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Abstract. Constrained pseudorandom functions (C-PRFs) let the pos-
sessor of a secret key delegate the ability to evaluate the function on
certain authorized inputs, while keeping the remaining function val-
ues pseudorandom. A constraint-hiding constrained PRF (CHC-PRF)
additionally conceals the predicate that determines which inputs are
authorized. These primitives have a wealth of applications, including
watermarking schemes, symmetric deniable encryption, and updatable
garbled circuits.
Recent works have constructed (CH)C-PRFs from rather aggressive pa-
rameterizations of Learning With Errors (LWE) with subexponential
modulus-noise ratios, even for relatively simple “puncturing” or NC1

circuit constraints. This corresponds to strong lattice assumptions and
inefficient constructions, and stands in contrast to LWE-based uncon-
strained PRFs and fully homomorphic encryption schemes, which can be
based on quasi-polynomial or even (nearly) polynomial modulus-noise
ratios.
In this work we considerably improve the LWE assumptions needed
for building (constraint-hiding) constrained PRFs and watermarking
schemes. In particular, for CHC-PRFs and related watermarking schemes
we improve the modulus-noise ratio to λO((d+log λ) log λ) for depth-d circuit
constraints, which is merely quasi-polynomial for NC1 circuits and closely
related watermarking schemes. For (constraint-revealing) C-PRFs for
NC1 we do even better, obtaining a nearly polynomial λω(1) ratio. These
improvements are partly enabled by slightly modifying the definition of
C-PRFs, in a way that is still compatible with many of their applications.
Finally, as a contribution of independent interest we build CHC-PRFs for
special constraint classes from generic, weaker assumptions: we obtain
bit-fixing constraints based on the minimal assumption of one-way func-
tions, and hyperplane-membership constraints based on key-homomorphic
PRFs.
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1 Introduction

Constrained pseudorandom functions (C-PRFs), introduced concurrently and
independently by [26,11,12], are PRFs in which the holder of the secret key can
delegate constrained keys that let one evaluate the function on certain authorized
inputs, while keeping the function values on all other inputs pseudorandom.
Constrained PRFs for various constraint classes have been constructed under
different assumptions, including ones where the set of authorized inputs can be
specified by an arbitrary boolean circuit. (See below for details.)

In the original conception and constructions of C-PRFs, a constrained key can
and does reveal the constraint that determines whether an input is authorized.
Boneh, Lewi, and Wu [10] introduced the notion of constraint-hiding constrained
PRFs (CHC-PRFs), also known as private constrained PRFs, in which constrained
keys conceal their underlying constraints. In particular, they considered CHC-
PRFs for “punctured” constraints that authorize all but a single input. They also
defined privately programmable PRFs (PP-PRFs), which allow the constrained
key to be “programmed” to output a desired value at the punctured input, and
showed that PP-PRFs can be used to build watermarkable PRFs [19].

1.1 Constructions and Assumptions

By now there are many constructions of constrained PRFs and their descen-
dants, under various assumptions. The original works of [26,11,12] constructed
(constraint-revealing) punctured PRFs based on the minimal assumption that
one-way functions exist. Additionally, Boneh and Waters [11] constructed C-
PRFs for constraints represented by arbitrary polynomial-sized circuits, under
the strong assumption that cryptographic multilinear maps exist. Subsequently,
Brakerski and Vaikuntanathan [17] gave a construction based on the Learning
With Errors (LWE) assumption, but for which security holds only for a single
constrained key. More recently, Attrapadung et al. [4] built C-PRFs for NC1

constraints under number-theoretic assumptions, specifically, DDH and L-DDHI.

Moving now to constraint-hiding constrained PRFs, Boneh et al. [10] con-
structed them for arbitrary (polynomial-sized) constraining circuits, under the
strong assumption that indistinguishability obfuscation (iO) exists [7,35]. LWE-
based constructions soon followed, first for puncturing constraints [9], then for
NC1 circuits [18], then for all polynomial-sized circuits [15,32]. Like [17], all these
LWE-based constructions are secure only for a single constrained key. However,
this is an inherent limitation of CHC-PRFs for NC1 circuits, because security for
even two keys implies iO [18].

For privately programmable PRFs and watermarking schemes, the original
constructions from [19,10] were based on iO. Later, Kim and Wu [27] built
LWE-based watermarking schemes through a different but conceptually similar
approach related to programming PRFs. Subsequently, Peikert and Shiehian [32]
actually constructed LWE-based privately programmable PRFs.
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1.2 LWE Error Rate

An important parameter in the LWE problem, which is related to both its concrete
hardness and its connection to lattice problems, is the error rate α, or equivalently,
the modulus-to-noise ratio q/r = 1/α, where q is the modulus and r is the “width”
of the (Gaussian) error distribution. In more detail, dimension-n LWE with
error width r ≥ 2

√
n is at least as hard as (quantumly) approximating various

worst-case lattice problems to within Õ(n/α) = Õ(q
√
n) factors on n-dimensional

lattices [34,31]. Therefore, using a smaller modulus q (equivalently, a larger error
rate α) yields both a stronger security guarantee and a more efficient scheme. More
concretely, according to current lattice algorithms, obtaining λ bits of security
requires using a dimension n = λ · Ω̃(log(1/α)), and representing elements of Zq
requires log q = Ω̃(log(1/α)) bits. Therefore, LWE-based cryptographic schemes
using a small error rate α (i.e., large q) suffer from large parameters and key
sizes that can be cubic, or even quartic, in log(1/α).

While there are LWE-based (ordinary) PRFs where the modulus is quasi-
polynomial λpolylog(λ) [6] or even nearly polynomial λω(1) [5], the current LWE-
based constrained PRFs for punctured, NC1, and arbitrary circuit constraints
all require a subexponential exp(poly(λ)) modulus (unless the domain of the
PRF is restricted to quasi-polynomially long strings). It is instructive to compare
this state of affairs with fully homomorphic encryption (FHE) schemes, whose
underlying techniques are used in the constrained PRFs.

Without bootstrapping, state-of-the-art “leveled” FHE schemes [13,22] require
a modulus that is merely exponential in the depth of the supported circuit class
of homomorphic computations. (Bootstrapping can bring the modulus down to
quasi-polynomial [13,22] or even polynomial [16,1], independent of the depth of
the supported circuits.) By contrast, for constrained PRFs the modulus is always
subexponential in λ, regardless of the circuit depth. In particular, NC1 circuits
induce a subexponential modulus, instead of a quasi-polynomial one as we might
hope. This seems to be an artifact unrelated to the main construction and proof
techniques, and raises the following natural question:

Question 1. Can we construct LWE-based (constraint-hiding) constrained PRFs
with smaller-than-subexponential modulus, e.g., exponential in the depth of the
circuit class?

We also point out that all of the known LWE-based watermarkable PRFs [27,10]
(excluding [33], which is not pseudorandom to the setup authority), where the
latter is instantiated with LWE-based PP-PRFs [32], also need a subexponen-
tial modulus. Roughly speaking, these constructions are essentially built upon
privately puncturable PRFs. This motivates the following question:

Question 2. Can we construct LWE-based watermarkable PRFs with a quasi-
polynomial modulus?

1.3 Our Results

In this work, our main focus is on improving the LWE assumptions needed for
constructing (single-key) constrained PRFs, including their constraint-hiding
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and privately programmable variants. As a contribution of independent in-
terest, we also obtain (single-key) CHC-PRFs for bit-fixing and hyperplane-
membership constraints from generic assumptions, namely, one-way functions
and key-homomorphic PRFs, respectively.

Our main insight is that by slightly modifying the correctness requirement for
constrained keys—but in a way that is still strong enough for most applications—
we can construct C-PRFs using much larger LWE error rates, and hence much
weaker assumptions and much smaller moduli and key sizes. In particular, we
answer Question 1 in the affirmative. We also demonstrate that our new notion
of correctness is sufficient for many of the applications of C-PRFs, including
watermarking schemes and updatable garbled circuits; this positively answers
Question 2 as well. We stress that the security level of our constructions scale
proportional to the inverse of the LWE error rate; however, we note that this is
a property shared by all current efficient (ordinary) lattice-based PRFs [6,5]. We
now summarize our specific results.

Feasible correctness. We first observe that satisfying a strict correctness require-
ment for constrained keys is the main reason previous LWE-based C-PRFs needed
a subexponential modulus. In a bit more detail, the prior definitions require that,
given a constrained key, it is computationally hard (or even impossible) to find
an authorized input where the constrained key yields a different output than the
real key. We give an alternative definition, which says that no efficient adversary,
even with oracle access to the function, can find an input x for which there exists
a constrained key that authorizes x yet yields a different output than the real
key. (However, after obtaining a constrained key, an adversary may be able to
find such an input.) We call this new notion feasible correctness.

