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Abstract. Nowadays it is well known that randomness may fail due
to bugs or deliberate randomness subversion. As a result, the security of
traditional public-key encryption (PKE) cannot be guaranteed any more.
Currently there are mainly three approaches dealing with the problem of
randomness failures: deterministic PKE, hedged PKE, and nonce-based
PKE. However, these three approaches only apply to different application
scenarios respectively. Since the situations in practice are dynamic and
very complex, it’s almost impossible to predict the situation in which
a scheme is deployed, and determine which approach should be used
beforehand.

In this paper, we initiate the study of hedged security for nonce-
based PKE, which adaptively applies to the situations whenever random-
ness fails, and achieves the best-possible security. Specifically, we lift the
hedged security to the setting of nonce-based PKE, and formalize the
notion of chosen-ciphertext security against chosen-distribution attacks
(IND-CDA2) for nonce-based PKE. By presenting two counterexamples,
we show a separation between our IND-CDA2 security for nonce-based
PKE and the original NBP1/NBP2 security defined by Bellare and Tack-
mann (EUROCRYPT 2016). We show two nonce-based PKE construc-
tions meeting IND-CDA2, NBP1 and NBP2 security simultaneously. The
first one is a concrete construction in the random oracle model, and the
second one is a generic construction based on a nonce-based PKE scheme
and a deterministic PKE scheme.

Keywords: hedged security, nonce-based public-key encryption, deter-
ministic public-key encryption, randomness failures
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1 Introduction

Background. It is well known that randomness plays a key role in cryp-
tography. For most cryptographic constructions, their security is guaran-
teed on condition that the random coins employed are uniformly and in-
dependently chosen. For example, IND-CCA security [19], one universally
accepted security notion for PKE, requires that the randomness employed
during the encryption is uniformly chosen and independent of any other
elements. However, randomness may fail because of bugs or randomness
subversion. Recently, it is well-known that the randomness failures are
actual threats, and bring new challenges to cryptographic constructions
and information security products.

As far as we know, there are mainly three kinds of PKE which have
been proposed to provide good privacy under randomness failures. The
first one is deterministic PKE (D-PKE) [1, 4, 9], where the encryption
algorithm does not need to use any randomness for encryption, and its
security is guaranteed on condition that the messages have high min-
entropy. D-PKE was proposed to provide fast search on encrypted data
at first. Since the encryption does not use randomness, D-PKE is an
important class of PKE dealing with the subsequently revealed problem
of randomness subversion. The second one is hedged PKE (H-PKE) [2,
5], which can be seen as an extension of D-PKE. For hedged PKE, the
encryption algorithm is randomized, and its security is guaranteed only
if the messages and the randomness jointly have high min-entropy. The
third one is nonce-based PKE (N-PKE) [8], the encryption algorithm of
which is randomized, and the messages can be arbitrarily chosen. For each
encryption, instead of taking fresh randomness, the encryption algorithm
takes a uniform seed, which can be used repeatedly, and a nonce as input.
A significant benefit brought by N-PKE is that it’s not necessary for the
senders to generate fresh, uniform and independent randomness at every
encryption. The security of N-PKE is guaranteed as long as either the
seed is confidential and the message-nonce pairs do not repeat, or the
seed is exposed but the nonces are unpredictable.

The above three approaches focus on different scenarios. D-PKE is
only suitable for the situations that the messages have sufficient min-
entropy. H-PKE applies to the situations that the messages and the ran-
domness have jointly sufficient min-entropy. Generally speaking, both of
these two approaches require that the messages are independent of the
public keys. N-PKE just applies to the case that either the seed or the
nonces can provide sufficient randomness. Besides these three kinds of P-
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KE schemes, currently the most commonly used ones in practice are the
traditional PKE schemes (i.e., the security is guaranteed assuming that
the randomness is good, and the messages can be arbitrarily chosen), such
as RSA [22, 18].

However, unfortunately none of the aforementioned approaches is able
to provide good privacy in all application scenarios. The messages we
want to encrypt regularly do not have sufficient min-entropy [12] and
sometimes may depend on the public key, and the randomness may fail
because of bugs or deliberate randomness subversion [15, 13]. These facts
limit the application of D-PKE and H-PKE. On the other hand, N-PKE
can provide good privacy only if either the seed or the nonces have suffi-
cient min-entropy from the adversaries’ point of view. If one uses N-PKE,
when both the seed and the nonces do not have sufficient min-entropy, the
security of the scheme cannot be guaranteed. These facts limit the appli-
cation of N-PKE. More importantly, it’s almost unrealistic to determine
beforehand which kinds of PKE should be used because the situations in
which the scheme is deployed are dynamic.

Hedged security for nonce-based PKE. In this paper, we formalize
the notions of hedged security for nonce-based PKE, and provide some
constructions. N-PKE schemes achieving our hedged security are able to
adaptively apply to the situations whenever randomness fails, and achieve
the best-possible security. Specifically, we formalize the notion of chosen-
ciphertext security against chosen-distribution attacks (IND-CDA2) for
N-PKE, which can be seen as the CCA-and-N-PKE version of the original
IND-CDA security for PKE formalized in [2]1. This security is guaranteed
on condition that the seeds, the messages and the nonces have jointly
sufficient min-entropy.

We separate our IND-CDA2 security notion and the security notion
proposed in [8] for N-PKE (i.e., NBP1 and NBP2 security), by presenting
two counterexamples. Our counterexamples actually show that even ex-
tending the original IND-CDA security (for H-PKE) to the nonce-based
setting, IND-CDA security is still separated from NBP1/NBP2 security.

Since the original NBP1/NBP2 security and IND-CDA2 security do
not imply each other, when we consider the security of N-PKE, we have
to require that the N-PKE schemes achieve NBP1, NBP2 and IND-CDA2
security simultaneously. For simplicity, we call it HN-IND security.

1 Very recently, Boldyreva, Patton and Shrimpton [10] formalized one CCA version
of IND-CDA security for traditional PKE. There are some differences between their
formalizations and ours. See Remark 2 for details.
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In order to handle the potential problem of randomness failures, we
recommend that one use HN-IND secure N-PKE if possible, and, espe-
cially, employ a combination of a variety of things which do not repeat
(e.g., the current time), and fresh, uniform and independent chosen ran-
domness as nonce at every encryption (and the seed can be reused). The
reasons are as follows. If there are no randomness failures, the N-PKE
schemes meet the universally accepted IND-CCA security. If some ran-
domness failures present, the security which is as good as possible can be
guaranteed. More specifically, if the randomness of the nonces is compro-
mised, as long as the seed is uniformly chosen and confidential and the
message-nonce pairs do not repeat, then NBP1 security guarantees that
the schemes still achieve IND-CCA security. If the seed is exposed, but if
the nonces are still unpredictable, then NBP2 security guarantees IND-
CCA security. For the case that neither the seeds nor the nonces have
sufficient min-entropy, as long as the seed-message-nonce tuples have suf-
ficient min-entropy, and the messages are independent of the public key,
then the N-PKE schemes achieve IND-CDA2 security, which is defined
under chosen-ciphertext attacks and strictly stronger than IND-CDA se-
curity. We also note that for an extreme situation that both the seed
and the nonces are arbitrarily determined by the adversaries, but the
messages still have sufficient min-entropy, then the schemes are actually
D-PKE schemes achieving adaptive IND security (i.e., the adversary is
allowed to access to the encryption oracle adaptively multiple times) in
the CCA setting.

We note that the HN-IND secure N-PKE is able to adaptively handle
the above cases, and achieves IND-CCA security even if there are some
randomness failures. It’s not necessary to decide which kind of PKE (i.e.,
traditional PKE, H-PKE, N-PKE or D-PKE) should be used according
to the specific cases beforehand.

Besides, in the setting of D-PKE, there is another kind of adaptive
security notion proposed by Raghunathan, Segev and Vadhan (RSV) in
[20], where the messages are allowed to depend on the public key, but an
upper bound on the number of the message distributions is required. For
completeness, we also formalize a similar version of IND-CDA2 security
for N-PKE, and call it the RSV version of HN-IND security.

HN-IND secure constructions. In this paper we provide an N-PKE
scheme achieving HN-IND security in the random oracle model (ROM).
Our approach is from the ROM construction of N-PKE in [8]. We notice
that in [8], the nonce-based PKE schemes were constructed with a build-
ing block called hedged extractor. There are two constructions of hedged
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extractor proposed in [8], where the first one is in the ROM, and the
second one is in the standard model. We emphasize that under the se-
curity of hedged extractor, both of the N-PKE schemes based on these
two hedged extractors respectively are not HN-IND secure. The reason
is that the security of hedged extractor is guaranteed only if either the
seed or the nonce has enough min-entropy. Therefore, it seems that all
the generic constructions of N-PKE based on hedged extractors do not
achieve HN-IND security.

We also provide a generic construction of HN-IND secure N-PKE. The
main idea of our scheme is from [16], which is a combination of an N-PKE
scheme and a D-PKE scheme. Our conclusion shows that if the underly-
ing N-PKE scheme is NBP1 and NBP2 secure, and the D-PKE scheme is
adaptively IND secure in the CCA setting and unique-ciphertext secure,
then the construction is HN-IND secure. If both the underlying construc-
tions are built in the standard model, then our construction achieves
HN-IND security in the standard model.

Moreover, we show that both of the constructions achieve the RSV
version of HN-IND security.

Related work. Deterministic PKE was formally introduced by Bellare,
Boldyreva and O’Neill [1] in CRYPTO 2007. A security notion called
PRIV for D-PKE was defined, and some PRIV secure ROM construc-
tions were proposed in [1]. Later, several equivalent security notions were
formalized in [4], including the IND security used in this paper. Some
variants of PRIV/IND security or D-PKE also appeared [9, 11, 17, 20, 5],
and more D-PKE constructions were proposed [14, 6, 5]. Wichs [23] point-
ed out that the fully IND security of D-PKE in the standard model can
not be achieved under any single-stage assumption. Later with the help
of UCE [6], Bellare and Hoang [5] gave the first fully IND secure D-PKE
scheme in the standard model. Selective opening security for D-PKE was
also formalized and achieved in the ROM [3, 16]. We note that the most
commonly used security for D-PKE (i.e., PRIV or IND security) is a
non-adaptive security notion. In other words, in the game defining the
security, the adversary is allowed to make the challenge query only once.

