
Constrained Pseudorandom Functions for
Unconstrained Inputs Revisited: Achieving

Verifiability and Key Delegation

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. In EUROCRYPT 2016, Deshpande et al. presented a con-
struction of constrained pseudorandom function (CPRF) supporting in-
puts of unconstrained polynomial length based on indistinguishability
obfuscation and injective pseudorandom generators. Their construction
was claimed to be selectively secure. We demonstrate in this paper that
their CPRF construction can actually be proven secure not in the se-
lective model, rather in a significantly weaker security model where the
adversary is forbidden to query constrained keys adaptively. We also
show how to allow adaptive constrained key queries in their construc-
tion by innovating new technical ideas. We suitably redesign the secu-
rity proof. We emphasize that our modification does not involve any
additional heavy duty cryptographic tool. Our improved CPRF is fur-
ther enhanced to present the first constructions of constrained verifiable
pseudorandom function (CVPRF) and delegatable constrained pseudoran-
dom function (DCPRF) supporting inputs of unconstrained polynomial
length, employing only standard public key encryption (PKE).

Keywords: constrained pseudorandom functions, verifiable constrained
pseudorandom function, key delegation, indistinguishability obfuscation

1 Introduction
Constrained Pseudorandom Functions: Constrained pseudorandom func-
tions (CPRF), concurrently introduced by Boneh and Waters [6], Boyle et al. [7],
as well as Kiayias et al. [19], are promising extension of the notion of standard
pseudorandom functions (PRF) [15]. PRF is a fundamental primitive in mod-
ern cryptography. A PRF is a deterministic keyed function with the following
property: Given a key, the function can be computed in polynomial time at all
points of its input domain. But, without the key it is computationally hard to
distinguish the PRF output at any arbitrary input from a uniformly random
value, even after seeing the PRF evaluations on a polynomial number of inputs.
A CPRF is an augmentation of a PRF with an additional constrain algorithm
which enables a party holding a master PRF key to derive constrained keys

2 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

that allow the evaluation of the PRF over certain subsets of the input domain.
However, PRF evaluations on the rest of the inputs still remain computationally
indistinguishable from random.

Since their inception, CPRF’s have found countless applications in various
branches of cryptography ranging from broadcast encryption, attribute-based
encryption to policy-based key distribution, multi-party on-interactive key ex-
change. Even the simplest class of CPRF’s, known as puncturable pseudorandom
functions (PPRF) [23], have turned out to be a powerful tool in conjunction
with indistinguishability obfuscation [14]. In fact, the combination of these two
primitives have led to solutions of longstanding open problems including deni-
able encryption, full domain hash, adaptively secure functional encryption for
general functionalities, and functional encryption for randomized functionalities
through the classic punctured programming technique introduced in [23].

Over the last few years there has been a significant progress in the field of
CPRF’s. In terms of expressiveness of the constraint predicates, starting with
the most basic type of constraints such as prefix constraints [6,7,19] (which also
encompass puncturing constraints) and bit fixing constraints [6,13], CPRF’s have
been constructed for highly rich constraint families such as circuit constraints
[6,8,4,16] employing diverse cryptographic tools and based on various complexity
assumptions. In terms of security, most of the existing CPRF constructions are
only selectively secure. The stronger and more realistic notion of adaptive security
seems to be rather challenging to achieve without complexity leveraging. In fact,
the best known results so far on adaptive security of CPRF’s require super-
polynomial security loss [13], or work for very restricted form of constraints [17],
or attain the security in non-collusion mode [8], or accomplish security in the
random oracle model [16].

Constrained Verifiable Pseudorandom Functions: An interesting enhance-
ment of the usual CPRF’s is verifiability. A verifiable constrained pseudoran-
dom function (CVPRF), independently introduced by Fuchsbauer [12] and Chan-
dran et al. [9], is the unification of the notions of a verifiable random function
(VRF) [21] and a standard CPRF. In a CVPRF system, a public verification key is
set similar to a traditional VRF, along with the master PRF key. Besides enabling
the evaluation of the PRF, the master PRF key can be utilized to generate a non-
interactive proof of correctness of the evaluation. This proof can be verified by
any party using only the public verification key. On the other hand, as in the
case of a CPRF, here also the master PRF key holder can give out constrained
keys for specific constraint predicates. A constrained key corresponding to some
constraint predicate p allows the evaluation of the PRF together with the gen-
eration of a non-interactive proof of correct evaluation for only those inputs x
for which p(x) = 1. In essence, CVPRF’s resolve the issue of trust on a CPRF
evaluator for the correctness of the received PRF output. In [12, 9], the authors
have shown that the CPRF constructions of [6] for the bit fixing and circuit con-
straints can be augmented with the verifiability feature without incurring any
significant additional cost.

CPRF’s for Unconstrained Inputs Revisited 3

Delegatable Constrained Pseudorandom Functions: Key delegation is
another interesting enrichment of standard CPRF’s. This feature empowers the
holder of a constrained key, corresponding to some constraint predicate p ∈ P
with the ability to distribute further restricted keys corresponding to the joint
predicates p ∧ ep, for constraints ep ∈ P, where P is certain constraint family over
the input domain of the PRF. Such a delegated key can be utilized to evaluate
the PRF on only those inputs x for which [p(x) = 1] ∧ [ep(x) = 1], whereas, the
PRF outputs on the rest of the inputs are computationally indistinguishable from
random values. The concept of key delegation in the context of CPRF’s has been
recently introduced by Chandran et al. [9], who have shown how to extend the
bit fixing and circuit-based CPRF constructions of [6] to support key delegation.
CPRF’s for Unconstrained Inputs: Until recently, the research on CPRF’s
has been confined to inputs of apriori bounded length. In fact, all the CPRF con-
structions mentioned above could handle only bounded length inputs. Abusalah
et al. [2] have taken a first step forward towards overcoming the barrier of
bounded input length. They have also demonstrated highly motivating applica-
tions of CPRF’s supporting apriori unconstrained length inputs such as broadcast
encryption with an unbounded number of recipients and multi-party identity-
based non-interactive key exchange with no pre-determined bound on the num-
ber of parties. They presented a selectively secure CPRF for unconstrained length
inputs by viewing the constraint predicates as Turing machines (TM) that can
handle inputs of arbitrary polynomial length. In a more recent work, Abusalah
and Fuchsbauer [1] have made progress towards efficiency improvements by con-
structing TM-based CPRF’s with much shorter constrained keys compared to
the CPRF construction of [2].

