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Abstract. We propose simple and generic constructions of succinct
functional encryption. Our key tool is exponentially-efficient indistin-
guishability obfuscator (XIO), which is the same as indistinguishability
obfuscator (IO) except that the size of an obfuscated circuit (or the
running-time of an obfuscator) is slightly smaller than that of a brute-
force canonicalizer that outputs the entire truth table of a circuit to
be obfuscated. A “compression factor” of XIO indicates how much XIO
compresses the brute-force canonicalizer. In this study, we propose a sig-
nificantly simple framework to construct succinct functional encryption
via XIO and show that XIO is a powerful enough to achieve cutting-edge
cryptography. In particular, we prove the followings:
– Single-key weakly succinct secret-key functional encryption (SKFE)

is constructed from XIO (even with a bad compression factor) and
one-way function.

– Single-key weakly succinct public-key functional encryption (PKFE)
is constructed from XIO with a good compression factor and public-
key encryption.

– Single-key weakly succinct PKFE is constructed from XIO (even
with a bad compression factor) and identity-based encryption.

Our new framework has side benefits. Our constructions do not rely on
any number theoretic or lattice assumptions such as decisional Diffie-
Hellman and learning with errors assumptions. Moreover, all security
reductions incur only polynomial security loss. Known constructions of
weakly succinct SKFE or PKFE from XIO with polynomial security loss
rely on number theoretic or lattice assumptions.

1 Introduction

1.1 Background

In cryptography, it is one of major research topics to construct more complex
cryptographic primitives from simpler ones in a generic way. Here, “generic”
means that we use only general cryptographic tools such as one-way function and
? This work was done while the author was visiting NTT Secure Platform Laboratories
as a summer internship student.
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public-key encryption. For such a generic construction, we do not use any specific
or concrete algebraic assumptions such as the factoring, decisional Diffie-Hellman
(DDH), learning with errors (LWE) assumptions. Generic constructions are useful
in cryptography because they do not rely on any specific structure of underlying
primitives. It means that even if a specific number theoretic assumption is broken,
say the DDH, a generic construction based on public-key encryption is still
secure since there are many instantiations of public-key encryption from other
assumptions. Moreover, generic constructions are useful to deeply understand
the nature of cryptographic primitives.

Many generic constructions have been proposed. For example, one-way func-
tions imply pseudo-random function (PRF) [32], and many other primitives.
However, we understand little of how to construct functional encryption [13,45]
in a generic way despite its usefulness as explained below.

Functional encryption is a generalization of public-key encryption and enables
us to generate functional keys that are tied with a certain function f . Given such
a functional key, we can obtain f(x) by decryption of ciphertext Enc(x) where x
is a plaintext. Functional encryption is a versatile cryptographic primitive since it
enables us to achieve not only fine-grained access control systems over encrypted
data but also indistinguishability obfuscation (IO) [8,27,3,11].

IO converts computer programs into those that hide secret information in the
original programs while preserving their functionalities. An obvious application
of IO is protecting softwares from reverse engineering. Moreover, IO enables us to
achieve many cutting-edge cryptographic tasks that other standard cryptographic
tools do (or can) not achieve such as (collusion-resistant) functional encryption,
program watermarking, and deniable encryption [47,27,21]. We basically focus
on functional encryption and IO for all circuits in this study.

Many concrete functional encryption and IO constructions have been proposed
since the celebrated invention of a candidate graded encoding system by Garg,
Gentry, Halevi [26]. However, regarding designing secure functional encryption
and IO, we are still at the “embryonic” stage1. A few candidates of graded
encoding schemes have been proposed [26,24,30]. However, basically speaking, all
are attacked, and most applications (including functional encryption) that use
graded encoding schemes are also insecure [20,22,19,43,5,23,18]. As an exception,
a few IO constructions are still standing [28,25]2.

The purpose of this study is that we shed new light on how to achieve
functional encryption and IO.

The number of functional keys and the size of encryption circuit. In fact, the
hardness of constructing functional encryption depends on certain features of func-
tional encryption such as the number of issuable functional keys and ciphertexts
and the size of encryption circuit.
1 We borrow this term from the talk by Amit Sahai at MIT, “State of the IO: Where
we stand in the quest for secure obfuscation” http://toc.csail.mit.edu/node/981

2 Martin Albrecht and Alex Davidson maintain the status of graded encoding
schemes and IO constructions at http://malb.io/are-graded-encoding-schemes-broken-
yet.html.
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We say “single-key” if only one functional key can be issued. We also say
q-key or bounded collusion-resistant when a-priori bounded q functional keys
can be issued. If q is an a-priori unbounded polynomial, then we say “collusion-
resistant”. It is known that a single-key secret-key and public-key functional
encryption (SKFE and PKFE) are constructed from standard one-way function
and public-key encryption, respectively [46]. It is also known that a bounded
collusion-resistant PKFE (resp. SKFE) is constructed from public-key encryption
(resp. one-way function) and pseudo-random generator computed by polynomial
degree circuits [34]. However, it is not known whether collusion-resistant functional
encryption is constructed without expensive cryptographic tools such as graded
encoding systems [26,24,30] or IO [26].

It is also known that we can construct collusion-resistant PKFE from single-
key weakly succinct PKFE [29,40]. The notion of succinctness for functional
encryption schemes [3,11]3 means the size of encryption circuit is independent of
the function-size. Weak succinctness means the size of the encryption circuit is
sγ ·poly(λ, n) where λ is a security parameter, s is the size of f that is embedded
in a functional key, n is the length of a plaintext, and γ is a constant such that
0 < γ < 1. The results of Garg and Srinivasan [29] and Li and Micciancio [40]
mean that we can arbitrarily increase the number of issuable functional keys by
using succinctness. Moreover, succinct SKFE and PKFE are constructed from
collusion-resistant SKFE and PKFE, respectively [4]. Thus, it is also a difficult
task to construct succinct functional encryption schemes without graded encoding
systems or IO.

The succinctness of functional encryption is also key feature to achieve IO.
Ananth and Jain [3] and Bitansky and Vaikuntanathan [11] show that a sub-
exponentially secure single-key weakly succinct PKFE implies IO.

These facts indicate that it is a challenging task to achieve either collusion-
resistance or succinctness.

Running time of obfuscator. Not only the encryption-time of functional encryption
but also the size of obfuscated circuits and the running time of obfuscators are
important measures.

Lin, Pass, Seth, and Telang [41] introduced the notion of exponentially-efficient
indistinguishability obfuscator (XIO), which is a weaker variant of IO. XIO is
almost the same as IO, but the size of the obfuscated circuits is poly(λ, |C|) · 2γn
where λ is a security parameter, C is a circuit to be obfuscated, n is the length
of input for C, and a compression factor γ is some value such that 0 < γ < 1.
We note that the running time of XIO on an input a circuit of n-bit inputs can
be 2n. They prove that if we assume that there exists XIO for circuits and the
LWE problem is hard, then there exists single-key weakly succinct PKFE (and
IO if sub-exponential security is additionally assumed).

Bitansky, Nishimaki, Passelègue, and Wichs [9] extend the notion of XIO and
define strong XIO (SXIO). If the running time of the obfuscator is poly(λ, |C|)·2γn,
3 In some papers, the term “compactness” is used for this property, but we use the
term by Bitansky and Vaikuntanathan [11] in this study.
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then we say it is SXIO. Bitansky et al. show that sub-exponentially secure SXIO
and public-key encryption imply IO. In addition, they prove that single-key
weakly succinct PKFE is constructed from SXIO, public-key encryption, and
weak PRF in NC1, which is implied by the DDH [44] or LWE assumptions [7].

Thus, (S)XIO is useful enough to achieve weakly succinct functional encryption
and IO. In this study, we discuss more applications of SXIO to functional
encryption. In particular, we discuss significantly simple and generic constructions
of weakly succinct functional encryption by using SXIO.

From SKFE to PKFE. Bitansky et al. [9] also prove that SXIO is constructed
from collusion-resistant SKFE. Thus, we can construct weakly succinct PKFE
from a weaker primitive than PKFE by the results of Lin et al. and Bitansky et al.,
though it is not known whether we can construct collusion-resistant SKFE from
standard cryptographic primitives.

The works of Lin et al. and Bitansky et al. are advancements on how to
construct succinct PKFE from weaker primitives. In particular, Bitansky et al. pro-
vide a nice generic framework for constructing weakly succinct PKFE from SKFE
and public-key encryption. However, their technique is very complicated. More-
over, they still use the DDH or LWE assumptions to achieve weakly succinct
PKFE with polynomial security loss. Thus, it is not known whether we can
construct weakly succinct PKFE with polynomial security loss from SKFE and
public-key encryption in a generic way.

1.2 Our Contributions

The primary contribution of this study is that we propose a significantly simple
and generic framework to construct single-key weakly succinct functional encryp-
tion by using SXIO. In particular, our constructions are significantly simpler than
those by Bitansky et al. [9]. More specifically, we prove the following theorems
via our framework:

Main theorem 1 (informal): A single-key weakly succinct PKFE is implied
by public-key encryption and SXIO with a sufficiently small compression
factor.

Main theorem 2 (informal): A single-key weakly succinct PKFE is implied
by identity-based encryption and SXIO with a compression factor that is
only slightly smaller than 1.

Main theorem 3 (informal): A single-key weakly succinct SKFE is implied
by one-way function and SXIO with a compression factor that is only slightly
smaller than 1.

