Two-Factor Authentication with End-to-End
Password Security

Stanislaw Jarecki!, Hugo Krawczyk?, Maliheh Shirvanian®, and Nitesh Saxena®

! University of California Irvine. sjarecki@uci.edu
2 IBM Research. hugo@ee.technion.ac.il
3 University of Alabama at Birmingham. maliheh,saxenaGuab.edu

Abstract. We present a secure two-factor authentication (TFA) scheme
based on the possession by the user of a password and a crypto-capable
device. Security is “end-to-end" in the sense that the attacker can attack
all parts of the system, including all communication links and any subset
of parties (servers, devices, client terminals), can learn users’ passwords,
and perform active and passive attacks, online and offline. In all cases
the scheme provides the highest attainable security bounds given the set
of compromised components. Qur solution builds a TFA scheme using
any Device-Enhanced PAKE, defined by Jarecki et al., and any Short
Authenticated String (SAS) Message Authentication, defined by Vau-
denay. We show an efficient instantiation of this modular construction
which utilizes any password-based client-server authentication method,
with or without reliance on public-key infrastructure. The security of the
proposed scheme is proven in a formal model that we formulate as an
extension of the traditional PAKE model.

We also report on a prototype implementation of our schemes, including
TLS-based and PKI-free variants, as well as several instantiations of the
SAS mechanism, all demonstrating the practicality of our approach.

1 Introduction

Passwords provide the dominant mechanism for electronic authentication, pro-
tecting a plethora of sensitive information. However, passwords are vulnerable to
both online and offline attacks.A network adversary can test password guesses
in online interactions with the server while an attacker who compromises the au-
thentication data stored by the server (i.e., a database of salted password hashes)
can mount an offline dictionary attack by testing each user’s authentication infor-
mation against a dictionary of likely password choices. Offline dictionary attacks
are a major threat, routinely experienced by commercial vendors, and they lead
to the compromise of billions of user accounts [7,6,15,20,17,12]. Moreover, be-
cause users often re-use their passwords across multiple services, compromising
one service typically also compromises user accounts at other services.
Two-factor password authentication (TFA), where user U authenticates to
server S by “proving possession” of an auxiliary personal device D (e.g. a smart-
phone or a USB token) in addition to knowing her password, forms a common
defense against online password attacks as well as a second line of defense in
case of password leakage. A TFA scheme which uses a device that is not directly

connected to U’s client terminal C typically works as follows: D displays a short
one-time secret PIN, either received from S (e.g. using an SMS message) or com-
puted by D based on a key shared with S, and the user manually types the PIN
into client C in addition to her password. Examples of systems that are based on
such one-time PINs include SMS-based PINs, TOTP [10], HOTP [14], Google
Authenticator [4], FIDO U2F [2], and schemes in the literature such as [48].

Vulnerabilities of traditional TFA schemes. Existing TFA schemes, both
PIN-based and those that do not rely on PINs, e.g. [8,1], combine password
authentication and 2nd-factor authentication as separate authentication mech-
anisms leading to several limitations. Chief among these is that such TFA solu-
tions remain vulnerable to offline dictionary attacks upon server compromise in
the same way as non-TFA password authentication schemes (i.e. via exposure
of users’ salted hashes), thus perpetuating the main source of password leakage.
Moreover, existing TFA’s have several vulnerabilities against online attacks: (1)
The read-and-copy PIN-transfer is subject to a variety of eavesdropping attacks,
including SMS hijacking 4, shoulder-surfing, PIN recording, client-side or device-
side attacks via keyloggers or screen scrapers, e.g. [43], and PIN phishing [16].
(2) The read-and-copy PIN-transfer allows only limited PIN entropy and while,
say, a 6-digit PIN is hard to guess, PIN guessing can be used in a large-scale
online attack against accounts whose passwords the attacker already collected,
e.g. [15,20,17,12]. For example, if the attacker obtains password information
for a large set of accounts, PINs are 6-digit long, and the attacker can try 10
PIN guesses per account, one expects a successful impersonation per 100,000
users. (3) Current PIN-based TFAs perform sequential authentication using the
password and the PIN, i.e. C sends the password to S (over TLS), S confirms
whether pwd is correct, and only then C sends to S the PIN retrieved from D.
This enables online password attacks without requiring PIN guessing or inter-
action with a device, thus voiding the effects of PIN on password-guessing or
password-confirmation online attacks.

Our Contributions. In this paper we aim to address the vulnerabilities of the
currently deployed TFA schemes by (1) introducing a precise security model for
TFA schemes capturing well-defined mawzimally-attainable security bounds, (2)
exhibiting a practical TFA scheme which we prove to achieve the strong secu-
rity guaranteed by our formal model, and (3) prototyping several methods for
validating user’s possession of the secondary authentication factor. We expand
on each of these aspects next.

TFA Security Model with End-to-End Security. We introduce a Two-
Factor Authenticated Key Fxchange (TFA-KE) model in which a user authenti-
cates to server S by (1) entering a password into client terminal C and (2) proving
possession of a personal device D which forms the second authenticator factor.
In the TFA-KE model, possession of D is proved by the user confirming in the

* E.g., SIM card swap attacks [18] and SMS re-direction where PINs are diverted to
the attacker’s phone exploiting SS7 vulnerabilities [21]. The latter led to NIST’s
recent decision to deprecate SMS PINs as a TFA mechanism [19].

device equality of a t-bit checksum displayed by D with a checksum displayed by
C. Following [51] (see below), this implements a ¢-bit C-to-D user-authenticated
channel, which confirms that the same person is in control of client C and device
D. This channel authentication requirement is weaker than the private channel
required by current PIN-based TFAs and, as we show, it allows TFA schemes to
be both more secure and easier to use.

The TFA-KE model, that we define as an extension of the standard Password-
Authenticated Key Exchange (PAKE) [24] and the Device-Enhanced PAKE
(DE-PAKE) [37] models, captures what we call end-to-end security by allow-
ing the adversary to control all communication channels and compromise any
protocol party. For each subset of compromised parties, the model specifies best-
possible security bounds, leaving inevitable (but costly) exhaustive online guess-
ing attacks as the only feasible attack option. In particular, in the common case
that D and S are uncorrupted, the only feasible attack is an active simultaneous
online attack against both S and D that also requires guessing the password and
the t-bit checksum. Compromising server S allows the attacker to impersonate
S, but does not help in impersonating the user to S, and in particular does not
enable an offline-dictionary attack against the user’s password. Compromising
device D makes the authentication effectively password-only, hence offering best
possible bounds in the PAKE model (in particular, the offline dictionary attack
is possible only if D and S are both compromised). Finally, compromising client
C leaks the password, but even then impersonating the user to the server requires
an active attack on D. We prove our protocols in this strong security model.

Practical TFA with End-to-End Security. Our main result is a TFA scheme,
GenTFA that achieves end-to-end security as formalized in our TFA-KE model
and is based on two general tools. The first is a Device-Enhanced Password Au-
thenticated Key Exchange (DE-PAKE) scheme as introduced by Jarecki et. al
[37]. Such a scheme assumes the availability of a user’s auxiliary device, as in
our setting, and utilizes the device to protect against offline dictionary attacks
in case of server compromise. However, DE-PAKE schemes provide no protec-
tion in case that the client machine C is compromised and, moreover, security
completely breaks down if the user’s password is leaked. Thus, our approach
for achieving TFA-KE security is to start with a DE-PAKE scheme and ar-
mor it against client compromise (and password leakage) using our second tool,
namely, a SAS-MA (Short-Authentication-String Message Authentication) as
defined by Vaudenay [51]. In our application, a SAS-MA scheme utilizes a t-bit
user-authenticated channel, called a SAS channel, to authenticate data sent from
C to D. More specifically, the SAS channel is implemented by having the user
verify and confirm the equality of two ¢-bit strings, called checksums, displayed
by both C and D. It follows from [51] that if the displayed checksums coincide
then the information received by D from C is correct except for a 2=¢ probability
of authentication error. We then show how to combine a DE-PAKE scheme with
such a SAS channel to obtain a scheme, GenTFA, for which we can prove TFA-
KE security, hence provably avoiding the shortcomings of PIN-based schemes.
Moreover, the use of the SAS channel relaxes the required user’s actions from a

read-and-copy action in traditional schemes to a simpler compare-and-confirm
which also serves as a proof of physical possession of the device by the user (see
more below).

We show a concrete practical instantiation of our general scheme GenTFA,
named OpTFA, that inherits from GenTFA its TFA-KE security. Protocol OpTFA
is modular with respect to the (asymmetric) password protocol run between
client and server, thus it can utilize protocols that assume PKI as the traditional
password-over-TLS, or those that do not require any form of secure channels, as
in the (PKI-free) asymmetric PAKE schemes [25, 32]. In the PKI case, OpTFA
can run over TLS, offering a ready replacement of current TFA schemes in the
PKI setting. In the PKI-free case one gets the advantages of the TFA-KE setting
without relying on PKI, thus obtaining a strict strengthening of (password-only)
PAKE security [24, 45] as defined by the TFA-KE model.

The cost of OpTFA is two communication rounds between D and C, with
4 exponentiations by C and 3 by D, plus the cost of a password authentication
protocol between C and S. In the PKI setting the latter is the cost of establishing
a server-authenticated TLS channel, while in the PKI-free case one can use an
asymmetric PAKE (e.g., [27,36]) with cost (some of it computable offline) of 3
exponentiations for C, 2 for S, and one multi-exponentiation for each.

Implementation and SAS Channel Designs. We prototyped protocol
OpTFA, in both the PKI and PKI-free versions, with the client implemented
as a Chrome browser extension, the device as an Android app, and D-C com-
munication implemented using Google Cloud Messaging. We also designed and
implemented several instantiations of the human-assisted C-to-D SAS channel
required by our TFA-KE solution and model. Recall that a SAS channel re-
places the user’s read-and-copy action of a PIN-based TFA with the compare-
and-confirm action used to validate the checksums displayed by C and D. The
security of a SAS-model TFA-KE depends on the checksum entropy ¢, called
the SAS channel capacity, hence the two important characteristics of a physical
design of a SAS channel are its capacity ¢ and the ease of the compare-and-
confirm action required of the user. In Section 6 we show several SAS designs
that present different options in terms of channel capacity and user-friendliness.

Our base-line implementation of a SAS channel encodes 20-bit checksums as
6-digit decimal PINs, which the user compares when displayed by C and D (no
copying involved). However, we also propose two novel and higher-capacity SAS
channels. In the first design, the device D is assumed to have a camera and the
checksum calculated by the client is encoded as a QR code and displayed by C.
The user prompts D to capture this QR code which D decodes and compares
against its own computed checksum. The second design is based on an audio
channel implemented using a human speech transcription software. If device D
is a smartphone then the user can read out an alphanumeric checksum displayed
by C into D’s microphone®, and D decodes the audio using the transcriber tool
and compares it to its checksum.