Hedged PKE was introduced by Bellare et al. [2]. In [2], an adaptive
security notion called IND-CDA, which is an extension of IND, is formal-
ized, and a PKE scheme is called H-IND secure if it achieves IND-CPA
and IND-CDA security simultaneously. Very recently, Boldyreva, Patton
and Shrimpton [10] formalized the CCA version of IND-CDA security
(which they named MMR-CCA security) for PKE with associated data.
Both ROM constructions and standard-model constructions achieving ful-
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ly H-IND security (i.e., the message-randomness pairs may be arbitrarily
correlated) have been proposed [2, 5, 10]. The use of H-PKE in practice
was explored in [21, 10].

Nonce-based PKE was introduced by Bellare and Tackmann in [8].
They formalized two security notions called NBP1 and NBP2, and showed
ROM and standard-model constructions achieving both of the two se-
curity. Their constructions are based on a new primitive called hedged
extractor. Nonce-based signatures was also defined and built in [8]. Re-
cently, Hoang, Katz, O’Neill and Zaheri [16] formalized SOA security for
N-PKE, and lifted the security notion to H-PKE. To the best of our
knowledge, it’s the first security notion for hedged N-PKE. But their
security is defined in the SOA setting, and more importantly, it is a non-
adaptive security notion. Furthermore, we note that their security notion
is a comparison-based security (see [4]), and our IND-CDA2 security is an
indistinguishability-based one. Informally, denote by COM-CDA2 securi-
ty the HN-SO-CCA security formalized in [16] with the restriction that
I is empty (i.e., the adversaries do not perform corruptions. We refer
the readers to [16] for the details). Exploring the relations among COM-
CDA2 security and the non-adaptive version of our IND-CDA2 security
is an interesting topic for future research.

2 Preliminaries

Notations and conventions. Vectors are written in boldface, e.g., x.
For a vector x, let |x| denote its length and x[i] denote its ith component
for i ∈ [|x|]. For a finite set X (resp. a string x), let |X| (resp. |x|) denote
its size (resp. length). We extend the set membership notations to vectors.
For any game G presented in this paper, denote by Pr[G] the probability
that the final output of G is 1.

Public-key encryption. A (general) public-key encryption (PKE) scheme
is a tuple of PPT algorithms PKE = (Kg,Enc,Dec). The key generation al-
gorithm Kg, taking 1k as input, generates a public/secret key pair (pk, sk).
The encryption algorithm Enc, taking pk and message m ∈ {0, 1}∗ as
input, outputs a ciphertext c. The deterministic decryption algorithm
Dec, taking sk and c as input, returns a value in {0, 1}∗ ∪ {⊥}. Stan-
dard correctness is required, which means that for any valid message
m ∈ {0, 1}∗, (pk, sk) ← Kg(1k) and c ← Enc(pk,m), Dec(sk, c) = m
with overwhelming probability. For vectors m, r with |m| = |r|, we
denote by Enc(pk,m; r) := (Enc(pk,m[1]; r[1]),Enc(pk,m[2]; r[2]), · · · ,
Enc(pk,m[|m|]; r[|m|])).
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Game Gind-cca
PKE,A (k) ENC(m0,m1) DEC(c)

(pk, sk)← Kg(1k) c← Enc(pk,mb) If c ∈ C, then
b← {0, 1};C ← ∅ C ← C ∪ c Return ⊥
b′ ← AENC,DEC(pk) Return c m← Dec(sk, c)
Return (b′ = b) Return m

Game Gde-ind
DE,A (k) Game Gde-cca

DE,A (k) ENC(M) DEC(c)

(pk, sk)← DKg(1k); b← {0, 1} (pk, sk)← DKg(1k) (m0,m1)←M If c ∈ C, then

M← A1(1
k) b← {0, 1};C ← ∅ c← DEnc(pk,mb) Return ⊥

(m0,m1)←M; c← DEnc(pk,mb) St← AENC
1 (1k) C ← C ∪ c m← DDec(sk, c)

b′ ← A2(pk, c) b′ ← ADEC
2 (pk, St) Return c Return m

Return (b′ = b) Return (b′ = b)

Fig. 1. Games for defining IND-CCA security of a standard PKE scheme PKE, IND
security and adaptively CCA security of a D-PKE scheme DE.

IND-CCA security for PKE is defined by game Gind-cca
PKE,A in Fig. 1. For

any (m0,m1) submitted to the encryption oracle ENC(·) in Gind-cca
PKE,A , we

require that |m0| = |m1|, and for every i ∈ [|m0|], |m0[i]| = |m1[i]|.
PKE is called IND-CCA secure if Advind-cca

PKE,A (k) = 2Pr[Gind-cca
PKE,A (k)]− 1 is

negligible for any PPT adversary A, and called IND-CPA secure if A is
not allowed to access to the decryption oracle DEC(·).

Following [1], the maximum public-key collision probability of PKE is
defined by maxpkPKE(k) = max

ω∈{0,1}∗
Pr[pk = ω : (pk, sk)← Kg(1k)].

PKE secure under randomness failures. Currently, there are main-
ly three approaches to deal with the problems of randomness failures for
PKE: deterministic PKE, hedged PKE, and nonce-based PKE. We recall
their definitions and security notions as follows.

Deterministic PKE. A PKE scheme is called deterministic if the en-
cryption algorithm is deterministic. This notion was formally introduced
by Bellare, Boldyreva, and O’Neill [1]. For a D-PKE scheme DE = (DKg,
DEnc,DDec), IND security [4] is defined by game Gde-ind

DE,A in Fig. 1. An

IND adversary A = (A1, A2) in game Gde-ind
DE,A is called legitimate, if for

any (m0,m1) sampled by M, associated with some polynomial p(·), the
following two conditions hold: (i) |m0| = |m1| = p(k), and for every
i ∈ [p(k)], |m0[i]| = |m1[i]|; (ii) for any b ∈ {0, 1}, mb[1], · · · , mb[p(k)]
are distinct. The guessing probability of A is denoted by GuessA(k),
which returns the maximum of Pr[mb[i] = m] over all b ∈ {0, 1}, al-
l i ∈ [p(k)], all m ∈ {0, 1}∗, and all M submitted by A1, where the
probability is taken over (m0,m1) ←M(1k). The block-source guessing
probability of A is denoted by Guessb-sA (k), which returns the maximum
of Pr[mb[i] = mi | mb[j] = mj , ∀j ∈ [i − 1]] over all b ∈ {0, 1}, all
i ∈ [p(k)], all m1, · · · ,mi ∈ {0, 1}∗, and all M submitted by A1, where
the probability is taken over (m0,m1) ← M(1k). We say that A has
high min-entropy (resp. high block-source min-entropy [9]) if GuessA(k)
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(resp. Guessb-sA (k)) is negligible. Scheme DE is fully IND secure (resp.
block-source IND secure) if Advde-ind

DE,A (k) = 2Pr[Gde-ind
DE,A (k)]− 1 is negligi-

ble for any legitimate PPT adversary A of high min-entropy (resp. high
block-source min-entropy).

We say that a PPT adversary is adaptive if it is allowed to query
the challenge oracle multiple times, and each query may depend on the
replies to the previous queries. IND is a non-adaptive security notion. A
stronger adaptive security notion for D-PKE, adaptively CCA security, is
defined by game Gde-cca

DE,A in Fig. 1. We similarly define adaptively CCA
adversary that is legitimate and has high min-entropy. Scheme DE is fully
adaptively CCA secure if Advde-cca

DE,A (k) = 2Pr[Gde-cca
DE,A (k)]− 1 is negligible

for any legitimate PPT adversary A of high min-entropy. Block-source
adaptively CCA security for D-PKE is similarly defined.

DE is called unique-ciphertext [5], if for any k, any (pk, sk) generated
by DKg, and any message m ∈ {0, 1}∗, there is at most one c ∈ {0, 1}∗
such that DDec(sk, c) = m. Each D-PKE scheme can be efficiently trans-
formed to a unique-ciphertext one [5].

Hedged PKE. In ASIACRYPT 2009, Bellare, et al. [2] introduced the
notion of IND-CDA security, which formalized the security for PKE when
the messages and the randomness jointly have high entropy. A PKE
scheme is called hedged if it achieves both IND-CPA security and IND-
CDA security, which means that it achieves IND-CPA security when the
random coins employed during the encryption are truly random, and
achieves IND-CDA security when bad random coins are employed but
the messages and the random coins jointly have high min-entropy.