Readers might find that the technique (see the overview in Section 1.3) in our
framework is a little bit straightforward and a combination of (minor variants
of) well-known or implicitly known techniques. However, we stress that it is not
a disadvantage but the advantage of our study. We reveal that such a simple
combination of known techniques yields highly non-trivial results above for the
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first time. We believe that our simple technique is useful to construct better
functional encryption (and IO). In fact, Kitagawa, Nishimaki, and Tanaka extend
our technique and obtain an IO construction based only on SKFE [37]. As side
benefits of our new framework, our functional encryption schemes have advantages
over previous constructions. In particular, the third main theorem is totally new.
We highlight that all these new theorems incur only polynomial security loss
and do not rely on any specific number theoretic or lattice assumption. These are
advantages over the constructions of Lin et al. and Bitansky et al. [41,9] and the
secondary contributions of this study. We explain details of our results below.

Implication of first and second theorems. There are transformations from a single-
key weakly succinct PKFE scheme to a collusion-resistant one with polynomial
security loss [29,40]. Thus, by combining the first or second theorems with the
transformation, we obtain two collusion-resistant PKFE schemes with polynomial
security loss. One is based on public-key encryption and collusion-resistant (non-
succinct) SKFE since collusion-resistant (non-succinct) SKFE implies SXIO
with an arbitrarily small constant compression factor [9]. The other is based on
identity-based encryption and single-key weakly succinct SKFE since single-key
weakly succinct SKFE implies SXIO with a compression factor that is slightly
smaller than 1 [10]. Note that we can also obtain IO constructions from the same
building blocks if we assume that they are sub-exponentially secure by using the
result of Ananth and Jain[3] or Bitansky and Vaikuntanathan [11].

As well as one-way function and public-key encryption, identity-based en-
cryption [48] is also a standard cryptographic primitive since there are many
instantiations of identity-based encryption based on widely believed number
theoretic assumptions and lattice assumptions [12,31]. Thus, our second result
indicates that all one needs is to slightly compress the brute-force canonicalizer
that outputs an entire truth table of a circuit to be obfuscated to construct
single-key weakly succinct (or collusion-resistant) PKFE and IO.

Advantages over previous constructions. We look closer at previous works for
comparison. Readers who are familiar with the previous works on PKFE can
skip this part and jump into the part about implication of the third theorem.

Lin et al. [41]: They construct single-key weakly succinct PKFE from XIO
and single-key succinct PKFE for Boolean circuits. It is known that a sin-
gle key succinct PKFE for Boolean circuits is constructed from the LWE
assumption [33].
Both their construction and ours are generic constructions using (S)XIO.
However, their construction additionally needs single-key succinct PKFE for
Boolean circuits. We have only one instantiation of such PKFE based on the
LWE assumption while our additional primitives (i.e., public-key encryption
and identity-based encryption) can be instantiated based on wide range of
assumptions. This is the advantage of our construction over that of Lin et al.

Bitansky et al. [9]: They construct single-key weakly succinct PKFE from
SXIO and public-key encryption with 2O(d) security loss where d is the
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depth of a circuit. They introduce decomposable garbled circuit, which
is an extension of Yao’s garbled circuit [49], to achieve succinctness [9].
Decomposable garbled circuit is implied by one-way function. However, it
has two disadvantages. One is that it incurs the 2O(d) security loss. The other
is that its security proof is complex.
When we construct single-key weakly succinct (or collusion-resistant) PKFE
only with polynomial security loss, the exponential security loss in the depth of
circuits is a big issue. Thus, Bitansky et al. need weak PRF in NC1 to achieve
single-key weakly succinct (or collusion-resistant) PKFE with polynomial
security loss due to the 2O(d) security loss [9, Section 5.3]4. If our goal is
constructing IO, then the 2O(d) security loss is not an issue in the sense that
we need sub-exponential security of PKFE to achieve IO [11,3], and we can
cancel the 2O(d) security loss by complexity leveraging.
Decomposable garbled circuit is a useful tool for Bitansky et al.’s construction.
However, the definition is complicated and it is not easy to understand the se-
curity proof. Our unified design strategy significantly simplifies a construction
of single-key weakly succinct PKFE based on SXIO. In fact, our constructions
use decomposable randomized encoding [35,6], but decomposable randomized
encoding is a simple tool and does not incur 2O(d) security loss.

Using identity-based encryption. We show that we can relax the requirements
on SKFE to achieve PKFE and IO if we are allowed to use identity-based
encryption.
Our construction of PKFE using identity-based encryption needs SXIO
with compression factor slightly smaller than 1 that is implied by single-key
(weakly) succinct SKFE while the constructions using public-key encryp-
tion need SXIO with sufficiently small compression factor that is implied by
collusion-resistant SKFE. It is not known whether single-key (weakly) succinct
SKFE implies collusion-resistant SKFE though the opposite is known [4].
Of course, regarding additional assumptions (public-key encryption and
identity-based encryption), the existence of identity-based encryption is a
stronger assumption than that of public-key encryption. However, identity-
based encryption is a standard cryptographic primitive and the assumption
is reasonably mild since many instantiations of identity-based encryption
are known [12,31]. Readers who are familiar with the construction of Bitan-
sky et al. might think the second theorem is easily obtained from the result
of Bitansky et al., which actually uses an identity-based encryption scheme
constructed from SXIO and public-key encryption as a building block.5 This
is not the case because their construction uses an SXIO three times in a nested
manner to construct their single-key weakly succinct PKFE scheme. They
construct a single-key weakly succinct PKFE scheme for Boolean functions

4 They use a bootstrapping technique by Ananth et al. [1], which transforms functional
encryption for NC1 into one for P/poly.

5 Note that our requirements on an identity-based encryption scheme is the same as
theirs on their identity-based encryption scheme.
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by using SXIO and identity-based encryption, and then transform it into a
single-key weakly succinct PKFE scheme for non-Boolean functions by using
SXIO again. Therefore, even if we replace their identity-based encryption
scheme based on SXIO and public-key encryption with an assumption that
there exists identity-based encryption, their construction still requires the
use of SXIO two times in a nested manner, and due to this nested use, it
still needs SXIO with sufficiently small compression factor.
Thus, the advantages of our single-key weakly succinct PKFE schemes over
Bitansky et al.’s construction are as follows:
– Our single-key weakly succinct PKFE scheme does not incur 2O(d) security

loss thus does not need weak PRF in NC1 (implied by the DDH or LWE
assumptions) to support all circuits.

– Our PKFE schemes and proofs are much simpler.
– We can use single-key weakly succinct SKFE instead of collusion-resistant

SKFE (if we use identity-based encryption instead of public-key encryp-
tion).

Komargodski and Segev [39]: Komargodski and Segev construct IO for cir-
cuits with inputs of poly-logarithmic length and sub-polynomial size from a
quasi-polynomially secure and collusion-resistant SKFE scheme for P/poly.
They also construct PKFE for circuits with inputs of poly-logarithmic length
and sub-polynomial size from a quasi-polynomially secure and collusion-
resistant SKFE scheme for P/poly and sub-exponentially secure one-way
function. Their reduction incurs super-polynomial security loss. Thus, the
advantages of our single-key weakly succinct PKFE schemes and IO over
Komargodski and Segev’s construction are as follows:
– Our PKFE schemes support all circuits. (When constructing IO by

combining previous results [3,11], the construction also supports all
circuits.)

– We can use single-key weakly succinct SKFE instead of collusion-resistant
SKFE (if we use identity-based encryption)

– Our PKFE schemes are with polynomial security loss and do not need
sub-exponentially secure one-way function (though we additionally use a
public-key primitive).

We summarize differences between these previous constructions of single-key
weakly succinct (or collusion-resistant) PKFE schemes and ours in Table 1.

Implication of third theorem. We can obtain interesting by-products from the
third theorem.

By-product 1: We show that single-key weakly succinct SKFE is equivalent to
one-way function and SXIO since it is known that such SKFE implies SXIO
with a compression factor that is slightly smaller than 1 [10].

By-product 2: We show that the existence of output-compact updatable ran-
domized encoding with unbounded number of updates [2] and one-way func-
tion is equivalent to that of single-key weakly succinct SKFE. Previously, it is
known that the existence of output-compact updatable randomized encoding
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Table 1: Comparison with previous constructions. OWF, PKE, IBE, GC, dGC, and dRE denote
one-way function, public-key encryption, identity-based encryption, garbled circuit, decomposable
garbled circuit, and decomposable randomized encoding, respectively. Underlines denote disadvan-
tages. In “supported circuit” column, Csub-poly

log -input means circuits with inputs of poly-logarithmic length
and sub-polynomial size.

ingredients for 1-key weakly succinct (or collusion-resistant) PKFE supported circuits

[41] 1-key weakly succinct SKFE, LWE P/poly
[9] collusion-resistant SKFE, PKE, dGC, PRF in NC1 (DDH or LWE) P/poly
[39] collusion-resistant SKFE, sub-exponentially secure OWF Csub-poly

log -input
1st thm. collusion-resistant SKFE, PKE, dRE P/poly
2nd thm. 1-key weakly succinct SKFE, IBE, GC, dRE P/poly

with unbounded number of updates and the hardness of the LWE problem
imply the existence of single-key weakly succinct SKFE [2]. It is also known
that single-key weakly succinct SKFE implies output-compact updatable
randomized encoding with unbounded number of updates. Thus, we replace
the LWE assumption in the results by Ananth, Cohen, and Jain [2] with
one-way function.

