
Efficient Covert Two-Party Computation

Stanislaw Jarecki?

University of California, Irvine

Abstract. Covert computation strengthens secure computation by hid-
ing not only participants’ inputs (up to what the protocol outputs re-
veal), but also the fact of computation taking place (up to the same con-
straint). Existing maliciously-secure covert computation protocols are or-
ders of magnitude more costly than non-covert secure computation, and
they are either non-constant round [5] or they use non-black-box simula-
tion [10]. Moreover, constant-round covert computation with black-box
simulation is impossible in the plain model [10].
We show that constant-round Covert Two-Party Computation (2PC) of
general functions secure against malicious adversaries is possible with
black-box simulation under DDH in the Common Reference String (CRS)
model, where the impossibility result of [10] does not apply. Moreover,
our protocol, a covert variant of a “cut-and-choose over garbled circuits”
approach to constant-round 2PC, is in the same efficiency ballpark as
standard, i.e. non-covert, 2PC protocols of this type. In addition, the
proposed protocol is covert under concurrent self-composition.
An essential tool we use is a covert simulation-sound Conditional KEM
(CKEM) for arithmetic languages in prime-order groups, which we real-
ize in CRS or ROM at costs which are either the same (in ROM) or very
close (in CRS) to known HVZK’s for such languages.

1 Introduction

Covert computation addresses a security concern which is unusual for cryptog-
raphy, namely how to hide the very fact of (secure) protocol execution. Such
hiding of a protocol instance is possible if the communicating parties are con-
nected by steganographic channels, which are implied by any channels with suf-
ficient entropy [11]. Consider the simplest example of a steganographic channel,
the random channel, a.k.a. a random beacon. In practice such channel can be
implemented e.g. using protocol nonces, padding bits, time stamps, and various
other communication (and cryptographic!) mechanisms which exhibit inherent
(pseudo)entropy. (Works on steganographic communication, e.g. [11], show that
random messages can be embedded into any channel with sufficient entropy.)
Two parties sharing a random channel can use it to send protocol messages,
and their presence cannot be distinguished from an a priori channel behavior
if protocol messages are indistinguishable from random bitstrings. The partici-
pants must agree on which bits to interpret as protocol messages, but this can
be public information since the decoding is indistinguishable from random.

? Contact: sjarecki@uci.edu

Covert computation was formalized for the two-party honest-but-curious set-
ting by Von Ahn et al. [28], and then generalized (and re-formulated) to the
multi-party and malicious adversary setting by Chandran et al. [5], as a pro-
tocol that lets the participants securely compute the desired functionality on
their joint inputs, with the additional property that each participant cannot
distinguish the others from random beacons, i.e. entities that send out random
bitstrings of fixed length instead of prescribed protocol messages, unless the
function output implies participants’ presence. Technically, in covert computa-
tion the computed function outputs an additional reveal bit: If this bit is 0 then
each participant remains indistinguishable from a random beacon to the others,
and if the reveal bit is 1 then the participants learn the function output, and in
particular learn that a computation took place, i.e. that they were interacting
not with random beacons but with counterparties executing the same protocol.

Q & A on Covert Computation. Motivation: Who wants to compute a func-
tion while hiding this very fact from (some) potential protocol participants?
A generic example is authentication whose participants want to remain unde-
tectable except to counter-parties whose inputs (certificates, secrets, passwords,
gathered observations) match their authentication policy: If two spies search for
one another in a foreign country, they want to do so while preventing anyone
from detecting their authentication attempts. If the spies authenticated each
other using covert computation, the only way their presence can be detected is
by an active attacker whose inputs are those which the spies search for.

Random Channels: If protocol parties were not communicating by default,
it would always be possible to detect a protocol party by just observing that it
sends out messages, and observing their number and size should normally suffice
to conclude what protocol this party follows. This is why covert protocol partici-
pants must have access to channels with some inherent entropy. A network entity
cannot hide the fact that it sends out messages, but if the normal communica-
tion they emit exhibits some entropy (e.g. in protocol nonces, timing, padding,
audio/video signals) then this entropy can be used to create a steganographic
channel, and such channel can carry covert MPC protocol messages.

Covert MPC vs. Steganography: Covert MPC does not trivially follow by
using steganography [11] to establish covert communication channels between
potential protocol participants and running standard MPC over them. First,
covert channels require prior key distribution which is not always possible, e.g.
in the general authentication application above. Second, even if potential par-
ticipants did have pre-shared keys, they might still want to hide whether or not
they engage in a given protocol instance based on their on-line inputs.

Covert MPC vs. Secure MPC: Secure computation is believed to conceptu-
alize every security task: Whatever security property we want to achieve, we
can abstract it as a secure computation of an idealized functionality, and we
can achieve it by MPC for this functionality. However, secure computation does
leak extra bit of information, because it does not hide whether some entity en-
gages in the protocol, and in some applications, this is essential information.
Covert computation strengthens secure computation to hide this remaining bit,

2

and ensures undetectability of protocol participation even to active participants
except (and this “escape clause” seems unavoidable) if the computation deter-
mines that its outputs, and hence also the fact of protocol participation, should
be revealed. We show that, assuming CRS, this strengthening of secure compu-
tation to covertness can be achieved in the two-party case in constant rounds
with black-box simulation under standard assumptions. Moreover, we achieve
it at the cost which is in the same ballpark as the cost of known standard, i.e.
non-covert, constant-round 2PC based on Yao’s garbled circuits [29], so covert-
ness in a sense comes “for free”. As a side-benefit, the tools we use for covert
enforcement of honest protocol behavior can be re-used in other covert protocols,
e.g. for specific functions of interest.

Covert Computation as a Tool: Covert computation can also be a protocol
tool with surprising applications, although we are aware of only one such case
so far. Cho et al. [6] generalized a construction of Manulis et al. [20] to compile
secure computation protocol for so-called “single instance” functionality, e.g.
a pair-wise authentication by parties holding certificates issued by the same
authority, into its “multiple instance” version, e.g. where each party holds a set
of certificates from multiple authorities. The compiler has only linear cost, and
it works by encoding messages of n instances of the single-instance protocol as
points on an n-degree polynomial. Crucially, no one should distinguish which
points encode valid messages until the single-instance functionality reveals its
output, and [6] show that the compiler works for general functionalities if the
single-instance protocol is covert.

Prior Work on Covert Computation. Von Ahn et al. [28] proposed the first
covert two-party computation (2PC) protocol. Their protocol performed O(τ)
repetitions, for τ a security parameter, of Yao’s garbled circuit evaluation (with
the circuit extended to compute an additional hash function), but this protocol
guaranteed only secrecy against malicious participants, and not output correct-
ness. Chandran et al. [5] reformulated covert computation to guarantee output
correctness and generalized it to multi-party computation, but their protocol
was also non-constant-round, and its efficiency was several orders of magnitude
over known non-covert MPC protocols: Each party was covertly proving that it
followed a GMW MPC by casting it as an instance of a Hamiltonian Cycle prob-
lem, and that proof internally used Yao’s garbled circuits for checking correctness
of committed values. Goyal and Jain [10] showed that non-constant-round pro-
tocols are necessary to achieve covert computation with black-box simulation
against malicious adversaries, at least in the plain MPC model, i.e., without ac-
cess to some trusted parameters. [10] also showed a constant-round covert MPC
with non-black-box simulation (and bounded concurrency), but their protocol
re-uses the above-mentioned components of [5], and is therefore just as costly.

Whereas the covert MPC protocols of [5, 10] assumed the plain computation
model, recently Cho et al. [6] exhibited practical constant-round covert com-
putation protocols secure against active adversaries, for two specific two-party
functionalities, namely string equality and set intersection, in the Random Oracle
Model (ROM). (Moreover, [6] strengthened the definition of covert computation

3

of [5] to unbounded concurrent self-composition, which we adopt here.) How-
ever, their constructions are custom-made and it is not clear how they can be
extended to computation of general functions. In other related work, Jarecki [13]
showed a constant-round covert Authenticated Key Exchange (AKE) with O(1)
public key operations, but this protocol satisfied a game-based AKE definition,
and it was not a covert secure computation of any function.

Main Contribution: Efficient Constant-Round Covert 2PC in CRS.
This leaves a natural open question whether assuming some relaxation in the
trust model (necessary in view of the negative result of [10]) general two-party
functions can be computed covertly by a constant-round protocol with black-
box simulation, or even, better, by a protocol whose assumptions, the security
guarantees, and efficiency, are all comparable to those of the currently known
constant-round standard, i.e. non-covert, secure 2PC protocols. We answer these
questions affirmatively assuming the Common Reference String (CRS) model
and the Decisional Diffie-Hellman (DDH) assumption.1 In this setting we show
a covert 2PC protocol which follows the well-known paradigm for standard, i.e.
non-covert, constant-round secure 2PC, initiated by [21, 18] and followed in nu-
merous works. Namely, we use the cut-and-choose technique over O(τ) copies of
Yao’s garbled circuit, but we do so using efficient covert equivalents of standard
protocol tools for enforcing honest protocol behavior, like extractable commit-
ments and simulation-sound arguments. Moreover, the protocol is secure under
concurrent composition. Remarkably, our covert 2PC protocol is roughly in the
same efficiency ballpark as the non-covert secure 2PC protocols of this type.
For example, for a one-sided output function with n-bit inputs with a Boolean
circuit with c gates, our protocol requires 5 rounds, O(nτ) exponentiations, and
a transfer of O(nτ) group elements and O(cτ) symmetric ciphertexts.

Challenge of Malicious Security for Covert Computation. Assuming ran-
dom channels, covert communication is essentially as easy as secure communica-
tion: Under standard assumptions symmetric encryption modes have ciphertexts
which are indistinguishable from random bitstrings. Several known public-key
encryption schemes, e.g. Cramer-Shoup encryption [8], also have ciphertexts that
are indistinguishable from a tuple of random group elements (under DDH), and
random group elements in a prime-order subgroup of modular residues are easy
to encode as random bitstrings. Von Ahn et al. [28] show that General covert
computation in the honest-but-curious setting is also not more difficult than stan-
dard secure computation, because (1) Yao’s garbled circuit construction can be
adjusted so that a garbled circuit for c-gates looks like 4c random ciphertexts
even to the evaluator (except for whatever is revealed by the output, but that
can be set to a random string if the “reveal bit” in the output evaluates to 0),
and (2) because a DDH-based OT of Naor-Pinkas Oblivious Transfer (OT) [22]
is covert under the same DDH assumption.

1 We note that a work in progress by Couteau [7] aims to show a corresponding result
for covert MPC protocols built using the non-constant-round GMW paradigm.

4

However, it is harder to achieve covert 2PC/MPC protocols secure against
malicious adversaries because of the lack of efficient covert counterparts to stan-
dard mechanisms for enforcing honest protocol behavior. For example, the tools
often used to enforce honest behavior in Yao’s garbled circuit protocol are (1)
Zero-Knowledge (ZK) proofs, e.g. to show that consistent inputs are input into
multiple garbled circuit instances and into the OT, and (2) opening a com-
mitment to show that the committed value is correctly formed. Either tool is
publicly verifiable and thus violates covertness.