For a hedged PKE (H-PKE) scheme HE = (HKg,HEnc,HDec), IND-
CDA security is defined by game Gind-cda

HE,A in Fig. 2. An IND-CDA ad-

versary A = (A1, A2) in game Gind-cda
HE,A is called legitimate, if for any

(m0,m1, r) sampled by M, associated with some polynomial p(·), which
is the message sampler submitted to oracle LR(·) by A1, the follow-
ing two conditions hold: (i) |m0| = |m1| = |r| = p(k), and for every
i ∈ [p(k)], |m0[i]| = |m1[i]|; (ii) for any b ∈ {0, 1}, (mb[1], r[1]), · · · ,
(mb[p(k)], r[p(k)]) are distinct. The guessing probability of A is denoted
by GuessA(k), which returns the maximum of Pr[(mb[i], r[i]) = (m, r)]
over all b ∈ {0, 1}, all i ∈ [p(k)], all m ∈ {0, 1}∗, all r ∈ {0, 1}∗, and all
M submitted by A1, where the probability is taken over (m0,m1, r) ←
M(1k). We say that A has high min-entropy if GuessA(k) is negligible.
Scheme HE is IND-CDA secure if Advind-cda

HE,A (k) = 2Pr[Gind-cda
HE,A (k)]− 1 is

negligible for any legitimate PPT adversary A of high min-entropy. The
notion of block-source IND-CDA security is similarly defined [2].
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Game G
nbp1
NE,NG,A

(k) Game G
nbp2
NE,NG,A

(k) Game Gind-cda
HE,A (k)

(pk, sk)← NKg(1k) (pk, sk)← NKg(1k) (pk, sk)← HKg(1k)

xk ← NSKg(1k) xk ← NSKg(1k) b← {0, 1}
b← {0, 1};St← ε b← {0, 1};St← ε St← ALR

1 (1k)
C,Q0, Q1 ← ∅ C ← ∅ b′ ← A2(pk, St)

b′ ← AENC,DEC(pk) b′ ← AENC,DEC(pk, xk) Return (b′ = b)
Return (b′ = b) Return (b′ = b)

ENC(m0,m1, η) ENC(m0,m1, η) LR(M)

If (|m0| 6= |m1|), then return ⊥ If (|m0| 6= |m1|), then (m0,m1, r)←M(1k)
If ((m0, n) ∈ Q0) or ((m1, n) ∈ Q1), then return ⊥ return ⊥ c← HEnc(pk,mb; r)

(n, St)← NG(1k, η, St); c← NEnc(pk, xk,mb, n) (n, St)← NG(1k, η, St) Return c
Q0 ← Q0 ∪ {(m0, n)}; Q1 ← Q1 ∪ {(m1, n)} c← NEnc(pk, xk,mb, n)
C ← C ∪ {c} C ← C ∪ {c}
Return c Return c

DEC(c) DEC(c)

If c ∈ C, then return ⊥ If c ∈ C, then return ⊥
m← NDec(sk, c) m← NDec(sk, c)
Return m Return m

Fig. 2. Games for defining NBP1, NBP2 security of a N-PKE scheme NE, and IND-
CDA security for a H-PKE scheme HE.

Nonce-based PKE. A nonce-based public-key encryption (N-PKE) scheme
with nonce space NE.NS is a tuple of PPT algorithms NE = (NKg,NSKg,
NEnc,NDec). The key generation algorithm NKg, taking 1k as input, gen-
erates a public/secret key pair (pk, sk). The seed generation algorithm
NSKg taking 1k returns a sender seed xk. Let NE.SD denote the seed
space. We say that NSKg is trivial, if it returns a uniformly chosen xk
from NE.SD = {0, 1}k. The deterministic encryption algorithm NEnc,
taking pk, xk, message m ∈ {0, 1}∗, and nonce n ∈ NE.NS as input,
outputs a ciphertext c. The deterministic decryption algorithm NDec is
the same as that of the traditional PKE schemes, on input sk and c, re-
turns a value in {0, 1}∗ ∪{⊥}. The nonce is not necessary for decryption.
Standard correctness is required, which means that for any valid mes-
sage m ∈ {0, 1}∗, (pk, sk) ← NKg(1k), xk ← NSKg(1k), n ∈ NE.NS and
c← NEnc(pk, xk,m, n), Dec(sk, c) = m with overwhelming probability.

The notion of N-PKE was introduced by Bellare and Tackmann [8]. In
their N-PKE constructions, the nonces are generated by a building block
called nonce generator NG with nonce space NE.NS. A nonce generator
NG is a PPT algorithm taking 1k, a current state St, and a nonce selector
η as input, returns a nonce n ∈ NE.NS and a new state St, i.e., (n, St)←
NG(1k, η, St). Standard security of NG requires that the generated nonces
should be unpredictable and never repeat. We refer the readers to [8, 16]
for the formal definition.

Two kinds of security notions for N-PKE were introduced in [8],
which we recall in Fig. 2. An N-PKE scheme NE, with respect to NG,
is NBP1 (resp. NBP2) secure if Advnbp1

NE,NG,A(k) = 2Pr[Gnbp1
NE,NG,A(k)] − 1

9



(resp. Advnbp2
NE,NG,A(k) = 2Pr[Gnbp2

NE,NG,A(k)]− 1) is negligible for any PPT

adversary A, where game Gnbp1
NE,NG,A (resp. Gnbp2

NE,NG,A) is defined in Fig. 2.
According to [8], NBP1 security is achieved for any nonce generator (even
for predictable nonce generator), as long as the message-nonce pairs do
not repeat; NBP2 security is achieved for any unpredictable nonce gen-
erators.

3 Hedged security for nonce-based public-key encryption

In this section, we introduce hedged security for nonce-based public-key
encryption. We first formalize chosen-ciphertext security against chosen-
distribution attacks (IND-CDA2 security) for N-PKE. Then, we explore
the relations among the security notions of N-PKE. Lastly, we formalize
a special version (the Raghunathan-Segev-Vadhan [20] version) of IND-
CDA2 security for N-PKE.

3.1 Chosen-ciphertext security against chosen-distribution
attacks

Notice that the original message samplers were defined for the general
PKE schemes, which do not sample the seeds and the nonces. Therefore,
we firstly formalize the notion of message samplers for N-PKE as follows.

Definition 1 (Message sampler for N-PKE). A message sampler
M for N-PKE is a PPT algorithm taking 1k as input, and returning
(m0,m1,xk,n)←M(1k).

For any N-PKE scheme NE = (NKg,NSKg,NEnc, NDec) w.r.t. nonce
generator NG, consider game Gind-cda2

NE,A as shown in Fig. 3.

We say that the adversary A = (A1, A2) in game Gind-cda2
NE,A is legiti-

mate, if for any (m0,m1,xk, n) sampled by M which is associated with
some polynomial p(·), the following two conditions hold: (i) |m0| = |m1| =
|xk| = |n| = p(k), and for every i ∈ [p(k)], |m0[i]| = |m1[i]|; (ii) for any
b ∈ {0, 1}, (xk[1],mb[1],n[1]), · · · , (xk[p(k)],mb[p(k)], n[p(k)]) are dis-
tinct.

Similarly, the guessing probability of A is denoted by GuessA(k),
which returns the maximum of Pr[(xk[i],mb[i],n[i]) = (xk,m, n)] over
all b ∈ {0, 1}, all i ∈ [p(k)], all xk ∈ {0, 1}∗, all m ∈ {0, 1}∗, al-
l n ∈ {0, 1}∗, and all M submitted by A1, where the probability is
taken over (m0,m1,xk,n) ← M(1k). The block-source guessing prob-
ability of A is denoted by Guessb-sA (k), which returns the maximum of

10



Game Gind-cda2
NE,A (k) LR(M) DEC(c)

(pk, sk)← NKg(1k) (m0,m1,xk,n)←M(1k) If c ∈ C, then return ⊥
b← {0, 1};C ← ∅ c← NEnc(pk,xk,mb,n) m← NDec(sk, c)

St← ALR
1 (1k) C ← C ∪ c Return m

b′ ← ADEC
2 (pk, St) Return c

Return (b′ = b)

Fig. 3. Game for defining IND-CDA2 security of a N-PKE scheme NE
.

Pr[(xk[i],mb[i],n[i]) = (xk,m, n) | (xk[j],mb[j],n[j]) = (xkj ,mj , nj),
∀j ∈ [i − 1]] over all b ∈ {0, 1}, all i ∈ [p(k)], all xk1, · · · , xki ∈ {0, 1}∗,
all m1, · · · ,mi ∈ {0, 1}∗, all n1, · · · , ni ∈ {0, 1}∗, and all M submitted
by A1, where the probability is taken over (m0,m1,xk,n)←M(1k). We
say that the IND-CDA2 adversary A has high min-entropy (resp. high
block-source min-entropy) if GuessA(k) (resp. Guessb-sA (k)) is negligible.

Definition 2 (IND-CDA2). An N-PKE scheme NE = (NKg,NSKg,
NEnc,NDec), with respect to nonce generator NG, is IND-CDA2 secure
(resp. block-source IND-CDA2 secure), if for any legitimate PPT adver-
sary A = (A1, A2) having high min-entropy (resp. high block-source min-
entropy), its advantage Advind-cda2

NE,A (k) = 2Pr[Gind-cda2
NE,A (k)]− 1 is negligi-

ble, where game Gind-cda2
NE,A is defined in Fig. 3.

Remark 1 Note that if the adversary A is not allowed to access to the
decryption oralce DEC(·), then we call the defining security notion “IND-
CDA security in the nonce-based setting”. Note that in [2] the notion of
“IND-CDA security” was defined for the general PKE schemes, not for
N-PKE. For simplicity, in this paper we abuse the notation, still using
“IND-CDA security” when we refer to “IND-CDA security in the nonce-
based setting”.

Remark 2 Recently, Boldyreva et al. [10] formalized the CCA version
of IND-CDA security for PKE, and called it MMR-CCA security. The
notion of MMR-CCA security is defined for PKE with associated data,
and in the experiment defining MMR-CCA security, the adversary is al-
lowed to access to the decryption oracle before seeing the public key. Our
IND-CDA2 security is formalized for N-PKE (without associated data),
and the adversary is not allowed to access to the decryption oracle until
it receives the public key. If the lengths of the seed and the nonce are
both restricted to be 0, our security will naturally become adaptive CCA
security for D-PKE.
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NKg′(1k) NSKg′(1k) NEnc′(pk, xk,m, n) NDec′(sk, c′)

(pk, sk)← NKg(1k) xk ← NSKg(1k) If xk = 0k, then Parse c′ = (c||b)
Return (pk, sk) Return xk c← m, c′ ← (c||0) If b = 0, then m← c

Else, Else, m← NDec(sk, c)

c← NEnc(pk, xk,m, n) Return m

c′ ← (c||1)
Return c′

NKg′′(1k) NSKg′′(1k) NEnc′′(pk, xk,m, n) NDec′′(sk, c′′)

(pk, sk)← NKg(1k) xk ← NSKg(1k) If m = pk, then Parse c′′ = (c||b)
Return (pk, sk) Return xk c← m, c′′ ← (c||0) If b = 0, then m← c

Else, Else, m← NDec(sk, c)

c← NEnc(pk, xk,m, n) Return m

c′′ ← (c||1)
Return c′′

Fig. 4. Counterexamples NE′ = (NKg′,NSKg′,NEnc′,NDec′) and NE′′ =
(NKg′′,NSKg′′,NEnc′′,NDec′′).