1.3 Overview of Our Construction Technique

Our core schemes are q-key weakly collusion-succinct functional encryption
schemes for a-priori fixed polynomial q that are constructed from SXIO and an
additional cryptographic primitive (one-way function, public-key encryption, or
identity-based encryption). Weak collusion-succinctness means the size of the
encryption circuit is sub-linear in the number of issuable functional keys. See
Definition 3 for more details on succinctness. It is known that weakly collusion-
succinct functional encryption is transformed into weakly-succinct one [11,4].

We explain our ideas to achieve q-key weakly collusion-succinct functional
encryption schemes below.

Our main idea in one sentence. We compress parallelized encryption circuits
of a non-succinct scheme based on standard cryptographic primitives by using
SXIO to achieve weak collusion-succinctness.

Starting point. A naive idea to construct a q-key functional encryption scheme
from a single-key non-succinct functional encryption scheme is running q single-
key non-succinct functional encryption schemes in parallel where q is a polynomial
fixed in advance. A master secret/public key consist of q master secret/public
keys of the single-key scheme, respectively. A ciphertext consists of q cipher-
texts of a plaintext x under q master secret or public keys. This achieves q-key
functional encryption.6 However, this simply parallelized scheme is clearly not
6 In fact, the functional key generation algorithm takes an additional input called index
and is stateful. We ignore this issue here. However, in fact, this issue does not matter
at all. See Remark 2 in Section 2 regarding this issue.
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weakly collusion-succinct since the size of the encryption circuit is linear in q.
Note that a single-key non-succinct functional encryption scheme is constructed
from a standard cryptographic primitive (such as one-way function, public-key
encryption) [46,34].

Compressing by SXIO. Our basic idea is compressing the encryption circuit of the
simply parallelized scheme by using SXIO. Instead of embedding all q keys in an
encryption circuit, our encryption algorithm obfuscates a circuit that generates
the i-th master secret/public key of the simply parallelized scheme and uses it to
generate a ciphertext under the i-th key where i is an input to the circuit.

For simplicity, we consider the SKFE case. We set a pseudo-random function
(PRF) key K as a master secret key. For a plaintext x, our weakly collusion-
succinct encryption algorithm generates a circuit E′[K,x] that takes as an input
an index i ∈ [q], generates the i-th master secret key MSKi by using the hard-
wired K and the index i, and outputs a ciphertext Enc(MSKi, x) of the single-key
scheme7. A ciphertext of our scheme is sxiO(E′[K,x]). In E′[K,x], each master
secret key is generated in an on-line manner by using the PRF (it is determined
only by K and input i). The encryption circuit size of each Enc(MSKi, x) is
independent of q because it is the encryption algorithm of the single-key scheme.
The input space of E′[K,x] is [q]. Thus, the time needed to generate the ciphertext
sxiO(E′[K,x]) is poly(λ, |x|, |f |) · qγ from the efficiency guarantee of SXIO. This
achieves weak collusion-succinctness. The size depends on |f |, but it is not an
issue since our goal at this step is not (weak) succinctness. The security is proved
using the standard punctured programming technique [47].

Extension to public-key setting. We achieve a q-key weakly collusion-succinct
PKFE by a similar idea to the SKFE case. Only one exception is that we need
an SXIO to generate not only a ciphertext but also a master public-key to
prevent the size of a master public-key from linearly depending on q. That is, a
master public-key is an obfuscated circuit that outputs a master public-key of a
single-key scheme by using a PRF key. We give the simplified description of this
setup circuit (denoted by S) below for clarity. For the formal description of S,
see Figure 2 in Section 3.2. If we do not use sxiO(S) as the master public key,

// Description of (simplified) S
Hard-Coded Constants: K.
Input: i ∈ [q]

1. Compute riSetup ← FK(i).

2. Compute (MPKi,MSKi)← Setup(1λ; riSetup).
3. Return MPKi.

// Description of (simplified) E′′
Hard-Coded Constants: MPK, x.
Input: i ∈ [q]

1. Parse sxiO(S)← MPK.
2. Compute MPKi ← sxiO(S)(i)
3. Return CTi ← Enc(MPKi, x).

we must use {MPKi}i∈[q] as the master public-key and embed them in a public

7 We ignore the issue regarding randomness of the ciphertext in this section.
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encryption circuit E′′ since we cannot make PRF key K public. This leads to
linear dependence on q of the encryption time.

Encryption circuit E′′ is almost the same as E′ in the SKFE construction except
that MPK = sxiO(S) is hardwired to generate a master public-key in an on-line
manner. Similarly to the SKFE construction, a ciphertext is sxiO(E′′). This incurs
two applications of SXIO in a nested manner (i.e., we obfuscate a circuit in which
another obfuscated circuit is hard-wired). Although the input space of E′′ is [q]
and the size of the encryption circuit of the single-key scheme is independent of q,
the size of sxiO(E′′) polynomially depends on sxiO(S). Thus, a better compression
factor of SXIO for S is required to ensure the weak collusion-succinctness of
the resulting scheme. Such better SXIO is implied by collusion-resistant (non-
succinct) SKFE [9]. See Section 3.2 for details of the efficiency analysis.

Using power of identity-based encryption. To overcome the nested applications
of SXIO, we directly construct a q-key weakly collusion-succinct PKFE from
SXIO, identity-based encryption, and garbled circuit. The main idea is the same.
Our starting point is the single-key non-succinct PKFE scheme of Sahai and
Seyalioglu [46], which is based on a public-key encryption scheme PKE. We use
a universal circuit U(·, x) in which a plaintext x is hard-wired and takes as an
input a function f , which will be embedded in a functional key. Let s := |f |. The
scheme of Sahai and Seyalioglu is as follows.

Setup: A master public-key consists of 2s public-keys of PKE, {pkj0, pkj1}j∈[s].
Functional Key: A functional key for f consists of s secret-keys of PKE,
{skjfj}j∈[s] where f = f1 . . . fs and fj is a single bit for every j ∈ [s].

Encryption: A ciphertext of a plaintext x consists of a garbled circuit of U(·, x)
and encryptions of 2s labels of the garbled circuit under pkjb for all j ∈ [s]
and b ∈ {0, 1}.

Decryption: We obtain labels corresponding to f by using {skjfj}j∈[s] and
evaluate the garbled U(·, x) with those labels.

We can replace PKE with an identity-based encryption scheme IBE by using
identities in [s] × {0, 1}. That is, {pkj0, pkj1}j∈[s] is aggregated into a master
public-key of IBE. A functional key for f consists of secret keys for identities
(1, f1), . . . , (s, fs). In addition, encryptions of 2s labels consist of 2s ciphertexts
for identities (j, b) for all j ∈ [s] and b ∈ {0, 1}. We parallelize this by extending
the identity space into [q] × [s] × {0, 1} to achieve a q-key scheme. We need
compression to achieve weak collusion-succinctness since simple parallelization
incurs the linearity in q.

Our encryption algorithm obfuscates the following circuit Ẽ by using an SXIO.
A master public-key of IBE and plaintext x are hard-wired in Ẽ. Given index i, Ẽ
generates a garbled circuit of U(·, x) with 2s labels and outputs the garbled circuit
and encryptions of the 2s labels under appropriate identities. Identities consist of
(i, j, fj) ∈ [q]× [s]×{0, 1} for every j ∈ [s]. A ciphertext of our scheme is sxiO(Ẽ).
Therefore, if secret keys for identities {(i, j, fj)}j∈[s] are given as functional keys,
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then we can obtain labels only for f from corresponding ciphertexts of IBE output
by sxiO(Ẽ) on the input i, and compute U(f, x) = f(x).

A master public-key and encryption circuit of the identity-based encryption
are succinct in the sense that their size is sub-linear in |ID| where ID is the
identity space of IBE. That is, the size depends on |ID|α for sufficiently small
constant α.8 In addition, the input space of Ẽ is just [q] and the garbled circuit
part of Ẽ is independent of q. Therefore, the time needed to generate a ciphertext
sxiO(Ẽ) is sub-linear in q from the efficiency property of SXIO. Thus, the scheme
is weakly collusion-succinct.

In fact, this PKFE construction is similar to that of Bitansky et al. [9], but
we do not need decomposable garbled circuit because our goal is achieving weak
collusion-succinctness, which allows encryption circuits to polynomially depend
on the size of f (our goal is not weak succinctness at this stage). Thus, a standard
garbled circuit is sufficient for our construction. Moreover, SXIO with a bad
compression factor is sufficient since we use an SXIO only once.

SXIO

OWF

PKE

1-key non-
succinct SKFE

1-key non-
succinct PKFE

q-key collusion-
succinct SKFE

q-key collusion-
succinct PKFE

1-key weakly
succinct SKFE

1-key weakly
succinct PKFE

+

+

[46,34] [11,4]

Thm. 3

Thm. 4

Fig. 1: Illustration of our first and third theorems. Dashed lines denote known constructions.
Purple boxes denote our core schemes. We ignore puncturable PRF in this figure. It is implied by
one-way function.

Uniting pieces. It is known that public-key encryption (resp. one-way function)
implies single-key non-succinct PKFE (resp. SKFE) [46,34] and bounded-key
weakly collusion-succinct PKFE (resp. SKFE) implies single-key weakly succinct
PKFE (resp. SKFE) [11,4]. Thus, via our weakly collusion-succinct PKFE (resp.
SKFE), we can obtain single-key weakly succinct PKFE (resp. SKFE) based on
SXIO and standard cryptographic primitives. Figure 1 illustrates our first and
third informal theorems.

