ateniese et al. and Brzuska et al. [4,14].

Definition 11. A chameleon-hash CH is a tuple of five PPT algorithms (CHPG,
CHKG,CHash,CHCheck,CHAdapt), such that:

CHPG. The algorithm CHPG, on input a security parameter λ outputs public
parameters of the scheme:

ppch ←r CHPG(1λ).

We assume that ppch is implicit input to all other algorithms.
CHKG. The algorithm CHKG, on input the public parameters ppch outputs the

private and public keys of the scheme:

(skch, pkch)←r CHKG(ppch).
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CHash. The algorithm CHash gets as input the public key pkch, and a message
m to hash. It outputs a hash h, and some randomness r:5

(h, r)←r CHash(pkch,m).

CHCheck. The deterministic algorithm CHCheck gets as input the public key
pkch, a message m, randomness r, and a hash h. It outputs a bit d ∈ {0, 1},
indicating whether the hash h is valid:

d← CHCheck(pkch,m, r, h).

CHAdapt. The algorithm CHAdapt on input of a secret key skch, the message m,
new message m′, randomness r, and hash h outputs new randomness r′:

r′ ←r CHAdapt(skch,m,m
′, r, h).

Definition 12 (Correctness). A chameleon-hash is called correct, if for all
security parameters λ ∈ N, for all ppch ←r CHPG(1λ), for all (skch, pkch) ←r

CHKG(ppch), for all m ∈ M, for all (h, r) ←r CHash(pkch,m), for all m′ ∈ M,
we have for all r′ ←r CHAdapt(skch,m,m

′, r, h), that 1 = CHCheck(pkch,m,
r, h) = CHCheck(pkch,m

′, r′, h).

3.2 Indistinguishability

Indistinguishability requires that the randomness r does not reveal if it was
obtained through CHash or CHAdapt. Upon setup, a challenger generates a key
pair (skch, pkch) for CH (along with some public parameters), and draws a bit
b←r {0, 1}. The challenger initializes the adversary with the pkch and gives the
adversary access to a HashOrAdapt oracle, which allows the adversary to submit
two messages m, m′. Depending on the bit b, the challenger then either hashes
m′ directly (b = 0), of first hashes m, and then adapts m to m′ (b = 1). The
resulting hash/randomness pair (h, r) (or (h′, r′′) resp.) is the oracle’s output to
the adversary. The adversary’s objective is to guess the bit b. Note that all keys
are generated honestly and the adversary gets access to a collision-finding oracle
CHAdapt for arbitrary hashes, meaning that the adversary may also input hashes
generated by the HashOrAdapt-oracle. We stress that there may be scenarios
where indistinguishability is not required or even hindering.

Definition 13 (Indistinguishability). A chameleon-hash CH is indistinguish-
able, if for any PPT adversary A there exists a negligible function ν such that∣∣∣Pr[ExpInd

A,CH(λ) = 1]− 1/2
∣∣∣ ≤ ν(λ),

where the corresponding experiment is depicted in Figure 6.

5 We note that the randomness r is also sometimes called “check value” [4].
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ExpInd
A,CH(λ)

ppch ←r CHPG(1λ)
(skch, pkch)←r CHKG(ppch)
b←r {0, 1}
a←r AHashOrAdapt(skch,·,·,b),CHAdapt(skch,pkch,·,·,·)(pkch)

where HashOrAdapt on input skch,m,m
′, b:

(h, r)← CHash(pkch,m
′)

(h′, r′)← CHash(pkch,m)
r′′ ← CHAdapt(skch,m,m

′, r′, h′)
If r = ⊥ ∨ r′′ = ⊥, return ⊥
if b = 0:

return (h, r)
if b = 1:

return (h′, r′′)
return 1, if a = b
return 0

Fig. 6. CH Indistinguishability

Samelin and Slamanig recently introduced full indistinguishability [41], which,
in turn, generalizes the notion of strong indistinguishability by Derler et al [21].
In their notion, the adversary is even allowed to generate the keys which are
used for hashing and adapting (in the strong version, the adversary only knows
all keys, but cannot generate them).

We do neither consider full nor strong indistinguishability as fundamental for
chameleon-hashes, but examine these notions to achieve a more complete picture
of the relations. The formal definitions of full and strong indistinguishability
are given in in the full version of this paper, where we also prove that full
indistinguishability is strictly stronger than strong indistinguishability, which,
in turn, is strictly stronger than indistinguishability.

3.3 Collision-Resistance

In this section we revisit existing collision-resistance notions, introduce a stronger
and more desirable notion of collision-resistance dubbed full collision-resistance
(or F-CollRes for short) and discuss how these notions differ. The main idea be-
hind collision-resistance in general is to argue that an adversary that has no ac-
cess to the secret key skch cannot find any collisions, i.e,. pairs (m, r) and (m′, r′)
and hash value h s.t. CHCheck(pkch,m, r, h) = CHCheck(pkch,m

′, r′, h) = 1. In
the weakest case, the adversary has no access to any other collisions, whereas in
stronger notions the adversary is explicitly allowed to obtain collisions for arbi-
trary hashes via a CHAdapt′ oracle (we indicate these by using boxes).
We present all the different notions in Figure 7, where we indicate the differ-
ences in the winning conditions by using boxes. In all the experiments
the challenger generates a key pair (skch, pkch) honestly (along with some public
parameters) and the adversary is then initialized with pkch. We now discuss the
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ExpW-CollRes
A,CH (λ)

ppch ←r CHPG(1λ)
(skch, pkch)←r CHKG(ppch)

(m∗, r∗,m′∗, r′∗, h∗)←r A(pkch)

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = 1 ∧

m∗ 6= m′∗

return 0

ExpE-CollRes
A,CH (λ)

ppch ←r CHPG(1λ)
(skch, pkch)←r CHKG(ppch)

Q ← ∅

(m∗, r∗,m′∗, r′∗, h∗)←r A
CHAdapt′(skch, ·, ·, ·, ·) (pkch)

where CHAdapt′ on input skch,m,m
′, r, h:

return ⊥, if CHCheck(pkch,m, r, h) 6= 1
r′ ←r CHAdapt(skch,m,m

′, r, h)
If r′ = ⊥, return ⊥
Q ← Q∪ {h}

return r′

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = 1 ∧

m∗ 6= m′∗ ∧ h∗ /∈ Q
return 0

ExpS-CollRes
A,CH (λ)

ppch ←r CHPG(1λ)
(skch, pkch)←r CHKG(ppch)