Feasibly correct PP-PRFs and watermarking PRFs from LWE with
quasi-polynomial modulus. Our first construction under our new correctness
notion is a key-injective, privately programmable PRF, based on LWE with
only a quasi-polynomial modulus q = λO(log2 λ). We plug this construction into
the watermarking PRF construction of [10] and show that the resulting scheme
satisfies all of the watermarking requirements presented in [27] (which are stronger
than the definitions in [10]). This results in a watermarking scheme from LWE

with quasi-polynomial modulus q = λO(log2 λ), improving on the prior best of
subexponential.

Feasibly correct CHC-PRFs from LWE with quasi-polynomial modulus. We
next construct a feasibly correct CHC-PRF for arbitrary polynomial-sized cir-
cuit constraints, based on LWE with modulus q = λO((d+log λ) log λ) where d is
the depth of the supported circuit class. As an application, we instantiate the
“message-embedding” construction of watermarkable PRFs from [33], which uses
CHC-PRFs for log-depth constraints, with our feasibly correct CHC-PRF, thus
reducing the modulus size from subexponential to quasi-polynomial λO(log2 λ).
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Feasibly correct C-PRFs from LWE with nearly polynomial modulus. Using
the construction in the previous paragraph, feasibly correct CHC-PRFs for
NC1 circuits require a quasi-polynomial modulus q = λO(log2 λ). Trivially, this
construction is also a feasibly correct C-PRF for NC1. However, we go farther by
constructing such a C-PRF from LWE with only a nearly polynomial modulus
q = λω(1), by building upon the branching-program techniques of [16]. As an
application, we show that we can replace regular C-PRFs with feasibly correct
ones in the updatable garbled circuits construction of [2], thus reducing the
modulus size from subexponential to nearly polynomial.

Bit-fixing and hyperplane-membership PRFs from generic assumptions. As re-
sults of independent interest, we build CHC-PRFs for specific constraint classes
based on generic, weaker assumptions than prior constructions. We consider the
class of constraints that authorize inputs that lie in a specified hyperplane. For
such constraints we build (feasibly correct) CHC-PRFs generically from key-
homomorphic PRFs. Using the key-homomorphic PRFs of [5], we can base the
security of our construction on LWE with nearly polynomial modulus q = λω(1),
which is significantly smaller than the quasi-polynomial q = λO(log2 λ) that we
would get by näıvely using our feasibly correct CHC-PRF for NC1 circuits.

Lastly, for bit-fixing constraints, i.e., constraints that authorize strings match-
ing a specified pattern in {0, 1, ?}∗ (where ? denotes the wildcard symbol), we
build (fully correct) CHC-PRFs based on the minimal assumption that one-way
functions exist. Previously, bit-fixing PRFs were only known based on LWE with
subexponential modulus [18,15,32], DDH [4], or multilinear maps [11], although
the latter can securely issue more than one constrained key.

1.4 Concurrent and Independent Works

In a concurrent and independent work, Kim and Wu [28] construct watermarking
PRFs from LWE with quasi-polynomial (nearly polynomial) modulus. While their
security model for watermarking PRFs is an interesting strengthening of the model
in [33], however, similar to [33] their PRFs do not offer full pseudorandomness
in the presence of the setup authority. Furthermore, to make the LWE modulus
quasi-polynomial (nearly polynomial), they have to limit the input domain of
their PRFs to polylogarithmically (nearly logarithmically) long bit-strings. In
comparison, both of our watermarking constructions support polynomially long
bit-strings as inputs, with one satisfying the authority pseudorandom model
of [27] and the other satisfying the [33] model.

In another concurrent work, Davidson, Katsumata, Nishimaki and Yamada [21]
construct bit-fixing PRFs from one-way functions. Their construction is very
similar to what we present in Construction 6. Later, Tsabary [36] makes an
observation essentially identical to our Remark 1 and uses it to build LWE-based
adaptively secure attribute based encryption for constant-width CNFs.
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1.5 Techniques

Achieving feasible correctness. We start by reviewing why the correctness defini-
tion in current LWE-based C-PRFs leads to a subexponential modulus. In these
constructions, to compute the function on an input x, first a value yx ∈ Zmq is
computed and the final output is byxep. Using a constrained key for a depth-d
constraint C that authorizes x, one can obtain yx + ex where ex is a B-bounded

error vector for some B = λÕ(d). For correctness we need byx + eep = byxep, i.e.,
the coordinates of yx should not be in the border interval q

p (Z + 1
2 ) + [−B,B].

Unfortunately, to guarantee that, given a constrained key, an adversary cannot
find an input x such that yx has a coordinate in the border interval, we currently
do not know any solution other than making q subexponential. This is because
we need to rely on the hardness of the “1-dimensional SIS problem” over Zq,
as originally used in [17], or use a union bound over the subexponential PRF
domain, as in [15].

We observe that if we can make yx a pseudorandom function of x then an
alternative “feasible correctness” property can be achieved. Namely, an adversary
without a constrained key, but with oracle access to the PRF functionality, can
only produce an x for which yx has a coordinate in the border interval with

probability at most (Bp/q) ·poly(λ). Setting q = Bp ·λω(1) = λÕ(d) yields feasible
correctness.

Interestingly, we observe that the the notion of feasible correctness is com-
patible with many applications of C-PRFs. Most notably, the watermarking
schemes based on C-PRFs maintain all of their requisite properties, because
correctness only requires agreement between marked and unmarked PRFs on an
overwhelming fraction of inputs. More generally (and somewhat informally), as
long as a C-PRF is used in a context where it is evaluated on inputs that do not
depend on the constrained key, then feasible correctness can substitute for full
correctness.

Making yx a pseudorandom function of x can be done by adding an inde-
pendent PRF value in the computation of yx. In more detail, we generate a key
κ← PRF.KG(1λ) for an arbitrary PRF with the same input domain as our PRF
and with range Zmq , and output it as part of both the master secret key and
the constrained key. When evaluating the PRF on input x we compute yx as
before, then compute y′x = yx + PRF.Eval(κ, x) and output by′xep. Evaluation
using a constrained key is similar. Using an LWE-based PRF which only requires
a nearly polynomial modulus [5], we achieve feasible correctness from LWE with

modulus q = λÕ(d).

Constrained PRFs for NC1 constraints. We now describe how we construct
feasibly correct (constraint-revealing) C-PRFs for NC1 constraints from LWE
with a nearly polynomial modulus q = λω(1). Conceptually, our construction
is similar to the one of [15], however we also use the technique from [16] of
representing computations as branching programs. For each input x we denote
by Mx the efficiently computable public binary matrix constructed as in [5].
These matrices have the property that for a uniformly random s over Zq, the
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randomized procedure which, on input x, samples a sufficiently wide Gaussian
error ex and outputs sMx + ex, is pseudorandom. Our construction also crucially
relies on the [16] procedure for homomorphically evaluating branching programs.

In our construction, a constrained key for a circuit C consists of the circuit C,
a key κ for an auxiliary PRF, and several LWE samples ai = s(Ai +Ci ·G) + ei,
where the Cis are the individual bits of C. Evaluating the PRF at an input x is
done as follows:

– We use the “gadget homomorphisms” for branching programs with asym-
metric noise growth [16] to homomorphically evaluate Ux(·) on the LWE
samples ai, where Ux(C) = C(x) is the branching program for a depth-
universal circuit for NC1. The result is

ax = s ·Ax + C(x) · s ·G + ex, (1)

where Ax does not depend on C and ex is polynomially bounded.
– Next, we multiply ax by G−1(A ·Mx), where A is a public uniformly random

matrix over Zq, to get

bx = s ·Ax ·G−1(A ·Mx) + C(x) · s ·A ·Mx + e′, (2)

where e′ is also polynomially bounded.
– Finally, we define the value of the PRF at input x to be

bs ·Ax ·G−1(A ·Mx) + PRF.Eval(κ, x)ep, (3)

and the constrained value at x to be

bbx + PRF.Eval(κ, x)ep. (4)

Because e′ is B-bounded for B = poly(λ), a nearly polynomial modulus q =
B · λω(1) = λω(1) is sufficient for feasible correctness. To show that the C-PRF at
unauthorized inputs x (i.e., where C(x) = 1) remains pseudorandom, we have to
argue that the extra term s ·A ·Mx + e′ completely masks s ·Ax ·G−1(A ·Mx).
The high-level idea here is that, because Mx has small entries, s ·A ·Mx+ e′ and
(s ·A + e′′) ·Mx + e′ are very close to each other. Then by LWE, (s ·A + e′′) and
a uniformly chosen s′ are indistinguishable. But as already noted, s′ ·Mx + e′ is
pseudorandom, as desired.