Second Contribution: Efficient Covert Simulation-Sound CKEM’s. Our
tool for enforcing honest protocol behavior is an efficient covert Conditional Key
Encapsulation Mechanism (CKEM) for a wide class of discrete-log-based lan-
guages, including statements that a Cramer-Shoup ciphertext [8] is computed
correctly, that an encrypted value is a bit, or that a commitment decommits
to a given plaintext. A CKEM is a variant of Conditional OT [9], and an in-
teractive counterpart of Smooth Projective Hash Functions (SPHF): A CKEM
for language L is a protocol which allows a sender S with input x to transmit a
random key K to receiver R with input (x,w) if and only if w is a witness for
x in L. A covert CKEM [5, 10, 13] assures that an interaction with either S or R
is indistinguishable from a random beacon. In particular, even given the witness
w for x the receiver cannot distinguish S(x) from random: It can compute key
K of this CKEM instance, but this key is random and should not the sender
distinguishable from a randomness source. Hence, covert CKEMs can provide a
covert counterpart to Zero-Knowledge Proofs: Instead of A proving to B that its
protocol messages are correct, B and A run a covert CKEM for the same lan-
guage as resp. S and R, and use key K to (covertly) encrypt subsequent protocol
messages: If A’s messages were malformed, covert CKEM assures that key K is
pseudorandom to A and all subsequent messages of B are pseudorandom.

To be most useful as a protocol tool, a covert CKEM should be concurrent,
simulatable, and simulation sound (a proof of knowledge property can help too,
but our covert 2PC protocol does not utilize it). We exhibit constructions of such
covert CKEM’s for two classes of languages. The first class are so-called Linear
Map Image (LMI) languages, i.e. languages whose statements can be represented
as pair (C,M) of a vector C and a matrix M of group elements s.t. C belongs to
a range of a linear map fM (w) = w ·M defined by M (where scalar multiplica-
tion stands for a homomorphic one-way function, e.g. exponentiation). The sec-
ond class are languages with so-called Σ-protocols, i.e. three-round public-coin
HVZK proofs with special soundness and zero-knowledge properties which are
typically satisfied by e.g. proofs of arithmetic statements in prime-order groups.
We overview our covert CKEM constructions below, but in the nutshell we show
(1) a 2-round CKEM in CRS for LMI languages defined by a full row rank matrix
M , whose cost is about 2-4 times that of the underlying HVZK, (2) a 2-round
CKEM in ROM for Σ-protocol languages whose cost almost matches the under-
lying HVZK, and (3) a 4-round CKEM in CRS for Σ-protocol languages with a
larger but still additive overhead over the underlying HVZK.

5

Prior Work on Covert CKEM’s. Covert CKEM was introduced as Zero-
Knowledge Send (ZKSend) by Chandran et al. [5], and strengthened to proof of
knowledge, simulation-soundness, and bounded concurrency in [10], but it is not
clear how these constructions can yield practical covert CKEM’s for Σ-protocol
or LMI languages. The ZKSend of [5] reduces L to a Hamiltonian Cycle (HC) in-
stance, replaces the verification step in Blum’s binary-challenge ZK proof for HC
with covert garbled circuit evaluation of this step, and repeats this O(τ) times
for negligible soundness error. The ZKSend of [10] follows this paradigm using
the ZK argument for NP by Pass [23]. Both constructions aimed at feasibility
of covert CKEM for NP, while we want covert CKEM’s at costs comparable to
the underying HVZK’s, for LMI or Σ-protocol languages. Moreover, much of the
complexity in the constant-round covert CKEM of [10] was to assure covertness
(and bounded concurrency) with careful usage of rewinding in the simulation.
Indeed, the negative result in [10] for constant-round covertness with black-box
simulation was due to rewinding necessary in simulation in the plain model. By
contrast, if we assume CRS, an assumption without which we do not know how
to achieve even secure constant-round protocols with unbounded concurrency
and/or practical efficiency, we can get concurrency with straight-line simulation
using a CRS trapdoor, and the negative result of [10] no longer applies.

Efficient Covert Simulation-Sound CKEM’s: A Closer Look. One start-
ing point for a practical straight-line simulatable covert CKEM for an LMI lan-
guage can be an efficient SPHF, because an SPHF for an LMI language defined
by a full row rank matrix is covert. However, SPHF by itself is not simulatable:
Note that a simulator who plays the role of an honest party typically does not
form its messages as the honest party would, which would make the statement in
the SPHF instance (that the honest party’s protocol messages are well-formed)
incorrect in the simulation. Hence, by SPHF security (a.k.a. smoothness), the
simulator could not recover key K, and would fail in simulation of subsequent
protocol rounds. To amend precisely this shortcoming of SPHF’s, Benhamouda
et al. [3] upgraded SPHF’s for LMI languages to CKEM’s in CRS with (1) (con-
current) simulatability, i.e. the ability for the simulator in possession of the CRS
trapdoor to derive key K even on the wrong statement x 6∈ L; and (2) simulation-
soundness, i.e. that a cheating receiver cannot recover S’s key K for an instance
executing on a wrong statement x 6∈ L even if the adversary concurrently en-
gages with the simulator who recovers keys corresponding to multiple protocol
instances running on any other wrong statements x′ 6∈ L. Both are needed of ZK
proofs in a compiler from (concurrent) honest-but-curious MPC to (concurrent)
maliciously-secure MPC, and [3] showed that this compiler works if ZKP’s are
replaced by CKEM’s. However, their goal was to reduce rounds in MPC by re-
placing ZKP’s with CKEM’s, and not, as in our case, to assure MPC covertness.
In particular, their CKEM’s are not covert: To assure straight-line extraction
[3] modify LMI statement M,C s.t. C = w ·M for both the original witness wR

and the simulator’s CRS trapdoor wtd. This way the receiver and the simulator
can both compute hash value C · hk from projection hp = M · hk, respectively
as wR · hp and wtd · hp. However, this holds only if hp is formed correctly, i.e. if

6

hpT ∈ span(MT), hence [3] run add a secondary SPHF where R sends tp = MT ·tk
for random tk to S, who can compute hash value hpT · tk as hkT · tp if and only
if hpT = hkT ·MT . Consequently, the CKEM of [3] publicly sends hp = M · hk
and tp = MT · tk. Matrix M is typically full row-rank, assuring that M · hk is a
random vector in the column space, but it is not full column-rank, which makes
MT · tk not uniformly random. However, we show how to modify matrix M s.t.
the secondary projection MT · tk is pseudo-random during simulation.

A different route towards Covert CKEM’s is to take as a starting point an
efficient compiler from Σ-protocol to covert CKEM of [13]. The CKEM notion of
[13] is covert and proof-of-knowledge, but not simulatable and simulation-sound.
The covert CKEM of [13] bears some similarity to the ZKSend of [5]: Both start
from an HVZK proof (resp. Σ-protocol and Blum’s HVZK for HC), identify
some proof messages which are already pseudorandom, replace the offending
non-covert message with its commitment, and replace the verification equation
with some covert gadget: [5] commit to the final response in Blum’s proof and
use garbled circuit for the verification step on the committed plaintext, and
[13] commit to the prover’s first message, and uses the “special simulation”
property of a Σ-protocol, i.e. that the first message can be computed from the
other two, to replace the verification step with a covert SPHF that checks that
the committed first message equals to this single verification-passing value. The
benefit of the compiler of [13], in contrast to the above approach, is that it adds
only a (small) additive overhead to the underlying Σ-protocol. We show that
the 2-round instantiation of this compiler is simulatable and simulation-sound
assuming ROM, and that the 4-round version of this compiler can be modified
so that the result is covert simulatable and simulation-sound in CRS.

Organization. In Section 2 we introduce covertness-related notation. In Section
3 we define concurrent covert 2PC for arbitrary functions. In Section 4 we define
covert counterparts to standard protocol building blocks, including covert CCA
PKE, commitment, OT, HbC-secure circuit garbling, and SPHF’s. In Section 5
we define covert CKEM’s. In Section 6 we discuss our covert CKEM’s construc-
tions. Finally, in Section 7 we present our concurrent covert 2PC protocol.

2 Preliminaries

Notation. If a, b are bitstrings then |a| is the length of a, a|b is the concatenation
of stings a and b, and a[i] is the i-th bit of a. If n is an integer then [n] = {1, ..., n}.
We write y ← P(x) when y is an output of a (randomized) procedure P on input
x, and y ← S when y is sampled from uniform distribution over set S. We
write y ∈ P(x) if there is randomness r s.t. P(x; r) outputs y. We say (a, b) ←
[A(x), B(y)] if a, b are the local outputs of algorithms resp. A,B interacting on
local inputs resp. x, y. If L is a language in NP then R[L] is a relation s.t. (x,w) ∈
R[L] if w is an efficiently verifiable witness for x ∈ L. If ks = {(ki,0, ki,1)}i∈[n],
i.e. ks is a sequence of n pairs of bitstrings, and x ∈ {0, 1}n, then ks[:x] denotes a
selection of bitstrings from the n pairs in ks according to the n bits of x, namely
ks[:x] = {ki,x[i]}i∈[n].

7

We call two-party protocol (A,B) regular if the number of rounds and length
of all messages is a function of the security parameter, and not the parties’
inputs. If P is an interactive algorithm in a regular two-party protocol then
P$(τ) denotes a random beacon corresponding to P, which sends random bit-
strings of the same length as P’s messages in every protocol round. If P is
an interactive algorithm then P&Out(x) is a wrapper which runs P (x) and in-
cludes P ’s final local output in its last message. For any algorithm Setup
and oracles P0, P1 we say that {AP0(x0)(z)} ≈ {AP1(x1)(z)} for (x0, x1, z) ←
Setup(1τ) if for every efficient A quantity |p0A − p1A| is negligible where pbA =
Pr[1←APb(xb)(z) | (x0, x1, z)←Setup(1τ)], where the probability goes over the
coins of Setup, A, and Pb.

Covert Encodings. In our protocols all communicated values are either random
fixed-size bitstrings, or random integers from some range Zn, or random elements
of a prime-order group G. In the latter two cases what is sent on the wire are not
the values themselves but their covert encodings. A covert encoding of domain
D is a randomized function EC : D → {0, 1}p(τ) defined for some polynomial
p, s.t. a random variable {EC(a; r)}, induced by random a in D and random r,
is statistically close to a random bitstring of length p(τ). Moreover, there must
exist a decoding procedure DC s.t. DC(EC(a; r)) = a for all a ∈ D and all r.
For example, if domain D is an integer range Zn then EC(a) can pick r ← ZR
for R = d2|n|+τ/ne and output a + n·r (over integers), while DC(v) outputs
v mod n. If the domain D is a subgroup G of order p in a multiplicative group
Z∗q of residues modulo q for q = p · t + 1 s.t. gcd(p, t) = 1, then EC(a) can pick
b ← Zq, compute v = (a · (b)p) mod q, and then apply the encoding for integer
range Zq to v. The corresponding decoding first decodes v and then outputs
ws mod q for w = vt mod q and s = t−1 mod p.

3 Defining Concurrent Covert Two-Party Computation

We provide the definition of concurrent covert computation of two-party func-
tions, which is a close variant of the definition which appeared recently in [6].
Intuitively, the differences between the covert computation of a two-party func-
tionality F and the secure computation for F is that (1) F’s inputs and outputs
are extended to include a special sign ⊥ designating non-participation; (2) F is
restricted to output a non-participation symbol ⊥ to each party if the input of
either party is ⊥; and (3) the real-world protocol of either party on the non-
participation input ⊥ is fixed as a “random beacon”, i.e. a protocol which sends
out random bitstrings of fixed length independently of the messages it receives.