Q ← ∅

(m∗, r∗,m′∗, r′∗, h∗)←r A
CHAdapt′(skch, ·, ·, ·, ·) (pkch)

where CHAdapt′ on input skch,m,m
′, r, h:

return ⊥, if CHCheck(pkch,m, r, h) 6= 1
r′ ←r CHAdapt(skch,m,m

′, r, h)
If r′ = ⊥, return ⊥
Q ← Q∪ {m,m′}

return r′

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = 1 ∧

m∗ 6= m′∗ ∧ m∗ /∈ Q
return 0

ExpF-CollRes
A,CH (λ)

ppch ←r CHPG(1λ)
(skch, pkch)←r CHKG(ppch)

Q ← ∅

(m∗, r∗,m′∗, r′∗, h∗)←r A
CHAdapt′(skch, ·, ·, ·, ·) (pkch)

where CHAdapt′ on input skch,m,m
′, r, h:

return ⊥, if CHCheck(pkch,m, r, h) 6= 1
r′ ←r CHAdapt(skch,m,m

′, r, h)
If r′ = ⊥, return ⊥
Q ← Q∪ {(h,m), (h,m′)}

return r′

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = 1 ∧

m∗ 6= m′∗ ∧ (h∗,m∗) /∈ Q
return 0

Fig. 7. The ExpX-CollRes
A,CH experiment with X ∈ {W,E, S,F}.

differences of the single collision resistance notions, where in the weakest case
the adversary has no access to an CHAdapt′ oracle (which allows the adversary
to adaptively ask for collisions with messages and hashes of its own choice), but
in all other cases the adversary does. To vertically align the experiments, we
insert boxes for lines which are missing in one experiment but are
present in the other.

Weak Collision-Resistance (W-CollRes) [37]. The adversaryA wins, if it can
come up with a collision for the given public key.

Enhanced Collision-Resistance (E-CollRes) [4]. The adversary gets access
to a collision-finding oracle CHAdapt′, which outputs a collision for adver-
sarially chosen hashes, but also keeps track of each queried hash h using the
list Q. The adversary wins, if it comes up with a collision for the given public
key for an adverserially chosen hash h∗ never input to CHAdapt′.
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Standard Collision-Resistance (S-CollRes) [15]. The adversary gets access
to a collision-finding oracle CHAdapt′, which outputs a collision for the ad-
versarially chosen hash, but also keeps track of each of the queried messages
m and m′, using the listQ. The adversary wins, if it comes up with a collision
for the given public key for an adversarially chosen h∗ for which the message
m∗ output by the adversary was never queried to the collision-finding oracle.

Full Collision-Resistance (F-CollRes). The adversary gets access to a collision-
finding oracle CHAdapt′, which outputs a collision for the adversarially cho-
sen hash, but also keeps track of each of the queried hash/message pair
(h,m) and (h,m′), using the list Q. The adversary wins, if it comes up with
a hash/message pair (h∗,m∗), for the given public key, never queried to or
output from the collision-finding oracle.6

Now, we formally define security with respect to all the collision-resistance no-
tions.

Definition 14 (X Collision-Resistance). A chameleon-hash CH offers X coll-
ision-resistance with X ∈ {W,E,S,F}, if for any PPT adversary A there exists
a negligible function ν such that

Pr[ExpX-CollRes
A,CH (λ) = 1] ≤ ν(λ),

where the corresponding experiment is depicted in Figure 7.

Discussion of the Notions. W-CollRes is the notion introduced in the first
work on chameleon-hashes by Krawczyk and Rabin [37] and essentially repre-
sents the binding notion of a trapdoor-commitment scheme. Note that due to
not giving access to a collision-finding oracle it gives no guarantees whatsoever
if the adversary sees a single collision for any hash computed for the given pub-
lic key.7 The E-CollRes notion has been introduced by Ateniese et al. [4] and we
note that there exists a definition in the setting of public-coin chameleon hashes,
i.e., where the CHCheck algorithm simply re-runs the CHash, which is called key-
exposure freeness [6,16]. It captures requirements similar to the ones captured by
E-CollRes, but it is not directly comparable as we are considering the more gen-
eral secret-coin setting. We note that the E-CollRes notion allows the adversary
to come up with arbitrary collisions for hashes it has seen a collision for. The
S-CollRes notion has been introduced by Camenisch et al. [15], and it captures
all of the intuitive requirements of real-world applications of chameleon-hashes.
Yet, it still allows the hash itself to be malleable which might still be problem-
atic in certain applications. Finally, our new F-CollRes notion enforces that the
adversary cannot (except with negligible probability) output any new collisions
and seems to be the most desirable notion for collision-resistance.
6 In the case (h′∗,m′∗) is the new hash/message pair, simply switch names.
7 A slightly stronger notion has been proposed by Zhang in [46] where the adversary

sees a hash on a random message and is then given a single collision on a message of
its choice. We do not cover this notion here as it seems to be tailored to the specific
applications in [46] and all notions stronger than W-CollRes considered here cover
more general cases.
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3.4 Uniqueness

Camenisch et al. [15] defined a property called uniqueness. Uniqueness requires
that for each hash/message pair, exactly one randomness can be found, even if
the adversary A controls all values, but the public parameters.8

ExpUniqueness
A,CH (λ)

ppch ←r CHPG(1λ)
(pk∗,m∗, r∗, r′∗, h∗)←r A(ppch)
return 1, if CHCheck(pk∗,m∗, r∗, h∗) = CHCheck(pk∗,m∗, r′∗, h∗) = 1 ∧ r∗ 6= r′∗

return 0

Fig. 8. Uniqueness

Definition 15 (Uniqueness). A chameleon-hash CH is unique, if for any PPT
adversary A there exists a negligible function ν such that

Pr[ExpUniqueness
A,CH (λ) = 1] ≤ ν(λ).

The corresponding experiment is depicted in Figure 8.

We do not consider uniqueness as a fundamental property, as there are only
very few applications requiring this notion [15,41]. However, to obtain a more
complete picture with respect to the relations of the security properties, we also
investigate uniqueness.