Generic CHC-PRFs for hyperplane membership constraints. We give a brief
overview of our generic feasibly correct CHC-PRF construction for the class
of hyperplane membership predicates. This construction can be based on any
(noisy) key-homomorphic PRF. Here, for simplicity we only consider constraints
of dimension 1, i.e., each constraint consists of a pair (α0 ∈ Zq, α1 ∈ Zq) for
some modulus q and only authorizes inputs x ∈ Zq such that α0 + α1 · x = 0
(mod q). Generalizing for higher dimensions is straightforward. Let KHPRF be
a key-homomorphic PRF. The master secret key consists of two keys (k0, k1)
for KHPRF. To evaluate the PRF on an input x, we output KHPRF.Eval(k0, x) +
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KHPRF.Eval(x · k1, x). To produce a constrained key for constraint (α0, α1), we
first sample a KHPRF key d and then output (k0−α0d, k1−α1d) as the constrained
key. It is straightforward to observe that the constrained-key (perfectly) hides
(α0, α1). The correctness and pseudorandomness property follow from the key-
homomorphism and the pseudorandomness of KHPRF. This is because

Eval(k0 − α1d, x) + Eval(x · (k1 − α1d), x) = Eval(k0, x)+

Eval(x · k1, x)− (α0 + α1 · x)Eval(d, x),
(5)

and in particular if α0 + α1 · x 6= 0 (mod q) then the last term computationally
hides the true value of the PRF.

2 Preliminaries

We denote row vectors by lower-case bold letters, e.g., a. We denote matrices by
upper-case bold letters, e.g., A. The Kronecker product A⊗B of two matrices
(or vectors) A and B is obtained by replacing each entry ai,j of A with the block
ai,jB.

Depth-universal circuits. We use depth-universal circuits, i.e., universal circuits
with depth O(d) where d is the depth of the simulated circuit class. The con-
struction of Cook and Hover [20] is depth-universal and has size O(σ3 · d/ log d)
for circuits of size σ and depth d.

Learning with errors. For a positive integer dimension n and modulus q, and
an error distribution χ over Z, the LWE distribution and decision problem are
defined as follows. For an s ∈ Zn, the LWE distribution As,χ is sampled by
choosing a uniformly random a← Znq and an error term e← χ, and outputting
(a, b = 〈s,a〉+ e) ∈ Zn+1

q .

Definition 1. The decision-LWEn,q,χ problem is to distinguish, with
non-negligible advantage, between any desired (but polynomially bounded) number
of independent samples drawn from As,χ for a single s ← Znq , and the same
number of uniformly random and independent samples over Zn+1

q .

A standard instantiation of LWE is to let χ be a discrete Gaussian distribution
(over Z) with parameter r = 2

√
n. A sample drawn from this distribution has

magnitude bounded by, say, r
√
n = Θ(n) except with probability at most 2−n.

For this parameterization, it is known that LWE is at least as hard as quantumly
approximating certain “short vector” problems on n-dimensional lattices, in the
worst case, to within Õ(q

√
n) factors [34,31]. Classical reductions are also known

for different parameterizations [30,14].

3 Definitions

Here we recall prior definitions of constrained PRFs [32], then relax them to our
new notion of feasible correctness.
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Definition 2. A constrained function for a constraint class C is given by a tuple
of efficient algorithms (Setup,KeyGen,Eval,Constrain,CEval) having the following
interfaces (where the domain X , range Y, and class C may depend on the security
parameter):

– Setup(1λ), given the security parameter λ, outputs public parameters pp.
– KeyGen(pp), given the public parameters pp, outputs a master secret key msk.
– Eval(pp,msk, x), given the master secret key and an input x ∈ X , outputs

some y ∈ Y.
– Constrain(pp,msk,C), given the master secret key and a constraint C ∈ C,

outputs a constrained key skC .
– CEval(pp, skC , x), given a constrained key skC and an input x ∈ X , outputs

some y ∈ Y.

In some constructions there is no need for a Setup algorithm, in which case the
security parameter 1λ takes the place of the public parameters pp.

procedure CHCPRFRealA(1λ)
C ← A(1λ)
pp← Setup(1λ)
msk ← KeyGen(pp)
skC ← Constrain(pp,msk,C)
skC → A
repeat

x← A
Eval(pp,msk, x)→ A

until A halts

(a) The real experiment

procedure CHCPRFIdealA,S(1λ)
C ← A(1λ)
(pp, sk)← S(1λ)
sk → A
repeat

x← A
if C(x) = true then

CEval(pp, sk, x)→ A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 1: The real and ideal constraint-hiding constrained PRF experiments.

Definition 3. A constrained function is a constraint-hiding constrained PRF
(CHC-PRF) if there is a PPT simulator S such that, for any PPT adversary A
(that without loss of generality never repeats an Eval query),

{CHCPRFRealA(1λ)}λ∈N
c
≈ {CHCPRFIdealA,S(1λ)}λ∈N, (6)

where CHCPRFReal and CHCPRFIdeal are the respective views of A in the exper-
iments defined in Figure 1.

We now introduce an alternative (but still sufficient for applications) notion
of correctness for constrained evaluation, which we call feasible correctness.
This requires that CEval and Eval agree on any input x that the adversary
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outputs after having query access to Eval, but before obtaining a constrained
key. Correspondingly, in the simulation-based security definitions we limit the
adversary to query only unauthorized inputs. This is because after obtaining the
constrained key, it may be able to find inputs x on which CEval and Eval differ,
which would allow it to distinguish the real and ideal experiments. We still call
this property simulation security, where the restriction to unauthorized inputs is
clear by the context of feasible correctness.

Definition 4. A constrained function is feasibly correct if for all PPT adver-
saries A and all pp in the support of Setup we have

Pr

 ∃C ∈ C s.t. C(x) = true
∃skC ∈ support of Constrain(pp,msk,C) s.t.

CEval(pp, skC , x) 6= Eval(pp,msk, x)

 = negl(λ), (7)

where msk ← KeyGen(pp), x ← AEval(pp,msk,·)(pp), and the probability is taken
over the random coins of the KeyGen algorithm and the random coins of the
adversary A.

We recall the notion of key-homomorphic PRFs.

Definition 5. A PRF (Setup,Keygen,Eval) with domain X , finite-group key
space K, and range Zmp for some integer modulus p and dimension m, is noisy
key homomorphic with noise bound E if for every pp in the support of Setup,
every two keys msk1,msk2 in the support of Keygen(pp), and every x ∈ X , we
have

Eval(pp,msk1 +msk2, x) = Eval(pp,msk1, x) + Eval(pp,msk2, x) + e (8)

for some noise vector e where each entry of e has magnitude at most E.

Theorem 1 ([5]). Assuming the hardness of LWE with nearly polynomial mod-
ulus size q = λω(1), there exists a noisy key-homomorphic PRF with key space
Znq , range Zmp for any p for which p/q = negl(λ), and noise upper bound E = 1.

4 Feasibly Correct Shift-Hiding Shiftable Functions

Recall the notion of shift-hiding shiftable functions (SHSFs) in [32] (a brief
overview is available in Appendix A). Here we give a construction of what we call
feasibly correct shift-hiding shiftable functions (FC-SHSFs) which are essentially
SHSFs which satisfy shift hiding and approximate shift correctness but instead of
border avoiding they satisfy a new notion which we call feasible border avoiding.
Interestingly, the main building block for our FC-SHSFs is a SHSF.
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4.1 Notation

Let PRF = (KG,Eval) be a PRF. We can instantiate PRF based on various
assumptions. In particular, the instantiation in [5] which is based on LWE
with a nearly polynomial modulus, incurs no additional cost to later appli-
cations of our FC-SHSF construction. Let U(H,x) = H(x) denote a depth-
universal circuit for boolean circuits H : {0, 1}` → {0, 1}k of size σ and depth
d, and let Ux(·) = U(·, x). Denote the SHSFs constructed in [32] by PSSHSF =
(Setup,KeyGen,Eval,Shift,SEval,S) and recall that in PSSHSF the noise growth
is λO(d log λ).

4.2 Construction

Here we give the tuple of algorithms (Setup,KeyGen,Eval,Shift,SEval,S) that
make up our SHSF. For security parameter λ, constraint circuit size σ, and
constraint circuit depth d the algorithms are parameterized by some dimension
n and modulus q, and m = ndlg qe.

Construction 1. Let X = {0, 1}` and Y = Zmq . Define:

– Setup(1λ, 1σ, 1d): Generate PSSHSF public parameters
pp′ ← PSSHSF.Setup(1λ, 1σ, 1d). Output pp := pp′.

– KeyGen(pp): Generate a PRF key κ ← PRF.KG(1λ) and PSSHSF master
secret key msk′ ← PSSHSF.KeyGen(1λ). Output (κ,msk′).