The definition of concurrent covert computation of [6], which we recall (and
refine) below, follows the definition of stand-alone (i.e. “single-shot”) covert com-
putation given by Chandran et al. [5], here restricted to the two-party case. The
definition casts this notion in the framework of universal composability (UC) by
Canetti [4], but the composability guarantee it implies is restricted to concurrent
self-composition because it guarantees only self-composability of covert compu-
tation for functions, and not for general reactive functionalities as in the case

8

of UC definition [4]. The reason for this restriction is two-fold: First, concurrent
covert computation for arbitrary efficiently computable functions already pro-
vides a significant upgrade over the “single-shot” covert computation notion of
[5], and achieving it efficiently presents sufficient technical challenges that jus-
tify focusing on this restricted notion. Secondly, composing functionally distinct
covert protocols poses conceptual challenges: Consider a protocolΠ implemented
by a protocol Π1 which runs Π2 as a subroutine, and note that the outputs of
subroutine Π2 can reveal the participation of an honest party in Π before Π
completes. Here we focus on concurrent composition of covert computation of
two-party function, and leave development of a framework for fully composable
covert computation for future work.

Parameters: Admission function g and the main function f .

On input (InputA, sid, B, x) from party A:
Record (InputA, sid, A,B, x) and send (InputA, sid, A,B) to A∗.

On input (InputB, sid, A, y) from party B:
Record (InputB, sid, A,B, y) and send (InputB, sid, A,B) to A∗.

Given records (InputA, sid, A,B, x) and (InputB, sid, A,B, y) compute

(z, v)←
{

(⊥,⊥) if x =⊥ ∨ y =⊥ ∨ g(x, y) = 0
f(x, y) otherwise

and record (Output, sid, A, z) and (Output, sid, B, v).
If A is corrupt, send (Output, sid, z) to A.
If B is corrupt, send (Output, sid, v) to B.

On input (Output, sid, P, release?) from A∗:
Retrieve record (Output, sid, P, w) (ignore if record does not exist).
If release? = T then send (Output, sid, w) to P .
If release? = F then send (Output, sid,⊥) to P .

Fig. 1. Covert 2-Party Function Computation Functionality FC(f,g)

Ideal and Real Models. The definition of the ideal model is the UC analogue
of the ideal model of Chandran et al. [5], except that composability guarantees
are restricted to self-composition. Covert computation is defined by functionality
FC(f,g) shown in Figure 1, where f, g are functions defined on pairs of bitstrings.
As in [5] function g is an admission function, i.e. if g(x, y) = 0 then functionality
FC(f,g) returns return ⊥ to both parties, and f is the “real function” i.e. if
g(x, y) 6= 0 then functionality FC(f,g) prepares A’s output as z and B’s output
as v where (z, v) = f(x, y). We note that f and g can be randomized functions,
in which case functionality FC(f,g) picks the randomness which is appended to
input (x, y) before computing g and f . The ideal process involves functionality

9

FC(f,g), an ideal process adversary A∗, an environment Z with some auxiliary
input z, and a set of dummy parties, any number of which can be (statically)
corrupted. Each party can specify its input to some instance of FC(f,g), which is
either a bitstring or a special symbol ⊥ indicating that there is no party which
will participate in a given role, e.g. a requester or responder in this protocol
instance. The real model is exactly as in the standard UC security model, except
that the protocol of each real-world uncorrupted party which runs on input ⊥ is
a-priori specified as a random beacon protocol, i.e. such party sends out random
bitstrings of lengths appropriate for a given protocol round.

Let IdealF,A∗,Z(τ, aux, r) denote the output of environment Z after interacting
in the ideal world with adversary A∗ and functionality F = FC(f,g), on security
parameter τ , auxiliary input aux, and random input r = (rZ , rA∗ , rF), as described
above. Let IdealF,A∗,Z (τ, aux) be the random variable IdealF,A∗,Z(τ, aux; r) when
r is uniformly chosen. We denote the random variable IdealF,A∗,Z(τ, aux) as
{IdealF,A∗,Z(τ, aux)}τ∈N;aux∈{0,1}∗ . Correspondingly we let RealΠ,Adv,Z(τ, aux; r)
be the output of Z after interacting with a real-world adversary Adv and par-
ties running protocol Π on security parameter τ , input aux, and random tapes
r = (rZ , rAdv, rA, rB). In parallel to the ideal model, we define the corresponding
random variable {RealΠ,Adv,F(τ, aux)}τ∈N;aux∈{0,1}∗ .

Definition 1. Protocol Π realizes the concurrent two-party covert computation
functionality F = FC(f,g) if for any efficient adversary Adv there exists an effi-
cient ideal-world adversary A∗ such that for any efficient environment Z,

{IdealF,A∗,Z(τ, aux)}τ∈N;aux∈{0,1}∗
c
≈ {RealΠ,Adv,F(τ, aux)}τ∈N;aux∈{0,1}∗

Notes on Functionality FC(f,g). Functionality FC(f,g) in Figure 1 is realizable
only assuming secure channels. Without secure channels the adversary could hi-
jack a protocol session an honest player wants to execute with some intended
counterparty. However, the secure channel assumption does not substantially
change the complexity of the protocol problem because the intended counter-
party can itself be corrupted and follow an adversarial protocol. The second
point we want to make is that functionality FC(f,g) always delivers the output
first to a corrupted party, whether it is party A or B, and if this output is not
a non-participation symbol ⊥ then in both cases the corrupted party can decide
if the correct computation output should also be delivered to its (honest) coun-
terparty or the honest counterparty’s output will be modified to ⊥. (Note that
if an output of a corrupt party, say A, is ⊥ then B’s output is also ⊥, hence
it does not matter in this case whether the adversary sends (Output,T, sid) or
(Output,F, sid).) Any constant-round protocol without a trusted party must be
unfair in the sense that the party which speaks last gets its output but can
prevent the delivery of an output to its counterparty. However, functionality
FC(f,g) affords this unfair advantage to both the corrupt requester and the cor-
rupt responder. Indeed, a concrete protocol ΠCOMP presented in Section 7 which
realizes this functionality allows the corrupt party A to learn its output z and
stop B from learning anything about its output v (simply by aborting before

10

sending its last message to B). However, this protocol also allows the corrupt
party B to prevent party A from being able to decide if its output z (learned
in step A2 in Figure 3) is an output of f(x, y) or a random value induced from
an interaction with a random beacon: Only B’s final message can confirm which
is the case for A, but a corrupt B can send this message incorrectly, in which
case an honest A will dismiss the tentative value z it computed and output ⊥
instead. We leave achieving O(1)-round covert protocols with one-sided fairness,
or two-side fairness, e.g. using an off-line escrow authority, to future work.

4 Covert Protocol Building Blocks

CCA-Covert Public Key Encryption. Covertness of a public key encryption
scheme in a Chosen-Ciphertext Attack, or CCA covertness for short, is a gener-
alization of CCA security: Instead of requiring that ciphertexts of two challenge
messages are indistinguishable from each other, we require that a ciphertext on
any (single) challenge message is indistinguishable from a random bitstring, even
in the presence of a decryption oracle. For technical reasons it suffices if inter-
action with the real PKE scheme is indistinguishable from an interaction with
a simulator who not only replaces a challenge ciphertext with a random string
but also might follow an alternative key generation and decryption strategy.

Formally, we call a (labeled) PKE scheme (Kg,E,D) CCA covert if there exist
polynomial n s.t. for any efficient algorithm A, quantity AdvA(τ) = |p0A(τ) −
p1A(τ)| is negligible, where pbA(τ) is the probability that b′ = 1 in the following
game: Generate (pk, sk) ← Kg(1τ), and let AD(sk,·,·)(pk) output an encryption
challenge (m∗, `∗). If b = 1 then set ct∗ ← E(pk,m∗, `∗), and if b = 0 then pick ct∗

as a random string of length n(τ). In either case set b′ ← AD(sk,·,·), where oracle
D(sk, ·, ·) returns D(sk, ct, `) on any ciphertext,label pair s.t. (ct, `) 6= (ct∗, `∗).

Notice that by transitivity of indistinguishability if PKE is CCA-covert then
it is also CCA-secure. The other direction does not hold in general, but many
known CCA-secure PKE’s are nevertheless also CCA-covert, including RSA
OAEP and Cramer-Shoup PKE [8]. We will use here the latter scheme because
its arithmetic structure can be utilized for efficient covert OT (see below) and
efficient covert CKEM’s on associated languages (e.g. that a ciphertext encrypts
a given plaintext). In the full version [14] we show that the proof of CCA se-
curity of Cramer-Shoup PKE under the DDH assumption [8] can be extended
to imply its CCA covertness. For notational convenience we assume that the
key generation Kg picks the group setting (g,G, p) as a deterministic function of
security parameter τ , and we restrict the message space to group G, since this
is how we use this PKE in our covert 2PC protocol, but it can be extended to
general message space using covert symmetric encryption.

Cramer-Shoup PKE (for message space G) works as follows: Kg(1τ) chooses
generator g of group G of prime order p of appropriate length, sets a collision-
resistant hash function H, picks (x1, x2, y1, y2, z) ← (Z∗p)5, (g1, g2) ← (G\1)2,
sets (c, d, h)← (gx1

1 gx2
2 , gy11 g

y2
2 , g

z
1), and outputs sk = ((g,G, p,H), x1, x2, y1, y2, z)

and pk = ((g,G, p,H), g1, g2, c, d, h). Encryption Epk(m, `), for m ∈ G, picks

11

r ← Zp, sets (u1, u2, e) ← (gr1, g
r
2,m · hr), ξ ← H(`, u1, u2, e), v ← (cdξ)r, and

outputs ct = (u1, u2, e, v). Decryption Dsk((u1, u2, e, v), `) re-computes ξ, and

outputs m = e · uz1 if v = ux1+ξ·y1
1 ux2+ξ·y2

2 and ⊥ otherwise.

Covert Non-Malleable Commitments. It is well-known that CCA-secure
PKE implements non-malleable commitment. However, to stress that some-
times no one (including the simulator) needs to decrypt, we define commitment
Compk(m) as a syntactic sugar for Epk(H(m)) where H is a collision-resistant
hash onto G, but we will pass on defining a notion of covert commitment, relying
instead directly on the fact that Compk(m) stands for Epk(H(m)).

Covert Oblivious Transfer. Von Ahn et al. [28] used a covert version of
Naor-Pinkas OT [22] for their covert 2PC secure against honest-but-curious ad-
versaries. Here we will use a covert version of the OT of Aiello et al. [2] in-
stead because it is compatible with CCA-covert Cramer-Shoup encryption and
covert CKEM’s of Section 6. Let E be the Cramer-Shoup encryption and let
pk = ((g,G, p,H), g1, g2, c, d, h). Define a 2-message OT scheme (E,OTrsp,OTfin)
on Rec’s input b, Snd’s input m0,m1 ∈ G, and a public label ` as follows:
(1) Rec’s first message to Snd is ct = (u1, u2, e, v) = Epk(g

b, `; r) for r← Zp.
(2) Snd’s response computation, denoted OTrsppk(ct,m0,m1; r′), outputs otr =

{si, ti}i=0,1 for (si, ti) = (gαi1 hβi , uαi1 (e/gi)βimi) and r′ = {αi, βi}i=0,1 ← Z4
p.

(3) Rec’s output computation, denoted OTfinpk(b, r, otr), outputs m = tb · (sb)−r.
The above OT is covert for random payloads in the following sense: First, the

Rec’s message is indistinguishable from random even on access to the decryption
oracle Dsk(·, ·); Secondly, Snd’s message is indistinguishable from random for
payloads (m0,m1) random in G2. (Note that if (m0,m1) were non-random then

the Rec’s output would suffice to distinguish OTrsp and OTrsp$(τ).)