® Note that thanks to the full resistance of our TFA-KE schemes to eavesdropping,
overhearing the spoken checksum is of no use for the attacker.

Related Works. We discuss related works in greater detail in Section 7. The
main observations are: First, multiple methods have been proposed in the crypto
literature for strengthening password authentication against offline dictionary
attacks in case of server compromise by introducing an additional party in the
protocol (e.g., password-hardened or device-enhanced authentication [31,27, 23,
37] and Threshold-PAKE or 2-PAKE, e.g. [44,28,40]), but these schemes of-
fer no security against an active attacker in case of password leakage or client
compromise, hence they are not TFAs. Second, many TFA schemes offer alter-
natives to PIN-based TFAs, but none of them offer protection against offline
attacks upon server compromise except for the scheme of [48] (see Section 7).
Moreover, if these schemes consider D as an independent entity (rather than a
local component of client C) then they either have on-line security vulnerabili-
ties or they require a pre-set secure full-bandwidth C-D channel. In our case, we
do with just a SAS channel that as we show in Section 6 has several practical
implementations. Third, we are not aware of any attempt to model security of
TFA schemes where D and C are not co-located, nor do we know any PKI-free
TFA schemes proposed for this setting.

Road-Map In Section 2 we present TFA-KE security model. In Section 3 we
describe our protocol building blocks. In Section 4 we present a practical TFA-
KE protocol OpTFA, and we provide informal rationale for its design choices. In
Section 5 we show a more general TFA-KE protocol GenTFA, of which OpTFA
is an instance, together with its formal security proof. In Section 6 we report on
the implementation and testing of protocol OpTFA, and we describe several SAS
channel designs. In Section 7 we include more details on related works.

2 TFA-KE Security

We introduce the Two-Factor Authenticated Key Exchange (TFA-KE) security
model that defines the assumed environment and participants in our protocols
as well as the attacker’s capabilities and the model’s security guarantees. Our
starting point is the Device-Enhanced PAKE (DE-PAKE) model, introduced
in [37], which extends the well-known two-party Password-Authenticated Key
Ezchange (PAKE) model [24] to a multi-party setting that includes users U,
communicating from client machines C, servers S to which users log in, and
auxiliary devices D, e.g. a smartphone. A DE-PAKE scheme has the security
properties of a two-server PAKE (2-PAKE) [28, 40] where D plays the role of the
2nd server. Namely, a compromise of either S or D (but not both) essentially does
not help the attacker, and in particular leaks no information about the user’s
password. However, whereas 2-PAKE might be insecure in case of a compromise
of both S and D, in a DE-PAKE the adversary who compromises S and D must
stage an offline dictionary attack to learn anything about the password.

The TFA-KE model considers the same set of parties as in the DE-PAKE
model (which we recall in Appendix A) and all the same adversarial capabili-
ties, including controlling all communication links, the ability to mount online
active attacks, offline dictionary attacks, and to compromise devices and servers.

However, the DE-PAKE model does not consider client corruption or password
leakage. Indeed, in case of password leakage an active adversary can authenticate
to S by impersonating the legitimate user in a single DE-PAKE session with D
and S. Since a TFA scheme is supposed to protect against the client corrup-
tion and password leakage attacks, our TFA-KE model enhances the DE-PAKE
model by adding these capabilities to the adversary while preserving all the other
strict security requirements of DE-PAKE. In general, DE-PAKE requirements
were such that the only allowable attacks on the system, under a given set of cor-
rupted parties, are the unavoidable exhaustive online guessing attacks for that
setting; the same holds for TFA-KE but with additional best resilience to client
compromise and password leakage.

Note, however, that if C,D,S communicate only over insecure links then an
attacker who learns the user’s password will always be able to authenticate to S
as in the case of DE-PAKE, by impersonating the user to D and S. Consequently,
to allow device D to become a true second factor and maintain security in case
the password leaks, one has to assume some form of authentication in the C to
D communication which would allow the user to validate that D communicates
with the user’s own client terminal C and not with the attacker who performs a
man-in-the-middle attack and impersonates this user to D.

To that end our TFA-KE model augments the communication model by an
authentication abstraction on the client-to-device channel, but it does so without
requiring the client to store any long-term keys (other than the user’s password).
Namely, we assume a uni-directional C-to-D “Short Authenticated String” (SAS)
channel, introduced by Vaudenay [51], which allows C to communicate ¢ bits
to D that cannot be changed by the attacker. The ¢-bit C-to-D SAS channel
abstraction comes down to a requirement that the user compares a t-bit checksum
displayed by both C and D, and approves (or denies) their equality by choosing
the corresponding option on device D.

As is standard, we quantify security by attacker’s resources that include the
computation time and the number of instances of each protocol party the adver-
sary interacts with. We denote these as ¢p, gs, gc, ¢¢, where the first two count
the number of active sessions between the attacker and D and S, resp., while
gc (resp. gp) counts the number of sessions where the attacker poses to C as S
(resp. as D). Security is further quantified by the password entropy d (we assume
the password is chosen from a dictionary of size 2¢ known to the attacker), and
parameter ¢, which is called the SAS channel capacity. As we explain in Section
3, a C-to-D SAS channel allows for establishing a D-authenticated secure channel
between D and C, except for the 27! probability of error [51], which explains 27
factors in the TFA-KE security bounds stated below.

TFA Security Definition. We consider a communication model of open chan-
nels plus the t-bit SAS-channel between C and D, and a man-in-the-middle ad-
versary that interacts with ¢p, gs, gc, gi> sessions of D, S, C, as described above.
The adversary can also corrupt any party, S, D, or C, learning its stored secrets
and the internal state as that party executes its protocol, which in the case of
C implies learning the user’s password. All other adversarial capabilities as well

as the test session experiment defining the adversary’s goal are as in DE-PAKE
(and PAKE) models — see Appendix A. In particular, the adversary’s advantage
is, as in DE-PAKE and PAKE, an advantage in distinguishing between a random
string and a key computed by S or C on a test session.

The security requirements set by Definition 1 below are the strictest one can
hope for given the communication and party corruption model. That is, wher-
ever we require the attacker’s advantage to be no more than a given bound with
a set of corrupted parties, then there is an (unavoidable) attack - in the form of
exhaustive guessing attack - that achieves this bound under the given compro-
mised parties. Importantly, and in contrast to typical two-factor authentication
solutions, the TFA-KE model requires that the second authentication factor D
not only provides security in case of client and/or password compromise, but
that it also strengthens online and offline security (by 2t factors) even when the
password has not been learned by the attacker.

Definition 1. A TFA-KE protocol TFA is (T, €)-secure if for any password dic-
tionary Dict of size 2¢, any t-bit SAS channel, and any attacker A bounded by
time T, A’s advantage AdeFA in distinguishing the tested session key from ran-
dom is bounded as follows, for qs,qc,q¢,qp as defined above:

1. If S, D, and C are all uncorrupted:
Adva™ < min{go + g5 /2, qc + ap/2'} /27 + €

2. If only D is corrupted: Advi™ < (qo + qs)/2% + ¢

3. If only S is corrupted: Advi™ < (¢l + qp/2t)/2¢ + ¢

4. If only C is corrupted (or the user’s password leaks by any other means):
Advpi™ < min(gs, qp)/2" + €

5. If both D and S are corrupted (but not C), and Gg and Gp count A’s
offline operations performed based on resp. S’s and D’s state: AdeFA <

min{7s,qp}/2*

Explaining the bounds. The security of the TFA scheme relative to the
DE-PAKE model can be seen by comparing the above bounds to those in
Definition 2 in Appendix A. Here we explain the meaning of some of these
bounds. In the default case of no corruptions, the adversary’s probability of at-
tack is at most min(gc+gs/2%, ¢-+qp/2!)/2? improving on DE-PAKE bound
min(go+qs, ¢-+gp)/2¢ and on the PAKE bound (gc+gs)/2¢. For simplicity,
assume that gc = ¢, = 0 (e.g., in the PKI setting where C talks to S over TLS
and the communication from D to C is authenticated), in which case the bound
reduces to min(gs, gp)/2'*?. The interpretation of this bound, and similarly for
the other bounds in this model, is that in order to have a probability q/2!*¢
to impersonate the user, the attacker needs to run ¢ online sessions with S and
also q online sessions with D. (In each such session the attacker can test one

password out of a dictionary of 2¢ passwords, and can do so successfully only if
its communication with D is accepted over the SAS channel, which happens with
probability 27%.) This is the optimal security bound in the TFA-KE setting since
an adversary who guesses both the user’s password and the t-bit SAS-channel
checksum can successfully authenticate as the user to the server.

In case of client corruption (and password leakage), the adversary’s proba-
bility of impersonating the user to the server is at most min(gs, ¢p)/2¢, which
is the best possible bound when the attacker holds the user’s password. In case
of device corruption, the adversary’s advantage is at most (gc+qs)/2%, which
matches the optimal PAKE probability, namely, when a device is not available.
Finally, upon server corruption, the adversary’s probability of success in imper-
sonating the user to any uncorrupted server session is (assuming g = 0 for
simplicity) at most ¢p/2'*?. In other words, learning server’s private informa-
tion necessarily allows the adversary to authenticate as the server to the client,
but it does not help to impersonate as the client to the server. In contrast, widely
deployed PIN-based TFA schemes that transmit passwords and PINs over a TLS
channel are subject to an offline dictionary attack in this case.

Extension: The Case of C and S Corruption. Note that when C and D are
corrupted, there is no security to be offered because the attacker has possession
of all authenticator factors, the password and the auxiliary device. However, in
the case that both C and S are corrupted one can hope that the attacker could
not authenticate to sessions in S that the attacker does not actively control.
Indeed, the above model can be extended to include this case with a bound of
qp/2t. Our protocols as described in Figures 3 and 4 do not achieve this bound,
but it can be easily achieved for example by the following small modification
(refer to the figures): S is initialized with a public key of D and before sending
the value zid to D (via C), S encrypts it under D’s public key.

3 Building Blocks

We recall several of the building blocks used in our TFA-KE protocol.