3.2 Separations between NBP1/NBP2 security and
IND-CDA2 security

We now show that NBP1/NBP2 security and IND-CDA2 security do not
imply each other. Our separation results are based on the following obser-
vations. In the game defining IND-CDA2 security, (i) the sender seed xk
is specified by the adversary through the generated message sampler M,
instead of being generated by NSKg in the game defining NBP1/NBP2
security; (ii) the challenge messages are independent of the public key,
instead of being chosen by the adversary after seeing the public key in
the game defining NBP1/NBP2 security.

NBP1/NBP2 ; IND-CDA2. Actually, we provide a stronger con-
clusion here “NBP1/NBP2 ; IND-CDA”. For an NBP1/NBP2 secure
N-PKE scheme NE = (NKg,NSKg,NEnc,NDec) w.r.t. a nonce gener-
ator NG, where NSKg is trivial, we construct a new N-PKE scheme
NE′ = (NKg′,NSKg′,NEnc′,NDec′), w.r.t. the same NG, as shown in Fig.
4.

Since NSKg is trivial, we have that xk ← {0, 1}k. As a result, the
probability that xk = 0k is negligible. Therefore, NBP1/NBP2 security
of NE′ is guaranteed by NBP1/NBP2 security of NE.

Now we show an adversary A = (A1, A2) attacking NE′ in the sense
of IND-CDA. For simplicity, we assume that the message space is {0, 1}k.
A1 makes an LR(·) query by submitting a message sampler M (with
p(k) = 1), which is defined as follows:

1. Set xk = 0k.
2. For any b ∈ {0, 1}, choose mb uniformly random from {0, 1}k, condi-

tioned on that the last bit of mb is b.
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3. Choose n uniformly random from nonce space NE.NS.

Note that n is uniformly chosen from NE.NS, and m0,m1 are both uni-
formly chosen from {0, 1}k−1. So adversary A is legitimate and has high
min-entropy. After receiving the ciphertext c′ = (c||0) from LR(·), A re-
turns the last bit of c as its final output. The advantage of A is obviously 1.

IND-CDA2 ; NBP1/NBP2. Assuming that there is an N-PKE scheme
NE = (NKg,NSKg, NEnc,NDec), w.r.t. a nonce generator NG, achiev-
ing IND-CDA2 security and having negligible maximum public-key col-
lision probability maxpkNE. Note that the requirement that maxpkNE is
negligible is very mild, since any IND-CPA secure PKE has negligible
maxpkNE [1]. Based on NE, we present a new N-PKE scheme NE′′ =
(NKg′′,NSKg′′,NEnc′′,NDec′′), w.r.t. the same NG, as shown in Fig. 4.

For any IND-CDA2 adversary A = (A1, A2), A does not receive pk
until it finishes the process of LR(·) query. The negligible maxpkNE guar-
antees that

max
i∈[|m0|]

Pr[(m0[i] = pk) ∨ (m1[i] = pk) :M is generated byALR
1 ,

(m0,m1,xk,n)←M(1k)]

is negligible, where the probability is taken over ALR
1 and (m0,m1,xk,n)

←M(1k). Therefore, NE′′ is IND-CDA2 secure.
Note that in the game defining NBP1/NBP2 security, the adversary

generates the challenge messages (m0,m1) after seeing the public key. So
we construct a NBP1/NBP2 adversary A as follows. Upon receiving pk,
A sets m0 = pk, and chooses an arbitrary distinct m1 from the message
space such that |m1| = |m0|, and an arbitrary valid nonce selector η. Then
A submits the generated (m0,m1, η) to the encryption oracle ENC(·).
After receiving the ciphertext c′′ = (c||b), A returns b as its final output.
The advantage of A is obviously 1.

Formally, we have the following theorem.

Theorem 1. NBP1/NBP2 security and IND-CDA2 security do not im-
ply each other.

Remark 3 The aforementioned NBP1/NBP2 adversary attacking NE′′

does not make any decryption query. So we actually proved that IND-
CDA2 security does not imply the CPA version of NBP1/NBP2 security.
Therefore, our results also show the separations between NBP1/NBP2
security and IND-CDA security.
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3.3 The RSV version of IND-CDA2 security

In EUROCRYPT 2013, Raghunathan, Segev and Vadhan [20] formal-
ized another security notion for D-PKE, ACD-CPA/CCA security, which
allows the adversaries to adaptively choose message distributions after
seeing the public key, with the following two restrictions: (1) the adver-
saries have high min-entropy; (2) for each adversary, there is an upper
bound on the number of the message distributions from which the ad-
versary is allowed to adaptively choose. The upper bound is 2p(k) where
p(·) is any a-priori fixed polynomial. Raghunathan et al. [20] proposed
a D-PKE scheme achieving ACD-CCA security in the standard model,
based on a primitive called R-lossy trapdoor function.

Considering that this is an important optional security notion for D-
PKE, and as far as we know, ACD-CCA is neither weaker nor stronger
than adaptive CCA security, we formalize a similar version of IND-CDA2
security here, which we call the RSV version of IND-CDA2 security
(RIND-CDA2).

Definition 3 (RSV message sampler for N-PKE). An RSV mes-
sage sampler M for N-PKE is a PPT algorithm taking 1k as input, and
returning (m,xk,n)←M(1k).

Definition 4 (Uniform message sampler with respect toM). For
an RSV message samplerM for N-PKE, a PPT algorithm U is a uniform
message sampler with respect toM if for any message vector sampled by
M (i.e., (m,xk,n)←M(1k)), mu ← U(M,m) is uniformly distributed
over the same message space specified by M, such that |mu| = |m| and
|mu[i]| = |m[i]| for any i ∈ [|m|].

For any N-PKE scheme NE = (NKg,NSKg,NEnc, NDec) w.r.t. nonce
generator NG, consider game Grind-cda2

NE,A as shown in Fig. 5.

The adversary A in game Grind-cda2
NE,A is legitimate, if for any (m,xk,n)

sampled by M which is associated with some polynomial p(·), the fol-
lowing two conditions hold: (i) |m| = |xk| = |n| = p(k); (ii) (m[1],xk[1],
n[1]), · · · , (m[p(k)],xk[p(k)],n[p(k)]) are distinct.

Similar to that of Section 3.1, we have the guessing probabilities
GuessA(k) and Guessb-sA (k). We say that the RIND-CDA2 adversary A
has high min-entropy (resp. high block-source min-entropy) if GuessA(k)
(resp. Guessb-sA (k)) is negligible.

For any given polynomial p(·), we have the following definition.

Definition 5 (2p(k)-bounded adversary). For any PPT legitimate ad-
versary A having high min-entropy (resp. high block-source min-entropy)
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Game Grind-cda2
NE,A (k) RoR(M) DEC(c)

(pk, sk)← NKg(1k) (m,xk,n)←M(1k) If c ∈ C, then return ⊥
b← {0, 1}; C ← ∅ m1 ← m; m0 ← U(M,m) m← NDec(sk, c)

b′ ← ARoR,DEC(pk) c← NEnc(pk,xk,mb,n) Return m
Return (b′ = b) C ← C ∪ c

Return c

Fig. 5. Game for defining RIND-CDA2 security of a N-PKE scheme NE, where U is
defined in Definition 4.

in game Grind-cda2
NE,A , let Smg be the set of message samplers which A may

submit to the RoR oracle as a query with non-zero probability. A is a
2p(k)-bounded (resp. 2p(k)-bounded block-source) adversary if for every
k ∈ N, |Smg| ≤ 2p(k).

Definition 6 (RIND-CDA2). An N-PKE scheme NE, w.r.t. nonce gen-
erator NG, is RIND-CDA2 secure (resp. block-source RIND-CDA2 se-
cure), if for any 2p(k)-bounded (resp. 2p(k)-bounded block-source) adver-
sary A, its advantage Advrind-cda2

NE,A (k) = 2Pr[Grind-cda2
NE,A (k)]−1 is negligible,

where game Grind-cda2
NE,A is defined in Fig. 5.

4 Construction of H-PKE in the random oracle model

In EUROCRYPT 2016, Bellare and Tackmann [8] proposed an NBP1/
NBP2 secure N-PKE scheme in the random oracle model. Their construc-
tion is based on a building block which they introduced and called hedged
extractor.

In this section, we show that the Bellare-Tackmann ROM construction
actually achieves HN-IND security. But we note that this construction
cannot be generalized to the schemes based on hedged extractors like [8,
Figure 6].

Firstly, we recall the N-PKE scheme RtP [8], w.r.t. a nonce generator
NG, as follows. Let PKE = (Kg,Enc,Dec) be a traditional probabilistic
PKE scheme with message space MSP and randomness space REnc, and
RO : {0, 1}∗ → REnc be a random oracle. The N-PKE scheme RtP is
presented in Fig. 6.

Now we turn to the security. It has been proved in [8] that RtP is
NBP1/NBP2 secure. So what remains is to prove its IND-CDA2 security.
Formally, we have the following theorem.