Covert Garbled Circuits. Von Ahn et al. [28] shows a covert version of Yao’s
garbling GCgen(f) for any f : {0, 1}n → {0, 1}m. Procedure GCgen(f) outputs
(1) a vector of input wire keys ks = {kw,b}w∈[n],b∈{0,1} where n is the bitlength
of arguments to f , and (2) a vector gc of 4|C| covert symmetric encryption
ciphertexts, where |C| is the number of gates in a Boolean circuit for f . The
corresponding evaluation procedure Evalf outputs f(x) given gc and ks[:x]) =
{ki,x[i]}i∈[n], for (gc, ks) output by GCgen(f) and x ∈ {0, 1}n. Let m′ = 4|C|τ +
nτ . The notion of a covert garbling defined by [28] and satisfied by their variant
of Yao’s garbling scheme, is that for any function f , any distribution D over
f ’s inputs, and any efficient algorithm A, there is an efficient algorithm A∗ s.t.
|AdvA − AdvA∗ | is negligible, where:

AdvA = |Pr[1←A({gc, ks[:x]})]x←D,(gc,ks)←GCgen(f) − Pr[1←A(r)]r←{0,1}m′ |
AdvA∗ = |Pr[1←A∗(f(x))]x←D − Pr[1←A∗(r)]r←{0,1}m |

In other words, for any function f and distribution D over its inputs, the garbled
circuit for f together with the set of wire keys ks[:x] defined for input x sampled
from D, are (in)distinguishable from a random string to the same degree as func-
tion outputs f(x) for x←D. In particular, if f and D are such that {f(x)}x←D
is indistinguishable from random, then so is {gc, ks[:x]}(gc,ks)←GCgen(f),x←D.

12

SPHF’s. We define a Smooth Projective Hash Function (SPHF) for language
family L parametrized by π as a tuple (PG,KG,Hash,PHash) s.t. PG(1τ) gener-
ates parameters π and a trapdoor td which allows for efficient testing of member-
ship in L(π), KG(π, x) generates key hk together with a key projection hp (here
we use the SPHF notion of [25], for alternative formulation see e.g. [15]) and
Hash(π, x, hk) and PHash(π, x, w, hp) generate hash values denoted H and projH,
respectively. SPHF correctness requires that Hash(π, x, hk) = PHash(π, x, w, hp)
for all τ , all (π, td) output by PG(1τ), all (x,w) ∈ R[L(π)], and all (hk, hp) output
by KG(π, x). In the context of our protocols SPHF values are elements of group G
uniquely defined by security parameter τ via the Cramer-Shoup key generation
procedure, hence we can define SPHF smoothness as that (hp,Hash(π, x, hk)) is
distributed identically to (hp, r) for r ← G and (hk, hp) ← KG(π, x), for all π
and x 6∈ L(π). However, in our applications we need a stronger notion we call
covert smoothness, namely that for some constant c, for all π and x 6∈ L(π), pair
(hp,Hash(π, x, hk)) for (hk, hp)← KG(π, x) is uniform in Gc ×G.

5 Covert Simulation-Sound Conditional KEM (CKEM)

Conditional Key Encapsulation Mechanism (CKEM). A Conditional
KEM (CKEM) [13] is a KEM version of Conditional Oblivious Transfer (COT)
[9]: A CKEM for language L is a protocol between two parties, a sender S and a
receiver R, on S’s input a statement xS and R’s input a (statement,witness) pair
(xR, wR). The outputs of S and R are respectively KS and KR s.t. KS is a ran-
dom string of τ bits, and KR = KS if and only if xS = xR and (xR, wR) ∈ R[L].
CKEM is an encryption counterpart of a zero-knowledge proof, where rather
than having R use its witness wR to prove to S that xS ∈ L, here R establishes
a session key K with S if and only if wR is a witness for xS in L. Because of this
relation to zero-knowledge proofs we can use proof-system terminology to define
CKEM security properties. In particular, we will refer to the CKEM security
property that if x 6∈ L then no efficient algorithm can compute K output by S(x)
as the soundness property.

Benhamouda et al. [3] considered a stronger notion of Trapdoor CKEM, which
they called Implicit Zero-Knowledge. Namely, they extended the CKEM notion
by a CRS generation procedure which together with public parameters generates
a trapdoor td that allows an efficient simulator algorithm to compute the session
key KS output by a sender S(x) for any x, including x 6∈ L. The existence of
such simulator makes CKEM into a more versatile protocol building block. For
example, trapdoor CKEM implies a zero-knowledge proof for the same language,
if R simply returns the key KR to S who accepts iff KR = KS . Indeed, following
[3], we refer to the property that the simulator computes the same key as the
honest receiver in the case x ∈ L as the zero-knowledge property of a CKEM.

As in the case of zero-knowledge proofs, if multiple parties perform CKEM
instances then it is useful to strengthen CKEM security properties to simulation-
soundness, which requires that all instances executed by the corrupt players
remain sound even in the presence of a simulator S who uses its trapdoor to

13

simulate the instances performed on behalf of the honest players. Simulation-
soundness is closely related to non-malleability: If S simulates a CKEM instance
Π on x 6∈ L then an efficient adversary must be unable to use protocol instance Π
executed by S to successfully complete another instance Π ′ of CKEM executed
by a corrupt party for any x′ 6∈ L.

To distinguish between different CKEM sessions the CKEM syntax must also
be amended by labels, denoted `, which play similar role as labels in CCA encryp-
tion. Formally, a CKEM scheme for language family L is a tuple of algorithms
(PG,TPG,Snd,Rec,TRec) s.t. parameter generation PG(1τ) generates CRS pa-
rameter π, trapdoor parameter generation TPG(1τ) generates π together with
the simulation trapdoor td, and sender Snd, receiver Rec, and trapdoor receiver
TRec are interactive algorithms which run on local inputs respectively (π, x, `),
(π, x, `, w), and (π, x, `, td), and each of them outputs a session key K as its local
output. CKEM correctness requires that for all labels `:

∀(x,w) ∈ R[L], [KS ,KR]← [Snd(π, x, `),Rec(π, x, `, w)]⇒ KS = KR (1)

∀x, [KS ,KR]← [Snd(π, x, `),TRec(π, x, `, td)]⇒ KS = KR (2)

where (1) holds for all π generated by PG(1τ) and (2) holds for all (π, td) gener-
ated by TPG(1τ). Crucially, property (2) holds for all x, and not just for x ∈ L.

Covert CKEM. A covert CKEM was introduced as Zero-Knowledge Send (ZK-
Send) by Chandran et al. [5], who strengthened simulatable CKEM by adding
covertness, i.e. that an interaction with either S or R (but not the keys they
compute locally) is indistinguishable from a random beacon. Goyal and Jain
[10] strengthened the covert CKEM of [5] to proof-of-knowledge and simulation-
soundness under (bounded) concurrent composition. Our covert CKEM notion is
essentially the same as the covert ZKSend of [10] (minus the proof-of-knowledge
property), but we adopt it to the CRS setting of a straight-line simulation using
a global CRS trapdoor as in [3].

Covert CKEM Zero-Knowledge. We say that a CKEM for language L is
covert zero-knowledge if the following properties hold:

1. Setup Indistinguishability: Parameters π generated by PG(1τ) and TPG(1τ)
are computationally indistinguishable.

2. Zero Knowledge: For every efficient A = (A1,A2) we have

{ARec&Out(π,x,`,w)
2 (st)} ≈ {ATRec&Out(π,x,`,td)

2 (st)}

for (π, td)← TPG(1τ) and (st, x, w, `)← A1(π, td) s.t. (x,w) ∈ R[L].2

3. Trapdoor-Receiver Covertness: For every efficient A = (A1,A2) we have

{ATRec(π,x,`,td)
2 (st)} ≈ {ATRec$(τ)

2 (st)}

for (π, td)← TPG(1τ) and (st, x, `)← A1(π, td).

2 If A1 outputs (x,w) 6∈ R[L] we override A2’s output by an arbitrary constant.

14

4. Sender Simulation-Covertness: For every efficient A = (A1,A2) we have

{ASnd(π,x,`),TRecBlock(x,`)(td,·)
2 (st)} ≈ {ASnd$(τ),TRecBlock(x,`)(td,·)

2 (st)}

for (π, td) ← TPG(1τ) and (st, x, `) ← ATRec(td,·)
1 (π) s.t. TRec(td, ·) was not

queried on (x, `).

Note that Zero-Knowledge and Trapdoor-Receiver Covertness imply a Re-
ceiver Covertness property, which asks that Rec(π, x, `, w) instances are indistin-

guishable from Rec$(τ) for any (x,w) ∈ R[L]. This holds because an interaction
with Rec(π, x, `, w) for (x,w) ∈ R[L] is, by Zero-Knowledge, indistinguishable
from an interaction with TRec(π, x, `, td), which by Trapdoor-Receiver Covert-

ness is indistinguishable from an interaction with TRec$(τ), which is in turn
identical to an interaction with Rec$(τ), because Zero-Knowledge implies that
Rec and TRec output equal-sized messages.

Discussion. CKEM zero-knowledge [3] says that an interaction with Rec on
any x ∈ L followed by Rec’s local output KR, can be simulated by TRec without
knowledge of the witness for x. Receiver and Trapdoor-Receiver covertness mean
that, in addition, the adversary A who interacts with resp. Rec and TRec, but
does not see their local outputs, cannot tell them from random beacons. In the
case of TRec we ask for this to hold for any x and not only for x ∈ L because
a simulator of a higher-level protocol will typically create incorrect statements
and then it will simulate the Receiver algorithm on them. Note that we cannot
include the output KR of either Rec or TRec in A’s view in the (trapdoor)
receiver covertness game because A can compute it by running Snd(x). Sender
covertness means that an interaction with the Snd is indistinguishable from an
interaction with a random beacon for any x. Here too we cannot include Snd’s
local output KS in A’s view because if (x,w) ∈ R[L] then A who holds w
can compute it running Rec(x,w). Note that A’s view in the zero-knowledge
and trapdoor-receiver covertness properties includes the simulator’s trapdoor
td, which implies that both properties will hold in the presence of multiple
CKEM instances simulated by TRec using td. This is not the case for in sender
simulation-covertness, but there the adversary has oracle access to simulator
TRec who uses td on other CKEM instances, which suffices for the same goal of
preserving the CKEM covertness property under concurrent composition.

Covert Soundness and Simulation-Soundness. A CKEM is covert sound
if interaction with Snd on x 6∈ L followed by Snd’s local output KS is indistin-
guishable from interaction with a random beacon. Recall that CKEM soundness
[3] requires pseudorandomness of only Snd’s output KS on x 6∈ L, while here we
require it also of the transcript produced by Snd. Covert simulation-soundness
requires that this holds even if the adversary has access to the Trapdoor-Receiver
for any (x′, `′) which differs from the pair (x, `) that defines the soundness chal-
lenge. To that end we use notation PBlock(x) for a wrapper over (interactive)
algorithm P which outputs ⊥ on input x′ = x and runs P (x′) for x′ 6= x:

15

CKEM is Covert Sound if for every efficient algorithm A = (A1,A2) we have:

{ASnd&Out(π,x,`)
2 (st)} ≈ {ASnd

$(τ)
&Out

2 (st)}

for (π, td)← TPG(1τ) and (st, x, `)← A1(π) s.t. x 6∈ L.

CKEM is Covert Simulation-Sound if for every efficient algorithm A = (A1,A2)
we have:

{ASnd&Out(π,x,`),TRecBlock(x,`)(td,·)
2 (st)} ≈ {ASnd

$(τ)
&Out,TRecBlock(x,`)(td,·)

2 (st)}

for (π, td) ← TPG(1τ) and (st, x, `) ← ATRec(td,·)
1 (π) s.t. x 6∈ L and TRec(td, ·)

was not queried on (x, `).

Note that sender simulation-covertness together with standard, i.e. non-
covert, simulation-soundness, imply covert simulation-soundness of a CKEM:

Lemma 1. If a CKEM scheme is simulation-sound [3] and sender simulation-
covert, then it is also covert simulation-sound.