SAS-MA Scheme of Vaudenay [51]. The Short Authentication String Mes-
sage Authentication (SAS-MA) scheme allows the transmission of a message
from a sender to a receiver so that the receiver can check the integrity of the re-
ceived message. A SAS-MA scheme considers two communication channels. One
that allows the transmission of messages of arbitrary length and is controlled
by an active man-in-the-middle, and another that allows sending up to ¢ bits
that cannot be changed by the attacker (neither channel is assumed to provide
secrecy). We refer to these as the open channel and the SAS channel, respec-
tively, and call the parameter ¢ the SAS channel capacity. A SAS-MA scheme is
called secure if the probability that the receiver accepts a message modified by
a (computationally bounded) attacker on the open channel is no more than 27¢
(plus a negligible fraction). In Figure 1 we show a secure SAS-MA implementa-
tion of [51] for a sender C and a receiver D. The SAS channel is abstracted as a

comparison of two t-bit strings checksume and checksump computed by sender
and receiver, respectively. As shown in [51], the probability that an active man-
in-the-middle attacker between D and C succeeds in changing message M¢ while
D and C compute the same checksum is at most 2. Note that this level of
security is achieved without any keying material (secret or public) pre-shared
between the parties. Also, importantly, there is no requirement for checksums to
be secret. (In Section 5 we present a formal SAS-MA security definition.)
Thus, the SAS-MA protocol reduces integrity verification of a received mes-
sage Mc to verifying the equality of two strings (checksums) assumed to be
transmitted “out-of-band", namely, away from adversarial control. In our appli-
cation, the checksums will be values displayed by device D and client C whose
equality the user verifies and confirms via a physical action, e.g. a click, a QR
snapshot, or an audio read-out (see Section 6). In the TFA-KE application this
user-confirmation of checksum equality serves as evidence for the physical con-
trol of the terminal C and device D by the same user, and a confirmation of
user’s possession of the 2nd authentication factor implemented as device D.

Input: Sender C holds message Mc; Receiver D holds Mc'.
Output: Receiver D accepts if Mc = Mc’ and rejects otherwise.

Assumptions: C-to-D SAS channel with capacity t; security parameter x; hash func-
tion Heom onto {0, 1}".

SAS-MA Protocol:
1. Csends Com = Heom(Mc, Re, d) to D for random Re,d s.t. |[Rc| =t and |d| = &;
2. D sends to C a random string Rp of length ¢;
3. Csends (Rc,d) to D and enters checksume = Re®Rp into C-to-D SAS channel;
4. D sets checksump = Re®Rp and it accepts if and only if Com = Heom(Mc', Re, d)
and checksum¢ received on the SAS channel equals checksump.

Fig.1: SAS Message Authentication (SAS-MA) [51]

SAS-SMT. One can use a SAS-MA mechanism from C to D to bootstrap a
confidential channel from D to C. The transformation is standard: To send a
message m securely from D to C (in our application m is a one-time key and
D’s PTR response, see below), C picks a CCA-secure public key encryption key
pair (sk, pk) (e.g., pair (z,g")) for an encryption scheme (KG, Enc, Dec), sends
pk to D, and then C and D execute the SAS-MA protocol on M¢c = pk. If D
accepts, it sends m encrypted under pk to C, who decrypts it using sk. The
security of SAS-MA and the public-key encryption imply that an attacker can
intercept m (or modify it to some related message) only by supplying its own key
pk” instead of C’s key, and causing D to accept in the SAS-MA authentication
of pk’ which by SAS-MA security can happen with probability at most 2.
The resulting protocol has 4 messages, and the cost of a plain Diffie-Hellman

exchange if implemented using ECIES [22] encryption. We refer to this scheme
as SAS-SMT (SMT for “secure message transmission").

aPAKE. Informally, an aPAKE (for asymmetric or augmented PAKE) is a
password protocol secure against server compromise [25, 32], namely, one where
the server stores a one-way function of the user’s password so that an attacker
who breaks into the server can only learn information on the password through an
exhaustive offline dictionary attack. While the aPAKE terminology is typically
used in the context of password-only protocols that do not rely on public keys,
we extend it here (following [37]) to the standard PKI-based password-over-
TLS protocol. This enables the use of our techniques in the context of TLS, a
major benefit of our TFA schemes. Note that this standard protocol, while secure
against server compromise is not strictly an aPAKE as it allows an attacker
to learn plaintext passwords (decrypted by TLS) for users that authenticate
while the attacker is in control of the server. As shown in [37], dealing with this
property requires a tweak in the DE-PAKE protocol (C needs to authenticate
the value b sent by D in the PTR protocol described below - see also Sec. 6).

DE-PAKE. A Device-Enhanced PAKE (DE-PAKE) [37] is an extension of the
asymmetric PAKE model by an auxiliary device, which strengthens aPAKE
protocols by eliminating offline dictionary attacks upon server compromise. We
discuss DE-PAKE in more detail in Section 2 and recall its formal model in
Appendix A. We use DE-PAKE protocols as a main module in our general con-
struction of TFA-KE, and our practical instantiation of this construction, pro-
tocol OpTFA, uses the DE-PAKE scheme of [37] which combines an asymmetric
aPAKE with a password hardening procedure PTR described next.

Password-to-Random Scheme PTR. A PTR is a password hardening proce-
dure that allows client C to translate with the help of device D (which stores a
key k) a user’s master password pwd into independent pseudorandom passwords
(denoted rwd) for each user account. The PTR instantiation from [37] is based
on the Ford-Kaliski’s Blind Hashed Diffie-Hellman technique [31]: Let G be a
group of prime order ¢, let H' and H be hash functions which map onto, respec-
tively, elements of G and k-bit strings, where x is a security parameter. Define
Fy.(z) = H(z, (H'(x))*), where the key k is chosen at random in Z,. In PTR this
function is computed jointly between C and D where D inputs key k£ and C inputs
x = pwd as the argument, and the output, denoted rwd = Fj(pwd), is learned
by C only. The protocol is simple: C sends a = (H'(pwd))" for r random in Z,,
D responds with b = a¥, and C computes rwd = H(z,b'/"). Under the One-
More (Gap) Diffie-Hellman (OM-DH) assumption in the Random Oracle Model
(ROM), this scheme realizes a universally composable oblivious PRF (OPRF)
[36], which in particular implies that = pwd is hidden from all observers and
function Fy(-) remains pseudorandom on all inputs which are not queried to D.

10

S =
0 L1& (B

AT
{Kes ¢ \ﬁl > Kcs Step 1:
"""""""""" - UuKE
¢ zid z=R,(zid)| +zd
M, = (pk, zid) C picks (pk, sk) -
' checksumy, | SAS-MA (M,) ' checksum |
. ' Step 2:
|User validates checksum| B f"‘:;sﬂyA
«--[PTR(pwa) | - - [rwd |
Z =Ry, (zid) [- = === - z —-—---- > .
R aPAKE Step 3:
PK =| (wd,o) = > K [aPAKE

+— Insecure Channel

4—> Encrypted and Authenticated Channel under K.g

<+ - -» Encrypted under pk, with C’'s messages authenticated by SAS-MA along with M,
<< = Encrypted and Authenticated Channel under both K5 and one-time key z

Fig. 2: Schematic Representation of Protocol OpTFA of Fig. 3

4 OpTFA: A Practical Secure TFA-KE Protocol

In Section 5 we present and prove a general design, GenTFA, of a TFA-KE
protocol based on two generic components, namely, a SAS-MA and DE-PAKE
protocols. But first, in this section, we show a practical instantiation of GenTFA
using the specific building blocks presented in Section 3, namely, the SAS-MA
scheme from Fig. 1 and the DE-PAKE scheme from [37] (that uses the DH-
based PTR scheme described in that section composed with any asymmetric
PAKE). This concrete instantiation serves as the basis of our implementation
work (Section 6) and helps explaining the rationale of our general construction.
OpTFA is presented in Figure 3. A schematic representation is shown in Figure 2.

Enhanced TFA via SAS. Before going into the specifics of OpTFA, we de-
scribe a general technique for designing TFA schemes using a SAS channel. In
traditional TFA schemes, a PIN is displayed to the user who copies it into a login
screen to prove access to that PIN. As discussed in the introduction, this mecha-
nism suffers of significant weaknesses mainly due to the low entropy of PINs (and
inconvenience of copying them). We suggest automating the transmission of the
PIN over a confidential channel from device D to client C. To implement such
channel, we use the SAS-SMT scheme from Sec. 3 where security boils down

11

Components: In addition to the SAS-MA, PTR and aPAKE tools introduced in
Sec. 3, OpTFA uses an unauthenticated KE (uKE) protocol, a PRF R, a CCA-secure
public key encryption scheme (KG, Enc, Dec), and a MAC function.

Initialization:

1. On input the user’s password pwd, pick random k in Z, and set rwd = Fj(pwd) =
H(pwd, (H' (pwd))");

2. Initialize the asymmetric PAKE scheme aPAKE on input rwd and let o denote the
user’s state at the server.

3. Choose random key K. for PRF R, and set zidSet to the empty set;
4. Give (k, K.,zidSet) to D and (o, K;) to S.

Login step I (C-S uKE + zid generation):

1. S and C run a (unauthenticated) key exchange uKE which establishes session key
Kcs between them;

2. S generates random k-bit nonce zid, computes z «+ R(K, zid), and sends zid to
C authenticated under key Kcs.

Login step II (C-D SAS-MA + PTR):

1. C generates PKE key pair (sk,pk) + KG, ¢-bit random value R¢, k-bit random
value d, and random r in Z,. C then computes a + H'(pwd)", Mc <+ (pk, zid, a),
Com <« Hcom(Mc, Rc, d), and sends (Mc, Com) to D;

2. D on ((pk, zid,a), Com), aborts if zid € zidSet, otherwise it adds zid to zidSet and
sends random ¢-bit value Rp to C.

3. C receives Rp, computes checksumc < Rc@®Rp, sends (Rc,d) to D, and inputs
checksum¢ into the C-to-D SAS channel.

4. D computes checksump <— Rc@®Rp and upon receiving checksumc on the C-to-D
SAS channel, it checks if checksumc = checksump and Com = Hcom(Mc, Rc, d)
and aborts if not. Otherwise D computes b < a* and z « R(K, zid), and sends
ep « Enc(pk, (z,b)) to C.

5. C computes (z,b) < Dec(sk, ep) and rwd < H(pwd, b'/") [= F}(pwd)], and aborts
if Dec outputs L.

Login step III (C-S aPAKE over Authenticated Link):

1. C and S run protocol aPAKE on resp. inputs rwd and o with all aPAKE messages
authenticated by keys z and Kcs (each key is used to compute a MAC on each
aPAKE message).

Each party aborts and sets local output to L if any of the MAC verifications fails.