3.5 Relationships between Properties

Below we show relations and separations between the security properties of
chameleon-hashes.

Collision-Resistance Properties. We start by analyzing how the various
collision-resistance notions are related.

Theorem 1. Standard collision-resistance is strictly stronger than weak coll-
ision-resistance.

Proof. We first prove that standard collision-resistance implies weak collision-
resistance and then give a counterexample showing that the other direction of
the implication does not hold.

8 Lifting this definition to also cover those parameters is straightforward.
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S-CollRes =⇒ W-CollRes: Assume A to be an adversary who breaks weak colli-
sion-resistance. We now construct an adversary B which breaks standard
collision-resistance. In particular, B proceeds as follows. It receives ppch and
pkch from its own challenger, and uses both to initialize A. Whenever A
outputs a winning tuple (m∗, r∗,m′∗, r′∗, h∗), B returns that tuple to its own
challenger. As the collision-finding oracle was never queried, that tuple also
makes B win the standard collision-resistance game with the same probability
A wins the weak collision-resistance game.

W-CollRes 6=⇒ S-CollRes: The CH by Krawczyk and Rabin [37] provides a coun-
terexample: it is weakly collision-resistant, but does not offer standard colli-
sion-resistance. Observe that it is possible to trivially extract the secret key
from a collision. That collision is obtained from the collision-finding oracle in
the standard collision-resistance game (cf. the full version of this paper). ut

Theorem 2. Enhanced collision-resistance is strictly stronger than weak coll-
ision-resistance.

Proof. The proof is identical to the one of Theorem 1. ut

Theorem 3. Full collision-resistance is strictly stronger than standard collision-
resistance.

Proof. We first prove that full collision-resistance implies standard collision-
resistance and then give a counterexample showing that the other direction of
the implication does not hold.

F-CollRes =⇒ S-CollRes: Assume A to be an adversary who breaks standard
collision-resistance. Now we construct an adversary B which breaks full
collision-resistance. In particular, B proceeds as follows. It receives ppch and
pkch from its own challenger, and uses both to initialize A. All queries to
the collision-finding oracle are relayed to B’s own oracle. Whenever A out-
puts a winning tuple (m∗, r∗,m′∗, r′∗, h∗), B returns that tuple to its own
challenger. As m∗ 6= m′∗ must be true, and m∗ was never queried to A’s
collision-finding oracle, this also means that (h∗,m∗) was never queried to
B’s oracle, thus meeting the winning condition.

S-CollRes 6=⇒ F-CollRes: The scheme by Camenisch et al. [15] provides a coun-
terexample: it offers standard collision-resistance, but does not offer full
collision-resistance. In particular, their construction is re-randomizable (cf.
the full version of this paper). In more detail, to show that this construc-
tion is not fully collision-resistant, consider the following strategy: Receive
pkch = (N,H) and ppch = e. Compute (h, r) ←r CHash(pkch,m), with m
random. Then, ask for an adaption (h, r,m) to (h, r′,m′), for some random
m′ 6= m. Then, compute h∗ ← h2e mod N , r∗1 ← 2r mod N , and r∗2 ← 2r′

mod N . Because no collision for h∗ was computed, this construction cannot
be fully collision-resistant. Note, this works, as H(m)(2r)e ≡ h2e (mod N)
for any input. Also note that the attack above also breaks enhanced collision-
resistance (we will later use this to derive a corollary). ut
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Theorem 4. Full collision-resistance is strictly stronger than enhanced coll-
ision-resistance.

Before we provide the proof of Theorem 4, we provide a novel construction of
a chameleon-hash satisfying the E-CollRes notion that is used to separate the
notions F-CollRes and E-CollRes.

Construction. Our CH presented below provides E-CollRes, but allows to effi-
ciently find arbitrary collisions for a given hash, once a single collision was seen.
However, it is not possible to find collisions for any other hash. The main idea
is to encrypt a message m using a mcIND-CPA secure encryption scheme Ω and
use the ciphertext as the hash. The randomness r of the chameleon-hash is the
public key pkΩ

′ of a freshly sampled key-pair (skΩ
′, pkΩ

′) of Ω, the encryption c′

of a signature σ under pkΩ
′ and a SSE NIZK π for the following language:

L := {(pkΩ, pkΣ, h,m) | ∃ (σ, ξ) :

h = Enc(pkΩ,m; ξ) ∨ VrfΣ(pkΣ, h, σ) = 1}.
(1)

Informally, this language requires the prover to show that it either knows the
randomness ξ attesting that h is a well-formed encryption of m, or a valid
signature σ for h. The basic idea of the construction is that when computing
a hash, the witness ξ is used. The randomness includes an encryption of the
signature (initially one on 0) under the public key pkΩ

′. Note that the trick is
that for adaption one computes a signature σ for h, uses σ as a witness, and
includes an encryption of σ under pkΩ

′ in the randomness. Clearly, now seeing
a single collision allows to compute arbitrary collisions for the hash h.

This CH can be instantiated by instantiating Σ as structure-preserving signa-
tures (SPS) in type-III bilinear groups (assuming SXDH), e.g., Groth’s SPS [31].
Thus, Ω can be ElGamal [29] in one of the base-groups. The algorithm KVfΩ is
simply checking whether gskΩ = gx = pkΩ, while for Π, a suitable instantiation is
a Fiat-Shamir transformed Σ-protocol in the random-oracle model [28], which
also works very well with ElGamal encryption and Groth’s signature scheme.

We defer the proof of Construction 1 to the full version of this paper. We are
now ready to present the proof of Theorem 4.

Proof. We first prove that full collision-resistance implies enhanced collision-
resistance and then give a counterexample showing that the other direction of
the implication does not hold.

F-CollRes =⇒ E-CollRes: Assume A to be an adversary who breaks the en-
hanced collision-resistance. We can then construct an adversary B which
breaks the full collision-resistance. In particular, B proceeds as follows. It
receives ppch and pkch from its own challenger, and uses both to initialize
A. All queries to the collision-finding oracle are relayed to B’s own oracle.
Whenever A outputs a winning tuple (m∗, r∗,m′∗, r′∗, h∗), B returns that
tuple to its own challenger. As m∗ 6= m′∗ must be true, and h∗ was never
queried to A’s collision-finding oracle, this also means that (h∗,m∗) was
never queried to B’s oracle, thus meeting the winning condition.
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CHPG(1λ) : Fix a public-key encryption scheme Ω and a compatible NIZK proof sys-
tem for language L in (1). Return ppch = (ppΩ, ppΣ, crsΠ), where

ppΩ ←r PGΩ(1λ), ppΣ ←r PGΣ(1λ), and crsΠ ←r PGΠ(1λ).