Theorem 2. If PKE is a traditional IND-CCA secure PKE scheme, then
N-PKE scheme RtP, w.r.t. a nonce generator NG, is IND-CDA2 secure
in the random oracle model.
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RKg(1k) RSKg(1k) REnc(pk, xk,m, n) RDec(sk, c)

(pk, sk)← Kg(1k) xk ← NE.SD r ← RO(xk,m, n) m← Dec(sk, c)
Return (pk, sk) Return xk c← Enc(pk,m; r) Return m

Return c

Fig. 6. N-PKE scheme RtP = (RKg,RSKg,REnc,RDec) .

Proof. For any legitimate PPT IND-CDA2 adversary A having high min-
entropy, let qr(k) (resp. ql(k)) denote the number of random-oracle queries
(resp. LR queries) of A.

Consider a sequence of games G0 −G6 in Fig. 7 and Fig. 8. In each
game, there is a random oracle RO which maintains a local array H as
shown in Fig. 7. Denote by ROA the random-oracle interface of A. Note
that in games G4 and G5, the oracle answers of ROA and the answers
given to the LR oracle in reply to its RO queries are independent, so we
introduce another local array HA for ROA. In game G6, the LR oracle
does not access to RO, so we omit the procedure “On query RO” in Fig.
8. For convenience, the RO queries made by A through ROA is called ROA

queries in this proof. Without loss of generality, we assume that in each
game, A does not repeat any ROA queries.

Now we explain the sequence of games.
Game G0 implements game Gind-cda2

RtP,A . So we have

Advind-cda2
RtP,A (k) = 2Pr[G0(k)]− 1. (1)

In game G1, we introduces two sets T1 and T2. T1 denotes the set of
RO queries made by A (i.e., ROA queries), and T2 denotes the set of RO
queries made by the LR oracle. The changes made in G1 does not affect
the final output. Therefore,

Pr[G1(k)] = Pr[G0(k)]. (2)

Games G2 and G1 are identical-until-bad1. Denote by Pr[bad1] the
probability that G2 sets bad1. According to the fundamental lemma of
game-playing [7], we have that |Pr[G2(k)]− Pr[G1(k)]| ≤ Pr[bad1].

Let M′, associated with some polynomial p(·), denote the message
sampler leading to bad1. Game G2 sets bad1 only if A has made some ROA

query (xk′,m′, n′) beforehand, such that for theM′ and (m0,m1,xk,n)←
M′, there are some b ∈ {0, 1} and some i ∈ [|n|] satisfying (xk[i],mb[i],n[i]) =
(xk′,m′, n′). SinceA has high min-entropy, for any ROA query (xk′,m′, n′),
we have that for any M′, any b ∈ {0, 1}, and any i ∈ [|p(k)|],

Pr[(xk[i],mb[i],n[i]) = (xk′,m′, n′) : (m0,m1,xk,n)←M′] ≤ GuessA(k).
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Games G0, G1 −G3, G2 −G3, G3 Games G4, G5

(pk, sk)← Kg(1k) ; b← {0, 1}; C ← ∅; T1, T2 ← ∅ (pk, sk)← Kg(1k) ; b← {0, 1}; C ← ∅; T1, T2 ← ∅
St← A

ROA,LR
1 (1k); b′ ← A

ROA,DEC
2 (pk, St) St← A

ROA,LR
1 (1k); b′ ← A

ROA,DEC
2 (pk, St)

Return (b′ = b) Return (b′ = b)

On query ROA(xk′,m′, n′): On query ROA(xk′,m′, n′):

T1 ← T1 ∪ {(xk′,m′, n′)} T1 ← T1 ∪ {(xk′,m′, n′)}
If (xk′,m′, n′) ∈ T2, then

bad2 ← true; H[xk′,m′, n′]← REnc

If HA[xk′,m′, n′] = ⊥, then

HA[xk′,m′, n′]← REnc

Return RO(xk′,m′, n′) Return HA[xk′,m′, n′]

On query LR(M): On query LR(M):

(m0,m1,xk,n)←M(1k) (m0,m1,xk,n)←M(1k)

For i ∈ [|n|], then For i ∈ [|n|], then

T2 ← T2 ∪ {(xk[i],mb[i],n[i])} T2 ← T2 ∪ {(xk[i],mb[i],n[i])}

If (xk[i],mb[i],n[i]) ∈ T1, then

bad1 ← true; H[xk[i],mb[i],n[i]]← REnc

r[i]← RO(xk[i],mb[i],n[i])

c[i]← Enc(pk,mb[i]; r[i])

r[i]← RO(xk[i],mb[i],n[i]) C ← C ∪ c

c[i]← Enc(pk,mb[i]; r[i]) Return c

C ← C ∪ c

Return c On query DEC(c′):
If c′ ∈ C, then return ⊥

On query DEC(c′): m′ ← Dec(sk, c′)
If c′ ∈ C, then return ⊥ Return m′

m′ ← Dec(sk, c′)
Return m′ On query RO(xk′,m′, n′):

If H[xk′,m′, n′] = ⊥, then

On query RO(xk′,m′, n′): H[xk′,m′, n′]← REnc

If H[xk′,m′, n′] = ⊥, then H[xk′,m′, n′]← REnc

Return H[xk′,m′, n′]

If H[xk′,m′, n′] 6= ⊥, then

bad3 ← true; H[xk′,m′, n′]← REnc

Return H[xk′,m′, n′]

Fig. 7. Games G0−G5 in the proof of Theorem 2. Boxed code is only executed in the
games specified by the game names in the same box style.

In other words, for any ROA query (xk′,m′, n′),

max
M′,b,i

Pr[(xk[i],mb[i],n[i]) = (xk′,m′, n′) : (m0,m1,xk,n)←M′]

≤ GuessA(k).

Notice that A makes totally qr(k) random-oracle queries and ql(k) LR
queries. So we have Pr[bad1] ≤ 2qr(k)ql(k)p(k)GuessA(k). Therefore,

|Pr[G2(k)]− Pr[G1(k)]| ≤ Pr[bad1] ≤ 2qr(k)ql(k)p(k)GuessA(k). (3)

Games G3 and G2 are identical-until-bad2. G3 sets bad2 only if the
current ROA query (xk′,m′, n′) has been queried by the LR oracle previ-
ously. In game G3, if bad2 is set, then the H[xk′,m′, n′] is overwritten with
a random element from REnc. Denote by Pr[bad2] the probability that G3

sets bad2. Then, we have that |Pr[G3(k)]− Pr[G2(k)]| ≤ Pr[bad2]. In or-
der to bound Pr[bad2], we present the following lemma and postpone its
proof.
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Game G6 Adv BENCB,DECB (pk)

(pk, sk)← Kg(1k) ; b← {0, 1}; C ← ∅ St← A
ROA,LR
1 (1k)

St← A
ROA,LR
1 (1k); b′ ← A

ROA,DEC
2 (pk, St) b′ ← A

ROA,DEC
2 (pk, St)

Return (b′ = b) Return b′

On query ROA(xk′,m′, n′): On query ROA(xk′,m′, n′):

If HA[xk′,m′, n′] = ⊥, then If HA[xk′,m′, n′] = ⊥, then

HA[xk′,m′, n′]← REnc HA[xk′,m′, n′]← REnc

Return HA[xk′,m′, n′] Return HA[xk′,m′, n′]

On query LR(M): On query LR(M):

(m0,m1,xk,n)←M(1k) (m0,m1,xk,n)←M(1k)

For i ∈ [|n|], then c← ENCB(m0,m1)

r[i]← REnc Return c

c[i]← Enc(pk,mb[i]; r[i])

C ← C ∪ c On query DEC(c′):

Return c m′ ← DECB(c′)
Return m′

On query DEC(c′):
If c′ ∈ C, then return ⊥
m′ ← Dec(sk, c′)
Return m′

Fig. 8. Game G6 (left) and adversary B (right) in the proof of Theorem 2. Note that
in this paper we extend the set membership notations to vectors, writing X ∪ x to
mean X ∪ {x[i]|i ∈ [|x|]}.

Lemma 1. There is an IND-CCA adversary Bupr attacking PKE with
advantage Advind-cca

PKE,Bupr(k), such that

Pr[bad2] ≤ 2Advind-cca
PKE,Bupr(k)+(qr(k)+

ql(k)p(k)− 1

2
)ql(k)p(k)GuessA(k).

It follows that

|Pr[G3(k)]− Pr[G2(k)]|

≤ 2Advind-cca
PKE,Bupr(k) + (qr(k) +

ql(k)p(k)− 1

2
)ql(k)p(k)GuessA(k). (4)

Note that in game G3, the oracle answers of ROA and the answers giv-
en to the LR oracle in reply to its RO queries are independent. Therefore,
game G4 is a simplified version of G3, which implies that

Pr[G4(k)] = Pr[G3(k)]. (5)

Games G5 and G4 are identical-until-bad3. Similarly, denote by Pr[bad3]
the probability that G5 sets bad3. We have that |Pr[G5(k)]−Pr[G4(k)]| ≤
Pr[bad3]. G5 sets bad3 only if there is some tuple (xk′,m′, n′) which has
been queried by the LR oracle at least twice. Since A has high min-
entropy, for any (xk′,m′, n′) ∈ T2, any M queried by A, any b ∈ {0, 1},
and any i ∈ [p(k)], Pr[(xk[i],mb[i],n[i]) = (xk′,m′, n′) : (m0,m1,xk,n)
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← M] ≤ GuessA(k) is negligible. Notice that A makes totally ql(k) LR
queries, and for each LR queryM, the LR oracle makes p(k) RO queries,

so we derive that Pr[bad3] ≤ ql(k)p(k)(ql(k)p(k)−1)
2 GuessA(k). Therefore,

|Pr[G5(k)]− Pr[G4(k)]| ≤ ql(k)p(k)(ql(k)p(k)− 1)

2
GuessA(k). (6)

Note that in game G5, both T1 and T2 are useless, and the vector
r generated by the LR oracle is truly random from A’s point of view.
Therefore, game G6 is a simplified version of G5, which implies that

Pr[G6(k)] = Pr[G5(k)]. (7)

Next, we construt an IND-CCA adversary B attacking PKE as shown
in Fig. 8. In order to distinguish B’s own decryption oracle (in the sense
of IND-CCA) and A’s decryption oracle (in the sense of IND-CDA2), we
denote by DECB (resp. ENCB) B’s decryption (resp. encryption) oracle.
B uses ENCB to answer A’s LR queries, and uses DECB to answer A’s
decryption queries. B perfectly simulates game G6 for A, and that B wins
game Gind-cca

PKE,B if and only if A wins game G6. Hence,

Pr[Gind-cca
PKE,B (k)] = Pr[G6(k)]. (8)

Combining equations (1)-(8), we derive that

Advind-cda2
RtP,A (k) ≤Advind-cca

PKE,B (k) + 4Advind-cca
PKE,Bupr(k)

+ (6qr(k) + 2ql(k)p(k)− 2)ql(k)p(k)GuessA(k).