2. The final output of C and S equals their outputs in the aPAKE instance: either a
session key K or a rejection sign L.

Fig.3: OpTFA: Efficient TFA-KE Protocol with Optimal Security Bounds
12

to having D and C display ¢-bit strings (checksums) that the user checks for
equality. In this way, low-entropy PINs can be replaced with full-entropy values
(we refer to them as one-time keys (OTK)) that are immune to eavesdropping
and bound active attacks to a success probability of 27¢. These active attacks
are impractical even for t = 20 (more a denial-of-service than an impersonation
threat) and with larger ¢’s as illustrated in Sec. 6 they are just infeasible. Note
that this approach works with any form of generation of OTK’s, e.g., time-based
mechanisms, challenge-response between device and server, etc.

4.1 OpTFA Explained

Protocol OpTFA (Fig. 3) requires several mechanisms that are necessary to ob-
tain the strong security bounds of the TFA-KE model. To provide rationale for
the need of these mechanisms we show how the protocol is built bottom-up to de-
liver the required security properties. We stress that while the design is involved
the resultant protocol is efficient and practical. The presentation and discussion
of security properties here is informal but the intuition can be formalized as we
do via the TFA-KE model (Sec. 2), the generic protocol GenTFA in next section
and the proof of Theorem 1.

In general terms, OpTFA can be seen as a DE-PAKE protocol using the PTR,
scheme from Sec. 3 and enhanced with fresh OTKs transmitted from D to C
via the above SAS-SMT mechanism. The OTK is generated by the device and
server for each session and then included in the aPAKE interaction between C
and S. We note that OpTFA treats aPAKE generically, so any such scheme can
be used. In particular, we start by illustrating how OpTFA works with the stan-
dard password-over-TLS aPAKE, and then generalize to the use of any aPAKE,
including PKI-free ones.

e OpTFA 0.0. This is standard password-over-TLS where the user’s password is
transmitted from C to S under the protection of TLS.

e OpTFA 0.1. We enhance password-over-TLS with the OTK-over-SAS mecha-
nism described above. First, C transmits the user’s password to S over TLS and
if the password verifies at S, S sends a nonce zid to C who relays it to D. On the
basis of zid (which also acts as session identifier in our analysis), D computes a
OTK z = Rg_(zid) where R is a PRF and K, a key shared between D and S.
D transmits z to C over the SAS-SMT channel and C relays it to S over TLS.
The user is authenticated only if the received value z is the same as the one
computed by S.

This scheme offers defense in case of password leakage. With a full-entropy
OTK it ensures security against eavesdroppers on the D-C link and limits the
advantage of an active attacker to a probability of 27 for SAS checksums of
length ¢. However, the scheme is open to online password attacks (as in current
commonly deployed schemes) because the attacker can try online guesses without
having to deal with the transmission of OTK z. In addition, it offers no security
against offline dictionary attacks upon server compromise.

13

e OpTFA 0.2. We change OpTFA 0.1 so that the user’s password pwd is only
transmitted to S at the end of the protocol together with the OTK z (it is
important that if z does not verify as the correct OTK, that the server does
not reveal if pwd is correct or not). This change protects the protocol against
online guessing attacks and reduces the probability of the successful testing of a
candidate password to 27 (@) rather than 2-% in version 0.1.

e OpTFA 0.3. We add defense against offline dictionary attacks upon server
compromise by resorting to the DE-PAKE construction of [37] and, in particular,
to the password-to-random hardening procedure PTR from Sec. 3. For this, we
now assume that the user has a master password pwd that PTR converts into
randomized passwords rwd for each user account. By registering rwd with server
S and using PTR for the conversion, DE-PAKE security ensures that offline
dictionary attacks are infeasible even if the server is compromised (case (3)
in Def. 1). Note that the PTR procedure runs between D and C following the
establishment of the SAS-SMT channel.

e OpTFA 0.4. We change the run of PTR between D and C so that the value
a computed by C as part of PTR is transmitted over the SAS-authenticated
channel from C to D. Without this authentication the strict bound of case (3)
in Def. 1 (simplified for ¢;; = 0), namely, AdeFA < qp/2%t* + ¢ upon server
compromise, would not be met. Indeed, when the attacker compromises server
S, it learns the key K, used to compute the OTK 2z so the defense provided by
OTK is lost. So, how can we still ensure the 2! denominator in the above bound
expression? The answer is that by authenticating the PTR value a under SAS-
MA, the attacker is forced to run (expected) 2¢ sessions to be able to inject its
own value a over that channel. Such injection is necessary for testing a password
guess even when K, is known. When considering a password dictionary of size
2¢ this ensures the denominator 2¢** in the security bound.

e OpTFA 0.5. We add the following mechanism to OpTFA: Upon initialization
of an authentication session (for a given user), C and S run an unauthenticated
(a.k.a. anonymous) key exchange uKE (e.g., a plain Diffie-Hellman protocol) to
establish a shared key K¢g that they use as a MAC key applied to all subsequent
OpTFA messages. To see the need for uKE assume it is omitted. For simplicity,
consider the case where attacker A knows the user’s password. In this case, all A
needs for impersonating the user is to learn one value of z which it can attempt
by acting as a man-in-the-middle on the C-D channel. After ¢p such attempts, A
has probability of qp /2¢ to learn z which together with the user’s password allows
A to authenticate to S. In contrast, the bound required by Def. 1 in this case is
the stricter min{qs, gp}/2¢. This requires that for each attempt at learning z in
the C-D channel, not only A needs to try to break SAS-MA authentication but
it also needs to establish a new session with S. For this we resort to the uKE
channel. It ensures that a response z to a value zid sent by S over a uKE session
will only be accepted by S if this response comes back on the same uKE session
(i.e., authenticated with the same keys used by S to send the challenge zid). It
means that both zid and z are exchanged with the same party. If zid was sent
to the legitimate user then the attacker, even if it learns the corresponding z,

14

cannot use it to authenticate back to S. We note that uKE is also needed in
the case that the attacker does not know the password. Without it, the success
probability for this case is about a factor 2¢/qs higher than acceptable by Def. 1.
Note. When all communication between C and S goes over TLS, there is no need
to establish a dedicated uKE channel; TLS serves as such.

e OpTFA 0.6. We stipulate that D never responds twice to the same zid value
(for this, D keeps a stash of recently seen zid’s; older values become useless to
the attacker once they time out at the server). Without this mechanism the
attacker gets multiple attempts at learning z for a single challenge zid. However,
this would violate bound (1) (for the case gc = ¢ = 0) min{gs, gp}/2¢"* which
requires that each guess attempt at z be bound to the establishment of a new
session of the attacker with S.

e OpTFA 0.7. Finally, we generalize OpTFA so that the password protocol run as
the last stage of OpTFA (after PTR generates rwd) can be implemented with any
asymmetric aPAKE protocol, with or without assuming PKI, using the server-
specific user’s password rwd. As shown in [37], running any aPAKE protocol on
a password rwd produced by PTR results in a DE-PAKE scheme, a property that
we use in an essential way in our analysis.

We need one last mechanism for C to prove knowledge of z to S, namely, we
specify that both C and S use z as a MAC key to authenticate the messages sent
by protocol aPAKE (this is in addition to the authentication of these messages
with key K¢g). Without this, an attack is possible where in case that OpTFA
fails the attacker learns if the reason for it was an aPAKE failure or a wrong z.
This allows the attacker to mount an online attack on the password without the
attacker having to learn the OTK. (When the aPAKE is password-over-TLS the
above MAC mechanism is not needed, the same authentication effect is achieved
by encrypting rwd and z under the same CCA-secure ciphertext [33].)

e OpTFA. Version 0.7 constitutes the full specification of the OpTFA protocol,
described in Fig. 3, with generic aPAKE.

Performance: The number of exponentiations in OpTFA is reported in the intro-
duction; implementation and performance information is presented in Section 6.

OpTFA Security. Security of OpTFA follows from that of protocol GenTFA
because OpTFA is its instantiation. See Theorem 1 in Section 5 and Corollary 1.

5 The Generic GenTFA Protocol

In Figure 4 we show protocol GenTFA which is a generalization of protocol OpTFA
shown in Fig. 3 in Section 4. Protocol GenTFA is a compiler which converts any
secure DE-PAKE and SAS-MA schemes into a secure TFA-KE. It uses the same
uKE and CCA-PKE tools as protocol OpTFA, but it also generalizes two other
mechanisms used in OpTFA as, resp. a generic symmetric Key Encapsulation
Mechanism (KEM) scheme and an Authenticated Channel (AC) scheme.

A Key Encapsulation Mechanism, denoted (KemE, KemD) (see e.g. [49]), al-
lows for encrypting a random session key given a (long-term) symmetric key K,

15

ie., if (zid, z) < KemE(K,) then z < KemD(K_, zid). A KEM is secure if key z
corresponding to zid & {zidy, ..., zid,} is pseudorandom even given the keys z;
corresponding to all zid;’s. In protocol OpTFA of Figure 3, KEM is implemented
using PRF R: zid is arandom k-bit string and z = R(K, zid). We also generalize
the usage of the MAC function in OpTFA as an Authenticated Channel, defined
by a pair ACSend, ACRec, which implements bi-directional authenticated com-
munication between two parties sharing a symmetric key K [29, 34]. Algorithm
ACSend takes inputs key K and message m and outputs m with authentication
tag computed with key K, while the receiver procedure, ACRec(K,-), outputs
either a message or the rejection symbol L. We assume that the AC scheme is
stateful and provides authenticity and protection against replay.

The security of GenTFA is stated in the following theorem:

Theorem 1. Assuming security of the building blocks DE-PAKE, SAS, uKE,
PKE, KEM, and AC, protocol GenTFA is a (T,¢€)-secure TFA-KE scheme for e
upper bounded by

6DEPAKE +n- (GSAS + 6uKE + 6PKE + 6KEM + GGAC) + TLQ/QK

for n = qupc + max(qs, gp, qc, g¢) where qupc denotes the number of GenTFA
protocol sessions in which the adversary is only eavesdropping, and each quantity
of the form € is a bound on the advantage of an attacker that works in time
~ T against the protocol building block P.

As a corollary we obtain a proof of TFA-KE security for protocol OpTFA
from Fig. 3 which uses specific secure instantiations of GenTFA components.
The corollary follows by applying the result of Vaudenay [51], which implies in
particular that the SAS-MA scheme used in OpTFA is secure in ROM, and the
result of [37], which implies that the DE-PAKE used in OpTFA is secure under
the OM-DH assumption if the underlying aPAKE is a secure asymmetric PAKE.