Concurrent and independent work. Lin and Tessaro [42] prove that a collusion-
resistant PKFE scheme for P/poly is constructed from any single-key PKFE
8 When we say identity-based encryption, we assume that it satisfies this type of
succinctness. In fact, most identity-based encryption schemes based on number
theoretic or lattice assumptions satisfy it.
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scheme for P/poly (e.g., a PKFE scheme based on public-key encryption proposed
by Gorbunov, Vaikuntanathan, and Wee [34]) and IO for ω(log λ)-bit-input
circuits.

Their construction is similar to that of our single-key weakly succinct PKFE
scheme for P/poly from public-key encryption and SXIO. One notable difference
is that they use IO for ω(log λ)-bit-input circuits while we use SXIO for P/poly
based on collusion-resistant SKFE for P/poly with polynomial security loss, which
is a weaker tool than theirs.

Organization. This paper consists of the following parts. In Section 2, we provide
preliminaries and basic definitions. In Section 3, we present our constructions
of weakly collusion-succinct functional encryption schemes based on SXIO and
standard cryptographic primitives. In Section 4, we provide a statement about how
to transform weakly collusion-succinct functional encryption schemes into single-
key weakly succinct functional encryption schemes. In Section 5, we summarize
our results.

2 Preliminaries

We now define some notations and cryptographic primitives. We omit some
notations and definitions due to limited space.

If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables in-

dexed by λ ∈ N, we say that X (0) and X (1) are computationally indistinguishable
if for any PPT distinguisher D, there exists a negligible function negl(λ), such
that ∆ := |Pr[D(X(0)

λ ) = 1]−Pr[D(X(1)
λ ) = 1]| ≤ negl(λ).We write X (0) c

≈δ X (1)

to denote that the advantage ∆ is bounded by δ.

2.1 Functional Encryption

Secret-Key Functional Encryption (SKFE) We introduce the syntax of an
index based variant SKFE scheme that we call an index based SKFE (iSKFE)
scheme. “Index based” means that, to generate the i-th functional decryption
key, we need to feed an index i to a key generation algorithm. For a single-key
scheme, an iSKFE scheme is just a standard SKFE scheme in which the key
generation algorithm does not take an index as an input since the index is always
fixed to 1. See Remark 2 for details.

Definition 1 (Index Based Secret-key Functional Encryption). LetM :=
{Mλ}λ∈N be a message domain, Y := {Yλ}λ∈N a range, I := [qk(λ)] an index
space where qk is a fixed polynomial, and F := {Fλ}λ∈N a class of functions
f : M → Y. An iSKFE scheme for M,Y, I, and F is a tuple of algorithms
SKFE = (Setup, iKG,Enc,Dec) where:

– Setup(1λ) takes as input the security parameter and outputs a master secret
key MSK.
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– iKG(MSK, f, i) takes as input MSK, a function f ∈ F , and an index i ∈ I,
and outputs a secret key skf for f .

– Enc(MSK, x) takes as input MSK and a message x ∈ M and outputs a
ciphertext CT.

– Dec(skf ,CT) takes as input skf for f ∈ F and CT and outputs y ∈ Y, or ⊥.

Correctness: We require Dec(iKG(MSK, f, i),Enc(MSK, x)) = f(x) for any x ∈
M, f ∈ F , i ∈ I, and MSK← Setup(1λ).

Next, we introduce selective-message message privacy [17].

Definition 2 (Selective-Message Message Privacy). Let SKFE be an iSKFE
scheme whose message space, function space, and index space are M, F , and
I, respectively. We define the selective-message message privacy experiment
Expsm-mp
A (1λ, b) between an adversary A and a challenger as follows.

1. A is given 1λ and sends (x(1)
0 , x

(1)
1 ), · · · , (x(qm)

0 , x
(qm)
1 ) to the challenger, where

qm is an a-priori unbounded polynomial of λ.
2. The challenger chooses MSK← Setup(1λ) and a challenge bit b← {0, 1}.
3. The challenger generates CT(j) ← Enc(MSK, x(j)

b ) for j ∈ [qm] and sends
them to A.

4. A is allowed to make arbitrary function queries at most |I| = qk times. For the
`-th key query f` ∈ F from A, the challenger generates skf` ← iKG(MSK, f`, `)
and returns skf` to A.

5. A outputs b′ ∈ {0, 1}. The experiment output b′ if f`(x(j)
0 ) = f`(x(j)

1 ) for all
j ∈ [qm] and ` ∈ [qk], where qk is the number of key queries made by A;
otherwise ⊥.

We say that SKFE is qk-selective-message message private (or selectively
secure for short) if for any PPT A, it holds that

Advsm-mp
A (λ) := |Pr[Expsm-mp

A (1λ, 0) = 1]− Pr[Expsm-mp
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that SKFE is (qk, δ)-selective-message message private, for some
concrete negligible function δ(·), if for any PPT A the above advantage is smaller
than δ(λ)Ω(1).

Remark 1 (Regarding the number of key queries). Let FE be a functional encryp-
tion scheme. If qk is an unbounded polynomial, then we say FE is a collusion-
resistant functional encryption. If qk is a bounded polynomial (i.e., fixed in
advance), then we say FE is a bounded collusion-resistant functional encryption.
If qk = 1, we say FE is a single-key functional encryption. In this study, our
constructions are bounded collusion-resistant.

Remark 2 (Regarding an index for algorithm iKG). Our definitions of functional
encryptions slightly deviates from the standard ones (e.g., the definition by
Ananth and Jain [3] or Brakerski and Segev [17]). Our key generation algorithm
takes not only a master secret key and a function but also an index, which is
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used to bound the number of functional key generations. This index should be
different for each functional key generation. One might think this is a limitation,
but this is not the case in this study because our goal is constructing single-key
PKFE. For a single-key scheme, |I| = 1 and we do not need such an index.
Index based bounded collusion-resistant functional encryption schemes are just
intermediate tools in this study. In fact, such an index has been introduced by Li
and Micciancio in the context of PKFE [40].9

Next, we introduce notions regarding efficiency, called succinctness for func-
tional encryption schemes.

Definition 3 (Succinctness of Functional Encryption [11]). For a class
of functions F = {Fλ} over message domain M = {Mλ}, we let n(λ) be the
input length of the functions in F , s(λ) = maxf∈Fλ |f | the upper bound on the
circuit size of functions in Fλ, and d(λ) = maxf∈Fλ depth(f) the upper bound
on the depth, and a functional encryption scheme is

– succinct if the size of the encryption circuit is bounded by poly(n, λ, log s),
where poly is a fixed polynomial.

– weakly succinct if the size of the encryption circuit is bounded by sγ ·poly(n, λ),
where poly is a fixed polynomial, and γ < 1 is a constant.

– weakly collusion-succinct if the size of the encryption circuit is bounded by
qγ · poly(n, λ, s), where q is the upper bound of issuable functional keys in
bounded-key schemes (that is, the size of the index space of the scheme), poly
is a fixed polynomial, and γ < 1 is a constant.

We call γ the compression factor. The following theorem states that one can
construct IO from any single-key weakly succinct PKFE. We recall that single-key
iPKFE is also single-key PKFE, and vice versa.

Theorem 1 ([11]). If there exists a single-key sub-exponentially weakly selec-
tively secure weakly succinct PKFE scheme for P/poly, then there exists an
indistinguishability obfuscator for P/poly.

2.2 Indistinguishability Obfuscation

Definition 4 (Indistinguishability Obfuscator). A PPT algorithm iO is an
IO for a circuit class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality: For any security parameter λ ∈ N, C ∈ Cλ, and input x, we
have that Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1.

9 The security definition of Li and Micciancio for index based functional encryption
and ours is slightly different. Their definition allows an adversary to use indices for key
generation in an arbitrary order. On the other hand, our definition does not allow it.
The difference comes from the fact that their goal is constructing collusion-resistant
functional encryption while our goal is constructing single-key functional encryption.
By restricting an adversary to use indices successively from one, we can describe
security proofs more simply.
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Indistinguishability: For any PPT distinguisher D and for any pair of circuits
C0, C1 ∈ Cλ such that for any input x, C0(x) = C1(x) and |C0| = |C1|, it
holds that |Pr [D(iO(C0)) = 1]− Pr [D(iO(C1)) = 1] | ≤ negl(λ). We further
say that iO is δ-secure, for some concrete negligible function δ(·), if for any
PPT D the above advantage is smaller than δ(λ)Ω(1).

Definition 5 (Strong Exponentially-Efficient Indistinguishability Ob-
fuscation). Let γ < 1 be a constant. An algorithm sxiO is a γ-compressing
SXIO for a circuit class {Cλ}λ∈N if it satisfies the functionality and indistin-
guishability in Definition 4 and the following efficiency requirement:

Non-trivial time efficiency We require that the running time of sxiO on input
(1λ, C) is at most 2nγ ·poly(λ, |C|) for any λ ∈ N and any circuit C ∈ {Cλ}λ∈N
with input length n.

Remark 3. In this paper, when we write “SXIO for P/poly”, we implicitly mean
that SXIO for polynomial-size circuits with inputs of logarithmic length. This
follows the style by Bitansky et al. [9] though Lin et al. [41] use the circuit class
Plog/poly to denote the class of polynomial-size circuits with inputs of logarithmic
length. The reason why we use the style is that we can consider the polynomial
input length if we do not care about the polynomial running time of sxiO and
the input length n obviously must be logarithmic for the polynomial running
time of sxiO from the definition.