– Eval(pp,msk, x ∈ {0, 1}`): output

PRF.Eval(κ, x) + PSSHSF.Eval(pp′,msk′, x) (9)

– Shift(pp,msk,H): for a shift function H : {0, 1}` → Zmq whose binary decom-

position H ′ : {0, 1}` → {0, 1}k can be implemented by a circuit of size σ,
compute sk′H ← SHSF.Shift(pp′,msk′, H). Output

skH = (κ, sk′H). (10)

– SEval(pp, skH , x): On input skH = (κ, sk′H) and x ∈ {0, 1}`, output

PRF.Eval(κ, x) + PSSHSF.SEval(pp′, sk′H , x) (11)

– S(1λ, 1σ, 1d): Sample a PRF key κ← PRF.KG(1λ), a simulated PSSHSF key
(pp′, sk′)← PSSHSF.Sim(1λ, 1σ), and output pp = (pp′) and sk = (κ, sk′).

4.3 Properties

We now state the main properties of our construction that we will use in subse-
quent sections.

The following two lemmas follow directly from the shift-hiding and approx-
imate shift correctness properties of PSSHSF. So, we omit the proofs of these
lemmas.

11



procedure RealKeyA(1λ, 1σ, 1d)
H ← A(1λ, 1σ, 1d)
pp← Setup(1λ, 1σ, 1d)
msk ← KeyGen(pp)
sk ← Shift(pp,msk,H)
(pp, sk)→ A

(a) The real shifted key generation ex-
periment

procedure IdealKeyA(1λ, 1σ, 1d)
H ← A(1λ, 1σ, 1d)
(pp, sk)← S(1λ, 1σ, 1d)
(pp, sk)→ A

(b) The random key generation experi-
ment

Fig. 2: The real and random shifted key generation experiments.

Lemma 1 (Shift Hiding). Assuming the hardness of LWEn−1,q,χ, for any
PPT A, any σ = σ(λ) = poly(λ) and any d,

{RealKeyA(1λ, 1σ, 1d)}λ∈N
c
≈ {IdealKeyA(1λ, 1σ, 1d)}λ∈N, (12)

where RealKey and IdealKey are the respective views of A in the experiments
defined in Figure 2.

Lemma 2 (Approximate Shift Correctness). For any shift function
H : {0, 1}` → Zmq whose binary decomposition H ′ : {0, 1}` → {0, 1}k can be

represented by a boolean circuit of size σ and depth d, and any x ∈ {0, 1}`,
pp ← Setup(1λ, 1σ, 1d), msk ← KeyGen(pp) and skH ← Shift(pp,msk,H), we
have

SEval(pp, skH , x) ≈ Eval(pp,msk, x) +H(x) (13)

where the approximation hides some λO(d log λ)-bounded error vector.

Lemma 3 (Feasible Border Avoiding). If PRF is a pseudorandom function,
then for any polynomial-time adversary A, i ∈ [m], σ = poly(λ), d ∈ N, large
enough B = λO(d log λ) ∈ N, primes p and q such that q = p ·B · λω(1), pp in the
support of Setup(1λ, 1σ, 1d), and β ∈ Zq, we have

Pr
msk←KeyGen(pp)

[
Eval(pp,msk,AEval(pp,msk,·)(pp))i ∈

q
p (Z + 1

2 ) + [β −B, β +B]
]
≤ negl(λ).

(14)

The following is an immediate consequence of Lemma 2.

Corollary 1. Fix the same notation as in Lemma 2. Let c ∈ Zmq be a fixed
vector. If for all i ∈ [m] we have

Eval(pp, sk, x)i /∈ q
p (Z + 1

2 ) + [ci −B, ci +B], (15)

then

bSEval(pp, sk, x)−H(x)− cep = bEval(pp,msk, x)− cep. (16)
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5 Feasibly Correct Privately Programmable PRFs

In this section we formally define feasibly correct privately programmable PRFs
(PP-PRFs) and give a construction based on our feasibly correct shiftable PRFs
from Section 4. Our construction satisfies an additional key-injectivity property
which would later be useful in watermarking constructions.

5.1 Definitions

We start by giving a variety of definitions related to “programmable functions”
and privately programmable PRFs.

Definition 6. A programmable function is a tuple
(Setup,KeyGen,Eval,Program,PEval) of efficient algorithms having the follow-
ing interfaces (where the domain X and range Y may depend on the security
parameter):

– Setup(1λ), given the security parameter λ outputs public parameters pp.
– KeyGen(pp), given the public parameters pp, outputs a master secret key msk.
– Eval(pp,msk, x), given the master secret key and an input x ∈ X , outputs

some y ∈ Y.
– Program(pp,msk, (x∗, y∗)), given the master secret key msk and

(x∗, y∗) ∈ X × Y, outputs a programmed key skP .
– PEval(pp, skP , x), given a programmed key skP and an input x ∈ X , outputs

some y ∈ Y.

Definition 7. A programmable function is statistically programmable if for all
λ ∈ N and all pairs (x∗, y∗) ∈ X × Y we have

Pr
pp←Setup(1λ)

msk←KeyGen(pp)
sk(x∗,y∗)←Program(pp,msk,(x∗,y∗))

[PEval(pp, sk(x∗,y∗), x
∗) 6= y∗] = negl(λ). (17)

Definition 8. A programmable function is feasibly correct if for all PPT adver-
saries A and all pp in the support of Setup we have

Pr

 ∃(x∗, y∗) ∈ X\{x} × Y
∃sk(x∗,y∗) ∈ support of Program(pp,msk, (x∗, y∗)) s.t.

PEval(pp, sk(x∗,y∗), x) 6= Eval(pp,msk, x)

 = negl(λ), (18)

where msk ← KeyGen(pp), x ← AEval(pp,msk,·)(pp), and the probability is taken
over the random coins of the KeyGen algorithm and the random coins of the
adversary A.

Definition 9 (Key-Injectivity). A programmable function is
key-injective if

Pr
pp←Setup(1λ)

[
∃ distinct msk1,msk2 ∈ support of KeyGen, x ∈ {0, 1}` :

Eval(pp,msk1, x) = Eval(pp,msk2, x)

]
≤ negl(λ).

(19)
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procedure RealPPRFA(1λ)
(x∗, y∗)← A(1λ)
pp← Setup(1λ)
msk ← KeyGen(pp)
sk(x∗,y∗) ← Program(pp,msk, (x∗, y∗))
(pp, sk(x∗,y∗))→ A
Eval(pp,msk, x∗)→ A

(a) The real experiment

procedure IdealPPRFA,S(1λ)
(x∗, y∗)← A(1λ)
(pp, sk(x∗,y∗))← S(1λ, (x∗, y∗))
(pp, sk(x∗,y∗))→ A
y ← Y; y → A

(b) The ideal experiment

Fig. 3: The real and ideal experiments

Definition 10. A programmable function is simulation secure if there is a PPT
simulator S such that for any PPT adversary A,

{RealPPRFA(1λ)}λ∈N
c
≈ {IdealPPRFA,S(1λ)}λ∈N, (20)

where RealPPRF and IdealPPRF are the respective views of A in the procedures
defined in Figure 3.

procedure RealPPRFPrivacyA(1λ)
x∗ ← A(1λ)
y∗ ← Y
pp← Setup(1λ)
msk ← KeyGen(pp)
sk ← Program(pp,msk, (x∗, y∗))
(pp, sk)→ A

(a) The real experiment

procedure
IdealPPRFPrivacyA,S(1λ)

x∗ ← A(1λ)
(pp, sk)← S(1λ)
(pp, sk)→ A

(b) The ideal experiment

Fig. 4: The real and ideal privacy experiments

Definition 11. A programmable function is privately programmable if there is
a PPT simulator S such that for any PPT adversary A,

{RealPPRFPrivacyA(1λ)}λ∈N
c
≈ {IdealPPRFPrivacyA(1λ)}λ∈N, (21)

where RealPPRFPrivacy and IdealPPRFPrivacy are the respective views of A in
the procedures defined in Figure 4.

Definition 12. A programmable function is a feasibly correct privately pro-
grammable PRF if it is statistically programmable, simulation secure, privately
programmable, and feasibly correct.
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LWE-Based PRGs with Weak Seeds. In this construction we will need an LWE-
based PRG G : Znq → {0, 1}n1 with the following property:

{G(s), s ·A + e,A : s, e← χn; A← Zn×mq }
c
≈

{r,a,A : r ← {0, 1}n1 ; a← Zmq ; A← Zn×mq }.
(22)

Such PRGs can be built when q is superpolynomial by combining the techniques
in [6] and [3].