We note that protocol OpTFA optimizes GenTFA instantiated with the DE-
PAKE of [37] by piggybacking the C-D round of communication in that protocol,
a = H'(pwd)" and b = a*, onto resp. C’s message Mc and the plaintext in D’s
ciphertext ep. The security proof extends to this round-optimized case because
SAS-MA authentication of M¢ and CCA-security of PKE bind DE-PAKE mes-
sages a,b to this session just as the ACSend(K¢p,-) mechanism does in (non-
optimized) protocol GenTFA.

Corollary 1. Assuming that aPAKE is a secure asymmetric PAKE, uKE is se-
cure Key Fxchange, (KG, Enc,Dec) is a CCA-secure PKE, R is a secure PRF,
and MAC is a secure message authentication code, protocol OpTFA is a secure
TFA-KE scheme under the OM-DH assumption in ROM.

Security definition of SAS authentication. For the purpose of the proof be-
low we state the security property assumed of a SAS-MA scheme which was infor-
mally described in Section 3. While [51] defines the security of SAS-MA using a

16

Initialization: Given the user’s password pwd, we initialize the DE-PAKE scheme
on pwd. Let k£ and o be the resulting user-specific states stored at resp. D and S.
Let K. be a random KEM key. Let zidSet be an empty set. D is initialized with
(k, K,zidSet) and S is initialized with (o, K).

Login step I (C-S KE + KEM generation):

1. S and C create shared key K¢g using a (non-authenticated) key exchange uKE.
2. S generates (zid, z) + KemE(K), sets es + ACSend(Kc¢s, zid), and sends eg
to C, who computes zid < ACRec(Kcs,es), or aborts if decryption fails.

Login step II (C-D SAS-MA + KEM decryption):

1. C generates a PKE key pair (sk, pk) < KG, sends Mc = (pk, zid) to D, and C
and D run SAS-MA to authenticate Mc using the ¢-bit C-to-D SAS channel.

2. D aborts if zid € zidSet or if the SAS scheme fails. Otherwise, D adds zid
to zidSet, computes z < KemD(K., zid), picks a random MAC key Kcp,
computes ep < Enc(pk, (z, Kcp)) and sends ep to C.

3. C computes (z, Kcp) < Dec(sk,ep) (aborts if L).

Login step III (DE-PAKE over Authenticated Links):
C, D, and S run DE-PAKE on resp. inputs pwd, k, and o, modified as follows:
(a) All communication between D and S is routed through C.

(b) Communication between C and D goes over a channel authenticated by key
Kcp, ie. it is sent via ACSend(K¢p,-) and received via ACRec(K¢p,-), Either
party aborts if its ACRec ever outputs L.

(¢) Communication between C and S goes over a channel authenticated by key z
and then the result of that is sent over a channel authenticated by key Kcg, i.e. it
is sent via ACSend(Kcs, ACSend(z,-)) and received via ACRec(Kcs, ACRec(z,-)).
Each party aborts and sets local output to L if its ACRec instance ever outputs L.
The final outputs of C and S are their respective outputs in this DE-PAKE instance,
either session key K or a rejection L.

Fig.4: Generic TFA-KE Scheme: Protocol GenTFA

game-based formulation, here we do it via the following (universally composable)
functionality Fsaspy: On input a message [SAS.SEND, sid, P’,m] from an honest
party P, functionality Fsasy sends [SAS.SEND, sid, P, P, m| to A, and then, if
A’s response is [SAS.CONNECT, sid], then Fsaspy sends [SAS.SEND, sid, P, m] to
P', if A’s response is [SAS.ABORT, sid], then Fsaspy) sends [SAS.SEND, sid, P, 1]
to P’, and if A’s response is [SAS.ATTACK, sid, m'] then Fgaspy throws a coin p
which comes out 1 with probability 2=¢ and 0 with probability 1 —2~¢, and if
p = 1 then Fsaspy sends succ to A and [SAS.SEND, sid, P,m/] to P’, and if p =0
then Fsaspy sends fail to A and [SAS.SEND, sid, P, 1] to P'.

In our main instantiation of the generic protocol GenTFA of Figure 4, i.e. in
protocol OpTFA of Figure 3, we instantiate SAS-MA with the scheme of [51], but

17

even though the original security argument given for it in [51] used the game-
based security notion, it is straightforward to adopt this argument to see that
this scheme securely realizes the above (universally composable) functionality.

Proof of Theorem 1. Let A be an adversary limited by time 7T playing the
TFA-KE security game, which we will denote G, instantiated with the TFA-KE
scheme GenTFA. Let the security advantage defined in Definition 1 for adversary
A satisfy AdeFA = ¢. Let IT?, HJC, HlD refer to respectively the i-th, j-th, and
I-th instances of S, C, and D entities which A starts up. Let ¢ be the SAS channel
capacity, x the security parameter, ¢s,qp,qc, gy the limits on the numbers of
rogue sessions of S, D, C when communicating with S, and C when communicat-
ing with D, and let qgpc be the number of GenTFA protocol sessions in which
A plays only a passive eavesdropper role except that we allow A to abort any of
these protocol executions at any step. Let ns = gs + qgoc, np = qp + qube,
nc = qc + q¢ + quve, and note that these are the ranges of indexes i, 7,1 for
instances 17, ch, and ITP. We will use [n] to denote range {1,...,n}.

The security proof goes by cases depending on the type of corrupt queries
A makes. In all cases the proof starts from the security-experiment game Gg
and proceeds via a series of game changes, G, Gs, etc, until a modified game G;
allows us to reduce an attack on the DE-PAKE with the same corruption pattern
(except in the case of corrupt client C) to the attack on G;. In the case of the
corrupt client the argument is different because it does not rely on the underlying
DE-PAKE (note that DE-PAKE does not provide any security properties in the
case of client corruption). In some game changes we will consider a modified
adversary algorithm, for example an algorithm constructed from the original
adversary A interacting with a simulator of some higher-level procedure, e.g. the
SAS-MA simulator. Wlog, we use A; for an adversary algorithm in game G;.

We will use p; to denote the probability that A; interacting with game G;
outputs b’ s.t. b’ = b where b is the bit chosen by the game on the test session.
Recall that when A makes the test session query test(P, i), for P € {S, C}, then,
assuming that instance IT7 produced a session key sk, game Go outputs that
session key if b = 1 or produces a random string of equal size if b = 0 (and if
session ITY did not produce the key then Gy outputs L regardless of bit b). Note
that by assumption Adva™ = € we have that pg = 1/2+1/2-Advi™ = 1/2+¢/2.
Case 1: No party is compromised. This is the case when A makes no corrupt
queries, i.e. it’s the default “network adversary” case. For lack of space we de-
scribe below only the game changes in the proof, and we state what we claim
about the effects of that game change and what assumption we use. The full
details of the proof are included in the full version of the paper [38].
GameGy: Let Z be a random function which maps onto k-bit strings. If (zid;, 2;)
dentes the KEM (ciphertext key) pair generated by His then in G; we set z; =
Z(zid;) instead of using KemE, and we abort if there is ever a collision in z;
values. Security of KEM implies that p; < po + eKEM(ng) 4+ n%/2".
Game Gy : Here we replace the SAS-MA procedure with the simulator SIMsas
implied by the UC security of the SAS-MA scheme of [51]. In other words, when-
ever II- and IIP execute the SAS-MA sub-protocol, we replace this execution

18

with a simulator SIMgas interacting with A and the ideal SAS-MA functionality
Fsasy- For example, Hjc, instead of sending Mc = (pk, zid) to A; and starting a
SAS-MA instance to authenticate Mc to D, will send [SAS.SEND, sid, ITP, Mc]
to Fsasjy, which triggers SIMsas to start simulating to A the SAS-MA protocol
on input Mc¢ between IT JC and IT lD. The rules of Fsaspy imply that A can make
this connection either succeed, abort, or, if it attacks it then IT, lD will abort with
probability 1 — 27%, but with probability 27¢ it will accept A’s message Mc*
instead of Mc. Security of SAS-MA implies that py < p; + min(nc,np) - €4S.

Game G3: Here we re-name entities involved in game Gg. Note that adversary
A interacts with G which internally runs algorithms SIMsas and Fsaspy, and
that SIMgas interacts only with Fsas on one end and Az on the other. We can
therefore draw the boundaries between the adversarial algorithm and the se-
curity game slightly differently, by considering an adversary As which executes
the steps of Ay and SIMgas, and a security game Gz which executes the rest
of game Gz, including the operation of functionality Fsasp). In other words, Gs
interacts with Ag using the Fsaspy interface to SIMsas, i.e. Gz sends to Az mes-
sages of the type [SAS.SEND, sid, HJC, HlD, Mc], and As’s response must be one
of [SAS.CONNECT, sid], [SAS.ABORT, sid|, and [SAS.ATTACK, sid,Mc"]. Since
we are only re-drawing the boundaries between the adversarial algorithm and
the security game, we have that ps = ps.

Game Gy : Here we change game Gg s.t. if A sends [SAS.CONNECT, sid] to let the
SAS-MA instance go through between Hjc and ITP with Mc containing HJ(»:’S key
pk, then we replace the ciphertext ep subsequently sent by IIP by encrypting a
constant string instead of Enc(pk, (z, K¢p)), and if A passes this ep to H]-C then
it decrypts it as (z, Kcp) generated by IIP. In other words, we replace the en-
cryption under SAS-authenticated key pk by a “magic” delivery of the encrypted
plaintext. The CCA security of PKE implies that py < p3 + min(ng,np) - €"KE.

GameGg: Here we abort if, assuming that key pk and ciphertext ep were ex-
changed between I]C and IIP correctly, any party accepts wrong messages in
the subsequent DE-PAKE execution authenticated by Kcp created by IIP. The
authentic channel security implies that ps < ps + min(nc,np) - €A

Game Gg: We perform some necessary cleaning-up, and abort if the SAS-MA
instance between II and IIP) sent Mc correctly, but adversary did not deliver
ITP’s response ep back to IT5 and yet ITP did not abort in subsequent DE-PAKE.

Since this way 11 JC has no information about key Kcp we get ps < ps +qp . ehC,

GameG7: We replace the keys created by uKE for every HiS—HjC session in step
L1 on which A was only an eavesdropper, with random keys. Security of uKE
implies that p; < pg + min(nc, ng) - e'KE.