However, both the aforementioned CPRF constructions rely on the existence
of public-coin differing-input obfuscators and succinct non-interactive arguments
of knowledge, which are believed to be risky assumptions due to their inherent
extractability nature. In EUROCRYPT 2016, Deshpande et al. [10] presented a
CPRF for TM constraints, supporting inputs of unconstrained polynomial length,
which they claimed to be selectively secure. Their CPRF construction utilizes in-
distinguishability obfuscators (IO) for circuits and injective pseudorandom gen-
erators. Currently, there is no known impossibility or implausibility result on
IO and, moreover, in the last few years, there has been a significant progress
towards constructing IO based on standard complexity assumptions.
Our Contributions: Unfortunately, the CPRF construction of [10] can not be
proven secure in the selective model, as will be shown in this paper, rather the
construction actually derives its security in a significantly weaker model. Further,
as per as we know, there is no existing construction of CVPRF’s or delegatable
CPRF’s (DCPRF) supporting inputs of unconstrained length. Our work in this
paper is two-fold:
– Firstly, we identify a flaw in the security argument of the CPRF construction

of [10], by a thorough analysis of the construction and its security proof.
Selective security is a security notion for CPRF’s where the adversary is bound
to declare upfront the challenge input, on which it wishes to distinguish the

4 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

PRF output from random, but is allowed to query the legitimate constrained
keys and PRF values adaptively. We observe that the CPRF construction
of [10] can be proven secure only if the adversary is not just forced to declare
the challenge input, but also is bound to make all the constrained key queries
prior to setting up the system. To address the security limitation of the CPRF
construction of [10], we carefully modify their construction by innovating
new technical ideas, which might be useful elsewhere, and suitably redesign
the security proof. For building our improved CPRF system, we additionally
use a somewhere statistically binding (SSB) hash function [18, 22] beyond
the cryptographic tools used in [10]. Currently, efficient constructions of SSB
hash based on standard number theoretic assumptions exist [22]. In effect, our
modified CPRF stands out to be the first IO-based provably selectively secure
CPRF for TM constraints that can handle inputs of arbitrary polynomial
length.

– Secondly, we enhance our construction of CPRF with verifiability and key
delegation features, thereby, developing the first IO-based selectively secure
constructions of CVPRF and DCPRF supporting inputs of unconstrained poly-
nomial length. Towards achieving these two augmentations of our CPRF, we
only assume the existence of a perfectly correct and chosen plaintext attack
(CPA) secure public key encryption scheme, which is evidently a minimal
assumption. Finally, we note that following [12, 9], our CVPRF construction
would imply the first selectively unforgeable policy-based signature (PBS)
scheme [5] where policies are represented as Turing machines.

2 Preliminaries
Here we give the necessary background on various cryptographic primitives we
will be using throughout this paper. Let λ ∈ N denotes the security parameter.
For n ∈ N and a, b ∈ N ∪ {0} (with a < b), we let [n] = {1, . . . , n} and [a, b] =
{a, . . . , b}. For any set S, υ $←− S represents the uniform random variable on S.
For a randomized algorithm R, we denote by ψ = R(υ; ρ) the random variable
defined by the output of R on input υ and randomness ρ, while ψ $←− R(υ) has
the same meaning with the randomness suppressed. Also, if R is a deterministic
algorithm ψ = R(υ) denotes the output of R on input υ. We will use the
alternative notation R(υ)→ ψ as well to represent the output of the algorithm
R, whether randomized or deterministic, on input υ. For any string s ∈ {0, 1}∗,
|s| represents the length of the string s. For any two strings s, s′ ∈ {0, 1}∗, s‖s′
represents the concatenation of s and s′.

2.1 Turing Machines
A Turing machine (TM) M is a 7-tuple M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 with
the following semantics:

– Q: The finite set of possible states of M .
– Σinp: The finite set of input symbols.

CPRF’s for Unconstrained Inputs Revisited 5

– Σtape: The finite set of tape symbols such that Σinp ⊂ Σtape and there exists
a special blank symbol ‘ ’ ∈ Σtape\Σinp.

– δ : Q×Σtape → Q×Σtape × {+1,−1}: The transition function of M .
– q0 ∈ Q: The designated start state.
– qac ∈ Q: The designated accept state.
– qrej(6= qac) ∈ Q: The distinguished reject state.

For any t ∈ [T = 2λ], we define the following variables for M , while running on
some input (without the explicit mention of the input in the notations):

– posM,t: An integer which denotes the position of the header of M after the
tth step. Initially, posM,0 = 0.

– symM,t ∈ Σtape: The symbol stored on the tape at the posM,t
th location.

– sym(write)
M,t ∈ Σtape: The symbol to be written at the posM,t−1

th location
during the tth step.

– stM,t ∈ Q: The state of M after the tth step. Initially, stM,0 = q0.

At each time step, theTM M reads the tape at the header position and based
on the current state, computes what needs to be written on the tape at the
current header location, the next state, and whether the header must move left
or right. More formally, let (q, ζ, β ∈ {+1,−1}) = δ(stM,t−1, symM,t−1). Then,
stM,t = q, sym(write)

M,t = ζ, and posM,t = posM,t−1 + β. M accepts at time t if
stM,t = qac. In this paper we consider Σinp = {0, 1} and Σtape = {0, 1, }. Given
any TM M and string x ∈ {0, 1}∗, we define M(x) = 1, if M accepts x within
T steps, and 0, otherwise.

2.2 Indistinguishability Obfuscation
Definition 2.1 (Indistinguishability Obfuscation: IO [14]). An indistin-
guishability obfuscator (IO) IO for a certain circuit class {Cλ}λ is a probabilistic
polynomial-time (PPT) uniform algorithm satisfying the following conditions:

� Correctness: IO(1λ, C) preserves the functionality of the input circuit C,
i.e., for any C ∈ Cλ, if we compute C ′ = IO(1λ, C), then C ′(υ) = C(υ) for
all inputs υ.

� Indistinguishability: For any security parameter λ and any two circuits
C0, C1 ∈ Cλ with same functionality, the circuits IO(1λ, C0) and IO(1λ, C1)
are computationally indistinguishable. More precisely, for all (not necessarily
uniform) PPT adversaries D = (D1,D2), there exists a negligible function
negl such that, if

Pr
�
(C0, C1, ξ)

$←− D1(1λ) : ∀ υ,C0(υ) = C1(υ)
�
≥ 1− negl(λ),

then
��Pr
�
D2(ξ, IO(1λ, C0)) = 1

�
− Pr
�
D2(ξ, IO(1λ, C1)) = 1

��� ≤ negl(λ).

When clear from the context, we will drop 1λ as an input to IO and λ as a
subscript of C.