Proof. Consider the simulation-soundness game where adversary A on input π
for (π, td)← TPG(1τ) interacts with TRec(td, ·), generates (x, `) s.t. x 6∈ L, and
interacts with oracles Snd&Out(π, x, `) and TRecBlock(x,`)(td, ·). The standard (i.e.
non-covert) simulation soundness of this CKEM [3] implies that this game is in-
distinguishable from a modification in which key KS output by Snd&Out(π, x, `)
is chosen at random. Once KS is independently random, sender simulation-
covertness, which holds for all x, implies that this game is indistinguishable
from a modification where the messages sent by Snd are replaced by uniformly
random strings. Since these two moves together replace oracle Snd&Out(π, x, `)

with Snd
$(τ)
&Out, it follows that the CKEM is covert simulation-sound.

6 Covert CKEM’s for LMI and Σ-Protocol Languages

Linear Map Image (LMI) Languages. The Covert 2PC protocol of Section 7
relies on covert zero-knowledge and simulation-sound (covert-zk-and-ss) CKEM’s
for what we call Linear Map Image languages. A linear map image language
LMIn,m for group G of prime order p contains pairs (C,M) ∈ Gn × Gn×m s.t.
there exists a vector w ∈ Zmp s.t. C = w·M , where the vector dot product denotes
component-wise exponentiation, i.e. [w1, ..., wm] · [gi1, ..., gim] =

∏m
j=1(gij)

wj , In
other words, (C,M) ∈ LMIn,m if C is in the image of a linear map fM : Zmp → Gn

defined as fM (w) = w ·M . Using an additive notation for operations in group
G we can equivalently say that (C,M) ∈ LMIn,m if C is in the subspace of Gn

spanned by the rows of M , which we denote span(M).
We extend the notion of a Linear Map Image language to a class of languages,

denoted LMI, which includes all languages L for which there exist two efficiently
computable functions φ : Ux → (G × Gn×m) and γ : Uw → Zmp for some n,m,

16

where Ux, Uw are the implicit universes of respectively statements in L and their
witnesses, s.t. for all (x,w) ∈ Ux×Uw, w is a witness for x ∈ L if and only if γ(w)
is a witness for φ(x) ∈ LMIn,m. We will sometimes abuse notation by treating
set {φ(x)}x∈L, i.e. L mapped onto (some subset of) LMIn,m, replaceably with L
itself. Observe that LMI is closed under conjunction, i.e.

[(C1,M1) ∈ LMIn1,m1
∧ (C2,M2) ∈ LMIn2,m2

]⇔ (C,M) ∈ LMIn1+n2,m1+m2

for C = (C1, C2) and M formed by placing M1 in the upper-left corner, M2 in
the lower-right corner, and all-one matrices in the remaining quadrants.

Covert CKEM’s for LMI Languages. We show three types of covert CKEM’s
for LMI languages: (1) a 2-round CKEM in CRS for LMI languages defined by
a full row rank matrix M , whose cost is about 2-4 times that of the underly-
ing HVZK, (2) a 2-round CKEM in ROM for Σ-protocol languages whose cost
matches the underlying HVZK, and (3) a 4-round CKEM in CRS for Σ-protocol
languages with a small additive overhead over the underlying HVZK. Note that
every LMI languages in prime-order groups has a Σ-protocol, so constructions
(2) and (3) apply to LMI languages. For lack of space we include below only the
last construction and we refer to the full version [14] for the other two.

6.1 2-Round Covert CKEM for Σ-Protocol Languages in ROM

The covert mutual authentication scheme of Jarecki [13] uses a compiler which
converts a Σ-protocol into a 2-round CKEM for the same language, assuming
ROM. The resulting CKEM was shown to satisfy the CKEM covertness notion
of [13], which included receiver covertness and strong sender covertness, a covert
counterpart of strong soundness (a.k.a. proof of knowledge), but did not include
simulatability or simulation soundness. However, it is not hard to see that this
2-round CKEM does achieve both zero-knowledge and simulation soundness.

We recall this construction in Figure 2, and we briefly explain how it works.
Assume that the instance,witness pairs of language L are mapped into instances
x = (C,M) ∈ Gn×Gn×m and witnesses w ∈ Zmp of LMIn,m. Recall a Σ-protocol
for LMIn,m: The prover picks random w′ ← Zmp , sends a = w′ ·M to the verifier,
and on verifier’s challenge e chosen uniformly in Zp, it outputs z = w′ + ew
(multiplication by a scalar a vector addition in Zmp). The verifier accepts if
a = z ·M − eC, which holds if C = w ·M . As is well known, this Σ-protocol
becomes a NIZK in ROM if the verifier’s e is computed via a random oracle.

Consider an ElGmal-based covert commitment: Let g1, g2 be two random
group elements in the CRS. Let Comg1,g2(m) for m ∈ Zp pick r ← Zp and output
cmt = (cmt1, cmt2) = ((g1)r, (g2)r(g1)m). This is perfectly binding and covert un-
der the DDH assumption. Define language Lc = {(cmt,m) | cmt = Comg1,g2(m)},
and note that Lc has a well-known covert SPHF: KG(g1, g2) generates hk ← Z2

p

and hp = hk · (g1, g2) = (g1)hk1(g2)hk2 , Hash((cmt,m), hk) = hk · (cmt/(1, gm1)) =
(cmt1)hk1(cmt2/(g1)m)hk2 , and PHash((cmt,m), r, hp) = r · hp = (hp)r.

Let H be a hash onto Zp. The 2-round ROM-based covert CKEM of [13]
works just like a ROM-based NIZK except that the prover replaces message

17

a with its commitment cmt = Com(H(a)), and the non-interactive verification
check whether a = z ·M − eC, the verifier computes a = z ·M − eC locally
and uses the covert SPHF for Lc to verify if cmt is a commitment to H(a). This
protocol is shown in Figure 2, where Hi(x) stands for H(i, x).

On inputs (g1, g2), (C,M) = φ(x), `, and on R’s input w s.t. C = w ·M :

R: Pick w′ ← Zmp and r ← Zp, set a = w′ · M , cmt ← Comg1,g2(H2(a); r),
e = H1(x, `, cmt), z = w′ + ew, and send (cmt, z) to S.

S: Set a = z ·M − eC for e = H1(x, `, cmt), generate (hk, hp)← KG(g1, g2), send
hp to R and output KS = Hash((cmt,m), hk) for m = H2(a).

R: Output KR = PHash((cmt,m), r, hp) for m = H2(a).

Fig. 2. 2-round covert-zk-and-ss CKEM in ROM for LMI (adopted from [13])

Figure 2 is written specifically for LMI languages but it is easy to see that
the same works for any Σ-protocol language. Note that its cost is that of the
Σ-protocol for language L plus 2 exponentiations for S and 1 exponentiation for
R. We refer to the full version of the paper [14] for the proof of theorem 1:

Theorem 1. For any LMI language L, the CKEM scheme for L shown in Figure
2 is covert zero-knowledge and covert simulation-sound in ROM, assuming DDH.

7 Covert Computation of General 2-Party Functions

We describe protocol ΠCOMP, Figure 3, which realizes the concurrent 2-party
covert computation functionality FC(f,g) in the CRS model. Protocol ΠCOMP is
a covert variant of the cut-and-choose method over O(τ) copies of Yao’s garbled
circuit [29], which has been the common paradigm for standard 2PC protocols,
initiated by [21, 18], followed by many subsequent works, e.g. [19, 26, 12], includ-
ing several implementation efforts, e.g. [24, 26, 16, 27, 1].

A standard way of implementing a cut-and-choose involves tools which are
inherently non-covert: First, the garbling party B sends commitments to n copies
of the garbled circuit and then decommits a randomly chosen half of them, so
that party A can verify that the opened circuits are formed correctly and that
they were committed in B’s first message. Clearly, if B sends a commitment fol-
lowed by a decommitment, this can be verified publicly, at which point A would
distinguish a protocol-participating party B from a random beacon regardless
of the inputs which A or B enter into the computation. Secondly, a cut-and-
choose protocol can also use secondary zero-knowledge proofs, e.g. to prove that
the OT’s are performed correctly, or that the keys opened for different circuit
copies correspond to the same inputs, and zero-knowledge proofs are similarly
inherently non-covert.

18

Here we show that (concurrent and simulation-sound) covert CKEM’s can
be effectively used in both of the above cases:

First, we use CKEM’s in place of all zero-knowledge proofs, i.e. instead of
party P1 proving statement x to party P2, we will have P2 encrypt its future
messages under a key derived by CKEM on statement x. By covert concurrent
zero-knowledge, the simulator can derive the CKEM keys and simulate subse-
quent interaction of each protocol instance even if the statements it makes on
behalf of honest players are incorrect (e.g. because the simulator does not know
these players’ real inputs). By covert simulation-soundness, the CKEM’s made
by corrupted players are still sound, i.e. the CKEM keys created by the simu-
lator on behalf of honest parties are indistinguishable from random unless the
statement made by a corrupted player is correct. Moreover, CKEM messages
sent by either party are indistinguishable from random strings.

Secondly, we replace a commit/decommit sequence with a covert commit-
ment c, release of the committed plaintext m (which must be pseudorandom),
and a covert CKEM performed on a statement that there exists decommitment
d (the CKEM receiver’s witness) s.t. d decommits c to m. We use a perfectly
binding commitment so that the notion of language membership suffices to define
this problem. Specifically, we implement the commitment scheme using covert
Cramer-Shoup encryption, which plays two additional roles in the protocol con-
struction: First, it assures non-malleability of each commitment/ciphertext. Sec-
ondly, it allows for straight-line extraction of player’s inputs using the decryption
keys as a trapdoor for the CRS which contains a Cramer-Shoup encryption pub-
lic key, which allows for security across concurrently executed protocol instances.
Finally, the arithmetic structure of Cramer-Shoup encryption enables an efficient
covert OT and efficient CKEM’s on statements on committed/encrypted values.

These are the basic guidelines we follow, but assuring (concurrent) simu-
latability of each party in a secure two-party computation, doing so efficiently,
and doing so in the covert setting where the protocol view of each party must
look like a random beacon except when the admission function evaluates to true
and the functionality reveals computation outputs, requires several adjustments,
which we attempt to explain in the technical protocol overview below.

Defining the Garbled Circuit. We first explain how we use the covert gar-
bling procedure GCgen of [28], see Section 4, to enable covert computation of
functionality FC(f,g) assuming the simplified case where the party that garbles
the circuit is Honest but Curious. Our basic design follows the standard Yao’s
two-party computation protocol but instantiates it using covert building blocks,
i.e. party B will use covert garbling on a circuit that corresponds to functionality
FC(f,g) (more on this below), it will send the garbled circuit together with the
input wire keys to A, either directly, for wires corresponding to B’s inputs, or
via a covert OT, for wires corresponding to A’s inputs, and A will evaluate the
garbled circuit to compute the output. This will work if the circuit garbled by
B is appropriately chosen, as we explain here.