At this point the game has the following properties: If A is passive on the
C-S key exchange in step I then A is forced to be passive on the C-S link in the
DE-PAKE in step III. Also, if A does not attack the SAS-MA and delivers D’s
response to C then A is forced to be passive on the C-D link in the DE-PAKE
in step III (and if A does not deliver D’s response to C then this D instance will

19

abort too). The remaining cases are either (1) active attacks on the key exchange
in step I or (2) when A attacks the SAS-MA sub-protocol and gets D to accept
Mc#* # Mc or (3) A sends e}, # ep to C. In handling these cases the crucial issue
is what A does with the zid created by S. Consider any S instance II? in which
the adversary interferes with the key exchange protocol in step I.1. Without loss
of generality assume that the adversary learns key Kcg output by IT3 in this
step. Note that D keeps a variable zidSet in which it stores all zid values it ever
receives, and that D aborts if it sees any zid more than once. Therefore each
game execution defines a 1-1 function L : [ng] — [np]U{L} s.t. if L(i) #L then
L(4) is the unique index in [np] s.t. HLD(i) receives Mc = (pk, zid;) in step II.1 for
some pk, and L(i) =L if and only if no D session receives zid;. If L(i) #L then
we consider two cases: First, if Mc = (pk, zid;) which contains zid; originates
with some session IT](;, and second if Mc = (pk, zid;) is created by the adversary.

GameGy: Let IT and II be rogue sessions s.t. A sends zid; to II§ in step 1.2,
but then stop I7]C from getting the corresponding z; by either attacking SAS-
MA or misdelivering D’s response ep. In that case neither IT JC nor A have any
information about z;, and therefore IT? should reject. Namely, if in Go we set

His’s output to L in such cases then py < pg + qg - €*€.

GameGyo: Let IT? and IT§- be rogue sessions and A send zid; to II5 as above,
but now consider the case that A lets IT Jc learn z; but A does not learn z; itself,
i.e. A lets SAS-MA and ep go through. In this case we will abort if in DE-
PAKE communication in Step III between His and I7]C either party accepts a
message not sent by the other party. Since A has no information about z; the
authenticated channel security implies that pig < pg + min(gc, gs) - €A¢.

Note that at this point if A interferes with the KE in step I.1 with ses-
sion II?, sends zid; to some IT¢ and does not send it to some ITP by sending
[SAS.ATTACK, sid, (pk™, zid;)] for any [then A is forced to be a passive eaves-
dropper on the DE-PAKE protocol in step III. Note that this holds when L(7) =1
s.t. the game issues [SAS.SEND, sid, HJC, IIP, (pk, zid;)] for some pk, i.e. if some
II lD receives value zid;, it receives it as part of a message M¢ sent by some [T JC

Game Gy : Finally consider the case when A itself sends zid; to D, i.e. when
L(i) = 1 s.t. A sends [SAS.ATTACK, sid, Mc* = (pk®,zid;)] in response to
[SAS.SEND, sid,HﬁHP, Mc], but the Fsaspy coin-toss comes out p; = 0, i.e. A
fails in this SAS-MA attack. In that case we can let IT? abort in step III because

if p; = 0 then A has no information about z; = Z(zid;), hence p11 < p19+qs-€*C.

After these game changes, we finally make a reduction from an attack on
underlying DE-PAKE to an attack on TFA-KE. Namely, we construct A* which
achieves advantage Advp: " = 2+ (p11 — 1/2) against DE-PAKE, and makes
g%, 95, 9c, gc rogue queries respectively to S, D, to C on its connection to S, and
to C on its connection with D, where g% = ¢}, = ¢* where ¢* is a random variable
equal to the sum of ¢ = min(gg, ¢p) coin tosses which come out 1 with probability
2~ and 0 with probability 1 — 2. Recall that Advi™ = 2 (py — 1/2) and that
by the game changes above we have that |p1; — po| is a negligible quantity, and
hence AdvEEPAKE is negligibly close to AdeFA.

20

The reduction goes through because after the above game-changes A can
either essentially let a DE-PAKE instance go through undisturbed, or it can
attempt to actively attack the underlying DE-PAKE instance either via a rogue
C session or via rogue sessions with device S and server D. However, each rogue
D session is bound to a unique rogue S session, because of the uKE and (zid, z)
mechanism, and for each such D, S session pair, the probability that an active
attack is not aborted is only 27¢. This implies that the (¢s,qp,qc) parameters
characterizing the TFA-KE attacker A scale-down to (qs/2¢, qp/2¢, qc) parame-
ters for the resulting DE-PAKE attacker A*, which leads to the claimed security
bounds by the security of DE-PAKE. The details of construction for A* and the
above argument are included in in the full version of this paper [38§].

Case 2: Party corruptions. In the full version of the paper [38] we include the
cases of client corruption and of device and/or server corruption, showing that
our scheme achieves all the bounds from Definition 1. Here we just comment on
how these bounds are derived. For the case of device corruption, the value z is
learned by the attacker hence it is equivalent to setting ¢ = 0. Also, rogue queries
to D are free for the attacker hence ¢p is virtually unbounded (can think of it as
"infinity"). Setting these values in the bound of Case 1, one obtains the claimed
bound (gc + gs)/2¢ for the case of device corruption. Similarly, in case of server
corruption one sets gg to "infinity". In addition, and in spite of the attacker
learning z in this case, one obtains a bound involving 2~¢ thanks to the fact that
we run the PTR protocol over the SAS channel, hence reducing the probability
of the attacker successfully testing a candidate password pwd’ by 2. In the
case of client compromise where the attacker learns the user’s password pwd, we
set d = 0 (a dictionary of size 1) and set go = g, = 0 since C is corrupted and
the attacker cannot choose a test session at C. Finally, when both D and S (but
not C) are corrupted one gets the same security as plain DE-PAKE, namely,
requiring a full offline dictionary attack to recover pwd.

6 System Development & Testing

Here we report on an experimental prototype of protocol OpTFA from Figure 3
on page 12 and present novel designs for the SAS channel implementation. We ex-
periment with OpTFA using two different instantiations of the password protocol
between C and S. One is PKI-based that runs OpTFA over a server-authenticated
TLS connection; in particular, it uses this connection in lieu of the uKE in step
I and implements step III by simply transmitting the concatenation of password
rwd and the value z under the TLS authenticated encryption. The second pro-
tocol we experimented with is a PKI-free asymmetric PAKE borrowed from [36,
27]. Roughly, it runs the same PTR protocol as described in Section 3 but this
time between C and S. C’s input is rwd and the result Fj(rwd) serves as a user’s
private key for the execution of an authenticated key-exchange between C and S.
We implement the latter with HMQV [41] (as an optimization, the DH exchange
used to implement uKE in step I of OpTFA is “reused" in HMQV).

21

Table 1: Average execution time of OpTFA and its components (10,000 iterations)

Protocol Purpose Parties ﬁvriza(gs(tedr.r(lirer:f)
SAS (excluding user’s Authenticate

check(sum validgation) C-D Channel Cand D 128.59 (0.48)
PTR Reconstruct rwd |C and D 160.46 (3.71)
PKI-free PAKE PAKE Cand S 182.27 (3.67)
PKI PAKE (TLS) C-S link encryption|C and S 32.54 (1.38)
Overall in PKI-free Model C,DandS 410.77 ms
Overall in PKI Model C,DandS 263.27 ms

In Table 1 we provide execution times for the various protocol components,
including times for the TLS-based protocol and the PKI-free one with some
elements borrowed from the implementation work from [37]. We build on the
following platform. The webserver S is a Virtual Machine running Debian 8.0
with 2 Intel Xeon 3.20GHz and 3.87GB of memory. Client terminal C is a Mac-
Book Air with 1.3GHz Intel Core 15 and 4GB of memory. Device D is a Samsung
Galaxy S5 smartphone running Android 6.0.1. C and D are connected to the same
WiFi network with the speed of 100Mbps and S has Internet connection speed of
1Gbps. The server side code is implemented in HTML5, PHP and JavaScipt. On
the client terminal, the protocol is implemented in JavaScript as an extension
for the Chrome browser and the smartphone app in Java for Android phones.

All DH-based operations (PTR, key exchange and SAS-SMT encryption) use
elliptic curve NIST P-256, and hashing and PRF use HMAC-SHA256. Hashing
into the curve is implemented with simple iterated hashing till an abscissa x on
the curve is found (it will be replaced with a secure mechanism such as [26]).

Communication between C and S uses a regular internet connection between
the browser C and web server S. Communication between C and D (except for
checksum comparison) goes over the internet using a bidirectional Google Cloud
Messaging (GCM) [5], in which D acts as the GCM server and C acts as the
GCM client. GCM involves a registration phase during which GCM client (here
C) registers with the GCM generated client ID to the GCM server (here D), to
assure that D only responds to the registered clients. In case that the PAKE
protocol in OpTFA is implemented with password-over-TLS, [37] specifies the
need for D to authenticate the PTR value b sent to C (see Sec. 3). In this case,
during the GCM registration we install at C a signature public key of D.

6.1 Checksum Validation Design

An essential component in our approach and solutions (in particular in protocol
OpTFA) is the use of a SAS channel implemented via the user-assisted equal-
ity verification of checksums displayed by both C and D (denoted hereafter as
checksum¢ and checksump, resp.). Here we discuss different implementations of
such user-assisted verification which we have designed and experimented with.

22

Manual Checksum Validation. In the simplest approach, the user compares
the checksums displayed on D and C and taps the Confirm button on D in
case the two match [50]. Although, this type of code comparison has recently
been deployed in TFA systems, e.g., [8], it carries the danger of neglectful users
pressing the confirm button without comparing the checksum strings. Another
common solution for checksum validation is “Copy-Confirm” [50] where the user
types the checksum displayed on C into D, and only if this matches D’s checksum
does D proceeds with the protocol. We implemented this scheme using a 6 digit
number. We stress that in spite of the similarity between this mechanism and
PIN copying in traditional TFA schemes, there is an essential security difference:
Stealing the PIN in traditional schemes suffices to authenticate instead of the
user (for an attacker that holds the user’s password) while stealing the checksum
value entered by the user in OpTFA is worthless to the attacker (the checksum
is a validation code, not the OTK value needed for authentication).

The above methods using human visual examination and /or copying limit the
SAS channel capacity (typically to 4-6 digits) and may degrade usability [47].
As an alternative we consider the following designs (however one may fallback
to the manual schemes when the more secure schemes below cannot be used,
e.g., missing camera or noisy environments).

QR Code Checksum Validation. In this checksum validation model, we en-
code the full, 256-bit checksum computed in protocol OpTFA into a hexstring
and show it as a 230 x 230 pixel QR Code on the web-page. We used ZXing
library to encode the QR code and display it on the web page and read and de-
code it D. To send the checksum to D, the user opens the app on D and captures
the QR code. D decodes the QR code and compares checksums, and proceeds
with the protocol if the match happens. In this setting, the user does not need
to enter the checksum but only needs to hold her phone and capture a picture
of the browser’s screen. With the larger checksum (¢ = 256) active attacks on
SAS-SMT turn infeasible and the expressions 2~ in Definition 1) negligible.