Now, we catch up with the proof of Lemma 1.

Proof (of Lemma 1). We say that “G4 sets bad2” (resp. “G5 sets bad2”)
if A submits an ROA query (xk′,m′, n′), such that (xk′,m′, n′) ∈ T2, in
G4 (resp. G5).

Since G4 is a simplified version of G3, and G5 and G4 are identical-
until-bad3,

Pr[bad2] = Pr[G4 sets bad2] ≤ Pr[G5 sets bad2] + Pr[bad3]

≤ Pr[G5 sets bad2] +
ql(k)p(k)(ql(k)p(k)− 1)

2
GuessA(k). (9)

To bound Pr[G5 sets bad2], we consider an IND-CCA adversary Bupr
as shown in Fig. 9. Similarly, denote by ENCBupr (resp. DECBupr) Bupr’s

encryption (resp. decryption) oracle in the sense of IND-CCA. Let b̃ be the
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Adversary B
ENCBupr

,DECBupr
upr (pk) Game Gsim

Bupr,A

a, b∗ ← {0, 1}; T1, T2 ← ∅ a, b∗ ← {0, 1}; C, T1, T2 ← ∅; b̃← {0, 1}
St← A

ROA,LR
1 (1k); b′ ← A

ROA,DEC
2 (pk, St) St← A

ROA,LR
1 (1k); b′ ← A

ROA,DEC
2 (pk, St)

Return b∗ Return b∗

On query ROA(xk′,m′, n′): On query ROA(xk′,m′, n′):
T1 ← T1 ∪ {(xk′,m′, n′)} T1 ← T1 ∪ {(xk′,m′, n′)}
If (xk′,m′, n′) ∈ T2, then If (xk′,m′, n′) ∈ T2, then

b∗ ← a bad2 ← true; b∗ ← a
If HA[xk′,m′, n′] = ⊥, then If HA[xk′,m′, n′] = ⊥, then

HA[xk′,m′, n′]← REnc HA[xk′,m′, n′]← REnc
Return HA[xk′,m′, n′] Return HA[xk′,m′, n′]

On query LR(M): On query LR(M):

(m0,m1,xk,n)←M(1k) (m0,m1,xk,n)←M(1k)

mch
a ← ma mch

a ← ma

mch
1−a ← MSP|n| mch

1−a ← MSP|n|

For i ∈ [|n|], For i ∈ [|n|],
T2 ← T2 ∪ {(xk[i],ma[i],n[i])} T2 ← T2 ∪ {(xk[i],ma[i],n[i])}

c← ENCBupr (mch
0 ,m

ch
1 ) r[i]← REnc

Return c c[i]← Enc(pk,mch
b̃
[i]; r[i])

C ← C ∪ c
On query DEC(c′): Return c

m′ ← DECBupr (c′)

Return m′ On query DEC(c′):
If c′ ∈ C, then return ⊥
m′ ← Dec(sk, c′)
Return m′

Fig. 9. Adversary Bupr (left) and game Gsim
Bupr,A (right) in the proof of Lemma 1.

challenge bit in game Gind-cca
PKE,Bupr . Denote by Gsim

Bupr,A the game simulated
by Bupr for A (as shown in Fig. 9). Bupr’s advantage is as follows.

Advind-cca
PKE,Bupr(k) = 2Pr[Gind-cca

PKE,Bupr(k)]− 1 = 2Pr[b∗ = b̃]− 1 (10)

= 2(Pr[b∗ = b̃ | b̃ = a]Pr[̃b = a] + Pr[b∗ = b̃ | b̃ 6= a]Pr[̃b 6= a])− 1 (11)

= Pr[b∗ = b̃ | b̃ = a] + Pr[b∗ = b̃ | b̃ 6= a]− 1 (12)

Equations (10)-(11) are trivial. Since a is uniformly random chosen from
{0, 1}, Pr[̃b = a] = Pr[̃b 6= a] = 1

2 . This justifies Equation (12).

For Pr[b∗ = b̃ | b̃ = a], we have the following equations.

Pr[b∗ = b̃ | b̃ = a]

=Pr[b∗ = b̃ | (̃b = a) ∧ (Gsim
Bupr,A sets bad2)]Pr[Gsim

Bupr,A sets bad2 | b̃ = a]

+ Pr[b∗ = b̃ | (̃b = a) ∧ ¬(Gsim
Bupr,A sets bad2)]

· Pr[¬(Gsim
Bupr,A sets bad2) | b̃ = a] (13)
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=Pr[G5 sets bad2] +
1

2
Pr[¬(G5 sets bad2)] (14)

=
1

2
Pr[G5 sets bad2] +

1

2
. (15)

Equation (13) is trivial. We notice that when b̃ = a, the simulated
game Gsim

Bupr,A is the same as G5 from A’s point of view, so we have

Pr[Gsim
Bupr,A sets bad2 | b̃ = a] = Pr[G5 sets bad2]. We also note that

if Gsim
Bupr,A sets bad2, then Bupr outputs b∗ = a, otherwise Bupr outputs

b∗ ← {0, 1}. Therefore, Pr[b∗ = b̃ | (̃b = a)∧ (Gsim
Bupr,A sets bad2)] = 1 and

Pr[b∗ = b̃ | (̃b = a) ∧ ¬(Gsim
Bupr,A sets bad2)] = 1

2 . This justifies Equation
(14). Equation (15) is because Pr[¬(G5 sets bad2)] = 1−Pr[G5 sets bad2].

With similar analysis, for Pr[b∗ = b̃ | b̃ 6= a], we have the following
equations.

Pr[b∗ = b̃ | b̃ 6= a]

= Pr[b∗ = b̃ | (̃b 6= a) ∧ (Gsim
Bupr,A sets bad2)]Pr[Gsim

Bupr,A sets bad2 | b̃ 6= a]

+ Pr[b∗ = b̃ | (̃b 6= a) ∧ ¬(Gsim
Bupr,A sets bad2)]

· Pr[¬(Gsim
Bupr,A sets bad2) | b̃ 6= a] (16)

= 0 +
1

2
Pr[¬(Gsim

Bupr,A sets bad2) | b̃ 6= a] (17)

=
1

2
(1− Pr[Gsim

Bupr,A sets bad2 | b̃ 6= a]) (18)

≥ 1

2
(1− ql(k)qr(k)p(k)GuessA(k)). (19)

Equation (16) is trivial. Bupr outputs b∗ = a when Gsim
Bupr,A sets bad2, so

we have that Pr[b∗ = b̃ | (̃b 6= a) ∧ (Gsim
Bupr,A sets bad2)] = 0. Considering

that Bupr outputs b∗ ← {0, 1} when Gsim
Bupr,A does not set bad2, so we

have Pr[b∗ = b̃ | (̃b 6= a) ∧ ¬(Gsim
Bupr,A sets bad2)] = 1

2 . We have justified

Equation (17). Equation (18) is because Pr[¬(Gsim
Bupr,A sets bad2) | b̃ 6=

a] = 1 − Pr[Gsim
Bupr,A sets bad2 | b̃ 6= a]. Notice that b̃ 6= a implies b̃ =

1− a, i.e., the challenge ciphertext vectors A received are the encryption
of some uniformly random chosen message vectors. Thus the challenge
ciphertext vectors do not contain any information about any ma. Besides,
in the simulated game Gsim

Bupr,A, the answers (of ROA, the LR oracle,
and the decryption oracle) given to A do not contain any information
about the xk and n sampled by the LR oracle. Therefore, for any tuple
(m0,m1,xk,n) ← M sampled by the LR oracle in game Gsim

Bupr,A, A
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has no additional information about any element of {(xk[i],mb[i],n[i]) |
i ∈ [p(k)], b ∈ {0, 1}}. Recall that Gsim

Bupr,A sets bad2 only if A succeeds
in guessing some element in {(xk[i],ma[i],n[i]) | i ∈ [p(k)]} for some
(m0,m1,xk,n) ← M sampled by the LR oracle and the a sampled by
Bupr. Notice that the total number of random-oracle (resp. LR-oracle)
queries of A is qr(k) (resp. ql(k)). So we derive that Pr[Gsim

Bupr,A sets bad2 |
b̃ 6= a] ≤ ql(k)qr(k)p(k)GuessA(k). We have justified Equation (19).