5.2 Construction of Feasibly Correct Privately Programmable
PRFs

In this section we construct a feasibly correct privately programmable PRF
from our shiftable function of Section 4. We first define the auxiliary function
that the construction will use. For (x∗,w) ∈ {0, 1}` × Zmq define the function

H(x∗,w) : {0, 1}` → Zmq as

H(x∗,w)(x) =

{
w if x = x∗,

0 otherwise.
(23)

Notice that H(x∗,w) has circuit size upper bounded by some
σ′ = poly(n, log q) and depth at most d′ = O(log q).

Construction 2. Our feasibly correct privately programmable PRF with input
space X = {0, 1}` and output space Y = Zmp where p = poly(λ), uses the FC-

SHSF from Section 4 with parameters n = Õ(λ),B = λO(log2 λ), q = p ·B ·λω(1) =

p · λO(log2 λ), and is defined as follows:

– Setup(1λ): First generate pp′ ← SHSF.Setup(1λ, 1σ
′
, 1d

′
) then choose a uni-

formly random matrix A ∈ Zn×mq , a uniformly random vector r← Zmp , and
output pp := (pp′, r,A) we implicitly assume that pp contains the public
parameters for a PRG with weak seeds which satisfies Equation (22).

– KeyGen(pp): Sample s ← χn, sample msk′ ← SHSF.KeyGen(pp′;G(s)). Fi-
nally, output msk := (s,msk′).

– Eval(pp,msk = (s,msk′), x ∈ {0, 1}`): Compute
yx = s ·A + SHSF.Eval(pp,msk′, x) and output r + byxep.

– Program(pp,msk, (x∗,y∗)): Given (x∗,y∗) ∈ {0, 1}` × Zmp , compute w as
follows: choose y′ ← Zmq uniformly at random conditioned on by′ep = (y∗−r),
let a← s ·A + e where e← χm, and set

w = y′ − SHSF.Eval(pp,msk′, x∗)− a (24)

Compute sk′(x∗,y∗) ← SHSF.Shift(pp,msk′, H(x∗,w)). Output

sk(x∗,y∗) := (a, sk′(x∗,y∗)) .

– PEval(pp, sk(x∗,y∗) = (a, sk′(x∗,y∗)), x): output

r + ba + SHSF.SEval(pp, sk′(x∗,y∗), x)ep.
The proof of the following theorem is deferred to the full version of this paper.

Theorem 2. If LWEn−1,q,χ is hard and PRF is a pseudorandom function, Con-
struction 2 is a key-injective, feasibly correct privately programmable PRF.
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5.3 Application

In the full version of this paper we show that by instantiating the watermarking
scheme of [10] with Construction 2 PP-PRFs, we get a watermarking construction

from LWE with quasi-polynomial modulus q = λO(log2 λ). This watermarking
scheme satisfies all the definitions in [27] and in particular it is authority pseudo-
random.

6 Feasibly Correct Constraint-Hiding Constrained PRFs

Definition 13. A constrained function is a feasibly correct constraint-hiding
constrained PRF if it satisfies Definition 4, and there is a PPT simulator S
such that, for any PPT adversary A that never queries its Eval oracle on an
input x for which C(x) = true (and without loss of generality never repeats an
Eval query),

{CHCPRFRealA(1λ)}λ∈N
c
≈ {CHCPRFIdealA,S(1λ)}λ∈N, (25)

where CHCPRFReal and CHCPRFIdeal are the respective views of A in the exper-
iments defined in Figure 1.

6.1 Construction

We now describe our construction of a feasibly correct CHC-PRF for domain
X = {0, 1}` and range Y = Zmp , which handles constraining circuits of size σ and
depth d. It uses the following components:

– A pseudorandom function AuxPRF = (AuxPRF.KG,AuxPRF.Eval) having
domain {0, 1}` and range Zmq , with key space {0, 1}κ.

– The feasibly correct shift hiding shiftable function
SHSF = (Setup,KeyGen,Eval,Shift,SEval,Sim) from Section 4, which has
parameters q,B that appear in the analysis below.

For a boolean circuit C of size at most σ and depth upper-bound d and some
k ∈ {0, 1}κ define the function HC,k : {0, 1}` → Zmq as

HC,k(x) = C(x) · AuxPRF.Eval(k, x)

=

{
AuxPRF.Eval(k, x) if U(C, x) = 1

0 otherwise.

(26)

Notice that the size of (the binary decomposition of) HC,k is upper bounded by

σ′ = σ + s+ poly(n, log q), (27)

where s is the circuit size of (the binary decomposition of) AuxPRF.Eval(k, ·).
And the depth of HC,k is upper-bounded by

d′ = d+ δ +O(log q), (28)
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where δ is the circuit depth of AuxPRF.Eval(k, ·). By instantiating
AuxPRF with a log-depth PRF [6,5], we can set n = Õ(λ),
B = λO((d+log λ) log λ), and q = p ·B · λω(1) = λO((d+log λ) log λ).

Construction 3. Our feasibly correct CHC-PRF with domain X = {0, 1}` and
range Y = Zmp is defined as follows:

– Setup(1λ, 1σ, 1d): output pp← SHSF.Setup(1λ, 1σ
′
, 1d

′
) where σ′ and d′ are

defined as in Equations (27) and (28) respectively.
– KeyGen(pp): output msk ← SHSF.KeyGen(pp).
– Eval(pp,msk, x ∈ {0, 1}`): compute yx = SHSF.Eval(pp,msk, x) and output
byxep.

– Constrain(pp,msk,C): on input a circuit C of size at most σ and depth
at most d, sample a PRF key k ← AuxPRF.KG(1λ) and output skC ←
SHSF.Shift(pp,msk,HC,k).

– CEval(pp, skC , x): on input a constrained key skC and x ∈ {0, 1}`, output
bSHSF.SEval(pp, skC , x)ep.

6.2 Security Proof

In the full version of this paper we present the security proof of Construction 3.

Theorem 3. Assuming that LWEn−1,q,χ is hard and PRF is a pseudorandom
function, Construction 3 is a feasibly correct CHC-PRF.

6.3 Applications

Watermarking in the alternative model of [33] from LWE with quasi-polynomial
modulus Recently, [33] introduced an alternative model for watermarkable PRFs.
In their model, the marking algorithm is public and roughly speaking, in their
unremovability and correctness definition, the adversary also has access to an
extraction oracle. Despite these advantages over the model considered in Sec-
tion 5.3 , their model only guarantees pseudorandomness for adversaries that
don’t have the master secret key, i.e., they are not authority pseudorandom.

In their work, they present two constructions for their models. The first con-
struction can be instantiated based solely on LWE with polynomial modulus but
it does not support embedding messages in marked keys. The second construction
does support embedding messages but needs private constrained PRFs for a
circuit class consisting of an arbitrary PRF. As a consequence, instantiating the
second construction with state of the art lattice-based CHC-PRFs needs LWE
with subexponential modulus.

We observe that the message embedding scheme constructed in [33] can be
instantiated with a feasibly correct CHC-PRF instead of a regular CHC-PRF.
In more detail, in the security games of this scheme, the CHC-PRF is never
evaluated on points that depend on the actual description of the constrained
key. Indeed, in the correctness game, the challenge CHC-PRF constrained key
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is not given to the adversary and instead oracle access to Eval (and CEval) is
provided. In the unremovability game, the oracles provided to the adversary
evaluate the CHC-PRF using the challenge constrained key on points which don’t
depend on the constrained key, i.e., on points that can be sampled before any
constrained key is generated. In all these scenarios feasible correctness would
suffice to establish the security requirements.

Now, if we use the feasibly correct CHC-PRF constructed in Section 6.1, the
underlying LWE assumption would have modulus size λO(d log λ) where d is the
depth of the constraint circuit. If we use the log-depth LWE-based PRFs with
modulus size O(λlog λ) constructed in [6,5] as our constraint circuits then, the
message embedding scheme in [33] can be instantiated based solely on LWE with

a quasi-polynomial modulus q = O(λlog
2 λ).

Symmetric Deniable Encryption Boneh, Lewi and Wu [10] showed that privately
puncturable PRFs can be used to build a relaxed notion of symmetric deniable
encryption. In more detail, their relaxed definition says that given a ciphertext
encrypting an arbitrary plaintext it is possible to produce a fake secret key
which decrypts the ciphertext to a random message but doesn’t change the
decryption of the rest of the ciphertexts. Using the current privately punctured
PRFs [9,18,15,32], the deniable encryption scheme in [10] would have security
based on the hardness of LWE with subexponential modulus. We observe that the
construction in [10] evaluates CHC-PRFs only on random points. Consequently, in
this application, we can replace CHC-PRFs with our feasibly correct CHC-PRFs.
In particular, instantiating the [10] symmetric deniable encryption constriction
with Construction 3 would give us a deniable symmetric encryption scheme based
on LWE with quasi-polynomial modulus q = λO(log2 λ).