3 Collusion-Succinct Functional Encryption from SXIO

In our bounded-key weakly collusion-succinct iSKFE and iPKFE schemes, we use
single-key non-succinct SKFE and PKFE schemes that are implied from one-way
function and public-key encryption, respectively.

Theorem 2 ([34]10). If there exists a δ-secure one-way function, then there
exists a (1, δ)-selectively-secure and non-succinct SKFE scheme for P/poly. If
there exists a δ-secure public-key encryption, then there exists a (1, δ)-selectively-
secure and non-succinct PKFE scheme for P/poly.

Throughout this paper, let n and s be the length of a message x and size of a
function f of a functional encryption scheme, respectively as in Definition 3.

3.1 Collusion-Succinct SKFE from SXIO and One-Way Function

We put only our theorem in this section due to limited space. We can understand
an essence of the theorem from the construction in the next section.
10 More precisely, Gorbunov et al. prove that we can construct adaptively secure schemes,

in which adversaries are allowed to declare a target message pair after the function
query phase. However, selective security is sufficient for our purpose.
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Theorem 3. If there exists non-succinct (1, δ)-selective-message message private
SKFE for P/poly and δ-secure γ̃-compressing SXIO for P/poly where 0 < γ̃ < 1
(γ̃ might be close to 1), then there exists weakly collusion-succinct (q, δ)-selective-
message message private iSKFE for P/poly with compression factor γ′ such that
0 < γ̃ < γ′ < 1, where q is an a-priori fixed polynomial of λ.

3.2 Collusion-Succinct PKFE from SXIO and Public-Key
Encryption

In this section, we discuss how to construct a bounded-key weakly collusion-
succinct iPKFE scheme from an SXIO and PKE scheme.

Overview and proof strategy. Before we proceed to details, we give a main idea
for our iPKFE scheme.

Analogously to SKFE setting in Section 3.1, to achieve collusion-succinctness,
we consider to set a ciphertext as a circuit obfuscated by SXIO that can generate q
ciphertexts of a single-key non-succinct scheme. We need to maintain q encryption
keys succinctly. In the SKFE setting, we maintain q master secret-keys as one
puncturable PRF key. However, we cannot directly use this solution in the PKFE
setting. If we do so in the PKFE setting, since the puncturable PRF key should be
the master secret-key, an encryptor cannot use it. Thus, we need some mechanism
that makes all master public-keys of single-key non-succinct schemes available to
an encryptor maintaining them succinctly.

To generate a succinct master public-key, we generate a setup circuit (denoted
by S1fe in our scheme) that outputs i-th master public-key of a single-key non-
succinct scheme corresponding to an input i, and obfuscate the circuit by SXIO
as explained in Section 1.3. An encryptor embeds MPK := sxiO(S1fe) into an
encryption circuit and outputs an obfuscation of this encryption circuit as a
ciphertext. This encryption circuit is hardwired a plaintext x and can output
ciphertexts under all q master public-keys like the encryption circuit in Section 3.1.

Our solution means that we must obfuscate a circuit in which an obfuscated
circuit is hardwired (nested applications of SXIO). The nested application still
increases the size of a ciphertext. However, if the compression factor of SXIO for
S1fe is sufficiently small, we can achieve weak collusion-succinctness.

In the security proof, we use the security of a single-key non-succinct scheme
to change a ciphertext of x0 under each master public-key into that of x1 via the
punctured programming approach as the SKFE case. However, in the reduction
to the single-key security, a target master public-key should be given from the
security experiment. This means that we must embed the target master public-key
into the setup circuit instead of generating it in an on-line manner. Thus, we
must apply the punctured programming technique to the setup circuit too before
the reduction to the single-key security. This is what the first hybrid step in
the security proof does. The rest of the proof is almost the same as that of our
iSKFE scheme.
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Our construction. The construction of an iPKFE scheme qFE whose index space
is [q] from an SXIO and public-key encryption scheme is as follows, where q
is a fixed polynomial of λ. Let 1FE = (1FE.Setup, 1FE.KG, 1FE.Enc, 1FE.Dec) be
a single-key non-succinct PKFE scheme and (PRF.Gen,F,Punc) a puncturable
PRF.

qFE.Setup(1λ) :
– Generate K ← PRF.Gen(1λ) and S1fe[K] defined in Figure 2.
– Return (M̂PK, M̂SK) := (sxiO(S1fe),K).

qFE.iKG(M̂SK, f, i) :
– Parse K := M̂SK.
– Compute ri ← FK(i) and (MSKi,MPKi)← 1FE.Setup(1λ; ri).
– Compute skif ← 1FE.KG(MSKi, f) and return ŝkf ← (i, skif ).

qFE.Enc(M̂PK, x) :
– Generate K ′ ← PRF.Gen(1λ) and E1fe[M̂PK,K ′, x] defined in Figure 3.
– Return ĈT← sxiO(E1fe[M̂PK,K ′, x]).

qFE.Dec(ŝkf , ĈT) :
– Parse (i, skif ) := ŝkf .
– Compute the circuit ĈT on input i, that is CTi ← ĈT(i).
– Return y ← 1FE.Dec(skif ,CTi).

Setup Circuit S1fe[K](i)

Hardwired: puncturable PRF key K.
Input: index i ∈ [q].
Padding: circuit is padded to size padS := padS(λ, n, s, q), which is determined in analysis.

1. Compute ri ← FK(i).
2. Compute (MPKi,MSKi)← 1FE.Setup(1λ; ri) and output MPKi.

Fig. 2: Description of S1fe[K].

Theorem 4. If there exists (1, δ)-selectively-secure non-succinct PKFE for P/poly
and δ-secure γ-compressing SXIO for P/poly where γ is an arbitrarily small con-
stant such that 0 < γ < 1, then there exists (q, δ)-selectively-secure weakly
collusion-succinct iPKFE for P/poly with compression factor β, where q is an
a-priori fixed polynomial of λ, and β is a constant such that 0 < β < 1 specified
later.

Proof of Theorem 4. We start with the security proof, then move on to analyzing
succinctness.
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Encryption Circuit E1fe[M̂PK,K′, x](i)

Hardwired: circuit M̂PK, puncturable PRF key K′, and message x.
Input: index i ∈ [q].
Padding: circuit is padded to size padE := padE(λ, n, s, q), which is determined in analysis.

1. Compute the circuit M̂PK on input i, that is MPKi ← M̂PK(i).
2. Compute r′i ← FK′ (i) and output CTi ← 1FE.Enc(MPKi, x; r′i).

Fig. 3: Description of E1fe[M̂PK,K′, x].

Security Proof. Let us assume that the underlying primitives are δ-secure. Let A
be an adversary attacking the selective security of qFE. We define a sequence of
hybrid games.

Hyb0: The first game is the original selective security experiment for b = 0,
that is Exptsel

A (1λ, 0). A first selects the challenge messages (x∗0, x∗1) and
receives the master public key M̂PK := sxiO(S1fe[K]) and target cipher-
text sxiO(E1fe[M̂PK,K ′, x∗0]). Next, A adaptively makes q function queries
f1, . . . , fq such that fi(x∗0) = fi(x∗1) for all i ∈ [q] and receives functional keys
ŝkf1 , . . . , ŝkfq .

Hybi
∗

1 : Let i∗ ∈ [q]. We generate M̂PK as obfuscated S∗1fe described in Figure
4. In this hybrid game, we set ri∗ ← FK(i∗), K{i∗} ← Punc(K, i∗) and
(MPKi∗ ,MSKi∗)← 1FE.Setup(1λ; ri∗).
When i∗ = 1, the behavior of S∗1fe is the same as that of S1fe since the hard-
wired MPK1 in S∗1fe is the same as the output of S1fe on the input 1. Their
size is also the same since we pad circuit S1fe to have the same size as S∗1fe.
Then, we can use the indistinguishability guarantee of sxiO and it holds that
Hyb0

c
≈δ Hyb1

1.
Hybi

∗

2 : The challenge ciphertext is generated by obfuscating E∗1fe described in
Figure 5. In this hybrid game, we set r′i∗ ← FK′(i∗), K ′{i∗} ← Punc(K ′, i∗),
CTi∗ ← 1FE.Enc(MPKi∗ , x∗0; r′i∗), and MPKi∗ ← M̂PK(i∗).
When i∗ = 1, the behavior of E∗1fe is the same as that of E1fe since the hard-
wired CT1 in E∗1fe is the same as the output of E1fe on the input 1. Moreover,
both circuits have the same size by padding padE. Then, we can use the
indistinguishability guarantee of sxiO and it holds that Hyb1

1
c
≈δ Hyb1

2.
In addition, for i∗ ≥ 2, the behavior of E∗1fe does not change between Hybi

∗

1

and Hybi
∗

2 . Thus, Hybi
∗

1
c
≈δ Hybi

∗

2 holds for every i∗ ∈ {2, · · · , q} due to the
security guarantee of sxiO.

Hybi
∗

3 : We change ri∗ = FK(i∗) and r′i∗ = FK′(i∗) into uniformly random ri∗

and r′i∗ . Due to the pseudo-randomness at punctured points of puncturable
PRF, it holds that Hybi

∗

2
c
≈δ Hybi

∗

3 for every i∗ ∈ [q].