Step 1: Encoding B’s Output. Note that functionality FC(f,g) has two-sided
output, so we must include an encoding of B’s output in the outputs of the

19

garbled circuit in such a way that (1) this encoding looks random to A, and (2)
A cannot modify this encoding to cause B to output any other value (except
⊥). Let h be the two-sided output function at the heart of functionality FC(f,g),
namely h(x, y) = (z, v) s.t. (z, v) = f(x, y) if g(x, y) = 1 and (z, v) = (⊥,⊥)
if g(x, y) = 0. Let nx, ny, nz, nv define resp. the length of input x of party A,
input y of party B, output z of A, and output v of B. Let fz, fv satisfy f(x, y) =
(fz(x, y), fv(x, y)). We will encode B’s output in the outputs of the garbled
circuit evaluated by A using the standard way for converting the garbled circuit
technique into secure computation of a two-sided function: If ts = {t0i , t1i }i∈[nv]
is the set of garbled circuit keys on the wires encoding B’s output v in the
garbled circuit for h, then the garbled circuit evaluator A computes (z, ts[: v])
where (z, v) = f(x, y) (if g(x, y) = 1). Note that ts[: v] is an encoding of v which
satisfies the above two conditions, and if A sends it to B, B can decode it to v
using set ts. Even though this encoding of B’s output is implicit in the garbled
circuit technique, we will add ts to the inputs and ts[: v] to the outputs of the
function f |g we will garble, because this simplifies our notation and lets us use
the covert garbling procedure GCgen of [28] as a black-box. In other words, we
modify h to h′ which on input (x, (y, ts)) outputs (z, ts[: v]) for (z, v) = f(x, y)
if g(x, y) = 1 and (⊥,⊥) if g(x, y) = 0.

Step 2: Making ⊥ Output Random. Next, note that if B garbles the circuit
for h′ then for any x, y s.t. g(x, y) = 0, party A on input x will distinguish
between a random beacon and an honest party B which executes the protocol
on input y. (This would not be a covert computation of FC(f,g) because FC(f,g)

assures that A(x) cannot distinguish B(y) for y s.t. (y 6=⊥ ∧g(x, y) = 0), from
a random beacon B(⊥).) This is because in the 2nd case the garbled circuit
evaluates to h′(x, y, ts) = (⊥,⊥), and in the 1st case A will interpret random
strings as a garbled circuit and the input wire keys, and those will evaluate to
random outputs. To make the circuit evaluate to random outputs in the case
g(x, y) = 0, we add (nz + nvτ)-bit strings c and d to respectively A’s and B’s
input, we define h′′((x, c), (y, d, ts)) as (z, ts[: v]) for (z, v) = f(x, y) if g(x, y) = 1,
and as c⊕ d if g(x, y) = 0, and we specify that both A and B set input random
c and d strings into the computation. Note that if B is honest then setting the
output to d instead of c⊕d in the g(x, y) = 0 case would suffice, but a malicious
B would be then able to set A’s output in the g(x, y) = 0 case, because A treats
the first nz bits of the circuit output as its local output z.

Step 3: Adding Simulation Trapdoor. Finally, we add a “simulator escape”
input bit u to B’s inputs, and the final circuit we garble, function f |g defined
below, is like h′′ but with condition (g(x, y) ∧ u), in place of condition g(x, y),
for deciding between output (z, ts[: v]) for (z, v) = f(x, y) and output c⊕ d:

f |g((x, c), (y, d, ts, u)) =


(fz(x, y) , ts[: v]) if g(x, y) = 1 ∧ u = 1

where v = fv(x, y) and ts[: v] = [t
v[1]
1 , ..., t

v[nv]
nv]

c⊕ d otherwise,

Here is how we will use this “escape bit” in the g(x, y) = 1 clause in the sim-
ulation: An honest real-world party B will set u = 1, in which case circuit f |g

20

is identical to h′′. However, a simulator A∗ for the case of corrupt party A, will
use the u = 0 escape clause to aid in its simulation as follows: A∗ will send to A
a garbled circuit for f |g as B would, but before it sends the wire input keys cor-
responding to its inputs, it needs to extract inputs (x, c) which A contributes to
the covert OT. (This is why we base the covert OT of Section 4 on CCA(-covert)
PKE of Cramer-Shoup: The receiver’s first message will be a vector of Cramer-
Shoup encryptions of the bits in string x|c, which the simulator will straight-line
extract using the decryption key as a trapdoor.) Having extracted (x, c) from
the covert OT, the simulator A∗, playing the role of an ideal-world adversary
FC(f,g)’s instance identified by sid, sends x to FC(f,g) and receives FC(f,g)’s reply
z. Note that if A∗ sets u = 0 then the only part of its input that matters is
d, because f |g will outputs c ⊕ d to A. Simulator A∗ will then prepare d as
follows: If z 6=⊥, i.e. the input y to the ideal-world party B must be such that
g(x, y) = 1, simulator A∗ picks t′ as a random nvτ string and sets d = c⊕ (z|t′).
In this way the garbled circuit will output c ⊕ d = z|t′. Since t′ is a sequence
of nv random bitstrings of length τ , string z|t′ is distributed identically to the
circuit output z|ts[: v] which A would see in an interaction with the real-world
party B(y). Moreover, A∗ can detect if A tries to cheat the real-world party B
by sending a modified encoding of B’s output: If A sends back the same t′ which
A∗ embedded in the circuit output, then A∗ sends (Output, sid, B,T) to FC(f,g),
and if A sends any other value, in which case the real-world B would reject, A∗
sends (Output, sid, B,F) to FC(f,g).

Notation for Garbled Circuit Wires. We will find it useful to fix a notation
for groups of wires in the garbled circuit f |g depending on the part of the input
they encode. Note that f |g takes input ((x, c), (y, d, ts, u)). We will use W to
denote all the input wires, and we will use X,C, Y,D, T, U to denote the sets
of wires encoding the bits of respectively x, c, y, d, ts, u, where |X| = nx, |Y | =
ny, |T | = 2nvτ, |C| = |D| = nz +nvτ, |U | = 1. We denote the set of wires for A’s
inputs as X = X ∪C and the set of wires for B’s inputs as Y = Y ∪D ∪ T ∪U .
If bitstring s is formed as concatenation of any of the circuit inputs x, c, y, d, t, u
and w ∈W then s[w] denotes the bit of s corresponding to input wire w.

Fully Malicious Case. In a simple usage of the cut-and-choose technique for
garbled circuits, party B would use GCgen(f |g) to prepare n = O(τ) garbled cir-
cuit instances (gc1, ks1), ..., (gcn, ksn), would send (gc1, ..., gcn) to A, who would
choose a random subset S ∈ [n] of n/2 elements, send it to B, who would then
open the coins it used in preparing gci’s for i ∈ S, and proceed with the OT’s
and sending its input wire keys for all gci’s for i 6∈ S. Party A would then check
that each gci for i ∈ S is formed correctly, and it would evaluate each gci for
i 6∈ S. If at least n/4 of these returned the same value w, A would interpret this
as the correct output w = (z, ts[: v]) of f |g, output z locally and send ts[: v] to
B, who would decode it to its output v. In order to enforce consistency of the
inputs which both parties provide to circuit instances {gci}i6∈S , we would have
each party to commit to their inputs to f |g, and then use efficient ZK proofs
that the keys B sends and the bits A chooses in the OT’s for the evaluated
gci instances correspond to these committed inputs. Further, B would need to

21

commit to each key in the wire key sets {ksi}i∈[n], and show in a ZK proof that
the keys it sends and enters into the OT’s for i 6∈ S are the committed keys. Our
protocol uses each of the elements of this sketch, but with several modifications.

Step 1: ZK→CKEM, Com/Decom→CKEM. First, we follow the above method
using covert commitments, covert circuit garbling, and covert OT. Second, we
replace all the ZK proofs with covert simulation-sound CKEM’s. Next, note that
circuits {gci}i∈[n] in themselves are indistinguishable from random by covertness
of the garbling procedure, but if gci’s were sent in the clear then B could not
then open the coins used in the preparation of gci’s for i ∈ S, because coin
rgci together with gci s.t. (gci, ksi) = GCgen(f |g; rgci) forms a publicly verifiable
(commitment,decommitment) pair. We deal with it roughly the way we deal
with general (commitment,decommitment) sequence. In this specific case, we
replace gci’s in B’s first message with covert commitments to both the circuits,

cgci ← Compk(gci; rcgci), and to all the input wire keys, ckw,bi ← Epk(k
w,b
i ; rcki,w,b).

When B sends rgci for i ∈ S, A can derive (gci, {k
w,b
i }w,b) ← GCgen(f |g; rgci),

and now A has a (commitment,message) pair (c,m) = (cgci, gci) and (encryp-

tion,message) pairs (c,m) = (ckw,bi , kw,bi), while B has the randomness r s.t.
c = Compk(m; r) or c = Epk(m; r). Since we implement Com(m) as E(H(m)),
both instances can be dealt with a covert CKEM, with sender A and receiver B,
for the statement that (c,m) is in the language of correct (ciphertext,plaintext)
pairs for Cramer-Shoup encryption, i.e. Le`(pk). Finally, to covertly encode the
random n/2-element subset S chosen by A, we have A send to B not the set
S but the coins rSG which A uses in the subset-generation procedure SG which
generates a random n/2-element subset on n-element set.

Let us list the CKEM’s which the above procedure includes so far. A has
to prove that it inputs into the OT’s for all i 6∈ S the same bits which A
(covertly) committed in its first message. Recall that in the covert OT based
on the Cramer-Shoup encryption (see Section 4) the receiver’s first message is
the encryption of its bit. We will have A then commit to its bits by encrypting
them, and so the proof we need is that the corresponding plaintexts are bits,
and for that purpose we will use a CKEM for language Lbit`(pk) (see language
LA below). Party B has more to prove: First, it needs to prove all the Le`(pk)
statements as explained above (these correspond to items #1, #2, and #3 in
the specification of LB below). Second, B proves that its committed inputs on
wires Y \ D are bits, using CKEM for Lbit`(pk), and that for i 6∈ S it reveals
keys consistent with these committed inputs. Both statements will be handled
by CKEM for language Ldis, see below, which subsumes language Lbit`(pk) (see
item #4 in the specification of LB). Third, for reasons we explain below, B will
not prove the consistency of inputs d it enters into n instances of garbled circuit
f |g, hence for i 6∈ S and w ∈ D it needs only to prove that the revealed key

kw,bi is committed either in ckw,0i or ckw,1i , which is done via CKEM for Ldis′

(see below, and item #5 in the specification of LB). Finally, B proves that it
computes the OT responses otrwi correctly, for i 6∈ S and w ∈ X, on A’s first OT
message ctwi using the keys committed in ckw,0i , ckw,1i , which is done via CKEM
for Lotr (see below, and item #6 in the specification of LB).

22

Step 2: Input Consistency Across Garbled Circuit Copies. We must ensure
that A and B input the same x and y into each instance of the garbled circuit f |g.
However, the decision process in our cut-and-choose approach is that A decides
whether the outputs wi of n/2 garbled circuits i 6∈ S it evaluates correspond to
(z, ts[: v]) for (z, v) = f(x, y) or to random bits, is that it decides on the former
if n/4 of the wi’s are the same. Hence, to prevent B from getting honest A into
that case if g(x, y) = 0 (or u = 0), A chooses each ci at random, so in that
case the (correctly formed) circuits in [n] \ S output wi = ci ⊕ di values which
B cannot control. Consequently, B must also choose each di independently at
random, which is why B does not have to commit to the inputs on wires in D.

Step 3: Straight-Line Extraction of Inputs. As we sketched before, we get con-
current security by using CCA-covert encryption as, effectively, a non-malleable
and straight-line extractable covert commitment. Each player commits to its in-
put bits by encrypting them (except B does not encrypt its inputs on D wires),
and the simulator decrypts the bits effectively contributed by a malicious party.
However, for the sake of efficient CKEM’s we need these bit encryptions to use a
“shifted” form, i.e. an encryption of bit b will be Epk(g

b) and not Epk(b). This is
because the Cramer-Shoup encryption E has group G as a message space. Also, if
bit b is encrypted in this way then we can cast the language Lbit (and languages
Ldis and Ldis′) as an LMI language with an efficient covert CKEM.