6 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

2.3 IO-Compatible Cryptographic Primitives
In this section, we present the syntax and correctness requirement of certain IO-
friendly cryptographic tools which we will be using in the sequel. The security
properties of these primitives can be found in the full version of this paper or in
the references provided in the respective subsections below.
2.3.1 Puncturable Pseudorandom Function
Definition 2.2 (Puncturable Pseudorandom Function: PPRF [23]). A
puncturable pseudorandom function (PPRF) F : Kpprf×Xpprf → Ypprf consists
of an additional punctured key space Kpprf-punc other than the usual key space
Kpprf and PPT algorithms (F .Setup,F .Eval,F .Puncture,F .Eval-Punctured) de-
scribed below. Here, Xpprf = {0, 1}`pprf-inp and Ypprf = {0, 1}`pprf-out , where `pprf-inp
and `pprf-out are polynomials in the security parameter λ,
F .Setup(1λ)→ K : The setup authority takes as input the security parameter

1λ and uniformly samples a PPRF key K ∈ Kpprf.
F .Eval(K,x)→ r : The setup authority takes as input a PPRF key K ∈ Kpprf

along with an input x ∈ Xpprf. It outputs the PPRF value r ∈ Ypprf on x.
For simplicity, we will represent by F(K,x) the output of this algorithm.

F .Puncture(K,x) → K{x} : Taking as input a PPRF key K ∈ Kpprf along
with an element x ∈ Xpprf, the setup authority outputs a punctured key
K{x} ∈ Kpprf-punc.

F .Eval-Puncured(K{x}, x′)→ r or ⊥ : An evaluator takes as input a punctured
key K{x} ∈ Kpprf-punc along with an input x′ ∈ Xpprf. It outputs either a
value r ∈ Ypprf or a distinguished symbol ⊥ indicating failure. For simplicity,
we will represent by F(K{x}, x′) the output of this algorithm.

The algorithms F .Setup and F .Puncture are randomized, whereas, the algo-
rithms F .Eval and F .Eval-Punctured are deterministic.

� Correctness under Puncturing: Consider any security parameter λ, K ∈
Kpprf, x ∈ Xpprf, and K{x} $←− F .Puncture(K,x). Then it must hold that

F(K{x}, x′) =
§
F(K,x′), if x′ 6= x
⊥, otherwise

2.3.2 Somewhere Statistically Binding Hash Function
Definition 2.3 (Somewhere Statistically Binding Hash Function: SSB
[18, 22]). A somewhere statistically binding (SSB) hash consists of PPT algo-
rithms (SSB.Gen,H,SSB.Open,SSB.Verify) along with a block alphabet Σssb-blk
= {0, 1}`ssb-blk , output size `ssb-hash, and opening space Πssb = {0, 1}`ssb-open , where
`ssb-blk, `ssb-hash, `ssb-open are some polynomials in the security parameter λ. The
algorithms have the following syntax:
SSB.Gen(1λ, nssb-blk, i

∗)→ hk : The setup authority takes as input the security
parameter 1λ, an integer nssb-blk ≤ 2λ representing the maximum number of
blocks that can be hashed, and an index i∗ ∈ [0, nssb-blk− 1] and publishes a
public hashing key hk.

CPRF’s for Unconstrained Inputs Revisited 7

Hhk : x ∈ Σnssb-blk
ssb-blk → h ∈ {0, 1}`ssb-hash : This is a deterministic function that

has the hash key hk hardwired. A user runs this function on input x =
x0‖ . . . ‖xnssb-blk−1 ∈ Σnssb-blk

ssb-blk to obtain as output h = Hhk(x) ∈ {0, 1}`ssb-hash .
SSB.Open(hk, x, i) → πssb : Taking as input the hash key hk, input x ∈
Σnssb-blk

ssb-blk, and an index i ∈ [0, nssb-blk − 1], a user creates an opening πssb ∈
Πssb.

SSB.Verify(hk, h, i, u, πssb)→ β̂ ∈ {0, 1} : On input a hash key hk, a hash value
h ∈ {0, 1}`ssb-hash , an index i ∈ [0, nssb-blk − 1], a value u ∈ Σssb-blk, and an
opening πssb ∈ Πssb, a verifier outputs a bit β̂ ∈ {0, 1}.

The algorithms SSB.Gen and SSB.Open are randomized, while the algorithm
SSB.Verify is deterministic.

� Correctness: For any security parameter λ, integer nssb-blk ≤ 2λ, i, i∗ ∈
[0, nssb-blk − 1], hk $←− SSB.Gen(1λ, nssb-blk, i

∗), x ∈ Σnssb-blk
ssb-blk, and πssb

$←−
SSB.Open(hk, x, i), we have SSB.Verify(hk,Hhk(x), i, xi, πssb) = 1.

2.3.3 Positional Accumulator
Definition 2.4 (Positional Accumulator [20, 22]). A positional accumula-
tor consists of PPT algorithms (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-
Enforce-Write, ACC.Prep-Read, ACC.Prep-Write, ACC.Verify-Read, ACC.Write-Store,
ACC.Update) along with a block alphabet Σacc-blk = {0, 1}`acc-blk , accumulator
size `acc-accumulate, proof spaceΠacc = {0, 1}`acc-proof where `acc-blk, `acc-accumulate,
`acc-proof are some polynomials in the security parameter λ. The algorithms have
the following syntax:

ACC.Setup(1λ, nacc-blk) → (ppacc, w0, store0) : The setup authority takes as
input the security parameter 1λ and an integer nacc-blk ≤ 2λ representing the
maximum number of blocks that can be accumulated. It outputs the public
parameters ppacc, an initial accumulator value w0, and an initial storage
value store0.

ACC.Setup-Enforce-Read(1λ, nacc-blk, ((x1, i1), . . . , (xκ, iκ)), i∗) → (ppacc, w0,
store0) : Taking as input the security parameter 1λ, an integer nacc-blk ≤ 2λ
representing the maximum number of blocks that can be accumulated, a se-
quence of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk×[0, nacc-blk−
1])κ, and an additional index i∗ ∈ [0, nacc-blk − 1], the setup authority pub-
lishes the public parameters ppacc, an initial accumulator value w0, together
with an initial storage value store0.

ACC.Setup-Enforce-Write(1λ, nacc-blk, ((x1, i1), . . . , xκ, iκ))) → (ppacc, w0,
store0) : On input the security parameter 1λ, an integer nacc-blk ≤ 2λ denot-
ing the maximum number of blocks that can be accumulated, and a sequence
of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk × [0, nacc-blk − 1])κ,
the setup authority publishes the public parameters ppacc, an initial accu-
mulator value w0, as well as, an initial storage value store0.

ACC.Prep-Read(ppacc, storein, iin)→ (xout, πacc) : A storage-maintaining party
takes as input the public parameter ppacc, a storage value storein, and an

8 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

index iin ∈ [0, nacc-blk−1]. It outputs a symbol xout ∈ Σacc-blk∪{ε} (ε being
the empty string) and a proof πacc ∈ Πacc.

ACC.Prep-Write(ppacc, storein, iin)→ aux : Taking as input the public param-
eter ppacc, a storage value storein, together with an index iin ∈ [0, nacc-blk−
1], a storage-maintaining party outputs an auxiliary value aux.