Combining Equations (12), (15) and (19), we derive that

Advind-cca
PKE,Bupr(k) ≥ 1

2
(Pr[G5 sets bad2]−ql(k)qr(k)p(k)GuessA(k)). (20)

Hence,

Pr[G5 sets bad2] ≤ 2Advind-cca
PKE,Bupr(k)+ql(k)qr(k)p(k)GuessA(k). (21)

Combining Equations (9) and (21), we obtain that

Pr[bad2] ≤ 2Advind-cca
PKE,Bupr(k) + (qr(k) +

ql(k)p(k)− 1

2
)ql(k)p(k)GuessA(k).

ut

Remark 4 The N-PKE scheme RtP is a special case of the ROM scheme
NPE in [8, Figure 6], but it seems that the original, generic ROM scheme
NPE proposed in [8, Figure 6] does not achieve IND-CDA2 security. The
reason is as follows. In [8], the security of NPE is guaranteed by the IND-
CCA security of the traditional PKE scheme, and the prf security and
the ror security (defined in [8]) of their proposed building block, hedged
extractor. The prf security focuses on the case that the seeds are random
and confidential, and the ror security focuses on the case that the nonces
are unpredictable. In other words, the security of hedged extractor just
considers the case that either the seeds or the nonces have high entropy.
And the IND-CDA2 security of N-PKE should be guaranteed as long as
the seeds, messages and nonces jointly have high min-entropy.

With respect to RIND-CDA2 security, with similar technique we have
the following corollary.

Corollary 1. If PKE is a traditional IND-CCA secure PKE scheme, then
N-PKE scheme RtP, w.r.t. a nonce generator NG, is RIND-CDA2 secure
in the random oracle model.
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NDKg(1k) NDSKg(1k) NDEnc(pk, xk,m, n) NDDec(sk, c)

(pkn, skn)← NKg(1k) xk ← NSKg(1k) Parse pk = (pkn, pkd) Parse sk = (skn, skd)

(pkd, skd)← DKg(1k) Return xk y ← NEnc(pkn, xk,m, n) y ← DDec(skd, c)
pk ← (pkn, pkd) c← DEnc(pkd, y) m← NDec(skn, y)
sk ← (skn, skd) Return c Return m
Return (pk, sk)

Fig. 10. N-PKE scheme NtD = (NDKg,NDSKg,NDEnc,NDDec) .

5 Construction of H-PKE in the standard model

Generic construction. Let NE = (NKg,NSKg,NEnc,NDec) be an N-
PKE scheme, w.r.t. a nonce generator NG. Let DE = (DKg,DEnc,DDec)
be a D-PKE scheme. Recall the transform Nonce-then-Deterministic NtD
= (NDKg,NDSKg,NDEnc,NDDec) proposed in [16] as shown in Fig. 10.

In [16], Hoang et al. consider SOA security of NtD, showing that if NE
is N-SO-CPA (resp. N-SO-CCA) secure, and DE is D-SO-CPA (resp. D-
SO-CCA and unique-ciphertext) secure, then NtD is HN-SO-CPA (resp.
HN-SO-CCA) secure. The HN-SOA security notions formalized in [16]
are non-adaptive. Therefore, the HN-SO-CCA security formalized in [16]
does not imply our HN-IND security.

In this section, we point out that NtD also applies to the HN-IND
setting. Specifically, we assume NE is NBP1 and NBP2 secure, and DE
is adaptively CCA secure and unique-ciphertext. Additionally, we require
that NE is entropy-preserving, which is a property of N-PKE formalized
by Hoang et al. [16].

Denote by EntrpNE(θ(k)) the conditional min-entropy of NEnc(pkn, xk,
m, n) given X, where X is a random variable such that the conditional
min-entropy of (xk,m, n) is at least θ(k), and (pkn, skn) ← NKg(1k)
is independent of (xk,m, n,X). NE is called entropy-preserving, if for
any θ(k) satisfying that 2−θ(k) is negligible, then 2−EntrpNE(θ(k)) is also
negligible.

Formally, we have the following theorem.

Theorem 3. For an NBP1, NBP2 secure and entropy-preserving N-PKE
scheme NE and a D-PKE scheme DE, let NtD be an N-PKE scheme
defined in Fig. 10.

(i) If DE is adaptively CCA secure and unique-ciphertext, then NtD is
HN-IND secure.

(ii) If DE is ACD-CCA secure and unique-ciphertext, then NtD is RSV-
version HN-IND secure.

Proof. Firstly, we prove that NtD is NBP1 secure. The proof of NBP2
security is similar, which we will omit here.
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Adv B
ENCB,DECB
nbp1

(pkn) On query ENC(m0,m1, η): On query DEC(c′):

(pkd, skd)← DKg(1k) y ← ENCB(m0,m1, η) y′ ← DDec(skd, c
′)

pk ← (pkn, pkd) c← DEnc(pkd, y) m′ ← DECB(y′)
b′ ← AENC,DEC(pk) Return c Return m′

Return b′

Adv B
ENCB
1 (1k) Adv B

DECB
2 (pkd, StB) On query LR(M):

(pkn, skn)← NKg(1k) Parse StB = (pkn, skn, St) c← ENCB(MSTn-d(M, pkn))

St← ALR
1 (1k) pk ← (pkn, pkd) Return c

StB ← (pkn, skn, St) b′ ← ADEC
2 (pk, St)

Return StB Return b′

On query DEC(c′): Alg. MSTn-d(M, pkn)(1k):

y′ ← DECB(c′) (m0,m1,xk,n)←M(1k)
If y′ = ⊥, then return ⊥ y0 ← NEnc(pkn,xk,m0,n)
m′ ← NDec(skn, y

′) y1 ← NEnc(pkn,xk,m1,n)
Return m′ Return (y0,y1)

Fig. 11. Adversary Bnbp1 (up) and adversary B (down) in the proof of Theorem 3.

For any NBP1 adversary A attacking NtD, we present an NBP1 ad-
versary Bnbp1 attacking NE as shown in Fig. 11. Denote by ENCB (resp.
DECB) Bnbp1’s encryption (resp. decryption) oracle in the sense of NBP1.
Note that DE is unique-ciphertext. As a result, for any decryption query
c′ of A, if y′ ← DDec(skd, c

′) is one of the challenge ciphertext Bnbp1
received, then c′ is also one of the challenge ciphertext A received. Thus
the DEC oracle simulated by Bnbp1 is identical to the real DEC oracle in

game Gnbp1
NtD,A. It’s easy to see that the ENC oracle simulated by Bnbp1 is

identical to the real ENC oracle of A. Therefore, Bnbp1 perfectly simulates

game Gnbp1
NtD,A for A, and Bnbp1 wins game Gnbp1

NE,Bnbp1
if and only if A wins

Gnbp1
NtD,A. So we derive that Advnbp1

NtD,A(k) = Advnbp1
NE,Bnbp1

(k).

Next, we show that NtD is IND-CDA2 secure. We call a PPT algo-
rithm MSTn-d a message sampler transformer from N-PKE to D-PKE, if
it takes a message sampler for N-PKE (and some state information) as
input, and acts as a message sampler for D-PKE (see Fig. 11). For any
legitimate PPT IND-CDA2 adversary A having high min-entropy, we
construct a MSTn-d and an adaptively CCA adversary B = (B1, B2) at-
tacking DE as shown in Fig. 11. Similarly, denote by ENCB (resp. DECB)
B’s encryption (resp. decryption) oracle in the sense of adaptive CCA. B
perfectly simulates game Gind-cda2

NtD,A for A. Since NE is entropy-preserving,
the construction of MSTn-d guarantees that B is legitimate and has high
min-entropy. Note that B wins game Gcca

DE,B if and only if A wins Gind-cda2
NtD,A .

So we derive that Advind-cda2
NtD,A (k) = Advcca

DE,B(k).

With similar techniques, we can prove the RIND-CDA2 security of
NtD. ut
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Remark 5 Theorem 3 applies to both the ROM constructions and the
standard-model constructions.

Concrete constructions. According to Theorem 3, let NE be the NBP1
and NBP2 secure standard-model construction proposed in [8], and DE
be the ACD-CCA secure standard-model construction proposed in [20],
then we obtain an RSV-version HN-IND secure N-PKE scheme NtD in
the standard model.

Now we turn to HN-IND security of NtD. According to Theorem 3,
what remains is to construct a (unique-ciphertext) standard-model D-
PKE scheme achieving adaptively CCA security. Considering IND-CDA2
security in the setting of H-PKE, instead of N-PKE, if the length of the
randomness is zero (i.e., |r[i]| = 0 for all i ∈ [|p(k)|]), then IND-CDA2 se-
curity actually becomes adaptive CCA security for D-PKE. Therefore, the
problem that construct an IND-CDA2 secure N-PKE scheme in the stan-
dard model is at least as hard as the one that construct a fully adaptively
CCA secure D-PKE scheme in the standard model. To the best of our
knowledge, the latter is still an open problem. On the other hand, The-
orem 3 shows that if an adaptively CCA secure (and unique-ciphertext)
standard-model D-PKE scheme is constructed, then we will have an N-
PKE scheme achieving HN-IND security in the standard model.
Some notes on adaptively CCA secure D-PKE. Recall that Bellare
et al. [2] presented an adaptively IND secure D-PKE scheme, by showing
any PKE scheme, achieving a special anonymity (i.e., the ANON secu-
rity in [2]) and non-adaptive IND-CDA security simultaneously, achieves
(adaptively) IND-CDA security. Although the conclusion cannot be em-
ployed to show an adaptively CCA secure D-PKE scheme directly, we
note that it can be transformed to the setting of N-PKE under CCA
attacks. For completeness, we present the transform in Appendix A.