Step 4: Encoding and Encrypting Wire Keys. To enable efficient covert CKEM’s
for the languages we need we also modify the garbling procedure GCgen of [28] so
it chooses wire keys kw,b corresponding to A’s input wires, i.e. for w ∈ X, as ran-
dom elements inG, but keys kw,b corresponding to B’s input wires, i.e. for w ∈ Y ,
as random elements in Zp. Note that either value can be used to derive a stan-
dard symmetric key, e.g. using a strong extractor with a seed in the CRS. We use
the same encryption E to commit to these wire keys, but we commit them differ-
ently depending on whose wires they correspond to, namely as ckw,b = Epk(k

w,b)

for w ∈ X, because kw,b ∈ G for w ∈ X, and as ckw,b = Epk(g
kw,b) for w ∈ Y ,

because kw,b ∈ Zp for w ∈ Y . The reason we do this is that values ckw,b for
w ∈ X take part in the CKEM for correct OT response language Lotr, and since
in OT the encrypted messages (which are the two wires keys kw,0 and kw,1) will
be in the base group, hence we need the same keys to be in the base group in
commitments ckw,0, ckw,1. By contrast, values ckw,b for w ∈ Y take part in the
CKEM of language Ldis, for proving consistency of key kw opened by B with
B’s commitment ctw to bit b on wire w. Bit b is in the exponent in ctw, and
using homomorphism of exponentiation, this allows us to cast language Ldis as
an LMI language provided that kw is also in the exponent in ckw,0 and ckw,1.

Step 5: Using CKEM Keys to Encrypt and/or Authenticate. We will run two
CKEM’s: After A’s first message, containing A’s input commitments, we run
a covert CKEM for language LA for correctness of A’s messages, with sender
B and receiver A, denoting the keys this CKEM establishes as KB for B and
K′B for A. Subsequently, B will encrypt its messages under key KB , using covert
encryption (SE,SD) implemented as SE0

K(m) = G|m|(F(K, 0))⊕m and SD0
K(ct) =

G|ct|(F(K, 0)) ⊕ ct, where F is a PRF with τ -bit keys, arguments, and outputs,

23

G` is a PRG with τ -bit inputs and `-bit outputs. Similarly when B responds
as described above given A’s chosen set S ⊂ [n], we run a covert CKEM for
language LB for correctness of B’s messages, with sender A and receiver B,
establishing keys KA for A and K′A for B, and A will encrypt its subsequent
messages using the same covert encryption. In the last two messages we will use
values F(KB , 1), F(KB , 2), and F(KA, 1) derived from the same CKEM keys as,
resp. a one-time authenticator for A’s message m2

A, an encryption key for B’s
final message m3

B , and a one-time authenticator for that same message.

Covert CKEM’s for Linear Map Image Languages. Protocol ΠCOMP uses
CKEM’s for two languages: Language LA which contains correctly formed wire-
bit ciphertexts sent by A, and language LB which contains correctly formed
messages sent by B. Both are formed as conjunctions of LMI languages, hence
both are LMI languages as well. Let (Kg,E,D) be the CCA-covert Cramer-Shoup
PKE. All languages below are implicitly parametrized by the public key pk
output by Kg(1τ) and some label `. (Formally key pk and label ` are a part of
each statement in the given language.) Recall that the public key pk specifies
the prime-order group setting (g,G, p).

We first list all the component languages we need to define LA and LB.
We defer to full version [14] for the specification of the mapping between the
instances of each language to instance (C,M) of LMIn,m for some n,m.

Language Le of correct (ciphertext,label,plaintext) tuples for plaintext m ∈ G:

Le`(pk) = {(ct,m) s.t. ct ∈ E`pk(m)}

Language Lbit of “shifted” encryptions of a bit:

Lbit`(pk) = {ct s.t. ∃b ∈ {0, 1} (ct, gb) ∈ Le`(pk)}

Language Ldis is used for proving that a key corresponding to some sender’s
wire in Yao’s garbled circuit is consistent with the two key values the sender
committed in ck0, ck1 and with the bit the sender committed in ct. To cast this
language as a (simple) LMI language we use the “shifted” version of Cramer-
Shoup encryption in these statements, i.e. we encrypt gm ∈ G instead of m ∈ Zp.
In other words, Ldis consists of tuples (m, ct, ck0, ck1) s.t. either (ct encrypts g0

and ck0 encrypts gm) or (ct encrypts g1 and ck1 encrypts gm):

Ldis`,i(pk) = {(ct,m, ck0, ck1) s.t. ∃b∈{0, 1} (ct, gb)∈Le`(pk)∧(ckb, g
m)∈Le[`|i|b](pk)}

Language Ldis′ is a simplification of Ldis which omits checking the constraint
imposed by ciphertext ct.

Language Lotr is used for proving correctness of a response in an Oblivious
Transfer of Aiello et al. [2], formed using procedure OTrsp (see Section 4), which
the sender uses in Yao’s protocol to send keys corresponding to receiver’s wires:

Lotr`(pk) = { (otr, ct, ck0, ck1) s.t. ∃k0, k1, r
(ck0, k0) ∈ Le[`|0](pk) ∧ (ck1, k1) ∈ Le[`|1](pk) ∧ otr = OTrsppk(ct, k0, k1; r) }

24

We use the above component languages to define languages LA and LB as follows:

LA`A(pk) = {
(
{ctw}w∈X , {ctwi }i∈[n],w∈C

)
s.t. ctw ∈ Lbit[`A|w](pk) for all w ∈ X
and ctwi ∈ Lbit[`A|w|i](pk) for all i ∈ [n], w ∈ X }

LB`B (pk) = {
(
{(cgci, H(gci))}i∈[n]
{(kw,bi , ckw,bi)}i∈S,w∈X,b∈{0,1}
{(gk

w,b
i , ckw,bi)}i∈S,w∈Y ,b∈{0,1}

{(kwi , ctw, ckw,0i , ckw,1i)}i6∈S,w∈Y \D
{(kwi , ckw,0i , ckw,1i)}i 6∈S,w∈D
{(otrwi , ctwi , ckw,0i , ckw,1i)}i 6∈S,w∈X

)
s.t.

(1) (cgci, H(gci)) ∈ Le[`B |i](pk) for i ∈ [n]

(2) (ckw,bi , kw,bi) ∈ Le[`B |w|i|b](pk) for i ∈ S, w ∈ X, b ∈ {0, 1}

(3) (ckw,bi , gk
w,b
i) ∈ Le[`B |w|i|b](pk) for i ∈ S, w ∈ Y , b ∈ {0, 1}

(4) (ctw, kwi , ckw,0i , ckw,1i) ∈ Ldis[`B |w],i(pk) for i 6∈ S, w ∈ Y \D

(5) (kwi , ckw,0i , ckw,1i) ∈ Ldis′
[`B |w],i

(pk) for i 6∈ S, w ∈ D
(6) (otrwi , ctwi , ckw,0i , ckw,1i) ∈ Lotr[`B |w](pk) for i 6∈ S, w ∈ X }

Notation in Figure 3. Procedures (Kg,E,D), (GCgen,GCev), Com, SG, (OTrsp,
OTfin), CKEM, (F, G,SE,SD) are as explained above. If P is a randomized al-
gorithm we sometimes explicitly denote its randomness as rP, with the implicit
assumption that it is a random string. Expression {xi ← P}i∈R denotes either a
loop “perform xi ← P for each i in R”, or a set of values {xi}i∈R resulting from
executing such a loop. Letter b always stands for a bit, and expressions {...}b
stand for {...}b∈{0,1}.

Cost Discussions. Since the Covert CKEM’s of Section 6 have the same asymp-
totic computation and bandwidth costs as the HVZK proofs for the same lan-
guages, protocol ΠCOMP realizes the concurrent covert 2PC functionality FC(f,g)

with O(1) rounds, O(τ |C|) bandwidth, O(τ |C|) symmetric cipher operations,
and O(τ |W |) exponentiations, where |C| is the number of gates and |W | is the
size of the input in the circuit for function f |g, and τ is the security parame-
ter. This places covert computation in the same efficiency ballpark as existing
O(1)-round secure (but not covert) “cut-and-choose over garbled circuits” 2PC
protocols. Of course there remains plenty of room for further improvements: Pro-
tocol ΠCOMP uses 2.4 · τ garbled circuit copies instead of τ as the 2PC protocols
of [12, 17], it does not use an OT extension, and it does not use many other

25

PG(1τ) picks (pk, sk)← Kg(1τ) and sets π ← pk.

B1: on input (InputB, A, y, sid) and `B = (B,A, sid):

set {(gci, {k
w,b
i }w∈W,b)← GCgen(f |g; rgci)}i∈[n] and {cgci ← Com

[`B |i]
pk (gci)}i∈[n];

set {ckw,bi ← E
[`B |w|i|b]
pk (kw,bi)}w∈X,i∈[n],b and {ckw,bi ← E

[`B |w|i|b]
pk (gk

w,b
i)}w∈Y ,i∈[n],b;

send m1
B=({cgci}i∈[n], {ckw,bi }i∈[n],w∈W,b) to A.

A1: on input (InputA, B, x, sid) and `A = (A,B, sid), and message m1
B from B:

sample S ← SG(n; rSG), pick ci ← {0, 1}nz+nvτ for i∈[n];

set xA ← ({ctw ← E
[`A|w]
pk (gx[w]; rctw)}w∈X , {ctwi ← E

[`A|w|i]
pk (gci[w]; rctw,i)}w∈C,i∈[n]);

set wA ← (x, {ci}i∈[n], {rctw}w∈X , {rctw,i}w∈C,i∈[n]), send m1
A = (rSG, xA) to B.

A,B run CKEMLA(`A)(pk) on xA and A’s input wA; let B output KB and A output K′B .

B2: on KB and rSG received in m1
A from A:

re-generate S ← SG(n; rSG), set u = 1, pick t← {0, 1}2nvτ and {di ← {0, 1}nz+nvτ}i∈[n];
set ctB← {ctw←E

[`B |w]
pk (gy[w])}w∈Y \D where y = y|t|u;

set {kwi ←k
w,yi[w]
i }w∈Y ,i 6∈S where yi = y|t|u|di, and {ksBi ←{kwi }w∈Y }i 6∈S ;

set {otrwi ← OTrsppk(ctwi , k
w,0
i , kw,1i)}w∈X,i6∈S , where ctwi = ctw for w∈X;

send m2
B = SE0

KB [ctB, {rgci }i∈S , {gci, ksBi , {otrwi }w∈X}i 6∈S] to A.

A2: on K′B and m2
B :

set (ctB, {rgci }i∈S , {gci, ksBi , {otrwi }w∈X}i6∈S)← SD0
K′B

(m2
B);

set {ksAi ← {kwi ← OTfinpk(xi[w], rctw,i, otrwi)}w∈X}i6∈S , for xi = x|ci and rctw,i = rctw for w∈X;

set (gci, {k
w,b
i }w,b)← GCgen(f |g; rgci) for i∈S and wi ← GCev(gci, (ksAi ∪ ksBi)) for i6∈S.

A,B run CKEMLB(`B)(pk) on xB and B’s input wB for xB = ({ctw, kwi , ckw,0i , ckw,1i }i 6∈S,w∈Y \D,

{kwi , ckw,0i , ckw,1i }i6∈S,w∈D, {gci, cgci}i∈[n], {ckw,bi , k
w,b
i }i∈S,w∈W,b, {otrwi , ctwi , ckw,bi }i 6∈S,w∈X,b),

and wB containing input y and randomness of B. Let A output KA and B output K′A.