CHKG(ppch) : Return (skch, pkch) = ((skΩ, skΣ), (ppch, pkΩ, pkΣ, σ0)), where

(skΩ, pkΩ)←r KGΩ(ppΩ), (skΣ, pkΣ)←r KGΣ(ppΣ), and σ0 ←r SgnΣ(skΣ, 0).

0 is considered some special invalid hash value for CH.
CHash(pkch,m) : Parse pkch as ((ppΩ, crsΠ), pkΩ), and return (h, r) = (c, (π, c′, pkΩ

′)),
where

(c; ξ)←r Enc(pkΩ,m), (skΩ
′, pkΩ

′)←r KGΩ(ppΩ), c′ ←r Enc(pkΩ
′, σ0), and

π ←r PrfΠ(crsΠ, (pkΩ, pkΣ, c,m), (⊥, ξ))

CHCheck(pkch,m, r, h) : Parse pkch as ((ppΩ, crsΠ), pkΩ) and r as (π, c′, pkΩ
′), and return

1 if the following holds, and 0 otherwise:

m ∈M ∧ VfyΠ(crsΠ, (pkΩ, pkΣ, h,m), π) = 1.

CHAdapt(skch,m,m
′, r, h) : Parse skch as skΩ. Verify that m′ ∈ M, CHCheck(pkch,m,

r, h) = 1, and return ⊥ if not. Otherwise, return r′ = (π′, c′′, pkΩ
′), where

σ ←r SgnΣ(skΣ, h), c′′ ←r Enc(pkΩ
′, σ), and

π′ ←r PrfΠ(crsΠ, (pkΩ, pkΣ, h,m
′), (σ,⊥)).

Construction 1: Enhanced Collision-Resistant Chameleon-Hash

E-CollRes 6=⇒ F-CollRes: The scheme presented in Construction 1 gives a coun-
terexample: it allows finding arbitrarily many collisions for a given hash h,
if it sees a single one, but for no other h′ 6= h. In more detail, to show
that this construction is not fully collision-resistant, consider the following
strategy. Receive pkch = (pkΩ, pkΣ) and ppch = (ppΩ, crsΠ, ppΣ). Compute
(h, r) ←r CHash(pkch,m), with m random. Also store the secret key skΩ

′.
Then, ask for an adaption (h, r,m) to (h, r′,m′), where r′ = (π, c′′, pkΩ

′),
for some random m′. Then, compute σ ← Dec(skΩ

′, c′′). Then arbitrary col-
lisions for h are generated by executing CHAdapt in a similar way the owner
of pkch does for finding collisions, due to the knowledge of σ for h. Because
such collisions can only be generated for already seen collisions w.r.t. h, en-
hanced collision-resistance holds, but full collision-resistance does not. Also
note that standard collision-resistance does not hold for Construction 1 for
the same reason (we will later use this to derive a corollary). ut

Theorem 5. Enhanced collision-resistance and standard collision-resistance to-
gether imply full collision-resistance.

Proof. The theorem above is proven using a sequence of games.

Game 0: The original full collision-resistance game.
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Game 1: As Game 0, we abort, if the adversary A outputs (m∗, r∗,m′∗, r′∗, h∗)
such that the winning conditions are met, but h∗ was never queried to the
collision-finding oracle.

Transition - Game 0 → Game 1: If this is the case, we build an adversary B
which breaks the enhanced collision-resistance of the underlying scheme.
Namely, B receives pkch and uses it to initializeA. Every adaption query byA
is answered by B using its own oracle. Once A outputs (m∗, r∗,m′∗, r′∗, h∗),
B returns (m∗, r∗,m′∗, r′∗, h∗) to its own challenger. As h∗ was never seen,
B wins its own game. |Pr[S0]− Pr[S1]| ≤ νenh-collres(λ) follows.

Game 2: As Game 1, we abort, if the adversary A outputs (m∗, r∗,m′∗, r′∗, h∗)
such that the winning conditions are met, but m∗ was never queried to the
collision-finding oracle.

Transition - Game 1 → Game 2: If this is the case, we build an adversary B
which breaks the standard collision-resistance of the underlying scheme.
Namely, B receives pkch and uses it to initializeA. Every adaption query byA
is answered by B using its own oracle. Once A outputs (m∗, r∗,m′∗, r′∗, h∗),
B returns (m∗, r∗,m′∗, r′∗, h∗) to its own challenger. As m∗ was never seen,
B wins its own game. |Pr[S1]− Pr[S2]| ≤ νst-collres(λ) follows.

In Game 2, the adversary can no longer win the full collision-resistance game.
This proves the theorem. ut

The corollary below follows from the constructions used in the proofs of Theo-
rem 3 and Theorem 4, which provide standard collision-resistance but not en-
hanced collision-resistance, and vice versa.

Corollary 1. Standard collision-resistance and enhanced collision-resistance are
independent.

Additional Separations. We now prove some additional separations. We note
that indistinguishability is strictly weaker than full indistinguishability (as for-
mally shown in the full version of this paper).

Theorem 6. Even full indistinguishability and uniqueness together do not imply
weak collision-resistance.

Proof. Assume the following contrived construction of a chameleon-hash: CHPG′(
1λ) := ∅, CHKG′(ppch) := ∅, CHash′(pkch,m) := (∅, ∅), CHCheck′(pkch,m, r, h) :=
if h = ∅ ∧ pkch = ∅ ∧ r = ∅ then 1 else 0, CHAdapt′(skch,m,m

′, r, h) :=
if CHCheck′(pkch,m, r, h) = 1 then ∅ else ⊥. Clearly, this construction is fully
indistinguishable and unique. Finding collisions, however, is a trivial task. ut

Theorem 7. Even full collision-resistance and uniqueness together do not imply
indistinguishability.