Voice-based Checksum Validation. We implement a voice-based checksum
validation approach that assumes a microphone-equipped device (typically a
smartphone) where the user speaks a numerical checksum displayed by the client
into the device. The device D receives this audio, recognizes and transcribes it
using a speech recognition tool, and then compares the result with the checksum
computed by D itself. The client side uses a Chrome extension as in the manual
checksum validation case while on the device we developed a transcriber applica-
tion using Android.Speech API. The user clicks on a “Speak” button added to the
app and speaks out loud the displayed number (6-digit in our implementation).
The transcriber application in D recognizes the speech and convert it to text
that is then compared to D’s checksum. To further improve the usability of this
approach one can incorporate a text-to-speech tool that would speak the check-
sum automatically (i.e., replacing the user). The transcription approach would
perhaps be easy for the users to employ compared to the QR-based approach,
but would only be suitable if the user is in an environment that is non-noisy
and allows her to speak out-loud. We note that the QR-~code and audio-based

23

approaches do not require a browser plugin or add-on and can be deployed on
any browser with HTML5 support.

Performance Evaluation. As preliminary information, we report on 30 check-
sum validation iterations performed by one experimenter. The time taken by
manual checksum validation was 8.50s on average (standard deviation 2.84s).
The time taken by QR-Coded validation was 4.87s on average for capturing
the code (standard deviation 1.32s) and 0.02s on average for decoding the code
(standard deviation 0.00s). The time taken by audio-based validation was 4.08s
on average for speaking the checksum (standard deviation 0.34s) and 1.18s on
average for transcribing the spoken checksum (standard deviation 0.42s). The
average time for these tasks may vary between different users. The time taken
by the device to perform the checksum comparison is negligible. Our preliminary
testing of these two channels shows virtually-0 error rate.

7 Discussion of Related Work

Device-enhanced password-authentication with security against ofline
dictionary attacks (ODA). There are several proposals in cryptographic lit-
erature for password authentication schemes that utilize an auxiliary computing
component to protect against ODA in case of server compromise. This was a
context of the Password Hardening proposal of Ford-Kaliski [31], which was
generalized as Hidden Credential Retrieval by Boyen [27], and then formalized
as (Cloud) Single Password Authentication (SPA) by Acar et al. [23] and as a
Device-Enhanced PAKE (DE-PAKE) by Jarecki et al. [37]. These schemes are
functionally similar to a TFA scheme if the role of the auxiliary component is
played by the user’s device D, but they are insecure in case of password leakage
e.g. via client compromise.® The threat of an ODA attack on compromise of an
authentication server also motivated the notion of Threshold Password Authenti-
cated Key Exchange (T-PAKE) [44], i.e. a PAKE in which the password-holding
server is replaced by n servers so that a corruption of up to ¢ < n of them leaks
no information about the password. In addition to general T-PAKE’s, several
solutions were also given for the specific case of n =2 servers tolerating t =1 cor-
ruption, known as 2-PAKE [28,40], and every 2-PAKE, with the user’s device D
playing the role of the second server, is a password authentication scheme that
protects against ODA in case of server compromise. However, as in the case of
[31,27,23,37], if a password is leaked then 2-PAKE offers no security against an
active attacker who engages with a single 2-PAKE session.

TFA with ODA security. Shirvanian et al. [48] proposed a TFA scheme which
extends the security of traditional PIN-based TFAs against ODA in case of server

5 We note that [23] also show a Mobile Device SPA, which provides client-compromise
resistance, but it requires the user to type the password onto the device D, and to
copy a high-entropy key from D to C, thus increasing manually transmitted data
even in comparison to traditional TFAs. By contrast, OpTFA dispenses entirely with
manual transmission of information to and from D.

24

compromise. However, OpTFA offers several advantages compared to [48]: First,
[48] relies on PKI (the client sends the password and the one-time key, OTK, to
the PKI-authenticated server) while OpTFA has both a PKI-model and a PKI-
free instantiation. Second, [48] assumes full security of the ¢-bit D-C channel
for OTK transmission while we reduce this assumption to a t-bit authenticated
channel between C and D. Consequently, we improve user experience by replacing
the read-and-copy action with simpler and easier compare-and-confirm. On the
other hand, [48] can use only the t-bit secure D-C link while OpTFA requires
transmission of full-entropy values between D and C.

TFA with the 2nd factor as a local cryptographic component. Some
Two-Factor Authentication schemes consider a scenario where the 2nd factor is
a device D capable of storing cryptographic keys and performing cryptographic
algorithms, but unlike in our model, D is connected directly to client C, i.e. it
effectively communicates with C over secure links. (However, security must hold
assuming the adversary can stage a lunch-time attack on device D, so D cannot
simply hand off its private keys to C.) The primary example is a USB stick, like
YubiKey [13], implementing e.g. the FIDO U2F authentication protocol [2,42].
A generalized version of this problem, including biometric authentication, was
formalized by Pointcheval and Zimmer as Multi-Factor Authentication [46], but
the difference between that model and our TFA-KE notion is that we consider
device D which has no pre-set secure channel with client C. Moreover, to the best
of our knowledge, all existing MFA /TFA schemes even in the secure-channel D-
C model are still insecure against ODA on server compromise, except for the
aforementioned TFA of Shirvanian et al. [48].

Alternatives to PIN-based TFA with remote auxiliary device. Many
TFA schemes improve on PIN-based TFAs by either reducing user involvement,
by not requiring the user to copy a PIN from D to C, or by improving on its online
security, but none of them protect against ODA in case of server compromise,
and their usability and online security properties also have downsides.

PhoneAuth [30] and Authy [11] replace PINs with S-to-D challenge-response
communication channeled by C, but they require a pre-paired Bluetooth con-
nection to secure the C-D channel. A full-bandwidth secure C-D channel reduces
the three-party TFA notion to a two-party setting, where device D is a local
component of client C, but requiring an establishment of such secure connec-
tion between a browser C and a cell phone D makes a TFA scheme harder to
use. TFA schemes like SlickLogin (acquired by Google) [3], Sound-Login [9], and
Sound-Proof [39] in essence attempt to implement such secure C-to-D channel
using physical security assumptions on physical media e.g. near-ultrasounds [3],
audible sounds [9], or ambient sounds detecting proximity of D to C [39], but
they are subject to eavesdropping attacks and co-located attackers.

Several TFA proposals, including Google Prompt [8] and Duo [1], follow a
one-click approach to minimize user’s involvement if D is a data-connected de-
vice like a smartphone. In [8,1] S communicates directly over data-network to D,
which prompts the user to approve (or deny) an authentication session, where the
approve action prompts D to respond in an entity authentication protocol with

25

S, e.g. following the U2F standard [2]. This takes even less user’s involvement
than the compare-and-confirm action of our TFA-KE, but it does not establish
a strong binding between the C-S login session and the D-S interaction. E.g., if
the adversary knows the user’s password, and hence the TFA security depends
entirely on D-S interaction, a man-in-the-middle adversary who detects C’s at-
tempt to establish a session with S, and succeeds in establishing a session with
S before C does, will authenticate as that user to S because the honest user’s
approval on D’s prompt will result in S authenticating the adversarial session.

References

Duo Security Two-Factor Authentication. https://goo.gl/wT3ur9.

2. FIDO Universal 2nd Factor. https://www.yubico.com/.

w

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Google acquires slicklogin, the sound-based password alternative.
https://goo.gl/VIJ8rv.

Google Authenticator Android app. https://goo.gl/Q4LU7k.

Google Cloud Messaging. https://goo.gl/EFvXt9.

LinkedIn Confirms Account Passwords Hacked. http://goo.gl/UBWuYO0.

RSA breach leaks data for hacking securid tokens. http://goo.gl/tcEoS.

Sign in faster with 2-Step Verification phone prompts. https://goo.gl/3vjngW.
Sound Login Two Factor Authentication. https://goo.gl/LIJFkvT.

TOTP: Time-Based One-Time Password Algorithm. https://goo.gl/9Ba5hv.

. Two-factor authentication - authy. https://www.authy.com/.

. Yahoo Says 1 Billion User Accounts Were Hacked. https://goo.gl/q4WZi9.

. YubiKeys: Your key to two-factor authentication. https://goo.gl/LLACVP.

. RFC 4226 HOTP: An HMAC-based One-Time Password Algorithm, 2005.

https://goo.gl/wxHBvT.

Russian Hackers Amass Over a Billion Internet Passwords, 2014.
https://goo.gl/KCrFjS.

London Calling: Two-Factor Authentication Phishing From Iran, 2015.
https://goo.gl / w6RD67.

Hack Brief: Yahoo Breach Hits Half a Billion Users, 2016. https://goo.gl/nz4uJG.
SIM swap fraud: The multi-million pound security issue that UK banks won’t
talk about, 2016. http://www.ibtimes.co.uk/sim-swap-fraud-multi-million-pound-
security-issue-that-uk-banks-wont-talk-about-1553035.

SMS Deprecated, 2016. https://github.com/usnistgov/800-63-3/issues/168.

Over 560 Million Passwords Discovered in Anonymous Online Database, 2017.
https://goo.gl/upDqzt.

Real-World SS7 Attack - Hackers Are Stealing Money From Bank Accounts, 2017.
https://thehackernews.com/2017/05/ss7-vulnerability-bank-hacking.html.

M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In Topics in Cryptology - CT-RSA ’01, volume 2020
of Lecture Notes in Computer Science. Springer, 2001.

T. Acar, M. Belenkiy, and A. Kiip¢ii. Single password authentication. Computer
Networks, 57(13), 2013.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Advances in Cryptology — Eurocrypt, 2000.

26

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password file compromise. In
ACM Conference on Computer and Communications Security, 1993.

D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. 2013.

X. Boyen. Hidden credential retrieval from a reusable password. In Proc. of
ASIACCS, 20009.

J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. A new two-server approach for
authentication with short secrets. In 12th USENIX Security Symp, 2003.

R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 453—474, 2001.

A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz. Strengthening user
authentication through opportunistic cryptographic identity assertions. In Pro-
ceedings of ACM conference on Computer and communications security, 2012.
W. Ford and B. S. K. Jr. Server-assisted generation of a strong secret from a
password. In WETICE, pages 176-180, 2000.

C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based
key exchange resilient to server compromise. In Advances in Cryptology. 2006.

S. Halevi and H. Krawczyk. Public-key cryptography and password protocols.
ACM Trans. Inf. Syst. Secur., 2(3):230-268, Aug. 1999.