Simple and Generic Constructions of Succinct Functional Encryption 19

Setup Circuit S∗1fe[K{i∗},MPKi∗ ](i)

Hardwired: puncturable PRF key K{i∗} and 1FE master public-key MPKi∗ .
Input: index i ∈ [q].
Padding: circuit is padded to size padS := padS(λ, n, s, q), which is determined in analysis.

1. If i = i∗, output MPKi∗ .
2. Else, compute ri ← FK{i∗}(i).
3. Compute (MPKi,MSKi)← 1FE.Setup(1λ; ri) and output MPKi.

Fig. 4: Circuit S∗1fe[K{i∗},MPKi∗ ]. The description depends on i∗, but we use the
notion S∗1fe instead of Si

∗
1fe for simpler notations.

Encryption Circuit E∗1fe[M̂PK,K′{i∗}, x∗0, x∗1,CTi∗ ](i)

Hardwired: master public key M̂PK (that is an obfuscated circuit), puncturable PRF key
K′{i∗}, messages x∗0 , x

∗
1 , and ciphertext CTi∗ .

Input: index i ∈ [q].
Padding: circuit is padded to size padE := padE(λ, n, s, q), which is determined in analysis.

1. If i = i∗, output CTi∗ .
2. Else, compute r′i ← FK′ (i) and the circuit M̂PK on input i, that is MPKi ← M̂PK(i).

If i > i∗: Output CTi ← 1FE.Enc(MPKi, x∗0 ; r′i).
If i < i∗: Output CTi ← 1FE.Enc(MPKi, x∗1 ; r′i).

Fig. 5: Circuit E∗1fe[M̂PK,K′{i∗}, x∗0, x∗1,CTi∗ ]. The description depends on i∗, but we
use the notion E∗1fe instead of Ei

∗
1fe for simpler notations.

Hybi
∗

4 : We change CTi∗ from 1FE.Enc(MPKi∗ , x∗0) to 1FE.Enc(MPKi∗ , x∗1). In
Hybi

∗

3 and Hybi
∗

4 , we do not need randomness to generate MPKi∗ and CTi∗ .
We just hardwire MPKi∗ and CTi∗ into S∗1fe and E∗1fe, respectively. Therefore,
for every i∗ ∈ [q], Hybi

∗

3
c
≈δ Hybi

∗

4 follows from the selective security of 1FE
under the master public key MPKi∗ .

Hybi
∗

5 : We change r∗i and r′i∗ into ri∗ = FK(i∗) and r′i∗ = FK′(i∗). We can
show Hybi

∗

4
c
≈δ Hybi

∗

5 for every i∗ ∈ [q] based on the pseudo-randomness at
punctured point of puncturable PRF.

From the definition of S∗1FE, E∗1FE, and Hybi
∗

1 , the behaviors of S∗1FE and E∗1FE
in Hybi

∗

5 and Hybi
∗+1

1 are the same. Thus, Hybi
∗

5
c
≈δ Hybi

∗+1
1 holds for every

i∗ ∈ [q − 1] due to the security guarantee of sxiO. It also holds that Hybq5
c
≈δ

Exptsel
A (1λ, 1) based on the security guarantee of sxiO. This completes the security

proof.

Padding Parameter. The proof of security relies on the indistinguishability of
obfuscated S1fe and S∗1fe defined in Figures 2 and 4, and that of obfuscated E1fe
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and E∗1fe defined in Figure 3 and 5. Accordingly, we set padS := max(|S1fe|, |S∗1fe|)
and padE := max(|E1fe|, |E∗1fe|).

The circuits S1fe and S∗1fe compute a puncturable PRF over domain [q] and
a key pair of 1FE, and may have punctured PRF keys and a master public
key hardwired. The circuits E1fe and E∗1fe run the circuit M̂PK and compute
a puncturable PRF over domain [q] and a ciphertext of 1FE, and may have
punctured PRF keys and a hard-wired ciphertext. Note that the size of instances
of 1FE is independent of q. Thus, it holds that

padS ≤ poly(λ, n, s, log q) and padE ≤ poly(λ, n, s, log q, |M̂PK|).

Weak Collusion-Succinctness. To clearly analyze the size of qFE.Enc, we suppose
that SXIO used to obfuscate S1fe and that used to obfuscate E1fe are different.

Let γ′ be the compression factor of the SXIO for S1fe. The input space for
S1fe is [q]. Therefore, by the efficiency guarantee of SXIO, we have

|sxiO(S1fe)| < qγ
′
· poly(λ, n, s, log q) .

Let γ be the compression factor of the SXIO for E1fe. The input space of E1fe
is also [q]. The size of the encryption circuit qFE.Enc (dominated by generating
the obfuscated E1fe) is

qγ · poly(λ, n, s, log q, |sxiO(S1fe)|) < qγ+cγ′ · poly(λ, n, s),

where c is some constant.
We assume there exists SXIO with an arbitrarily small compression factor.

Thus, by setting γ′ as γ′ < 1−γ
c , we can ensure that β := γ + cγ′ < 1, that is qFE

is weakly collusion-succinct.
This completes the proof of Theorem 4.

3.3 Collusion-Succinct PKFE from SXIO and Identity-Based
Encryption

In this section, we directly construct a weakly collusion-succinct and weakly
selectively secure iPKFE scheme from an SXIO and identity-based encryption
scheme.

Our construction. The construction of a weakly collusion-succinct and weakly
selectively secure q-key iPKFE scheme qFE for any fixed polynomial q of λ
is based on an SXIO, identity-based encryption scheme11, and garbled circuit
which is implied by a one-way function. Our collusion-succinct iPKFE scheme
11 We stress that the size of the encryption circuit of an identity-based encryption

scheme is |ID|α ·poly(λ, `) where ` is the length of plaintext, ID is the identity-space,
and α is a constant such that 0 < α < 1. Most identity-based encryption schemes
based on concrete assumptions have such succinct encryption circuits. In our scheme,
ID is just a polynomial size.
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is weakly selectively secure because we use function descriptions as identities of
identity-based encryption, and the selective security of identity-based encryption
requires adversaries to submit a target identity at the beginning of the game.

We assume that we can represent every function f by a s bit string (f [1], · · · , f [s])
where s = poly(λ). Let IBE = (IBE.Setup, IBE.KG, IBE.Enc, IBE.Dec) be an
identity-based encryption scheme whose identity space is [q] × [s] × {0, 1},
GC = (Grbl,Eval) a garbled circuit, and (PRF.Gen,F,Punc) a PRF whose do-
main is [q]× [s]× {0, 1, 2}.

qFE.Setup(1λ) :
– Generate (MPKibe,MSKibe)← IBE.Setup(1λ).
– Set MPK := MPKibe and MSK := MSKibe and return (MPK,MSK).

qFE.iKG(MSK, f, i) :
– Parse MSKibe ← MSK and (f [1], · · · , f [s]) := f .
– For every j ∈ [s], compute SKj ← IBE.KG(MSKibe, (i, j, f [j])).
– Return skf := (i, f, {SKj}j∈[s]).

qFE.Enc(MPK, x) :
– Parse MPKibe ← MPK and choose K ← PRF.Gen(1λ).
– Return CTfe ← sxiO(ELgc[MPKibe,K, x]). ELgc is defined in Figure 6.

qFE.Dec(skf ,CTfe) :
– Parse (i, f, {SKj}j∈[s])← skf .
– Compute the circuit CTfe on input i, that is (Ũ , {CTj,α}j∈[s],α∈{0,1})←

CTfe(i).
– For every j ∈ [s], compute Lj ← IBE.Dec(SKj ,CTj,f [j]).
– Return y ← Eval(Ũ , {Lj}j∈[s]).

Garbling with encrypted labels circuit ELgc[MPKibe,K, x]

Hardwired: public parameter of IBE MPKibe, puncturable PRF key K, and plaintext x.
Input: index i ∈ [q].
Padding: circuit is padded to size padEL := padEL(λ, s, q), which is determined in analysis.

1. Compute rgc ← FK(i‖1‖2).

2. Compute (Ũ, {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x); rgc).
3. For every j ∈ [s] and α ∈ {0, 1}, compute ri‖j‖α ← FK(i‖j‖α) and CTj,α ←

IBE.Enc(MPKibe, (i, j, α), Lj,α; ri‖j‖α).

4. Return (Ũ, {CTj,α}j∈[s],α∈{0,1}).

Fig. 6: The description of ELgc. U(·, x) is a universal circuit in which x is hardwired
as the second input.
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Theorem 5. If there exists δ-selectively-secure succinct identity-based encryption
with α-compression (α is a sufficiently small constant) and δ-secure γ̃-compressing
SXIO for P/poly for a constant γ̃ such that 0 < γ̃ < 1 (γ̃ might be close to 1),
then there exists weakly collusion-succinct (q, δ)-weakly-selectively secure iPKFE
for circuits of size at most s with compression factor β, where s and q are a-priori
fixed polynomials of λ and β is a constant such that γ̃ < β < 1 specified later.

Proof of Theorem 5. We start with the security proof then moving to analyzing
succinctness.

Security Proof. Let us assume that the underlying primitives are δ-secure. Let A
be an adversary attacking weakly selective security of qFE. We define a sequence
of hybrid games.

Hyb0: The first game is the original weakly selective security experiment for b = 0,
that is Exptsel∗

A (1λ, 0). In this game, A first selects the challenge messages
(x∗0, x∗1) and queries q functions f1, . . . , fq such that fi(x∗0) = fi(x∗1) for all
i ∈ [q]. Then A obtains an encryption of x∗0, the master public key, and
functional keys skf1 , . . . , skfq .