Proof. Assume CH := (CHPG,CHKG,CHash,CHCheck,CHAdapt) to be a fully
collision-resistant, unique, and fully indistinguishable chameleon-hash. Let CH′ :=
(CHPG′,CHKG′,CHash′,CHCheck′,CHAdapt′) be a chameleon-hash which inter-
nally uses CH but appendsm to the hash. CH′ is defined as: CHPG′(1λ) := CHPG(
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1λ), CHKG′(ppch) := CHKG(ppch), CHash′(pkch,m) := ((h,m), r) where (h,
r) ←r CHash(pkch, (m,m)), and also CHCheck′(pkch,m, r, h) := CHCheck(pkch,
(m, m̂), r, h′) where h′ = (h, m̂), and CHAdapt′(skch,m,m

′, r, h′) := (CHAdapt(
skch, (m, m̂), (m′, m̂), r′, h)) where h′ = (h, m̂). Clearly, CH′ is still fully collision-
resistant and unique, but looking at the appended messages allows deciding
whether an adaption has occurred. ut

Theorem 8. Even full collision-resistance and full indistinguishability together
do not imply uniqueness.

Proof. Assume CH := (CHPG,CHKG,CHash,CHCheck,CHAdapt) to be a fully
collision-resistant, unique, and fully indistinguishable chameleon-hash. Let CH′ :=
(CHPG′,CHKG′,CHash′,CHCheck′,CHAdapt′) be a chameleon-hash which inter-
nally uses CH but appends a random bit to each r. In particular let CH′ be de-
fined as follows: CHPG′(1λ) := CHPG(1λ), CHKG′(ppch) := CHKG(ppch), CHash′(
pkch,m) := (h, (r, 0)) where (h, r) ←r CHash(pkch,m), CHCheck′(pkch,m, r,
h) := CHCheck(pkch,m, r

′, h) where r = (r′, ·), CHAdapt′(skch,m,m
′, r′, h) :=

(CHAdapt(skch,m,m
′, r′, h), 0) where r = (r′, ·). Clearly, CH′ is still fully collision-

resistant and fully indistinguishable, but changing the bit in the randomness r
is trivial, breaking uniqueness trivially. ut

4 Fully Collision-Resistant Chameleon-Hashes

We are now ready to present our black-box construction of fully collision-resistant
chameleon-hashes.

4.1 Construction

The main idea of our construction is to encrypt a message m using an mcIND-
CPA secure encryption scheme and use the ciphertext as the hash, i.e., it is
very close to our “contrived” construction providing enhanced collision-resistance
given in Construction 1. However, it has some important, and subtle, differences.

Namely, the randomness r is a SSE NIZK attesting membership of a tuple
containing the public key used for encryption, the hash, as well as the hashed
message in the following NP-language:

L := {(pkΩ, h,m) | ∃ (skΩ, ξ) : h = Enc(pkΩ,m; ξ) ∨ KVfΩ(pkΩ, skΩ) = 1}. (2)

Informally, this language requires the prover to demonstrate that it either knows
the randomness ξ attesting that h is a well-formed encryption of m under the
CH key pkΩ, or it knows a secret key skΩ corresponding to pkΩ, instead of
encrypting a signature and proving the verification relation. Our construction
of a fully collision-resistant CH is presented as Construction 2. We note that
compared to Ateniese et al. [4] we cannot use true-simulation extractable NIZKs
(tSE-NIZKs) [25] and need SSE NIZKs.
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CHPG(1λ) : Fix a public-key encryption scheme Ω and a compatible NIZK proof sys-
tem for language L in (2). Return ppch = (ppΩ, crsΠ), where

ppΩ ←r PGΩ(1λ), and crsΠ ←r PGΠ(1λ).

CHKG(ppch) : Return (skch, pkch) = (skΩ, (ppch, pkΩ)), where

(skΩ, pkΩ)←r KGΩ(ppΩ).

CHash(pkch,m) : Parse pkch as ((ppΩ, crsΠ), pkΩ), and return (h, r) = (c, π), where

(c; ξ)←r Enc(pkΩ,m), and π ←r PrfΠ(crsΠ, (pkΩ, h,m), (⊥, ξ)).

CHCheck(pkch,m, r, h) : Parse pkch as ((ppΩ, crsΠ), pkΩ), and r as π. Return 1, if the
following holds, and 0 otherwise:

m ∈M ∧ VfyΠ(crsΠ, (pkΩ, h,m), π) = 1.

CHAdapt(skch,m,m
′, r, h) : Parse skch as skΩ. Verify whether m′ ∈ M, and

CHCheck(pkch,m, r, h) = 1. Return ⊥, if not. Otherwise, return r′ = π′, where

π′ ←r PrfΠ(crsΠ, (pkΩ, h,m
′), (skΩ,⊥)).

Construction 2: Our Construction of a Fully Collision-Resistant CH

4.2 Security

Subsequently, we prove the security of our CH in Construction 2.

Theorem 9. If Ω is correct and Π is complete, then CH in Construction 2 is
correct.

Correctness follows from inspection and the (perfect) correctness of the used
primitives.

Theorem 10. If Ω is mcIND-CPA secure, and Π is zero-knowledge, then CH
in Construction 2 is indistinguishable.

In the proof, we use frameboxes and  to highlight the changes we make in
the algorithms throughout a sequence of games (and we only show the changes).

Proof. To prove indistinguishability, we use a sequence of games:

Game 0: The original indistinguishability game.

Game 1: As Game 0, but we modify the algorithms CHPG, CHash, and CHAdapt
used inside the game:
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CHPG′(1λ) :

crsΠ ←r PGΠ(1
λ
) (crsΠ, τ)←r SIM1(1

λ) .

CHash′(pkch,m) :

π ←r PrfΠ(crsΠ, (pkΩ, h,m), (⊥, ξ)) π ←r SIM2(crsΠ, τ, (pkΩ, h,m))

CHAdapt′(skch,m,m
′, r, h) :

π
′ ←r PrfΠ(crsΠ, (pkΩ, h,m

′
), (skΩ,⊥)) π′ ←r SIM2(crsΠ, τ, (pkΩ, h,m

′)).