A3: If ∃R⊂[n] s.t. |R|=n/4 and ∃w s.t. ∀i∈R wi = w then set (z|t1|...|tnv):=w and m2
A ←

SE0
KA(F(K′B , 1), t1, ..., tnv); Otherwise set z:=⊥ and m2

A ← {0, 1}τ(nv+1). Send m2
A to B.

B3: Set (τ, t1, ..., tnv) ← SD0
K′A

(m2
A). Parse t as [t01|t11|...|t0nv |t

1
nv]. If τ=F(KB , 1) and tj ∈

{t0j , t1j} for all j∈[nv] then set m3
B ← F(KB , 2) ⊕ F(K′A, 1) and ∀j set v[j] := b s.t. tj = tbj ;

Otherwise set v:=⊥ and m3
B ← {0, 1}τ . Send m3

B to A and output (Output, v).

A4: If m3
B 6= F(K′B , 2)⊕ F(KA, 1) then set z:=⊥. Output (Output, z).

Fig. 3. Protocol ΠCOMP for Concurrent 2-Party Covert Function Computation FC(f,g)

26

bandwidth and cost-saving techniques that were developed over the last decade
to increase the efficiency of standard, i.e. non-covert, 2PC protocols. However,
we see no inherent reasons why, using the techniques we employed here, many
of the same cost-saving techniques cannot be adopted to covert computation.

Here we single out two particular sources of an “efficiency gap” between our
covert 2PC and current secure 2PC protocols that perhaps stand out. First,
protocol ΠCOMP exchanges O(τ) garbled circuits instead of O(κ) where κ is the
statistical security parameter. We could do the latter as well, but the result
would realize a weaker functionality than FC(f,g) defined in Section 3. Namely,
with probability 2−κ the functionality would allow the adversary to specify any
function on the joint inputs, and this function would be computed by the honest
party. Secondly, circuit f |g which is garbled in protocol ΠCOMP increases the
number of input wires of the underlying circuit for FC(f,g) by O(nOτ) where nO is
the bitsize of the output of function f . However, since this extension in the input
wire count was done for conceptual simplicity (see a note on Encoding B’s Output
on page 19), we hope that it might be avoidable with a more careful analysis.
Moreover, since our covert 2PC is self-composable and both sides commit to
their input bits in the same way, two instances of this protocol can be run in
parallel for one-sided output versions of f , one for A’s output and one for B’s
output, on same committed inputs. This multiplies all the other costs by 2 but
drops the O(nOτ) growth in the circuit size.

Theorem 2. Protocol ΠCOMP in Figure 3 realizes the concurrent 2-party covert
computation functionality FC(f,g) in the CRS model, assuming (Kg,E,D) is a
covert CCA public key encryption, F is a PRF, G is a PRG, (GCgen,GCev) is a
covert garbling scheme, (OTreq,OTrsp,OTfin) is a covert OT, and CKEMLA(pk)

and CKEMLB(pk) are covert zero-knowledge and simulation-sound CKEM’s for
languages resp. LA and LB.

For lack of space we only show the algorithm of an ideal adversary A∗, i.e.
the simulator, divided into two parts depending on whether the ideal adversary
simulates an instance of an honest party B, shown in Figure 4, or an honest party
A, shown in Figure 5. The proof, included in the full version of the paper [14],
shows that no efficient environment can distinguish an interaction with A∗ and
ideal honest players interacting via functionality FC(f,g) (where A∗ additionally
interacts with a local copy of the real-world adversary Adv), from an interaction
with Adv and real-world honest players who interact via our protocol ΠCOMP.

References

1. A. Afshar, P. Mohassel, B. Pinkas, and B. Riva. Non-interactive secure computa-
tion based on cut-and-choose. In Advances in Cryptology - EUROCRYPT, pages
387–404, 2014.

2. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital
goods. In Advances in Cryptology - EUROCRYPT 2001, International Conference
on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria,
May 6-10, 2001, Proceeding, pages 119–135, 2001.

27

On behalf of honest B, on trapdoor sk and input (InputB, sid, A,B) from FC(f,g):

(1) compute {cgci, {ckw,bi }w,b}i∈[n] and send to A as B does in step B1;

(2) on m1
A = (rSG, xA) for xA = ({ctw}w∈X , {ctwi }i,w∈C) from A in A1, decrypt all ct’s

using sk to obtain x, c1, ..., cn, overwrite x:= ⊥ if any decryption returns ⊥ or not a
bit, and send (InputA, B, x, sid) to FC(f,g) and receive (Output, z, sid) from FC(f,g);

If x =⊥ then in steps (4,6) below pick m2
B ,m

3
B at random and in step (5) run Rec$(τ).

(3) run Snd(π, (xA, `A)) in CKEMLA(`A)(pk), let KB be Snd’s output;

(4) set y:=0ny , u:=0, t ← {0, 1}2nvτ ; if z =⊥ then ∀i pick di ← {0, 1}nz+nvτ ; o/w
set t′ ← {0, 1}nvτ and di ← ci ⊕ (z|t′) ∀i; compute ctB and {ksBi , {otrwi }w}i 6∈S as in
step B2, and encrypt them under KB to A with {rgci }i∈S and {gci}i 6∈S from step (1);

(5) run Rec(π, (xB , `B),wB) in CKEMLB(`B)(pk) on inputs set as in ΠCOMP, output K′A;

(6) on m2
A from A, decrypt it as τ |t1|...|tnv using K′A; if τ = F(KB , 1) and t1|...|tnv = t′

then send m3
B = F(KB , 2) ⊕ F(K′A, 1) to A and (Output, sid, B,T) to FC(f,g), and

otherwise send random m3
B in {0, 1}τ to A and (Output, sid, B,F) to FC(f,g).

Fig. 4. Part 1 of simulator A∗, for ΠCOMP sessions with honest party B.

On behalf of honest A, on trapdoor sk and input (InputA, sid, A,B) from FC(f,g):

(1) on m1
B = {cgci, {ckw,bi }w,b}i∈[n] from B, set x:=0nx and ci ← {0, 1}nz+nvτ ∀i,

compute xA:=({ctw}w∈X , {ctwi }i,w∈C), wA and message m1
A as A does in step A1;

(2) run Rec(π, (xA,wA, `A)) in CKEMLA(`A)(pk), let K′B be Rec’s output;

(3) on m2
B from B, decrypt it using K′B to get ctB, {rgci }i∈S , {gci, ksBi , {otrwi }w∈X}i 6∈S ;

decrypt each ctw in ctB using sk to obtain each bit of y, t, u, overwrite y:= ⊥ if any
decryption output is not a bit or u = 0; and send (InputB, A, y, sid) to FC(f,g) and
receive (Output, v, sid) back;

(4) compute (gci, {k
w,b
i }) ← GCgen(f |g; rgci) for i∈S to complete statement xB , and

run Snd(π, (xB , `B)) in CKEMLB(`B)(pk) on xB as in ΠCOMP, let KA be Snd’s output;

(5) if v =⊥ then set release?:=F and set m2
A as a random string, otherwise set

release?:=T and m2
A ← SE0

KA
(F(K′B , 1), t1, ..., tnv) where ti’s encode v received from

FC(f,g) given t decrypted from ctB above; send m2
A to B.

(6) given m3
B , if m3

B 6= F(KB , 2) ⊕ F(K′A, 1) then (re)set release?:=F; send
(Output, sid, A, release?)to FC(f,g).

Fig. 5. Part 2 of simulator A∗, for ΠCOMP sessions with honest party A.

28

3. F. Benhamouda, G. Couteau, D. Pointcheval, and H. Wee. Implicit zero-knowledge
arguments and applications to the malicious setting. In Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II, pages 107–129, 2015.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42Nd IEEE Symposium on Foundations of Com-
puter Science, FOCS ’01, pages 136–, Washington, DC, USA, 2001. IEEE Com-
puter Society.

5. N. Chandran, V. Goyal, R. Ostrovsky, and A. Sahai. Covert multi-party compu-
tation. In FOCS, pages 238–248, 2007.

6. C. Cho, D. Dachman-Soled, and S. Jarecki. Efficient concurrent covert computation
of string equality and set intersection. In Topics in Cryptology - CT-RSA 2016 -
The Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA, USA,
February 29 - March 4, 2016, Proceedings, pages 164–179, 2016.

7. G. Couteau. Revisiting covert multiparty computation. Cryptology ePrint Archive,
Report 2016/951, 2016. http://eprint.iacr.org/2016/951.

8. R. Cramer and V. Shoup. Universal hash proofs and and a paradigm for adaptive
chosen ciphertext secure public-key encryption. Electronic Colloquium on Compu-
tational Complexity (ECCC), 8(072), 2001.

9. G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious trans-
fer and timed-release encryption. In Advances in Cryptology - EUROCRYPT ’99,
International Conference on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 74–89, 1999.

10. V. Goyal and A. Jain. On the round complexity of covert computation. In Pro-
ceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10,
pages 191–200, New York, NY, USA, 2010. ACM.

11. N. J. Hopper, L. von Ahn, and J. Langford. Provably secure steganography. IEEE
Trans. Computers, 58(5):662–676, 2009.

12. Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II, pages 18–35, 2013.

13. S. Jarecki. Practical covert authentication. In H. Krawczyk, editor, Public-Key
Cryptography PKC 2014, volume 8383 of Lecture Notes in Computer Science,
pages 611–629. Springer Berlin Heidelberg, 2014.

14. S. Jarecki. Efficient covert two-party computation. Cryptology ePrint Archive,
Report 2016/1032, 2016. http://eprint.iacr.org/2016/1032.

15. J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated
key exchange. In Y. Ishai, editor, Theory of Cryptography, volume 6597 of Lecture
Notes in Computer Science, pages 293–310. Springer Berlin Heidelberg, 2011.

16. B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure computation with ma-
licious adversaries. In USENIX Security, pages 14–25, 2012.

17. Y. Lindell. Fast cut-and-choose-based protocols for malicious and covert adver-
saries. J. Cryptology, 29(2):456–490, 2016.

18. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In Advances in Cryptology - EURO-
CRYPT’07, pages 52–78, 2007.

19. Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose obliv-
ious transfer. J. Cryptology, 25(4):680–722, Oct. 2012.

29

20. M. Manulis, B. Pinkas, and B. Poettering. Privacy-preserving group discovery with
linear complexity. In Proceedings of the 8th International Conference on Applied
Cryptography and Network Security, ACNS’10, pages 420–437, Berlin, Heidelberg,
2010. Springer-Verlag.

21. P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party compu-
tation. In Public-Key Cryptography PKC 2006, pages 458–473, 2006.

22. M. Naor and B. Pinkas. Computationally secure oblivious transfer. J. Cryptology,
18(1):1–35, 2005.

23. R. Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, USA, June 13-16, 2004, pages 232–241, 2004.

24. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party com-
putation is practical. In Advances in Cryptology - ASIACRYPT, pages 250–267,
2009.

25. M. D. Raimondo and R. Gennaro. Provably secure threshold password-
authenticated key exchange. J. Comput. Syst. Sci., 72(6):978–1001, 2006.

26. A. Shelat and C.-H. Shen. Two-output secure computation with malicious adver-
saries. In Advances in Cryptology - Eurocrypt, pages 386–405, 2011.

27. A. Shelat and C.-H. Shen. Fast two-party secure computation with minimal as-
sumptions. In ACM Conference on Computer and Communications Security -
CCS, pages 523–534, 2013.

28. L. von Ahn, N. Hopper, and J. Langford. Covert two-party computation. In Pro-
ceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’05, pages 513–522, New York, NY, USA, 2005. ACM.

29. A. Yao. How to generate and exchange secrets. In 27th FOCS, pages 162–167,
1986.

30