ACC.Verify-Read(ppacc, win, xin, iin, πacc) → β̂ ∈ {0, 1} : A verifier takes as in-
put the public parameter ppacc, an accumulator value win ∈ {0, 1}`acc-accumulate ,
a symbol xin ∈ Σacc-blk ∪ {ε}, an index iin ∈ [0, nacc-blk − 1], and a proof
πacc ∈ Πacc. It outputs a bit β̂ ∈ {0, 1}.

ACC.Write-Store(ppacc, storein, iin, xin)→ storeout : On input the public pa-
rameters ppacc, a storage value storein, an index iin ∈ [0, nacc-blk−1], and a
symbol xin ∈ Σacc-blk, a storage-maintaining party computes a new storage
value storeout.

ACC.Update(ppacc, win, xin, iin,aux) → wout or ⊥ : An accumulator-updating
party takes as input the public parameters ppacc, an accumulator value win ∈
{0, 1}`acc-accumulate , a symbol xin ∈ Σacc-blk, an index iin ∈ [0, nacc-blk− 1], and
an auxiliary value aux. It outputs the updated accumulator value wout ∈
{0, 1}`acc-accumulate or the designated reject string ⊥.

Following [20,10], in this paper we will consider the algorithms ACC.Setup,
ACC.Setup-Enforce-Read, and ACC.Setup-Enforce-Write as randomized while all
other algorithms as deterministic.

� Correctness: Consider any symbol-index pair sequence ((x1, i1), . . . , (xκ, iκ))
∈ (Σacc-blk× [0, nacc-blk− 1])κ. Fix any (ppacc, w0, store0) $←− ACC.Setup(1λ,
nacc-blk). For j = 1, . . . , κ, iteratively define the following:

– storej = ACC.Write-Store(ppacc, storej−1, ij , xj)
– auxj = ACC.Prep-Write(ppacc, storej−1, ij)
– wj = ACC.Update(ppacc, wj−1, xj , ij ,auxj)

The following correctness properties are required to be satisfied:

i) For any security parameter λ, nacc-blk ≤ 2λ, index i∗ ∈ [0, nacc-blk − 1], se-
quence of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk×[0, nacc-blk−
1])κ, and (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk), if storeκ is com-
puted as above, then ACC.Prep-Read(ppacc, storeκ, i∗) returns (xj , πacc)
where j is the largest value in [κ] such that ij = i∗.

ii) For any security parameter λ, nacc-blk ≤ 2λ, sequence of symbol-index pairs
((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk × [0, nacc-blk − 1])κ, i∗ ∈ [0, nacc-blk − 1],
and (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk), if storeκ and wκ are
computed as above and (xout, πacc) = ACC.Prep-Read(ppacc, storeκ, i∗),
then ACC.Verify-Read(ppacc, wκ, xout, i

∗, πacc) = 1

2.3.4 Iterator
Definition 2.5 (Iterator [20]). A cryptographic iterator consists of PPT al-
gorithms (ITR.Setup, ITR.Set-Enforce, ITR.Iterate) along with a message space

CPRF’s for Unconstrained Inputs Revisited 9

Mitr = {0, 1}`itr-msg and iterator state size `itr-st, where `itr-msg, `itr-st are some
polynomials in the security parameter λ. Algorithms have the following syntax:

ITR.Setup(1λ, nitr) → (ppitr, v0) : The setup authority takes as input the se-
curity parameter 1λ along with an integer bound nitr ≤ 2λ on the number
of iterations. It outputs the public parameters ppitr and an initial state
v0 ∈ {0, 1}`itr-st .

ITR.Setup-Enforce(1λ, nitr, (µ1, . . . , µκ)) → (ppitr, v0) : Taking as input the
security parameter 1λ, an integer bound nitr ≤ 2λ, together with a sequence
of κ messages (µ1, . . . , µκ) ∈ Mκ

itr, where κ ≤ nitr, the setup authority
publishes the public parameters ppitr and an initial state v0 ∈ {0, 1}`itr-st .

ITR.Iterate(ppitr, vin ∈ {0, 1}`itr-st , µ) → vout : On input the public parame-
ters ppitr, a state vin, and a message µ ∈ Mitr, an iterator outputs an
updated state vout ∈ {0, 1}`itr-st . For any integer κ ≤ nitr, we will write
ITR.Iterateκ(ppitr, v0, (µ1, . . . , µκ)) to denote ITR.Iterate(ppitr, vκ−1, µκ),
where vj is defined iteratively as vj = ITR.Iterate(ppitr, vj−1, µj) for all
j = 1, . . . , κ− 1.

The algorithm ITR.Iterate is deterministic, while the other two are randomized.

2.3.5 Splittable Signature
Definition 2.6 (Splittable Signature: SPS [20]). A splittable signature scheme
(SPS) for message spaceMsps = {0, 1}`sps-msg and signature space Ssps = {0, 1}`sps-sig ,
where `sps-msg, `sps-sig are some polynomials in the security parameter λ, consists
of PPT algorithms (SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split, SPS.Sign-ABO)
which are described below:

SPS.Setup(1λ) → (sksps,vksps,vksps-rej) : The setup authority takes as input
the security parameter 1λ and generates a signing key sksps, a verification
key vksps, together with a reject verification key vksps-rej.

SPS.Sign(sksps,m) → σsps : A signer given a signing key sksps along with a
message m ∈Msps, produces a signature σsps ∈ Ssps.

SPS.Verify(vksps,m, σsps)→ β̂ ∈ {0, 1} : A verifier takes as input a verification
key vksps, a message m ∈Msps, and a signature σsps ∈ Ssps. It outputs a bit
β̂ ∈ {0, 1}.

SPS.Split(sksps,m
∗) → (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) : On input

a signing key sksps along with a message m∗ ∈ Msps, the setup au-
thority generates a signature σsps-one,m∗ = SPS.Sign(sksps,m

∗), a one-
message verification key vksps-one, and all-but-one signing-verification key
pair (sksps-abo,vksps-abo).

SPS.Sign-ABO(sksps-abo,m) → σsps or ⊥ : An all-but-one signer given an all-
but-one signing key sksps-abo and a message m ∈ Msps, outputs a signature
σsps ∈ Ssps or a distinguished string ⊥ to indicate failure. For simplicity of
notation, we will often use SPS.Sign(sksps-abo,m) to represent the output of
this algorithm.

10 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

We note that among the algorithms described above, SPS.Setup and SPS.Split
are randomized while all the others are deterministic.