Hybi
∗

1 : Let i∗ ∈ [q]. The challenge ciphertext is generated by obfuscating EL∗gc
described in Figure 7. In this hybrid game, we set r∗gc ← FK(i∗‖1‖2), r∗i∗‖j‖α ←
FK(i∗‖j‖α) for all j ∈ [s] and α ∈ {0, 1}, K{S∗} ← Punc(K,S∗) where S∗ :={
i∗‖1‖2, {i∗‖j‖α}j∈[s],α∈{0,1}

}
, (Ũ∗, {L∗j,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗0);

r∗gc), and CTj,αi∗ ← IBE.Enc(MPKibe, (i∗, j, α), Lj,α; r∗i∗‖j‖α) for all j ∈ [s] and
α ∈ {0, 1}. Hereafter, we use r∗j‖α instead of r∗i∗‖j‖α for ease of notation.
When i∗ = 1, the behaviors of ELgc and EL∗gc are the same from the definition
of EL∗gc, and so are their size since we pad circuit ELgc to have the same size
as EL∗gc. Then, we can use the indistinguishability guarantee of sxiO, and it
holds that Hyb0

c
≈δ Hyb1

1.
Hybi

∗

2 : We change r∗gc = FK(i∗‖1‖2) and r∗j‖α = FK(i∗‖j‖α) into uniformly
random r∗gc and r∗j‖α for all j ∈ [s] and α ∈ {0, 1}. Due to the pseudo-
randomness at punctured points of puncturable PRF, it holds that Hybi

∗

1
c
≈δ

Hybi
∗

2 for every i∗ ∈ [q].
Hybi

∗

3 : For ease of notation, let f∗ := fi∗ and f be the complement of f , that is,
(f [1], . . . , f [s]) := (1− f [1], . . . , 1− f [s]). Moreover, we omit each randomness
for IBE.Enc since it is uniformly random at this hybrid game. For every j ∈ [s],
we change
– normal ciphertexts CTj,f

∗[j]
i∗ ← IBE.Enc(MPKibe, (i∗, j, f∗[j]), Lj,f∗[j]

) into

– junk ciphertexts CTj,f
∗[j]

i∗ ← IBE.Enc(MPKibe, (i∗, j, f∗[j]), 0`(λ)), where
` is a polynomial denoting the length of labels output by Grbl.

That is, for identities which do not correspond to the i∗-th function queried
by A, we do not encrypt labels of garbled circuit. We do not change CTj,f

∗[j]
i∗

for all j ∈ [s]. Note that all f1, . . . , fq are known in advance since we consider
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Garbling with encrypted labels circuit
EL∗gc[MPKibe, K{S∗}, x∗0 , x

∗
1 , (Ũ

∗, {CTj,α
i∗ }j∈[s],α∈{0,1})]

Hardwired: punctured PRF key K{S∗} where S∗ :=
{
i∗‖1‖2, {i∗‖j‖α}j∈[s],α∈{0,1}

}
,

public parameter of IBE MPKibe, messages x∗0 , x
∗
1 , and (Ũ∗, {CTj,α

i∗ }j∈[s],α∈{0,1}).
Input: index i ∈ [q].
Padding: circuit is padded to size padEL := padEL(λ, s, q), which is determined in analysis.

1. If i = i∗, then output (Ũ∗, {CTj,α
i∗ }j∈[s],α∈{0,1}).

2. Else, compute rgc ← F(K, i‖1‖2).
If i > i∗, compute (Ũ, {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗0); rgc).

If i < i∗, compute (Ũ, {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗1); rgc).
3. For every j ∈ [s] and α ∈ {0, 1}, compute ri‖j‖α ← F(K, i‖j‖α) and CTj,α

i
←

IBE.Enc(MPKibe, (i, j, α), Lj,α; ri‖j‖α).

4. Return (Ũ, {CTj,α
i
}j∈[s],α∈{0,1}).

Fig. 7: The description of EL∗gc. The description depends on i∗, but we use the notion EL∗gc instead
of ELi

∗
gc for simpler notations. U(·, x) is a universal circuit in which x is hardwired as the second

input.

weakly selective security. A is not given secret keys of IBE for identity
(i∗, j, f∗[j]), so it is hard for A to detect this change. We show Hybi

∗

2
c
≈δ Hybi

∗

3
more formally in Lemma 1 by using the selective security of IBE.

Lemma 1. It holds that Hybi
∗

2
c
≈δ Hybi

∗

3 for all i∗ ∈ [q] if IBE is selectively
secure.

Proof. First, we define more hybrid games Hj∗ for j∗ ∈ {0, · · · , s} as follows.
Hj∗ : This is the same as Hybi

∗

2 except that for j ≤ j∗, CTj,f
∗[j]

i∗ ← IBE.Enc(
MPKibe, i

∗‖j‖f∗[j], 0`). We see that H0 and Hs are the same as Hybi
∗

2
and Hybi

∗

3 , respectively.
We show that Hj∗−1

c
≈δ Hj∗ holds for all j∗ ∈ [s]. This immediately implies

the lemma.
We construct an adversary B in the selective security game of IBE as follows.
To simulate the weakly selective security game of iPKFE, B runs A attacking
qFE and receives a message pair (x∗0, x∗1) and function queries f1, · · · , fq. B
simulates the game of qFE as follows.
Setup and Encryption: B sets id∗ := i∗‖j∗‖f∗[j∗] as the target identity

to the challenger of IBE. Note that f∗ = fi∗ .
To set challenge messages of IBE, B computes (Ũ∗, {L∗j,α}j∈[s],α∈{0,1})←
Grbl(1λ, U(·, x∗0)) and sets m∗0 := L∗

j∗,f∗[j∗]
and m1 := 0`(λ). B sends

id∗ and (m∗0,m∗1) to the challenger of IBE, and receives MPKibe and
CTj

∗,f∗[j∗]
i∗ as the master public-key and target ciphertext of IBE. B sets

MPK := MPKibe. To simulate ciphertexts of qFE, B does the followings.



24 F. Kitagawa, R. Nishimaki, K. Tanaka

– For all j ≤ j∗−1, B computes CTj,f
∗[j]

i∗ ← IBE.Enc(MPKibe, i
∗‖j‖f∗[j]

, Lj,f∗[j]) and CTj,f
∗[j]

i∗ ← IBE.Enc(MPKibe, i
∗‖j‖f∗[j∗]), 0`).

– For j = j∗, B computes CTj
∗,f∗[j∗]
i∗ ← IBE.Enc(MPKibe, i

∗‖j∗‖f∗[j∗],
Lj∗,f∗[j∗]).

– For all j ≥ j∗+1 and α ∈ {0, 1}, B computes CTj,αi∗ ← IBE.Enc(MPKibe,
i∗‖j‖α), Lj,α).

By using these ciphertexts {CTj,αi∗ }j∈[s],α∈{0,1} , B constructs program
EL∗gc and sets CT∗fe := sxiO(EL∗gc) as the target ciphertext of qFE.

Key Generation: Then, B queries identities (i, 1, fi[1]), . . . , (i, s, fi[s]) for
all i ∈ [q] to the challenger of IBE, receives SKji ← IBE.KG(MSKibe, i‖j‖fi[j]),
and sets SKfi := (i, fi, {SKji}j∈[s]) for all i ∈ [q]. Note that B does not
have to query the challenge identity (i∗‖j∗‖f∗[j∗]).

Now B sets all values for A and sends MPK, CT∗fe, and {SKfi}i∈[q] to A. If

B is given CTj
∗,f∗[j∗]
i∗ = IBE.Enc(MPKibe, i

∗‖j∗‖f∗[j∗]), L
j∗,f∗[j∗]

), then B per-

fectly simulates Hj∗−1. If B is given CTj
∗,f∗[j∗]
i∗ = IBE.Enc(MPKibe, i

∗‖j∗‖f∗[j∗],
0`(λ)), then B perfectly simulates Hj∗ . Therefore, the advantage of A between
Hj∗−1 and Hj∗ is bounded by that of B attacking IBE and it holds that
Hj∗−1

c
≈δ Hj∗ . This completes the proof of the lemma.

Hybi
∗

4 : We change (Ũ∗, {L∗j,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗0)) into a simulated
output (Ũ∗, {L∗j,f∗[j]}j∈[s])← Sim.GC(1λ, y∗)) where y∗ := f∗(x∗0) = f∗(x∗1).
By the requirement of the game, f∗(x∗0) = f∗(x∗1) holds. In this game,
{L∗

j,f∗[j]
}j∈[s] are not generated since the simulator of GC does not generate

them. This is not a problem since for such labels, junk ciphertexts are
generated as in Hybi

∗

3 . It holds that Hybi
∗

3
c
≈δ Hybi

∗

4 for every i∗ ∈ [q] due to
the security of the garbled circuit.

Hybi
∗

5 : We change the simulated garbled circuit, junk ciphertexts, and punc-
tured PRF keys hardwired into EL∗gc back into the real garbled circuit,
normal IBE ciphertexts, and un-punctured PRF keys. In this hybrid game,
we set r∗gc = FK(i∗‖1‖2), r∗j‖α = FK(i∗‖j‖α) for all j ∈ [s] and α ∈ {0, 1},
(Ũ∗, {L∗j,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·, x∗1); r∗gc), and CTj,αi∗ ← IBE.Enc(MPKibe,

(i∗, j, α), Lj,α; r∗j‖α). We can show Hybi
∗

4
c
≈δ Hybi

∗

5 for every i∗ ∈ [q] in a re-
verse manner.