Transition - Game 0 → Game 1: We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on
a zero-knowledge challenger Czk, either produces the distribution in Game
0 or Game 1, respectively. In particular, assume that we use the following
changes:

CHPG′′(1λ) :

(crsΠ, τ)←r SIM1(1
λ
) crsΠ ←r Czk .

CHash′′(pkch,m) :

π ←r SIM2(crsΠ, τ, (pkΩ, h,m)) π ←r Czk.Pb((pkΩ, h,m), (⊥, ξ)) .

CHAdapt′′(skch,m,m
′, r, h) :

π
′ ←r SIM2(crsΠ, τ, (pkΩ, h,m

′
)) π′ ←r Czk.Pb((pkΩ, h,m

′), (skΩ,⊥)) .

Clearly, if the challenger’s internal bit is 0 we simulate the distribution in
Game 0, whereas we simulate the distribution in Game 1 otherwise. We have
that |Pr[S0]− Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHash algorithm as follows:

CHash′′′(pkch,m) :

(c; ξ)←r Enc(pkΩ,m) (c; ξ)←r Enc(pkΩ, 0) .

Transition - Game 1 → Game 2: We bound the probability for an adversary to
distinguish between two consecutive games by introducing a hybrid game
which uses a multi-challenge IND-CPA challenger to interpolate between
two consecutive games.

CHKG(ppch)
′′ : Return (⊥, pkch) = (⊥, (ppch, pkΩ)), where

(skΩ, pkΩ)←r KGΩ(ppΩ) pkΩ ←r Cmc-cpa .

CHash′′′′(pkch,m) :

(c; ξ)←r Enc(pkΩ, 0) (c;⊥)←r Cmc-cpa.Enc′(m, 0) .
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Now, depending on the challenger’s bit, we either simulate Game 1 or Game
2. Thus we have that |Pr[S1]− Pr[S2i ]| ≤ νmc-cpa(λ)

Now, the indistinguishability game is independent of the bit b, proving indistin-
guishability. ut

Theorem 11. If Ω is perfectly correct and mcIND-CPA secure, and Π is zero-
knowledge as well as simulation-sound extractable, then CH in Construction 2 is
fully collision-resistant.

Proof. To prove full collision-resistance, we use a sequence of games.

Game 0: The original full collision-resistance game.
Game 1: As Game 0, but we modify the CHPG and the CHAdapt algorithm as

follows:

CHPG′(1λ) :

crsΠ ←r PGΠ(1
λ
) (crsΠ, τ)←r SIM1(1

λ) .

CHAdapt′(skch,m,m
′, r, h) :

π
′ ←r PrfΠ(crsΠ, (pkΩ, h,m

′
), (skΩ,⊥)) π′ ←r SIM2(crsΠ, τ, (pkΩ, h,m

′)).

Transition - Game 0 → Game 1: We bound the probability for an adversary to
detect this game change by presenting a hybrid game, which, depending on
a zero-knowledge challenger Czk, either produces the distribution in Game 0
or Game 1, respectively.

CHPG′′(1λ) :

(crsΠ, τ)←r SIM1(1
λ
) crsΠ ←r Czk .

CHAdapt′′(skch,m,m
′, r, h) :

π
′ ←r SIM2(crsΠ, τ, (pkΩ, h,m

′
)) π′ ←r Czk.Pb((pkΩ, h,m

′), skΩ) .

Clearly, if the challenger’s internal bit is 0 we simulate the distribution in
Game 0, whereas we simulate the distribution in Game 1 otherwise. We have
that |Pr[S0]− Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHPG algorithm as follows:

CHPG′′′(1λ) :

(crsΠ, τ)←r SIM1(1
λ
) (crsΠ, τ, ζ)←r E1(1λ) .

Transition - Game 1 → Game 2: Under simulation-sound extractability, Game
1 and Game 2 are indistinguishable. That is, |Pr[S1]− Pr[S2]| = 0.

Game 3: As Game 2, but we keep a list Q of all tuples (h, r,m) previously
submitted to the collision-finding oracle which are accepted by the CHCheck
algorithm, where h was never submitted to the collision-finding oracle before.
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Transition - Game 2 → Game 3: This change is conceptual, i.e., |Pr[S2]−Pr[S3]|
= 0.

Game 4: As Game 3, but for every valid collision (m∗, r∗,m′∗, r′∗, h∗) output by
the adversary we observe that either (m∗, r∗) or (m′∗, r′∗) must be a “fresh”
collision, i.e., one that was never output by the collision-finding oracle. We
assume, without loss of generality, that (m′∗, r′∗) is the “fresh” collision.
We run (sk′, ξ′)←r E2(crsΠ, ζ, (pkΩ, h

∗,m′∗), r′∗) and abort if the extraction
fails. We call this event E1.

Transition - Game 3 → Game 4: Game 3 and Game 4 proceed identically, un-
less E1 occurs. Assume, towards contradiction, that event E1 occurs with
non-negligible probability. We now construct an adversary B which breaks
the simulation-sound extractability property of the NIZK proof system with
non-negligible probability. We engage with a simulation-sound extractability
challenger Csse and modify the algorithms as follows:

CHPG′′′′(1λ) :

(crsΠ, τ, ζ)←r E1(1λ) crsΠ ←r Csse .

CHAdapt′′′(skch,m,m
′, r, h) :

π
′ ←r SIM2(crsΠ, τ, (pkΩ, h,m

′
)) π′ ←r Csse.SIM(pkΩ, h,m

′) .

In the end we output ((pkΩ, h
∗,m′∗), r′∗) to the challenger. This shows that

we have |Pr[S3]− Pr[S4]| ≤ νsse(λ).
Game 5: As Game 4, but we observe that if (m∗, r∗) does not correspond

to a fresh collision for h∗ in the above sense, then we will have an entry
(h∗, r,m) ∈ Q where (m, r) is a “fresh” collision, i.e., one computed by the
adversary. We run the extractor for the fresh collision, i.e., either obtain
(sk′′, ξ′′)←r E2(crsΠ, ζ, (pkΩ, h

∗,m∗), r∗) or (sk′′, ξ′′)←r E2(crsΠ, ζ, (pkΩ, h
∗,

m), r), respectively. In case the extraction fails, we abort. We call the abort
event E2.