� Correctness: For any security parameter λ, messagem∗ ∈Msps, (sksps,vksps,

vksps-rej)
$←− SPS.Setup(1λ), and (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) $←−

SPS.Split(sksps,m
∗) the following correctness conditions hold:

i) ∀m ∈Msps, SPS.Verify(vksps,m,SPS.Sign(sksps,m)) = 1.
ii) ∀m 6= m∗ ∈Msps, SPS.Sign(sksps,m) = SPS.Sign-ABO(sksps-abo,m).
iii) ∀σsps ∈ Ssps, SPS.Verify(vksps-one,m

∗, σsps) = SPS.Verify(vksps,m
∗, σsps).

iv) ∀m 6= m∗ ∈Msps, σsps ∈ Ssps,
SPS.Verify(vksps-abo,m, σsps) = SPS.Verify(vksps,m, σsps).

v) ∀m 6= m∗ ∈Msps, σsps ∈ Ssps, SPS.Verify(vksps-one,m, σsps) = 0.
vi) ∀σsps ∈ Ssps, SPS.Verify(vksps-abo,m

∗, σsps) = 0.
vii) ∀m ∈Msps, σsps ∈ Ssps, SPS.Verify(vksps-rej,m, σsps) = 0.

3 Our CPRF for Turing Machines
3.1 Notion
Definition 3.1 (Constrained Pseudorandom Function for Turing Ma-
chines: CPRF [10]). Let Mλ be a family of TM’s with (worst case) running
time bounded by T = 2λ. A constrained pseudorandom function (CPRF) with
key space Kcprf, input domain Xcprf ⊂ {0, 1}∗, and output space Ycprf ⊂ {0, 1}∗
for the TM family Mλ consists of an additional key space Kcprf-const and PPT al-
gorithms (CPRF.Setup, CPRF.Eval, CPRF.Constrain, CPRF.Eval-Constrained) de-
scribed as follows:

CPRF.Setup(1λ) → skcprf : The setup authority takes as input the security
parameter 1λ and generates the master CPRF key skcprf ∈ Kcprf.

CPRF.Eval(skcprf, x) → y : On input the master CPRF key skcprf along with
an input x ∈ Xcprf, the setup authority computes the value of the CPRF
y ∈ Ycprf. For simplicity of notation, we will use CPRF(skcprf, x) to indicate
the output of this algorithm.

CPRF.Constrain(skcprf,M) → skcprf{M} : Taking as input the master CPRF
key skcprf and a TM M ∈ Mλ, the setup authority provides a constrained
key skcprf{M} ∈ Kcprf-const to a legitimate user.

CPRF.Eval-Constrained(skcprf{M}, x)→ y or ⊥ : A user takes as input a con-
strained key skcprf{M} ∈ Kcprf-const, corresponding to a legitimate TM
M ∈Mλ, along with an input x ∈ Xcprf. It outputs either a value y ∈ Ycprf
or ⊥ indicating failure.

The algorithms CPRF.Setup and CPRF.Constrain are randomized, whereas, the
other two are deterministic.
� Correctness under Constraining: Consider any security parameter λ,
skcprf ∈ Kcprf, M ∈ Mλ, and skcprf{M}

$←− CPRF.Constrain(skcprf,M). The

CPRF’s for Unconstrained Inputs Revisited 11

following must hold:

CPRF.Eval-Constrained(skcprf{M}, x) =
§CPRF(skcprf, x), if M(x) = 1
⊥, otherwise

� Selective Pseudorandomness: This property of a CPRF is defined through

the following experiment between an adversary A and a challenger B:

• A submits a challenge input x∗ ∈ Xcprf to B.
• B generates a master CPRF key skcprf

$←− CPRF.Setup(1λ). Next it selects
a random bit b $←− {0, 1}. If b = 0, it computes y∗ = CPRF(skcprf, x

∗).
Otherwise, it chooses a random y∗

$←− Ycprf. It returns y∗ to A.
• Amay adaptively make a polynomial number of queries of the following kinds

to B:
– Evaluation query: A queries the CPRF value at some input x ∈ Xcprf

such that x 6= x∗. B provides the CPRF value CPRF(skcprf, x) to A.
– Key query: A queries a constrained key corresponding to TM M ∈ Mλ

subject to the constraint that M(x∗) = 0. B gives the constrained key
skcprf{M}

$←− CPRF.Constrain(skcprf,M) to A
• A eventually outputs a guess bit b′ ∈ {0, 1}.

The CPRF is said to be selectively pseudorandom if for any PPT adversary A,
for any security parameter λ,

Advcprf,sel-pr
A (λ) = |Pr[b = b′]− 1/2| ≤ negl(λ)

for some negligible function negl.

Remark 3.1. As pointed out in [16, 9], note that in the above selective pseu-
dorandomness experiment, without loss of generality we may assume that the
adversary A only makes constrained key queries and no evaluation query. This
is because any evaluation query at input x ∈ Xcprf can be replaced by con-
strained key query for a TM Mx ∈Mλ that accepts only x. Since, the restriction
on the evaluation queries is that x 6= x∗, Mx(x∗) = 0, and thus Mx is a valid
constrained key query. We will use this simplification in our proof.

3.2 The CPRF Construction of Deshpande et al.
In EUROCRYPT 2016, Deshpande et al. [10] presented a CPRF construction
supporting inputs of unconstrained polynomial length based on indistinguisha-
bility obfuscation and injective pseudorandom generators, which they claimed to
be selectively secure. Unfortunately, their security argument has a flaw. In this
section, we give an informal description of their CPRF construction and point
out the flaw in their security argument.
Overview of the CPRF Construction of [10]: The principle ideas behind
the CPRF construction of [10] are as follows: To produce the CPRF output their
construction uses a PPRF F and a positional accumulator. A master CPRF key
consists of a key K for the PPRF F and a set of public parameters ppacc of the
positional accumulator. The CPRF evaluation on some input x = x0 . . . x`x−1 ∈

12 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Xcprf ⊂ {0, 1}∗ is simply F(K,winp), where winp is the accumulation of the bits
of x using ppacc.

A constrained key of the CPRF, corresponding to some TM M , comprises of
ppacc along with two programs P1 and Pcprf, which are obfuscated using IO.
The first program P1, also known as the initial signing program, takes as input
an accumulator value and outputs a signature on it together with the initial
state and header position of the TM M . The second program Pcprf, also called
the next step program, takes as input a state and header position of M along
with an input symbol and an accumulator value. It essentially computes the
next step function of M on the input state-symbol pair, and eventually outputs
the proper PRF value, if M reaches the accepting state. The program Pcprf also
performs certain authenticity checks before computing the next step function of
M in order to prevent illegal inputs. For this purpose, Pcprf additionally takes
as input a signature on the input state, header position, and accumulator value,
together with a proof for the positional accumulator. The program Pcprf verifies
the signature as well as checks the accumulator proof to get convinced that
the input symbol is indeed the one placed at the input header position of the
underlying storage of the input accumulator value. If all these verifications pass,
then Pcprf determines the next state and header position of M , as well as, the
new symbol that needs to be written to the input header position. The program
Pcprf then updates the accumulator value by placing the new symbol at the
input header position as well as signs the updated accumulator value along with
the computed next state and header position of M . The signature scheme used
by the two programs is a splittable signature. In order to deal with the positional
accumulator related verifications and updations, the program Pcprf has ppacc
hardwired.