It holds Hybi
∗

5
c
≈δ Hybi

∗+1
1 for every i∗ ∈ [q − 1] by the definition of EL∗gc and

sxiO. That is, Exptsel∗
A (1λ, 0) = Hyb0

c
≈δ Hyb1

1
c
≈δ · · ·

c
≈δ Hybq5

c
≈δ Exptsel∗

A (1λ, 1)
holds. This completes the security proof.

Padding Parameter. The proof of security relies on the indistinguishability of
obfuscated ELgc and EL∗gc defined in Figures 6 and 7, respectively. Accordingly,
we set padEL := max(|ELgc|, |EL∗gc|).
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The circuits ELgc and EL∗gc compute a puncturable PRF over domain [q], 2s
IBE ciphertexts, and garbled circuit of U(·, x), and may have punctured PRF
keys and a hard-wired ciphertext. Note that the size of set S∗ of punctured points
of PRF in EL∗gc is logarithmic in q. Note also that |ID| = 2qs. Thus, due to the
efficiency of IBE, it holds that

padEL ≤ 2s · (2qs)α · poly(λ) + poly(λ, s, log q) ≤ qα · poly(λ, s) ,

where α is a constant such that 0 < α < 1.

Weak Collusion-Succinctness. The input space for ELgc is [q]. Thus, by the
efficiency guarantee of SXIO, the size of the encryption circuit qFE.Enc (dominated
by generating an obfuscated ELgc) is

qγ̃ · poly(λ, padEL) < qγ̃+cα · poly(λ, s),

where γ̃ is a constant such that 0 < γ̃ < 1 and c is some constant.
By using an identity-based encryption scheme whose compression factor α

satisfies α < 1−γ̃
c , we ensure that β := γ̃+ cα < 1, that is qFE is weakly collusion

succinct. This completes the proof of Theorem 5.

4 Weak Succinctness from Collusion-Succinctness

We state only the theorem due to limited space.

Theorem 6. If there exists weakly collusion-succinct (µ, δ)-weakly-selectively
secure iPKFE (resp. iSKFE) for circuits of size at most s = s(λ) with n = n(λ)
inputs with encryption circuit of size µγ · poly(λ, n, s) where µ = s · polyRE(λ, n)
and polyRE is a fixed polynomial determined by RE, then there exists weakly
succinct (1, δ)-weakly-selectively secure PKFE (resp. SKFE) for circuits of size at
most s = s(λ) with encryption circuit of size sγ′ · poly(λ, n), where γ′ is a fixed
constant such that γ < γ′ < 1.

We can obtain this theorem by slightly modifying the analysis of the transfor-
mation by Bitansky and Vaikuntanathan [11, Proposition IV.1].

5 Putting It Altogether

Before summarizing our results, we introduce the following theorems regard-
ing SKFE and SXIO obtained by the results of Brakerski, Komargodski, and
Segev [16] and Bitansky et al. [9,10]. Note that poly denotes an unspecified
polynomial below.

Theorem 7 ([16,9]). If there exists (poly, δ)-selective-message message private
and non-succinct SKFE for P/poly, then there exists δ-secure and γ-compressing
SXIO for P/poly where γ is an arbitrary constant such that 0 < γ < 1. (γ could
be sufficiently small)
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Theorem 8 ([10]). If there exists (1, δ)-selective-message message private and
weakly succinct SKFE for P/poly, then there exists δ-secure and γ̃-compressing
SXIO for P/poly where γ̃ is a constant such that 1/2 ≤ γ̃ < 1.

We also introduce the following result shown by Garg and Srinivasan [29]
stating that we can transform single-key PKFE into collusion-resistant one
strengthening selective security and succinctness.

Theorem 9 ([29]). If there exists a (1, δ)-weakly-selectively secure and weakly
succinct PKFE scheme for P/poly, then there exists a (poly, δ)-selectively secure
and succinct PKFE scheme for P/poly.

5.1 Transformation from SKFE to PKFE

By Theorems 2, 4, 6 and 7, we obtain the following theorem. We note that
Theorem 4 requires a sufficiently small compression factor for SXIO.

Theorem 10. If there exists δ-secure plain public-key encryption and (poly, δ)-
selective-message message private and non-succinct SKFE for P/poly, then there
exists (1, δ)-selectively secure and weakly succinct PKFE for P/poly.

From this theorem and Theorem 9, we obtain the following corollary stating
that collusion-resistant PKFE is constructed from collusion-resistant SKFE if we
additionally assume public-key encryption.

Corollary 1. If there exists δ-secure plain public-key encryption and (poly, δ)-
selective-message message private and non-succinct SKFE for P/poly, then there
exists (poly, δ)-selectively secure and succinct PKFE for P/poly.

We stress that the transformations above incur only polynomial security loss.
We next see that single-key weakly-succinct SKFE is also powerful enough to

yield PKFE if we additionally assume identity-based encryption. By Theorems 5,
6 and 8, we obtain the following theorem since Theorem 5 just requires that the
compression factor of SXIO γ̃ is slightly smaller than 1 (no need to be sufficiently
small).

Theorem 11. If there exists δ-secure identity-based encryption and (1, δ)-selective-
message message private and weakly succinct SKFE for P/poly, then there exists
(1, δ)-weakly-selectively secure and weakly succinct PKFE for P/poly.

We stress that the transformation above incurs only polynomial security
loss. We note the following two facts. It was not known whether (1, δ)-selective-
message message private and weakly succinct SKFE for P/poly implies (poly, δ)-
selective-message message private SKFE for P/poly or not before the recent
work of Kitagawa, Nishimaki, and Tanaka [38]. Moreover, the transformation of
Kitagawa et al. incurs quasi-polynomial security loss.

By combining this theorem with Theorem 9, we obtain the following corollary
stating that we can construct collusion-resistant PKFE from single-key weakly
succinct SKFE if we additionally assume identity-based encryption.
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Corollary 2. If there exists δ-selectively-secure identity-based encryption and
(1, δ)-selectively-secure weakly succinct SKFE for P/poly, then there exists (poly, δ)-
selectively secure and succinct PKFE for P/poly.

We stress that the transformation above incurs only polynomial security loss.
Figure 8 illustrates our results stated above.

Path of Thm 10 and Cor 1 Path of Thm 11 and Cor 2 Path of Thm 12 and Cor 3

γ̃-SXIO

γ̃ might be close to 1

γ-SXIO

γ is sufficiently small

PKE IBE OWF

1-key non-
succinct SKFE

1-key non-
succinct PKFE

q-key weakly
collusion-

succinct SKFE

q-key weakly
collusion-

succinct PKFE

1-key weakly
succinct SKFE

1-key weakly
succinct PKFE collusion-resistant

succinct PKFE

collusion-resistant SKFE

++

+

[46,34] [46,34]

Thm. 6
([11,4]) ([11,4])

Thm. 6

Thm. 3Thm. 4

Thm. 5

[10]

[29]

[9]

[4]

Fig. 8: Illustration of our theorems. Dashed lines denote known facts or trivial implications. White
boxes denote our ingredients or goal. Purple boxes denote our key schemes. Green boxes denote our
intermediate tools. All transformations in this figure incur only polynomial security loss. γ-SXIO
(resp. γ̃-SXIO) denotes SXIO with compression factor γ (resp. γ̃), which is sufficiently small constant
of less than 1 (resp. arbitrary constant of less than 1). We ignore garbled circuit, puncturable PRF,
and decomposable RE in this figure. They are implied by one-way function.

5.2 Equivalence of SKFE, SXIO, and Updatable RE

By Theorems 2, 3 and 6, we obtain the following theorem.

Theorem 12. If there exists δ-secure one-way function and δ-secure and γ̃-
compressing SXIO for P/poly for a constant γ̃ such that 0 < γ̃ < 1 (γ̃ might be
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close to 1), then there exists (1, δ)-selective-message message private and weakly
succinct SKFE for P/poly.

By combining this theorem and Theorem 8, we obtain the following corollary
stating that the existence of single-key weakly-succinct SKFE is equivalent to
those of SXIO and one-way function. Note that single-key weakly succinct SKFE
for P/poly trivially implies one-way function.

Corollary 3. A single-key weakly succinct SKFE for P/poly is equivalent to
one-way function and γ̃-compressing SXIO for P/poly such that 0 < γ̃ < 1 (γ̃
might be close to 1).

We can also obtain equivalence of these primitives and updatable randomized
encoding (URE). We introduce the following results related to URE shown by
Ananth et al. [2].

Theorem 13 ([2]). A single-key weakly succinct SKFE for P/poly implies
output-compact URE with an unbounded number of updates.

Theorem 14 ([2]). Output-compact URE with an unbounded number of updates
implies a γ̃-compressing SXIO for P/poly where 1

2 ≤ γ̃ < 1.

Note that Ananth et al. prove Theorem 14 for a γ̃-compressing XIO, but it is
easy to observe that their construction of XIO can be extended to γ̃-compressing
SXIO. By Theorems 12 to 14, we can obtain the following corollary.

Corollary 4. A single-key weakly succinct SKFE for P/poly is equivalent to
one-way function and output-compact updatable randomized encoding with an
unbounded number of updates.

Ananth et al. show that single-key weakly-succinct SKFE is equivalent to
the combination of updatable randomized encoding and the LWE assumption.
Regarding the result, Corollary 4 shows that the LWE assumption is replaced
with weaker and general assumption, that is one-way function.
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