More specifically, in Appendix A, we formalize the notion of ANON-
CCA security for N-PKE, and show that if an N-PKE scheme achieves
non-adaptive IND-CDA (not IND-CDA2) and ANON-CCA security, then
it achieves IND-CDA2 security. We stress that very recently, Boldyreva
et al. [10] showed a similar conclusion (for general PKE). But their for-
malized ANON-CCA security is stronger than ours (i.e., informally, the
adversary can make decryption queries under two secret keys). More im-
portantly, their conclusion, informally with our notations in this paper, is
that “non-adaptive IND-CDA2 + stronger ANON-CCA ⇒ IND-CDA2”.
Our conclusion shows that the same result can be obtained under some
weaker assumptions.
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A. From non-adaptive IND-CDA to adaptive IND-CDA2

Firstly, we formalize the notion of anonymity for IND-CDA2 for N-PKE.
Then we will present our theorem. Consider game Ganon-cca

NE,A as shown in
Fig. 12. For the adversary A in game Ganon-cca

NE,A , we can similarly define
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Game Ganon-cca
NE,A (k) ENC0(M) LR(M) DEC0(c)

(pk0, sk0)← NKg(1k) If kr = true, then If kr = true, then If kr = false, then

(pk1, sk1)← NKg(1k) return ⊥ return ⊥ return ⊥
b← {0, 1}; C ← ∅ (m,xk,n)←M(1k) kr← true If c ∈ C, then

kr← false c← NEnc(pk0,xk,m,n) (m,xk,n)←M(1k) return ⊥
b′ ← AENC0,LR,DEC0 (1k) C ← C ∪ c c← NEnc(pkb,xk,m,n) m← NDec(sk0, c)
Return (b′ = b) Return c C ← C ∪ c Return m

Return (pk0, pk1, c)

Fig. 12. Game for defining ANON-CCA security of an N-PKE scheme NE.

legitimate adversary, and the adversary having high min-entropy (resp.
high block-source min-entropy). We do not repeat the details here.

Definition 7 (ANON-CCA). An N-PKE scheme NE is ANON-CCA
secure (resp. block-source ANON-CCA secure), if for any legitimate PP-
T adversary A having high min-entropy (resp. high block-source min-
entropy), its advantage Advanon-cca

NE,A (k) = 2Pr[Ganon-cca
NE,A (k)] − 1 is neg-

ligible, where game Ganon-cca
NE,A is defined in Fig. 12.

Theorem 4. Let NE be an N-PKE scheme. If NE achieves non-adaptive
IND-CDA security and ANON-CCA security simultaneously, then it also
achieves adaptive IND-CDA2 security.

Proof. The proof is based on the approach proposed in [2]. For any PPT
legitimate IND-CDA2 adversary A having high min-entropy and making
q(k) LR queries, denote by Gind-cda2-b

NE,A (b ∈ {0, 1}) the game as follows:

Gind-cda2-b
NE,A is the same as Gind-cda2

NE,A , except that b is a fixed value in {0, 1},
and the final output of this game is b′. A standard argument shows that
the advantage of A can be written as Advind-cda2

NE,A (k) = |Pr[Gind-cda2-1
NE,A (k)−

Pr[Gind-cda2-0
NE,A (k)]|. Games Gind-cda-b

NE,A , Ganon-cca-b
NE,A (b ∈ {0, 1}) (resp. the

corresponding advantages) can be defined (resp. written) similarly.

Consider the sequence of games in Fig. 13. Game G−1 is the same
as game Gind-cda2-0

NE,A , i.e., Pr[G−1] = Pr[Gind-cda2-0
NE,A ]. Game G0 introduces

(pk1, sk1), which is useless in G0. So we have Pr[G0] = Pr[G−1]. For
0 ≤ i ≤ q(k), game Gi is the same as G0, except that for the jth LR
query of A, if j ≤ i, the challenge ciphertext vector c is an encryption of
m1 (under the public key pk0), instead of an encryption of m0. There-
fore, Gq(k) is identical to Gind-cda2-1

NE,A . Hence, what remains is to show the
indistinguishability between Gi and Gi+1 for any 0 ≤ i ≤ q(k)− 1.

As shown in Fig. 13, for 0 ≤ i ≤ q(k)− 1, game Hi is the same as Gi,
except that for the ith LR query of A, the challenge ciphertext vector c is
an encryption of m0 under pk1, instead of an encryption of m1 under pk0.
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Games G−1, G0 Games Gi, Hi , H′i

(pk0, sk0)← NKg(1k); (pk1, sk1)← NKg(1k) (pk0, sk0)← NKg(1k); (pk1, sk1)← NKg(1k)

C ← ∅; j ← 0 C ← ∅; j ← 0

St← ALR
1 (1k); b′ ← ADEC

2 (pk0, St) St← ALR
1 (1k); b′ ← ADEC

2 (pk0, St)

Return b′ Return b′

On query LR(M): On query LR(M):

j ← j + 1; (m0,m1,xk,n)←M(1k) j ← j + 1; (m0,m1,xk,n)←M(1k)

c← NEnc(pk0,xk,m0,n) If j < i, then c← NEnc(pk0,xk,m1,n)

C ← C ∪ c If j = i, then c← NEnc(pk0,xk,m1,n)

Return c If j = i, then c← NEnc(pk1,xk,m0,n)

If j = i, then c← NEnc(pk1,xk,m1,n)

On query DEC(c′): If j > i, then c← NEnc(pk0,xk,m0,n)

If c′ ∈ C, then return ⊥ C ← C ∪ c

m′ ← NDec(c′) Return c

Return m′

On query DEC(c′):
If c′ ∈ C, then return ⊥
m′ ← NDec(c′)
Return m′

Fig. 13. Games G−1 −Gq and H0 −Hq−1 in the proof of Theorem 4. Boxed code is
only executed in the games specified by the game names in the same box style.

Game H′i is the same as Hi, except that for the ith LR query of A, the
challenge ciphertext vector c is an encryption of m1 under pk1, instead
of an encryption of m0 under pk1. Formally, we have three claims below.

Claim 1 For any 1 ≤ i ≤ q(k), there is an ANON-CCA adversary Ban1
such that Advanon-cca

NE,Ban1(k) = |Pr[Gi−1]− Pr[Hi]|.

Claim 2 For any 1 ≤ i ≤ q(k), there is a non-adaptively IND-CDA
adversary B such that Advind-cda

NE,B (k) = |Pr[Hi]− Pr[H′i]|.

Claim 3 For any 1 ≤ i ≤ q(k), there is an ANON-CCA adversary Ban2
such that Advanon-cca

NE,Ban2(k) = |Pr[H′i]− Pr[Gi]|.

Combining these three claims, we derive that

Advind-cda2
NE,A (k) = |Pr[Gq(k)]− Pr[G0]|

= q(k)(Advind-cda
NE,B (k) + Advanon-cca

NE,Ban1(k) + Advanon-cca
NE,Ban2(k)).

Therefore, what remains is to prove the above three claims. The proof
of Claim 3 is similar to that of Claim 1. So we omit it here.

Proof (of Claim 1). Note that in game Gi−1 (1 ≤ i ≤ q(k)), for the
jth LR query of A, if j ≤ i − 1, the challenge ciphertext vector c is
an encryption of m1 under pk0, and if j ≥ i, c is an encryption of m0

under pk0. Therefore, Hi is identical to Gi−1, except that the answer A
received to its ith LR query is an encryption of m0 under pk1, instead of

29



Adv B
ENC0,LRB,DEC0
an1 (1k) On query LR(M): On query DEC(c′):

C ← ∅; j ← 0 j ← j + 1 If c′ ∈ C, then return ⊥
St← ALR

1 (1k) If j ≤ i− 1, then c← ENC0(M1) m′ ← DEC0(c
′)

b′ ← ADEC
2 (pk0, St) If j = i, then (pk0, pk1, c)← LRB(M0) Return m′

Return b′ If j > i, then

(m0,m1,xk,n)←M(1k)
c← NEnc(pk0,xk,m0,n)

C ← C ∪ c
Return c

Adv B
LRB
1 (1k) Adv B2(pk1, StB)

(pk0, sk0)← NKg(1k) Parse StB = (C, j, St′, c∗)

C ← ∅; j ← 0 St← A
LR2
1.(II)

(St′, c)

(St′,M)← A
LR1
1.(I)

(1k) b′ ← ADEC
2 (pk0, St)

c∗ ← LRB(M) Return b′

StB ← (C, j, St′, c∗)
Return StB

On query LR1(M): On query LR2(M): On query DEC(c′):

j ← j + 1 (m0,m1,xk,n)←M(1k) If c′ ∈ C, then return ⊥
If j ≥ i, then return ⊥ c← NEnc(pk0,xk,m0,n) m′ ← NDec(sk0, c

′)
(m0,m1,xk,n)←M(1k) C ← C ∪ c Return m′

c← NEnc(pk0,xk,m1,n) Return c
C ← C ∪ c
Return c

Fig. 14. Adversary Ban1 (up) in the proof of Claim 1, and adversary B (down) in the
proof of Claim 2.

the encryption of m0 under pk0. For any message sampler M output by
A, and any b ∈ {0, 1}, we define a new message sampler Mb as follows:
run (m0,m1,xk,n) ← M(1k), and return (mb,xk,n). We construct a
PPT legitimate ANON-CCA adversary Ban1 in Fig. 14. Denote by LRB

the LR oracle of Ban1, and b the challenge bit of Ganon-cca
NE,Ban1

. When b = 1
(resp. b = 0), Ban1 perfectly simulates game Hi (resp. game Gi−1) for A.
So we conclude this proof.

Proof (of Claim 2). Since H′i is identical to Hi, except that the answer
A received to its ith LR query is an encryption of m1 under pk1, instead
of the encryption of m0 under the same public key. We note that without
loss of generality, for any IND-CDA2 adversary A = (A1, A2) making
q(k) LR queries, and any i ∈ [q(k)], the procedure of A1 can be trivially
divided into two parts (A1.(I), A1.(II)) as follows, where A1.(I) makes i−1
queries to LR1 oracle, and A1.(II) makes q(k) − i queries to LR2 oracle.
LR1, LR2 denote the LR-oracle interfaces of A1.(I), A1.(II), respectively.

Adversary ALR
1 (1k):

(St′,M)← A
LR1
1.(I)

(1k); c← LR(M); St← A
LR2
1.(II)

(St′, c)

Return St

We construct a PPT legitimate non-adaptively IND-CDA adversary
B as shown in Fig. 14. Let b be the challenge bit of Gind-cda

NE,B . When b = 1
(resp. b = 0), B perfectly simulates game H′i (resp. game Hi) for A.
Therefore, we conclude this proof. ut
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