Transition - Game 4 → Game 5: Analogously to the transition between Game
3 and Game 4, we argue that Game 4 and Game 5 proceed identically unless
E2 occurs which is why we do not restate the reduction to simulation-sound
extractability here. We have that |Pr[S4]− Pr[S5]| ≤ νsse(λ).

Reduction to mcIND-CPA: We are now ready to construct an adversary B
which breaks the mcIND-CPA security of the underlying Ω. Our adversary
B proceeds as follows. It receives ppΩ and pkΩ from its own challenger. It
embeds them straightforwardly as ppch and pkch to initialize A. Now we
know that we have extracted two witnesses (sk, ξ) as well as (sk′′, ξ′′) where
one attests membership of (pkΩ, h

∗,m′∗) in L and one attests membership
of (pkΩ, h

∗,m′′) for some m′′ 6= m′∗ in L. By the perfect correctness of the
encryption scheme, we know that at most one of them can be consistent with
the ciphertext contained in h∗, which implies that either sk or sk′′ will be the
key for the underlying encryption scheme (which of them we figure out by
using KVfΩ). With knowledge of the key, B trivially breaks the mcIND-CPA
security of the underlying Ω by randomly sending two distinct messages to its
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own challenger (for encryption), simply decrypting the returned ciphertext,
and answering with the correct bit. We have that Pr[S5] ≤ νmc-cpa(λ). This
concludes the proof. ut

4.3 Concrete Instantiation

A suitable instantiation for Ω is ElGamal [29]. The algorithm KVfΩ is simply
checking whether gskΩ = gx = pkΩ. Note that for Π we only need to extract
a bounded number of times (i.e., twice). To this end one may use Fiat-Shamir
transformed Σ-protocols for DLOG relations in the random-oracle model [28]
when additionally applying the compiler by Faust et al. [27]. In particular, Faust
et al. show that such proofs are simulation-sound extractable when additionally
including the statement x upon hashing in the challenge computation and if
the Σ-protocol provides a property called quasi-unique responses. The latter is
straightforward for the statements which need to be proven in our context. See,
e.g., [23], for a detailed discussion of this transformation.

For the sake of completeness and to demonstrate how efficiently our approach
can be instantiated, we provide this concrete instantiation as Construction 3.
Therefore, let (G, g, q) ←r GGen(1λ) be an instance generator which returns a
prime-order, and multiplicatively written, group G where the DDH problem is
hard, along with a generator g such that 〈g〉 = G. Note that an SSE NIZK for
the required L in (3) can easily be obtained as an equality proof of two discrete
logarithms together with an or composition of a proof of a discrete logarithm [19]
of Fiat-Shamir transformed Σ-protocols discussed above.

L := {(y, h,m) | ∃ (x, ξ) : h = (gξ,m · yξ) ∨ y = gx}. (3)

4.4 Comparison

Subsequently, in Table 1 we compare existing constructions of chameleon-hashes
providing the W-CollRes, E-CollRes and S-CollRes notions with instantiations of
our approach (in the random oracle and standard model) providing the stronger
F-CollRes notion. Here E denotes an exponentiation in the respective algebraic
structure, “?” denotes that it is unclear how efficient this can be realized due to
requirement of an invertible onto mapping into the used group (cf. the discussion
in [36]). SM and RO denote the standard and the random oracle model respec-
tively. Furthermore, DDH, SXDH, PKoE, and OM-RSA denote the decisional
Diffie-Hellman, the symmetric DDH, the power knowledge of exponent [34], and
the one-more RSA inversion [9] assumptions. We also stress that for construc-
tions relying on SXDH, for typical instantiations of type-III bilinear groups, we
have that |G2| = 2(|G1|−1) + 1 (where | · | denotes the size of the representation
of a group element). Regarding our construction in the standard model, e.g.,
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CHPG(1λ) : Outputs the public parameters (G, g, q,H), where ppch = (G, g, q) ←r

GGen(1λ) and a hash-function H : {0, 1}∗ → Zq (which we assume to behave like
a random oracle and to be implicitly available to all algorithms below).

CHKG(ppch) : Return (skch, pkch) = (x, y), where x←r Zq and y ← gx.

CHash(pkch,m) : Parse pkch as y, choose (ξ, k1, e2, s2) ←r Z4
q, set u1,1 ← gk1 , u1,2 ←

yk1 , u2 ← gs2 ·y−e2 , e← H((y, h,m), (u1,1, u1,2, u2)) and e1 ← e−e2 mod q. Then
compute s1 ← k1 + e1ξ mod q and finally, return (h, r) = (c, π), where

c← (c1, c2) = (gξ,m · yξ) , and π ← (e1, e2, s1, s2).

CHCheck(pkch,m, r, h) : Parse pkch as y and r as (e1, e2, s1, s2), and h as (c1, c2). Return
1 if the following holds, and 0 otherwise:

m ∈ G ∧ e1 + e2 = H((y, h,m), (gs1 · c−e11 , ys1 · (c2/m)−e1 , gs2 · y−e2)).

CHAdapt(skch,m,m
′, r, h) : Parse skch as x, and h as (c1, c2). Verify whether m′ ∈ G,

and CHCheck(pkch,m, r, h) = 1. Return ⊥ if not. Otherwise, choose (k2, e1, s1)←r

Z3
q, set u1,1 ← gs1 · c−e11 , u1,2 ← ys1 · (c2/m′)−e1 , u2 ← gk2 , e ← H((y, h,m′),

(u1,1, u1,2, u2)), and e2 ← e−e1 mod q. Finally compute s2 ← k2 +e2x mod q, and
return r′ = π′, where

π′ ← (e1, e2, s1, s2).

Construction 3: Concrete instantiation of a Fully Collision-Resistant CH

using SSE NIZKs based on Groth-Sahai NIZKs, one can use the compiler in [22]
to efficiently achieve simulation-sound extractability. We, however, note that a
naive instantiation of our template in the standard model would still require to
include bit-wise proofs of the parts of the witness which are in Zq, which would,
all in all, require a number of group elements in the order of 1k − 2k (a very
rough estimate; thus we also omit the remaining costs which is indicated by “−”
in Table 1). It seems that switching to a variant of ElGamal in the target group
(and maybe some other tweaks) would help to work around the requirement of
having bit-wise proofs. Optimizing this instantiation is not in the scope of this
work and therefore we only give our rough estimates in the table. Finally, we note
that we omit comparing our scheme given in Construction 1 as it is contrived
and its sole purpose is to prove a separation result.