Evaluating the CPRF on some input x using a constrained key, corresponding
to some TM M , consists of two steps. In the first step, the evaluator computes
the accumulation winp of the bits of x using ppacc, which are also included in the
constrained key, and then obtains a signature on winp together with the initial
state and header position of M by running the program P1. The second step is
to repeatedly run the program Pcprf, each time on input the current accumula-
tor value, current state and header position of M , along with the signature on
them. Additionally, in each iteration the evaluator also feeds winp to Pcprf. The
iteration is continued until the program Pcprf either outputs the PRF evaluation
or the designated null string ⊥ indicating failure.

The Flaw: In order to prove selective pseudorandomness of the above CPRF
construction, the authors of [10] extends the techniques introduced in [20] in the
context of proving security of message-hiding encoding scheme for TM’s. More
precisely, the authors of [10] proceed as follows: During the course of the proof,
the authors aim to modify the constrained keys given to the adversary A in the
selective pseudorandomness experiment, discussed in Section 3.1, to embed the
punctured PPRF key K{w∗inp} punctured at w∗inp instead of the full PPRF key
K, which is part of the master CPRF key sampled by the challenger B. Here,
w∗inp is the accumulation of the bits of the challenge input x∗, submitted by

CPRF’s for Unconstrained Inputs Revisited 13

the adversary A, using ppacc, included within the master CPRF key generated
by the challenger B. In order to make this substitution, it is to be ensured
that the obfuscated next step programs included in the constrained keys never
outputs the PRF evaluation for inputs corresponding to w∗inp even if reaching the
accepting state. The proof transforms the constrained keys one at a time through
multiple hybrid steps. Suppose that the total number of constrained keys queried
by A be q̂. Consider the transformation of the νth constrained key (1 ≤ ν ≤ q̂)
corresponding to the TM M (ν) that runs on the challenge input x∗ for t∗(ν) steps
and reaches the rejecting state. In the course of transformation, the obfuscated
next step program P(ν)

cprf of the νth constrained key is first altered to one that
never outputs the PRF evaluation for inputs corresponding to w∗inp within the first
t∗(ν) steps. Towards accomplishing this transition, the challenger B at various
stages needs to generate ppacc in read/write enforcing mode where the enforcing
property should be tailored to the steps of execution of the specific TM M (ν)

on x∗. For instance, at some point of transformation of the νth constrained key,
ppacc needs to be set in the read enforcing mode by B on input (i) the entire
sequence of symbol-position pairs arising from iteratively running M (ν) on x∗

upto the tth step and (ii) the enforcing index corresponding to the header position
of M (ν) at the tth step while running on x∗, where 1 < t ≤ t∗(ν). Evidently, if
A makes the constrained key queries adaptively, which it is allowed to do in the
selective pseudorandomness experiment, then B can determine those symbol-
position pairs only after receiving the νth queried TM M (ν) from A. However,
B would also require ppacc while creating the constrained keys queried by A
before making the νth constrained key query and even possibly for preparing
the challenge value for A. Thus, it is immediate that B must generate ppacc
prior to receiving the νth query from A. This is impossible as setting ppacc
in read enforcing mode requires the knowledge of the TM M (ν), which is not
available before the νth constrained key query of A. A similar conflict also arises
when B attempts to setup ppacc in the write enforcing mode tailored to M (ν).
This serious flaw renders the proof of selective pseudorandomness of the CPRF
construction of [10] invalid. Ofcourse, this problem would clearly not arise if
the pseudorandomness of the CPRF construction of [10] is analysed in a weaker
model in which the adversary A is forced to submit all the constrained key
queries along with the challenge input at the beginning of the experiment, i.e.,
before the challenger B performs the setup. However, this weaker model is rather
unrealistic as it renders the adversary A completely static.

3.3 Our Techniques to Fix the Flaw of [10]

Observe that a set of public parameters of the positional accumulator must be
included within each constrained key. This is mandatory due to the required up-
datability feature of positional accumulator, which is indispensable to keep track
of the current situation while running the obfuscated next step program Pcprf
iteratively in the course of evaluating the CPRF on some input. The root cause
of the problem in the selective security argument of [10] is the use of a single set
of public parameters ppacc of the positional accumulator throughout the system.

14 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Therefore, as a first step, we attempt to assign a fresh set of public parameters
of the positional accumulator to each constrained key. However, for compressing
the PRF input to a fixed length, on which F can be applied producing the PRF
output, we need a system-wide compressing tool. We employ SSB hash for this
purpose. The idea is that while evaluating the CPRF on some input x using a
constrained key, corresponding to some TM M , the evaluator first computes the
hash value h by hashing x using the system wide SSB hash key, which is part
of the master key. The evaluator also computes the accumulator value winp by
accumulating the bits of x using the public parameters of positional accumulator
included in the constrained key. Then, using the obfuscated initial signing pro-
gram P1, included in the constrained key, the evaluator will obtain a signature
on winp along with the initial state and header position of M . Finally, the evalu-
ator will repeatedly run the obfuscated next step program Pcprf, included in the
constrained key, each time giving as input all the quantities as in the evaluation
algorithm of [10], except that it now feeds the SSB hash value h in place of winp
in each iteration. This is because, in case Pcprf reaches the accepting state, it
would require h to apply F for producing the PRF output.

However, this approach is not completely sound yet. Observe that, a possibly
malicious evaluator can compute the SSB hash value h on the input x, on which
it wishes to evaluate the CPRF although M does not accepts it, and initiates
the evaluation by accumulating the bits of only a substring of x or some entirely
different input, which is accepted by M . To prevent such malicious behavior, we
include another IO-obfuscated program P2 within the constrained key, known as
the accumulating program, whose purpose is to restrict the evaluator from accu-
mulating the bits of a different input rather than the hashed one. The program
P2 takes as input an SSB hash value h, an index i, a symbol, an accumulator
value, a signature on the input accumulator value (along with the initial state
and header position of M), and an opening value for SSB. The program P2 veri-
fies the signature and also checks whether the input symbol is indeed present at
the index i of the string that has been hashed to form h, using the input opening
value. If all of these verifications pass, then P2 updates the input accumulator
value by writing the input symbol at the ith position of the accumulator stor-
age. We also modify the obfuscated initial signing program P1, included in the
constrained key, to take as input a hash value and output a signature on the
accumulator value corresponding to the empty accumulator storage, along with
the initial state and header position of M .