7 Feasibly Correct C-PRFs for NC1 from LWE with
Nearly Polynomial Modulus

7.1 Definitions

First, we recall the definition of C-PRFs and then we define feasibly correct C-
PRFs. Compared to the constraint-hiding variant discussed in Section 6, feasibly
correct C-PRFs are weaker in the sense that they do not necessarily hide the
constraint.

Definition 14. A constrained function is a constrained PRF (C-PRF) if there
is a PPT simulator S such that, for any PPT adversary A (that without loss of
generality never repeats an Eval query),

{CPRFRealA(1λ)}λ∈N
c
≈ {CPRFIdealA,S(1λ)}λ∈N, (29)

where CPRFReal and CPRFIdeal are the respective views of A in the experiments
defined in Figure 5.
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procedure CPRFRealA(1λ)
C ← A(1λ)
pp← Setup(1λ)
msk ← KeyGen(pp)
skC ← Constrain(pp,msk,C)
(pp, skC)→ A
repeat

x← A
Eval(pp,msk, x)→ A

until A halts

(a) The real experiment

procedure CPRFIdealA,S(1λ)
C ← A(1λ)
(pp, skC)← S(1λ, C)
(pp, skC)→ A
repeat

x← A
if C(x) = true then

CEval(pp, skC , x)→ A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 5: The real and ideal constrained PRF experiments.

Definition 15. A constrained function is a feasibly correct constrained PRF
if it satisfies Definition 4, and there is a PPT simulator S such that, for any
PPT adversary A that never queries its Eval oracle on an input x for which
C(x) = true (and without loss of generality never repeats an Eval query),

{CPRFRealA(1λ)}λ∈N
c
≈ {CPRFIdealA,S(1λ)}λ∈N, (30)

where CPRFReal and CPRFIdeal are the respective views of A in the experiments
defined in Figure 5.

7.2 Notation

Let U(H,x) = H(x) denote a depth-universal circuit. We define BPU,x to be
the width 5 permutation branching program that on input a boolean circuit
H : {0, 1}` → {0, 1} of depth d and size σ, computes U(H,x) = H(x). Observe
that BPU,x has length O(4d). Let χ′ be a gaussian distribution with a nearly
polynomial radius nω(1) .

Gadgets and homomorphisms. Here we recall “gadgets” [29] over Zq and several
of their homomorphic properties, some of which were implicit in [22], and which
were developed and exploited further
in [8,24,23,16,25]. For an integer modulus q, the gadget (or powers-of-two) vector
over Zq is defined as

g = (1, 2, 4, . . . , 2dlg qe−1) ∈ Zdlg qeq . (31)

The gadget matrix is defined as Gn = In ⊗ g ∈ Zn×mq , where m = ndlg qe.
There is an efficiently computable function G−1n : Zn×mq → {0, 1}m×m with the
following property:

∀A ∈ Zn×mq : Gn ·G−1n (A) = A. (32)

We often drop the subscript n when it is clear from context. We use algorithm
BranchEval which has the following properties.
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– BranchEval(BP, x,A), given a width 5 permutation branching program

BP : {0, 1}` → {0, 1} of length L, an x ∈ {0, 1}`, and some A ∈ Zn×(`+1)m
q ,

outputs an integral matrix RBP,x ∈ Z(`+1)m×m with poly(m)-bounded entries
for which

(A + (1, x)⊗G) ·RBP,x = ABP + BP(x) ·G, (33)

where ABP ∈ Zn×mq depends only on A and BP (and not on x).

Theorem 4 (Adapted From [5,15]). Assuming the hardness of
LWEn,q,χ, there is a pair of polynomial time algorithms
BPPRF = (Setup,Eval) with the following interface

– Setup(1λ): outputs public parameters pp.

– Eval(pp, x): on input x ∈ {0, 1}` outputs a matrix Mx ∈ {0, 1}m×m. This
algorithm is deterministic.

having the following property: the randomized functionality defined below,

– P(pp, s, x): P is a randomized functionality that on input pp in the range of
Setup, s ∈ Zmq and x ∈ {0, 1}`, first samples e ← (χ′)m and then outputs
s · Eval(pp, x) + e ∈ Zmq .

is pseudorandom. In other words, for any PPT adversary A we have

| Pr
pp←Setup(1λ)

s←Znq

[AP (pp,s,·)(pp) = 1]− Pr
pp←Setup(1λ)

[AU(·)(pp) = 1]| = negl(λ), (34)

where U : {0, 1}` → Zmq is a uniformly random function.

7.3 Construction

For security parameter λ, circuit depth d, the following construction is parametrized
by some n = Õ(λ) and q = p ·B ·nω(1) where B = nω(1) is an upper bound on the
absolute value of the samples drawn from χ′, and m = ndlog qe = poly(n). Setting
p = poly(n) or even p = nω(1) makes q = nω(1) = λω(1). Let PRF = {KG,Eval}
be a PRF with input domain Znq and output range Zmq .

Construction 4. Let X = {0, 1}` and Y = Zmq . Define:

– Setup(1λ, 1σ, 1d): First sample public parameters pp′ ← BPPRF.Setup(1λ)
for BPPRF. Next, sample uniformly random and independent matrices A0 ∈
Zn×mq , A ∈ Zn×(σ+1)m

q . Finally, output pp = (pp′,A0,A).

(The n-by-m chunks of A will correspond to the σ bits of a circuit.)

– KeyGen(pp): Generate a PRF key κ← PRF.KG(1λ). Sample s← Znq and set
and output the master secret key msk = (κ, s).
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– Eval(pp,msk, x ∈ {0, 1}`): compute

R0 = BranchEval(BPU,x, 0
σ+1,A) ∈ Z(σ+1)m×m (35)

and let

Ax = (A + (1, 0z)⊗G) ·R0 − BPU,x(0σ+1) ·G ∈ Zn×mq . (36)

(Observe that by Equation (33), Ax = ABP for the branching program BP =
BPU,x, and does not depend on the “dummy” ciphertext 0σ+1.)
Next, let

Bx = Ax ·G−1(A0 · BPPRF.Eval(pp′, x)). (37)

Finally, output
bPRF.Eval(κ, x) + s ·Bxep (38)

– Constrain(pp,msk,C): for a circuit C : {0, 1}` → {0, 1} of depth d and size
σ, let

a = s(A + (1, C)⊗G) + e (39)

where e is an error vector whose entries are sampled independently from χ.
Output

skC = (κ,a, C). (40)

– CEval(pp, skC , x): On input skC = (κ,a, C) and x ∈ {0, 1}`, compute

Rx = BranchEval(BPU,x, C,A) (41)

ax = a ·Rx. (42)

(By Equation (33), we have ax ≈ s(Ax +BPU,x(C) ·G), where we recall that
BPU,x(C) = C(x).)
Next, compute

bx = ax ·G−1(A0 · BPPRF.Eval(pp′, x)) (43)

Finally, output
bPRF.Eval(κ, x) + bxep. (44)

We defer the proof of the following theorem to the full version of this paper.

Theorem 5. If LWEn,q,χ is hard and PRF is a pseudorandom function, Con-
struction 4 is a feasibly correct constrained PRF.

7.4 Application

Updatable garbled circuits from LWE with superpolynomial modulus. Ananth,
Cohen and Jain [2] used C-PRFs to build a cryptographic scheme that they call
”updatable garbled circuits (UGC)”. Specifically, they showed that a C-PRF
which
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– has range Zp for a superpolynomially large p,
– supports point-function predicates as constraints,
– is noisy constrained key-homomorphic, i.e., for any two keys msk1 and msk2

and their respective constrained keys skC1 and skC2 and for any input x such
that C1(x) = C2(x) = 0, CEval(skC1

, x1) + CEval(skC2
, x2) = Eval(msk1 +

msk2, x) + e where e is bounded by some small constant,
– and has a KeyGen algorithm which simply outputs a random key from the

key space,

can be used as a building block for UGCs. For their construction, they used
the [17] C-PRF which satisfies all of the aforementioned properties. Since the
C-PRF construction in [17] needs LWE with subexponential modulus, the security
of [17] UGC construction also relies on hardness of LWE with subexponenial
modulus.

We argue that in the UGC construction of [2], we can replace the [17] C-PRF
with Construction 4. For this, we first notice that if we instantiate Construction 4
using [5] PRFs as the PRF (that is added before rounding) then, the resulting
scheme is a noisy constrained key-homomorphic PRF. Furthermore, this instanti-
ation has a KeyGen algorithm which samples a uniform key from its key space.
Additionally, we notice that point-function predicates are in NC1.

The last and most crucial observation is that, the UGC in [2] evaluates the
C-PRF only on uniformly random inputs, both in the construction and the
security definitions and games. Therefore, feasible correctness of the underlying
C-PRF is enough for this UGC construction. So, we can instantiate the UGC
using Construction 4. This will result in a UGC construction whose security is
based on hardness of LWE with just nearly polynomial modulus q = λω(1).