5 Application: Redactable Blockchains

While one of the major goals of blockchains is their immutability and in particu-
lar their use as an immutable append-only log, recently, starting with the work of
Ateniense et al. [4], there has been an increasing interest in blockchains that allow
some controlled after-the-fact modification of their content. This is motivated by
illegal content that was shown to be included into the Bitcoin blockchain [38],
which represents a significant challenge for law enforcement agencies [45], as well
as legislations like the European General Data Protection Regulation (GDPR)
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Scheme CR |h| |h|bit |r| |r|bit CHash CHAdapt Ass. Model

[37] W 1G 256 1Zq 256 2EG 0EG DLOG SM
[4] (1) E 1G 256 12G+7Zq 4876 17EG ? DDH ROM
[4] (2) E 1G1 382 6G1+13G2 12211 51EG1

? SXDH SM
[36] (1) E 1G1 382 9G1+4G2 6490 25EG1

1EZq SXDH SM
[36] (2) E 1G1 382 3G1 1164 6EG1

1EZq PKoE SM
[15] S 1ZN 3072 1ZN 3072 1EZN 1EZN OM-RSA ROM
Ours F 2G 514 4Zq 1024 6EG 5EG DDH ROM
Ours F 2G1 764 ≈ 1-2k G1/2 - - - SXDH SM

Table 1. Comparison of different chameleon-hash functions. | · |bit refers to the bit size
of the respective value which is currently believed to provide 128 bit security. We use
256bit elliptic curves for standard known order groups (|G| = 257, |Zq| = 256), 3072bit
RSA modulus for the RSA setting (|ZN | = 3072), and 381bit BLS12 curves for the
SXDH setting (|G1| = 382, |G2| = 763, |Zq| = 256).

and the associated “right to be forgotten”. Solutions to this problem may either
be for the permissioned- or permissionless-blockchain setting and cryptographic
in nature [4,21,41] or non-cryptographic, where in the latter case it is based on
the consensus layer of the blockchain [24].

We are considering the former and focus on block-level rewriting (change
entire blocks) of blockchains instead of transaction-level rewriting (change single
transactions within a block) in a permissionless setting (such as Bitcoin), as
this illustrates the problem with much wider implications. In the following we
are using the notation used in [4], and describe a block as triple of the form
B = 〈s, x, ctr〉, where s ∈ {0, 1}λ, x ∈ {0, 1}∗ and ctr ∈ N and a block is valid
if

validblockDq (B) := (H(ctr, G(s, x)) < D) ∧ (ctr < q) = 1.

Here, H : {0, 1}∗ → {0, 1}2λ and G : {0, 1}∗ → {0, 1}2λ are collision-resistant
hash functions, and the parameters D ∈ N and q ∈ N are the difficulty level of
the block and the maximum number of hash queries that a user is allowed to
make in any given round of the protocol, respectively. The chaining of blocks is
now done by requiring that when attaching a (valid) block B′ = 〈s′, x′, ctr’〉
we have that s′ = H(ctr, G(s, x)). Now to make blocks redactable, one changes
the description of blocks to B = 〈s, x, ctr, (h, r)〉 where the new component is a
chameleon-hash (h, r) and the validation predicate changes to

validblockDq (B) :=(H(ctr, h) < D) ∧ CHCheck(pkch, (s, x), r, h) = 1 ∧
(ctr < q) = 1.

Chaining is now done by requiring that when attaching a (valid) block B′ =
〈s′, x′, ctr’〉 we have that s′ = H(ctr, h). Observe that now computing a col-
lision in the chameleon-hash gives very much power as it basically allows to
rewrite the entire history of the blockchain.

Ateniese et al. in [4] discuss different ways to control this power to actually
compute collisions (i.e., run CHAdapt) where 1) either skch may be available to
some fully trusted single party only, or 2) skch is generated using a multi-party
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computation (MPC) protocol and CHAdapt is also performed in a distributed
way by some set of parties. We will discuss the implications of different collision-
resistance notions to this setting, which is independent of which of these two
approaches is going to be used.

We recall that Ateniese et al. [4], who introduced this application, rely on
E-CollRes and Derler et al. in more recent work in [21] rely on S-CollRes. Now,
note that in such a permissionless setting as discussed above, where everybody
is allowed to participate, it is reasonable to assume that an adversary sees the
collisions computed for any blocks over some time in the system (as they will be
broadcasted). Now let us discuss the single notions:

Weak Collision-Resistance (W-CollRes). A chameleon-hash providing this no-
tion of collision-resistance provides absolutely no guarantees, as after seeing
a single collision all guarantees are lost. A prime example is the Pedersen CH
due to Krawczyk and Rabin [37] (cf. the full version of this paper), where
a single seen collision exposes the secret key skch to everybody. Clearly, this
has significant consequences in the above scenario as then everybody can
arbitrarily alter the blockchain.

Enhanced Collision-Resistance (E-CollRes). Recall that an adversary when
attacking some hash h∗ must have never input h∗ to CHAdapt′. Now, this
means that if an adversary targets a specific hash and then happens to see
a collision for this hash (for some reason), suddenly all guarantees are lost
and arbitrary collisions could be computed. Note that our construction in
Sect. 3.5 clearly demonstrates potential problems with CHs only satisfying
this notion. This still represents a significant problem with this application.

Standard Collision-Resistance (S-CollRes). Recall, that an adversary is only
restricted to not query message m∗ (which is associated to the computed col-
lision h∗) was never queried to the collision-finding oracle. While this still
might be problematic in the redactable blockchain setting, messages can very
likely be made unique by perpending a large enough random tag/nonce (note
that in this could easily be done in the block format of e.g., the Bitcoin block
structure). So, this notion seems suitable if the aforementioned constrained
may, under certain circumstances, be guaranteed to be met, but is far away
from being ideal.

Full Collision-Resistance (F-CollRes). We recall that, here, only the collision
(h∗,m∗) was not generated by the collision-finding oracle, but there is no
other restriction whatsoever. Consequently, this collision-resistance notion
seems the “right” notion as no issues on higher levels need to be considered
and very strong guarantees are already provided by the notion itself.
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