Moreover, for forbidding the evaluator from performing the evaluation by
accumulating an M -accepted substring of the hashed input, we define our PRF
output as the evaluation of F on the pair (hash value, length) of the input in
stead of just the hash value of the input. Note that, without loss of generality,
we can set the upper bound of the length of PRF inputs to be 2λ, where λ is the
underlying security parameter in view of the fact that by suitably choosing λ we
can accommodate inputs of any polynomial length. This setting of upper bound
on the input length is implicitly considered in [10]. Now, as the input length is
bounded by 2λ, the input length can be expressed as a bit strings of length λ.

CPRF’s for Unconstrained Inputs Revisited 15

Thus, the PRF input length can be safely fed along with the SSB hash value of
PRF input to F , which can handle only inputs of apriori bounded length. Hence,
the obfuscated next step programs Pcprf included in our constrained keys must
also take as input the length of the PRF input for producing the PRF value if
reaching to the accepting state.

Therefore, to evaluate the CPRF on some input using a constrained key, cor-
responding to some TM M , an evaluator first hash the PRF input. The evaluator
also obtains a signature on the empty accumulator value included in the con-
strained key, by running the obfuscated initial signing program P1 on input the
computed hash value. Next, it repeatedly runs the obfuscated accumulating pro-
gram P2 to accumulate the bits of the PRF input. Finally, it runs the obfuscated
next step program Pcprf iteratively on the current accumulator value along with
other legitimate inputs until it obtains either the PRF output or ⊥.

Regarding the proof of security, notice that the problem with enforcing the
public parameters of the positional accumulator while transforming the queried
constrained keys will not appear in our case as we have assigned a separate set of
public parameters of positional accumulator to each constrained key. However,
our actual security proof involves many subtleties that are difficult to describe
with this high level description and is provided in full details in the sequel. We
would only like to mention here that to cope up with certain issues in the proof
we further include another IO-obfuscated program P3 in the constrained keys,
known as the signature changing program, that changes the signature on the ac-
cumulation of the bits of the PRF input before starting the iterative computation
with the obfuscated next step program Pcprf.

We follow the same novel technique introduced in [10] for handling the tail
hybrids in the final stage of transformation of the constrained keys. Note that
as in [10], we are also considering TM’s which run for at most T = 2λ steps
on any input. Unlike [20], the authors of [10] have devised a beautiful approach
to obtain an end to end polynomial reduction to the security of IO for the tail
hybrids by means of an injective pseudorandom generator (PRG). We directly
adopt that technique to deal with the tail hybrids in our security proof. A high
level overview of the approach is sketched below. Let us call the time step 2τ as
the τ th landmark and the interval [2τ , 2τ+1 − 1] as the τ th interval. Like [10],
our obfuscated next step programs Pcprf included within the constrained keys
take an additional PRG seed as input at each time step, and perform some
additional checks on the input PRG seed. At time steps just before a landmark,
the programs output a new pseudorandomly generated PRG seed, which is then
used in the next interval. Using standard IO techniques, it can be shown that
for inputs corresponding to (h∗, `∗), if the program Pcprf outputs ⊥, for all
time steps upto the one just before a landmark, then we can alter the program
indistinguishably so that it outputs ⊥ at all time steps in the next interval. Here
h∗ and `∗ are respectively the SSB hash value and length of the challenge input
x∗ submitted by the adversary A in the selective pseudorandomness experiment.
Employing this technique, we can move across an exponential number of time
steps at a single switch of the next step program Pcprf.

16 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

3.4 Formal Description of Our CPRF
Now we will formally present our CPRF construction where the constrained keys
are associated with TM’s. Let λ be the underlying security parameter. Consider
the family Mλ of TM’s, the members of which have (worst-case) running time
bounded by T = 2λ, input alphabet Σinp = {0, 1}, and tape alphabet Σtape =
{0, 1, }. Our CPRF construction utilizes the following cryptographic building
blocks:

i) IO: An indistinguishability obfuscator for general polynomial-size circuits.
ii) SSB = (SSB.Gen, H, SSB.Open, SSB.Verify): A somewhere statistically bind-

ing hash function with Σssb-blk = {0, 1}.
iii) ACC = (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-Enforce-Write,

ACC.Prep-Read, ACC.Prep-Write, ACC.Verify-Read, ACC.Write-Store,
ACC.Update): A positional accumulator with Σacc-blk = {0, 1, }.

iv) ITR = (ITR.Setup, ITR.Setup-Enforce, ITR.Iterate): A cryptographic iterator
with an appropriate message space Mitr

v) SPS = (SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split, SPS.Sign-ABO): A
splittable signature scheme with an appropriate message space Msps.

vi) PRG : {0, 1}λ → {0, 1}2λ: A length-doubling pseudorandom generator.
vii) F = (F .Setup, F .Puncture, F .Eval): A puncturable pseudorandom function

whose domain and range are chosen appropriately. For simplicity, we assume
that F has inputs and outputs of bounded length instead of fixed length
inputs and outputs. This assumption can be easily removed by using different
PPRF’s for different input and output lengths.

Our CPRF construction is described below:

CPRF.Setup(1λ) → skcprf = (K,hk): The setup authority takes as input the
security parameter 1λ and proceeds as follows:
1. It first chooses a PPRF key K $←− F .Setup(1λ).
2. Next it generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).
3. It sets the master CPRF key as skcprf = (K,hk).

CPRF.Eval(skcprf, x) → y = F(K, (h, `x)): Taking as input the master CPRF
key skcprf = (K,hk) along with an input x = x0 . . . x`x−1 ∈ Xcprf, where
|x| = `x, the setup authority executes the following steps:
1. It computes h = Hhk(x).
2. It outputs the CPRF value on input x to be y = F(K, (h, `x)).

CPRF.Constrain(skcprf,M) → skcprf{M} = (hk,ppacc, w0, store0,ppitr, v0,
P1,P2,P3,Pcprf): On input the master CPRF key skcprf = (K,hk) and a
TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈ Mλ, the setup authority performs
the following steps:
1. At first, it selects PPRF keys K1, . . . ,Kλ,Ksps,A,Ksps,E

$←− F .Setup(1λ).
2. Next, it generates (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ)

and (ppitr, v0) $←− ITR.Setup(1λ, nitr = 2λ).

CPRF’s for Unconstrained Inputs Revisited 17

3. Then, it constructs the following obfuscated programs:
– P1 = IO(Init-SPS.Prog[q0, w0, v0,Ksps,E]),
– P2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,ppitr,Ksps,E]),
– P3 = IO(Change-SPS.Prog[Ksps,A,Ksps,E]),
– Pcprf = IO(Constrained-Key.Progcprf[M, T = 2λ, ppacc, ppitr, K,

K1, . . . ,Kλ,Ksps,A]),
where the programs Init-SPS.Prog,Accumulate.Prog,Change-SPS.Prog, and
Constrained-Key.Progcprf are depicted respectively in Figs. 3.1, 3.2, 3.3
and 3.4.