8 Constraint-Hiding PRFs for Hyperplane-Membership
Predicates

In this section we construct constraint-hiding constrained PRFs for hyperplane-
membership predicates, based solely on (approximate) key-homomorphic PRFs.

8.1 Construction

Construction 5. Let KHPRF = (Setup,Eval) be a noisy
key-homomorphic pseudorandom function having key space K (which is a finite
group, with keys chosen uniformly at random), domain X = {−D, . . . ,D}` for
some D, range Y = Zmq , and homomorphism error bound E.

Our constrained PRF has domain X and can be constrained to membership
predicates for hyperplanes

Hα = {x ∈ X : α0 + α1x1 + · · ·+ a`x` = 0},

where α = (α0, α1, . . . , α`) ∈ {−A, . . . , A}`+1. Define B = (`+ 1)(AD+ 1)E and
let p = q/(B · λω(1)) be a divisor of q.
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– Setup(1λ): output pp← KHPRF.Setup(1λ).
– KeyGen(pp): sample KHPRF keys ki ← K for i = 0, . . . , ` and output msk :=
{ki}i=0,...,`.

– Eval(pp,msk, x): on input msk = {ki} and x ∈ X = {−D, . . . ,D}`, output
byxep where

yx = KHPRF.Eval(pp, k0, x) +
∑
i∈[`]

KHPRF.Eval(pp, xiki, x). (45)

– Constrain(pp,msk,Hα): on input msk = {ki} and hyperplane Hα where
α = (α0, α1, . . . , α`) ∈ {−A, . . . , A}`+1, first choose a KHPRF key d← K and
then for each i = 0, . . . , `+1 define bi := ki−αid. Output skHα := {bi}i=0,...,`.

– CEval(pp, skH , x): on input skH = {bi} and x ∈ X , output byxep where

yx = KHPRF.Eval(pp, b0, x) +
∑
i∈[`]

KHPRF.Eval(pp, xibi, x). (46)

8.2 Security Proof

Theorem 6. If KHPRF is a noisy key-homomorphic pseudorandom function,
and the smallest prime divisor of q is bigger than (`+ 1)AD, then Construction 5
is a feasibly correct and simulation-secure CHC-PRF for hyperplane-membership
constraints.

Proof. This follows from Theorem 7 and Theorem 8.

Theorem 7. If KHPRF is a noisy key-homomorphic pseudorandom function,
then Construction 5 is feasibly correct.

Proof. Let msk = {ki} be a master secret key, let skHα = {bi = ki − αid} be
a constrained secret key for a hyperplane Hα, and let x ∈ X be an arbitrary
input. Let yx, y

′
x be the “unrounded” values computed in Equations (45) and (46),

respectively. If x ∈ Hα, i.e., α0 +
∑
i∈[`] αixi = 0, then

y′x = KHPRF.Eval(pp, b0, x) +
∑
i∈`

KHPRF.Eval(pp, xibi, x) (47)

= KHPRF.Eval(pp, k0, x) +
∑
i∈[`]

KHPRF.Eval(pp, xiki, x) (48)

− (α0 +
∑
i∈[`]

αixi)KHPRF.Eval(pp, d, x) + e (49)

= KHPRF.Eval(pp, k0, x) +
∑
i∈[`]

KHPRF.Eval(pp, xiki, x) + e (50)

= yx + e, (51)

where the second equality is by key homomorphism, and e is an error vector
whose entries have magnitudes at most B. Therefore, by′xep = byxep (i.e., Eval

23



and CEval agree on x) unless some entry of yx is in q
p (Z + 1

2 ) + [−B,B]. We
next show that the probability of this event, for x output by any PPT algorithm
AEval(pp,msk,·), is negligible (over the choice of msk and A’s randomness). This
follows straightforwardly from the pseudorandomness of KHPRF, and specifically
the KHPRF.Eval(pp, k0, x) term from Equation (45).

Formally, we construct an adversary A′ against the pseudorandomness of
KHPRF, which has access to an oracle O and runs as follows:

– given public parameters pp, choose k1, . . . , k` ← K;

– whenever A makes a query x̄, respond with
ȳ = O(x) +

∑
i∈[`] KHPRF.Eval(pp, x̄iki, x̄)

– when A finally outputs an x, accept if any of the entries of y = O(x) +∑
i∈[`] KHPRF.Eval(pp, xiki, x) belong to q

p (Z+ 1
2 )+[−B,B], otherwise reject.

Clearly, if O is a uniformly random function, then all of the ȳ and y are uniformly
random, so by a union bound (which is needed because x might be one of the
previously queried x̄) A′ accepts with probability at most 2Bpm · poly(λ)/q =
negl(λ). On the other hand, if O is KHPRF.Eval(pp, k0, ·) (for some k0 ← K)
then A′ perfectly simulates the feasible correctness experiment, so the probability
that A wins the feasible correctness game is at most the probability that A′
accepts. By the pseudorandomness of KHPRF, the latter is negligible, as desired.

Theorem 8. Under the hypotheses of Theorem 6, Construction 5 is simulation
secure for the class of hyperplane-membership constraints.

Proof. We need to build a simulator for adversaries that only submit unautho-
rized queries. The simulator S(1λ, 1`) for Construction 5, samples KHPRF keys
bi ← K for i = 0, . . . , ` and outputs {bi}i=0,...,`. Now let A be any polynomial-
time adversary. To show that S satisfies Definition 3 we define a sequence of
hybrid experiments and show that they are indistinguishable. Before defining the
experiments in detail, we first define a particular “bad” event in all but one of
them.

Definition 16. In each of the following hybrid experiments except H0, each
query x is answered as byxep for some yx that is computed in a certain way.
Define Borderline to be the event that at least one such yx has some coordinate in
q
p (Z + 1

2 ) + [−B,B].

Hybrid H0: This is the ideal experiment IdealA,S .

Hybrid H1: This is the same as H0, except that on every (unauthorized) query x
(i.e., where α0 +

∑
i∈[`] αixi 6= 0), instead of returning a uniformly random

value from Zmp , we choose yx ← Zmq and output byxep.
Hybrid H2: This is the same as H1, except that we abort the experiment if

Borderline happens.

Hybrid H3: This is the same as H2, except that we initially choose a KHPRF
key d← K and change how (unauthorized) queries x are handled. Specifically,
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for any query x we answer byxep where

yx = KHPRF.Eval(pp, b0, x) +
∑
i∈[`]

KHPRF.Eval(pp, xibi, x)

+ (α0 +
∑
i∈[`]

αixi)KHPRF.Eval(pp,d, x).
(52)

Hybrid H4: This is the same as H3, except that (pp, sk) are generated as in
the real experiment. Specifically, we sample msk := {ki ← K}0≤i≤`, d← K,
and set bi := ki − αid for 0 ≤ i ≤ `.

Hybrid H5: This is the same as H4, except that we answer all (unauthorized)
evaluation queries as in the Eval algorithm, i.e., we output byxep where

yx = KHPRF.Eval(pp, k0, x) +
∑
i∈[`]

KHPRF.Eval(pp, xiki, x). (53)

Hybrid H6: This is the same as H5, except that we no longer abort when
Borderline happens. Observe that this is exactly the real experiment RealA.

We now prove that adjacent pairs of hybrid experiments are indistinguishable.

Claim. Experiments H0 and H1 are identical.

Proof. This follows immediately from the fact that p divides q.

Claim. Experiments H1 and H2 are statistically indistinguishable, in particular
in H1 the event Borderline happens with negligible probability.

Proof. This immediately follows by the fact that yx is chosen uniformly at random
from Zmq and q

pB = nω(1).

Claim. Assuming KHPRF is a noisy key-homomorphic PRF and the prime divisors

of q are bigger than (`+ 1)AD, H2
c
≈ H3.

Proof. We need to show that in H3, yx is indistinguishable from uniform.
Since KHPRF.Eval(pp,d, x) is pseudorandom, all we need to prove is that α0 +∑
i∈[`] αixi is invertible in Zq. To see this recall that all queries are unautho-

rized and therefore α0 +
∑`
i=1 αixi 6= 0. On the other hand |α0 +

∑
i∈[`] αixi| <

(`+ 1)AD. This proves that α0 +
∑
i∈[`] αixi is invertible in Zq.

Claim. Experiments H3 and H4 are identical.

Proof. This follows from the fact that in both H3 and H4, the bis and d have
the same distribution, i.e., they are uniform elements in K.