T. Jager, F. Kohlar, S. Schige, and J. Schwenk. On the security of TLS-DHE in
the standard model. In CRYPTO, pages 273-293, 2012. Also Cryptology ePrint
Archive, Report 2011/219.

S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret
sharing and t-pake in the password-only model. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 233-253.
Springer, 2014.

S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly Efficient and Composable
Password-Protected Secret Sharing. In 1st IEEE European Symposium on Security
and Privacy (EuroS&P). 2015.

S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena. Device-enhanced pass-
word protocols with optimal online-offline protection. In ASIACCS 2016, 2016.
http://eprint.iacr.org/2015,/1099.

S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena. Two-factor authentica-
tion with end-to-end password security. IACR Cryptology ePrint Archive: Report
2018/033 available at http://eprint.iacr.org/2018/033, January 2018.

N. Karapanos, C. Marforio, C. Soriente, and S. Capkun. Sound-proof: usable two-
factor authentication based on ambient sound. In 24th USENIX Security Sympo-
stum (USENIX Security 15), 2015.

J. Katz, P. D. MacKenzie, G. Taban, and V. D. Gligor. Two-server password-only
authenticated key exchange. In ACNS, pages 1-16, 2005.

H. Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In An-
nual International Cryptology Conference, pages 546-566, 2005.

J. Lang, A. Czeskis, D. Balfanz, M. Schilder, and S. Srinivas. Security keys: Prac-
tical cryptographic second factors for the modern web, 2016.

C.-C. Lin, H. Li, X.-y. Zhou, and X. Wang. Screenmilker: How to milk your android
screen for secrets. In Network & Distributed System Security Symposium, 2014.
P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-
authenticated key exchange. In Advances in Cryptology — CRYPTO. 2002.

27

45. P. D. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-
authenticated key exchange. In Advances in Cryptology - CRYPTO 2002, In-
ternational Cryptology Conference, 2002.

46. D. Pointcheval and S. Zimmer. Multi-factor authenticated key exchange. In Applied
Cryptography and Network Security, 6th International Conference, ACNS 2008,
New York, NY, USA, June 3-6, 2008. Proceedings, pages 277-295, 2008.

47. N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device pairing
based on a visual channel. In Security and Privacy, IEEE Symposium on, 2006.

48. M. Shirvanian, S. Jarecki, N. Saxena, and N. Nathan. Two-factor authentication
resilient to server compromise using mix-bandwidth devices. In Network € Dis-
tributed System Security Symposium, 2014.

49. V. Shoup. ISO 18033-2: An emerging standard for public-key encryption, Dec.
2004. Final Committee Draft.

50. E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of secure pairing meth-
ods. In Financial Cryptography and Data Security. 2007.

51. S. Vaudenay. Secure communications over insecure channels based on short au-
thenticated strings. In Advances in Cryptology - CRYPTO, number 3621 in Lecture
Notes in Computer Science, pages 309 — 326. Springer Verlag, 2005.

A DE-PAKE Security Model

We recall the Device-Enhanced PAKE (DE-PAKE) security model of [37], which forms
a basis of our TFA model, and which extends the the Password Authentication Key
Exchange (PAKE) model [24] to the case where the user controls an auxiliary device
which constitutes the user’s second authentication token in addition to the password.
We refer to the full version [38] for a more detailed and modular presentation of DE-
PAKE as an extension of the PAKE model.

Protocol participants. There are three types of protocol participants in DE-PAKE,
client C, server S, and device D. We assume that client C is controlled by a user U.
The role of D can be played by any data-connected entity, including a hand-held device
owned by user U or an auxiliary web service which has an account for U. (The definition
in [37] identifies C with U, but in the TFA context U and C are separate entities, and U
is assumed to operate both client C and device D.) We assume that C interacts with a
unique server S and device D, but server S interacts with multiple users. For notational
convenience we take a simplifying assumption that in a DE-PAKE protocol both D
and S interact only with client C, and not with each other directly.

Protocol execution. A DE-PAKE protocol has two phases: initialization and key ex-
change. In the initialization phase user U chooses a random password pwd from a given
dictionary Dict and interacts with its associated server S and device D. Initialization
produces state os(U) for server S, which S stores in an account associated with user U,
and state op for device D, while client C has no permanent storage except for public
parameters. Initialization is assumed to be executed securely, e.g., over secure channels.
In the key exchange phase, user types her password pwd into the client C, and the three
parties, C on input pwd, D on input op, and S on input os(U), interact over insecure
(adversary-controlled) channels. Parties C and S terminate by outputing a session key
or a rejection symbol, while D has no local output. All parties may execute the pro-
tocol multiple times in a concurrent fashion. Protocol execution by any party defines
a protocol instance, also referred to as a protocol session, denoted respectively IT¢,

28

IIP, or II?, where integer pointer i serves to differentiates between multiple protocol
instances executed by a given party. Each protocol session by C and S is associated
with a a peer identity pid, a session identifier sid which we equate with the transcript
of exchanges with its peer observed by this instance, and a session key sk. The output
of C or S protocol instance consists of the above three variables, which can be set to
L if the party aborts the session (e.g., when authentication fails, a misformed message
is received, etc.). When a session II¢ or II? outputs sk #1 we say that it accepts.

Security. To define security we consider a probabilistic attacker A which schedules
all actions in the protocol and controls all communication channels with full ability to
transport, modify, inject, delay or drop messages. In addition, the attacker knows (or
even chooses) the dictionaries used by users. The model defines the following queries or
activations through which the adversary interacts with, and learns information from,
the protocol’s participants.

send(P, i, P', M): Delivers message M to instance IIT purportedly coming from P’. In
response to a send query the instance takes the actions specified by the protocol and
outputs a message given to A. When a session accepts, a message indicating acceptance
is given to A. A send message with a new value ¢ (possibly with null M) creates a new
instance at P with pid P’ (if P # D).

reveal(P,4): If instance I17 for P € {C,S} has accepted, outputs its session key sk;
otherwise outputs L.

corrupt(P): Outputs all data held by party P € {D,S}. The state includes op if P =D
and os(U) if P =S, but it also includes all temporary session information. Adversary
A gains full control of P, and we say that P is corrupted.

compromise(S, U): Outputs state os(U) of S. We say that S is U-compromised.

test(P,1): If instance II has accepted, for P € {C,S}, this query causes II} to flip
a random bit b. If b = 1 the instance’s session key sk is output and if b = 0 a string
drawn uniformly from the space of session keys is output. A test query may be asked
at any time during the execution of the protocol, but may only be asked once. We will
refer to the party P against which a test query was issued and to its peer as the target
parties.

The following notion taken from [35] is used in the security definition below to
ensure that legitimate messages exchanged between honest parties do not help the
attacker in online password guessing attempts (only adversarially-generated messages
count towards such online attacks). It has similar motivation as the execute query in
[24], but the latter fails to capture the ability of the attacker to delay and interleave
messages from different sessions.

Rogue send queries: We say that a send(P,i, P', M) query is rogue if it was not gen-
erated and/or delivered according to the specification of the protocol, i.e. message M
has been changed or injected by the attacker, or the delivery order differs from what
is stipulated by the protocol (delaying message delivery or interleaving messages from
different sessions is not considered a rogue operation as long as internal session or-
dering is preserved). We also consider as rogue any send(P,i, P', M) query where P
is uncorrupted and P’ is corrupted. We call messages delivered through rogue send
queries rogue activations by A, and we call session which receives rogue mesages rogue
session. We denote the number of rogue sessions of D as ¢gp, of S as ¢g, the number of
rogue sessions of C where rogue send queries come with the server as the sender as g¢,
and those where rogue send queries come with the device as the sender as q(.

29

Matching sessions. Session instances IT¥ and HJP/ for {P, P'} = {C,S} are said to be
matching if both have the same session identifier sid (i.e., their transcripts match), the
first has pid = P’, the second has pid = P, and both have accepted.

Fresh sessions. Session II¢ with pid = S is called fresh if none of the queries corrupt(C),
corrupt(S), compromise(S, U), reveal(C,4) or reveal(S,i’) were issued, where IT; is an
instance whose session matches IT5. Session II; with pid = Cis called fresh if none of the
queries corrupt(C), reveal(S, i) or reveal(C, ') were issued, where ITS is an instance whose
session matches IT7. Note that II? can be fresh even after if query compromise(S, U) or
corrupt(S) are issued, as long as adversary has no access to local information of session
I73.

Correctness. If the adversary forwards all protocol messages then matching sessions
between uncorrupted peers output the same session key.

Let DEPAKE be a DE-PAKE protocol and A be an attacker with the above capabil-
ities running against DEPAKE. Assume that A issues a single test query against some
C or S session and ends its run by outputing bit b’. We say that A wins if b’ = b where
b is the bit chosen by the test session. We define the advantage of A against DEPAKE
as AdvREPAKE — 9. Pr[A wins against DEPAKE] — 1.

Definition 2. A DE-PAKE protocol is called (qs,qc,qc, qp, T, €)-secure if it is cor-
rect, and for any password dictionary Dict of size 2% and any attacker that runs in time
T, the following properties hold:

1. If S and D are uncorrupted, the following bound holds:

. '
AdvREPAKE < min{ge + gj Gctan} | (1)

2. If D is corrupted then AdvREAKE < (go + ¢s5)/2% + €.
3. If S is corrupted then Advi= " E < (g + qp)/2¢ + €.

4. When both D and S are corrupted, expression (1) holds but gp and qs are Te-
placed by the number of offline operations performed based on D’s and S’s state,
respectively.

Strong KCI Resistance: Discussion. DE-PAKE is intended to provide stronger
notion of security in case of server compromise than PAKE. In PAKE the adversary
can authenticate to S in case of U-compromise through an offline dictionary attack, but
in DE-PAKE this is prohibited. To formalize this requirement we follow the treatment
of KCI resistance from [41] and we strengthen the attacker capabilities through a more
liberal notion of fresh sessions at a server S. This is why all sessions considered fresh in
the PAKE model are also considered fresh in the DE-PAKE model, but in addition, in
the DE-PAKE model a session II7 at server S with peer U is considered fresh even if
queries corrupt(S) or compromise(S, U) were issued as long as all other requirements for
freshness are satisfied and the attacker A does mot have access to the temporary state
information created by session IT7. This relaxation of the notion of freshness captures
the case where the attacker A might have corrupted S and gained access to S’s secrets
(including long-term ones), yet A is not actively controlling S during the generation of
session IT7. In this case we would still want to prevent A from authenticating as U to S
on that session. Definition 2 (item 2) ensures that this is the case for DE-PAKE secure
protocols even when unbounded offline attacks against S are allowed.

30