Claim. Assuming KHPRF is a noisy key-homomorphic PRF, H4 and H5 are
identical.
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Proof. We need to show that all (unauthorized) queries are answered identically
in H4 and H5. Let yx and y′x be the unrounded answers to a query x in hybrids
H4 and H5 respectively. We need to show byxep = by′xep. Since KHPRF is a noisy
key-homomorphic PRF we have

yx = KHPRF.Eval(pp, b0, x) +
∑
i∈[`]

KHPRF.Eval(pp, xibi, x)

+ (α0 +
∑
i∈[`]

αixi)KHPRF.Eval(pp,d, x)
(54)

= KHPRF.Eval(pp, k0 − α0d, x) +
∑
i∈[`]

KHPRF.Eval(pp, xiki − αixid, x) (55)

+ (α0 +
∑
i∈[`]

αixi)KHPRF.Eval(pp,d, x) (56)

= KHPRF.Eval(pp, k0, x) +
∑
i∈[`]

KHPRF.Eval(pp, xiki, x) + e (57)

= y′x + e, (58)

where e is a vector with entries not bigger than (`+ 1)(AD+ 1)E ≤ B. Since we
abort when Borderline happens, the claim follows.

Claim. Assuming KHPRF is a noisy key-homomorphic PRF and the prime divisors

of q are bigger than (`+ 1)AD, H5
s
≈ H6.

Proof. By previous claims, Borderline happens with negligible probability in H5.

This completes the proof of Theorem 8.

9 Bit Fixing PRFs from Minimal Assumptions

The class of bit-fixing constraints for input space X = {0, 1}` is the set of
constraints C = {Cv : v ∈ {0, 1, ?}`} where Cv(x) = true if and only if xi = vi
for all i ∈ [`] such that vi 6= ?. In other words, x must match v at every position,
where ? is a “wildcard” that both 0 and 1 match.

Here we construct a constraint-hiding, bit-fixing PRF (for a single constrained-
key query) from the minimal assumption that PRFs exist. Let
PRF = (PRF.KG,PRF.Eval) be a pseudorandom function having key space K,
domain X = {0, 1}`, and range Y, which we assume to be a finite (additive)
group.

Construction 6. Our bit-fixing PRF with domain X = {0, 1}` and range Y is
defined as follows:

– KeyGen(1λ): sample PRF keys mskbi ← PRF.KG(1λ) for i ∈ [`] and b ∈ {0, 1},
and output msk := {mskbi }.

– Eval(1λ,msk, x ∈ {0, 1}`): output
∑
i∈[`] PRF.Eval(msk

xi
i , x).
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– Constrain(1λ,msk, v ∈ {0, 1, ?}): define and output
skv = {skbi }i∈[`],b∈{0,1}, defined as follows:

• if vi = b or vi = ? then let skbi := mskbi ,
• otherwise (i.e., vi = 1− b), let skbi ← PRF.KG(1λ) be a freshly sampled

key for PRF.
– CEval(1λ, skv = {skbi }, x): output

∑
i∈[`] PRF.Eval(sk

xi
i , x).

In words, the constrained key for pattern v ∈ {0, 1, ?}` contains exactly those
msk components mskbi for which b “matches” vi, with fresh PRF keys taking
the place of the other msk components. In particular, it is easy to see that this
ensures correct constrained evaluation on authorized inputs. Also observe that
the constrained key alone hides the pattern vector perfectly, i.e., the distribution
of skv is the same for all v.

9.1 Security Proof

Theorem 9. If PRF is a pseudorandom function, then Construction 6 is a
constraint-hiding bit-fixing PRF according to Definition 3.

Proof. The simulator S(1λ) for Construction 6 simply samples PRF keys rbi ←
PRF.KG(1λ) for i ∈ [`], b ∈ {0, 1} and outputs {rbi}. Now let A be any polynomial-
time adversary. To show that S satisfies Definition 3 we define a sequence of
hybrid experiments and show that they are indistinguishable.

Hybrid H0: This is the real experiment RealA (see Figure 1).
Hybrid H1: This is the same as H0 except that on every authorized query x (i.e.,

where x matches the pattern v output by A) we answer it by CEval(pp, skC , x).
Hybrid H2: This is the same as H1 except that on every unauthorized query x

(i.e., where x does not match the pattern v output by A) we answer with a
uniformly random element in Y.

Hybrid H3: This is the same as the ideal experiment IdealA,S .

We now show that adjacent pairs of hybrid experiments are indistinguishable.
First, it follows immediately that experiments H0 and H1 are identical, due to
the way skC is constructed.

Claim. If PRF is a pseudorandom function, then H1
c
≈ H2.

Proof. Let H1,0 = H1 and define hybrid H1,i for i ∈ [`] as follows: it is the same
as H1 except that for every query x which does not match the pattern v in one
of the first i positions, we answer with a uniformly random element in Y.

Clearly H1,` = H2. We show that for every i ∈ [`], H1,i−1
c
≈ H1,i. Notice that

if vi = ? then the two experiments are identical. So assume that vi = b ∈ {0, 1}.
Let A be an adversary attempting to distinguish between H1,i−1 and H1,i. We
build an efficient adversary A′ against the security of PRF, which has access
to an oracle O that is either a uniformly random function U : {0, 1}` → Y or
PRF.Eval(sk, ·) for sk ← PRF.KG(1λ). A′ interacts with A in the same way as
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H1,i−1, except that it does not sample msk1−bi , and on queries x for which i
is the smallest index where x disagrees with the pattern v, it replies with∑
j∈[`]\{i} PRF.Eval(msk

xj
j , x) + O(x). Observe that if O is U then A’s view

is identical to H1,i, otherwise the view is identical to H1,i−1. Therefore, the
advantage of A in distinguishing H1,i−1 from H1,i is identical to the advantage
of A′ in attacking PRF, which by assumption is negligible, as desired.

Finally, we claim that experiments H2 and H3 are identical. This is because
in both experiments the constrained key has the same distribution, i.e., it consists
of 2` independent keys for PRF.

Remark 1. We observe that any constraint-hiding bit-fixing PRF can be boot-
strapped to support k-CNF formulas as constraints, where k is a constant. For
input domain {0, 1}`, the construction is as follows:

– we generate parameters for a bit-fixing PRF with input length (2`+ 1)k,

– to evaluate on an input x ∈ {0, 1}`, first, we convert x to x′ ∈ {0, 1}(2`+1)k

where the individual bits of x′ are the result of evaluating all possible k-
variable disjunctions involving the literals
F, x1, x̄1, · · · , x`, x̄` in some specified order, then, we evaluate the bit-fixing
PRF on x′ and output the result,

– to generate a constrained-key for a k-CNF formula φ having t ≤ (2`+ 1)k

clauses, we generate a constrained key in the bit-fixing PRF for a pattern v
where in v the positions corresponding to the clauses in φ are fixed to 1 and
the rest of the positions are wildcard.
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A Shift Hiding Shiftable Functions and their Properties

Here we review the interface and relevant properties of shift-hiding shiftable
functions introduced in [32]. For security parameter λ and constraint circuit
size σ, shift-hiding shiftable functions are a tuple of algorithms parameterized
by some n = poly(λ, σ) and q = λpoly(λ,σ), with m = ndlg qe = poly(λ, σ). These
algorithms have the following interface.

– Setup(1λ, 1σ, 1d): On input security parameter λ, shift circuit size σ, and
shift circuit depth d, output public parameter pp.

– KeyGen(pp): Output the master secret key msk = s.
– Eval(pp,msk, x): On input an ` bit string x, output y ∈ Zmq .
– Shift(pp,msk,H): On input a shift function H : {0, 1}` → Zmq , output a

shifted key skH .
– SEval(pp, skH , x): On input a shifted key skH and input value x ∈ {0, 1}`,

output y ∈ Zmq .
– S(1λ, 1σ, 1d): On input security parameter λ, shift circuit size σ, and shift

depth d, output simulated public paramters pp and simulated shifted key sk.

We use the following two properties of the shift-hiding shiftable functions
construction of [32].

Property 1 (Shift Hiding). Assuming the hardness of LWEn−1,q,χ and CPA secu-
rity of the GSW [22] encryption scheme, for any PPT A, any σ = σ(λ) = poly(λ),
and any d = d(λ) = poly(λ)

{RealKeyA(1λ, 1σ, 1d)}λ∈N
c
≈ {IdealKeyA(1λ, 1σ, 1d)}λ∈N, (59)

where RealKey and IdealKey are the respective views of A in the experiments
defined in Figure 2.

Property 2 (Approximate Shift Correctness). For any shift function H : {0, 1}` →
Zmq whose binary decomposition H ′ : {0, 1}` → {0, 1}k can be represented by a

boolean circuit of size σ and depth d, and any x ∈ {0, 1}`, pp← Setup(1λ, 1σ, 1d),
msk ← KeyGen(pp) and skH ← Shift(pp,msk,H), we have

SEval(pp, skH , x) ≈ Eval(pp,msk, x) +H(x) (60)

where the approximation hides some λO(d log λ)-bounded error vector.
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