4. It Provides the constrained key skcprf{M} = (hk,ppacc, w0, store0,
ppitr, v0,P1,P2,P3,Pcprf) ∈ Kcprf-const to a legitimate user.

Constants: Initial TM state q0, Accumulator value w0, Iterator value v0, PPRF key
Ksps,E

Input: SSB hash value h
Output: Signature σsps,out

1. Compute rsps,E = F(Ksps,E , (h, 0)) and (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).

2. Output σsps,out = SPS.Sign(sksps,E , (v0, q0, w0, 0)).

Fig. 3.1. Init-SPS.Prog

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash
key hk, Public parameters for positional accumulator ppacc, Public
parameters for iterator ppitr, PPRF key Ksps,E

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary
value aux, Iterator value vin, Signature σsps,in, SSB hash value h, SSB
opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)) and (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).

(b) Set min = (vin, st, win, 0). If SPS.Verify(vksps,E ,min, σsps,in) = 0, output ⊥.
2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′

sps,E = F(Ksps,E , (h, i + 1)) and (sk′
sps,E ,vk′

sps,E ,vk′
sps-rej,E) =

SPS.Setup(1λ; r′
sps,E).

(b) Set mout = (vout, st, wout, 0). Compute σsps,out = SPS.Sign(sk′
sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. 3.2. Accumulate.Prog

18 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: PPRF keys Ksps,A,Ksps,E

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value
h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp)) and (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).

(b) Set m = (v, st, w, 0). If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.
2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)) and (sksps,A,vksps,A,vksps-rej,A) =

SPS.Setup(1λ; rsps,A).
(b) Output σsps,out = SPS.Sign(sksps,A,m).

Fig. 3.3. Change-SPS.Prog

Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public
parameters for positional accumulator ppacc, Public parameters for
iterator ppitr, PPRF keys K,K1, . . . ,Kλ,Ksps,A

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state
stin, Accumulator value win, Accumulator proof πacc, Auxiliary value
aux, Iterator value vin, SSB hash value h, length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol
symout, TM state stout, Accumulator value wout, Iterator value vout,
Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6=
PRG(F(Kτ , (h, `inp))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)) and (sksps,A,vksps,A,vksps-rej,A) =

SPS.Setup(1λ; rsps,A).
(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.

4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if stout = qac, output F(K, (h, `inp)).
5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6.(a) Compute r′

sps,A = F(Ksps,A, (h, `inp, t)) and (sk′
sps,A,vk′

sps,A,vk′
sps-rej,A) =

SPS.Setup(1λ; r′
sps,A).

(b) Set mout = (vout, stout, wout, posout).
Compute σsps,out = SPS.Sign(sk′

sps,A,mout).
7. If t+ 1 = 2τ

′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. 3.4. Constrained-Key.Progcprf

CPRF.Eval-Constrained(skcprf{M}, x) → y = F(K, (h, `x)) or ⊥: A user takes
as input its constrained key skcprf{M} = (hk,ppacc, w0, store0,ppitr, v0,

CPRF’s for Unconstrained Inputs Revisited 19

P1,P2,P3,Pcprf) ∈ Kcprf-const corresponding to some legitimate TM M =
〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 and an input x = x0 . . . x`x−1 ∈ Xcprf with
|x| = `x. It proceeds as follows:
1. It first computes h = Hhk(x).
2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . , `x, it iteratively performs the following:

(a) It computes πssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes auxj = ACC.Prep-Write(ppacc, storej−1, j − 1).
(c) It computes out = P2(j − 1, xj−1, q0, wj−1,auxj , vj−1, σ̆sps,j−1, h,

πssb,j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out = (wj , vj , σ̆sps,j).
(e) It computes storej = ACC.Write-Store(ppacc, storej−1, j − 1, xj−1).

4. It computes σsps,0 = P3(q0, w`x , v`x , h, `x, σ̆sps,`x).
5. It sets posM,0 = 0 and seed0 = ε.
6. Suppose, M runs for tx steps on input x. For t = 1, . . . , tx, it iteratively

performs the following steps:
(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc, store`x+t−1,

posM,t−1).
(b) It computes aux`x+t = ACC.Prep-Write(ppacc, store`x+t−1,posM,t−1).
(c) It computes out = Pcprf(t, seedt−1,posM,t−1, symM,t−1, stM,t−1,

w`x+t−1, πacc,t−1,aux`x+t, v`x+t−1, h, `x, σsps,t−1).
(d) If t = tx, it outputs out. Otherwise, it parses out as out = (posM,t,

sym(write)
M,t , stM,t, w`x+t, v`x+t, σsps,t, seedt).

(e) It computes store`x+t = ACC.Write-Store(ppacc, store`x+t−1,

posM,t−1, sym(write)
M,t).

Theorem 3.1. Assuming IO is a secure indistinguishability obfuscator for P/poly,
F is a secure puncturable pseudorandom function, SSB is a somewhere statis-
tically binding hash function, ACC is a secure positional accumulator, ITR is a
secure cryptographic iterator, SPS is a secure splittable signature scheme, and
PRG is a secure injective pseudorandom generator, our CPRF construction sat-
isfies correctness under constraining and selective pseudorandomness properties.
The proof of Theorem 3.1 is provided in the full version of this paper.
Remark 3.2. We note that concurrently and independently of our work, Desh-
pande et al. [11] have recently provided an alternative fix to the flaw in [10]
discussed in Section 3.2, by replacing the standard positional accumulators used
in the CPRF construction of [10] with an advanced variant of positional accu-
mulators, namely, history-less positional accumulators [3]. Unlike standard po-
sitional accumulators, in case of history-less positional accumulators, setting up
the public parameters in read/write enforcing mode does not require any his-
tory of symbol-index pairs as input. Consequently, the problem in the simulation
of [10] discussed in Section 3.2, resulting from the use of standard positional ac-
cumulators, would clearly not arise if history-less positional accumulators are
utilized in the CPRF construction of [10] instead. However, we emphasize that
our approach towards resolving the flaw of [10] brings about some new subtle
technical ideas which might be useful elsewhere as well.

20 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

4 Our CVPRF for Turing Machines
4.1 Notion
Definition 4.1 (Constrained Verifiable Pseudorandom Function for Tur-
ing Machines: CVPRF). Let Mλ be a family of TM’s with (worst-case) run-
ning time bounded by T = 2λ. A constrained verifiable pseudorandom function
(CVPRF) for Mλ with key space Kcvprf, input domain Xcvprf ⊂ {0, 1}∗, and
output space Ycvprf ⊂ {0, 1}∗ consists of a constrained key space Kcvprf-const,
a proof space Πcvprf, along with PPT algorithms (CVPRF.Setup, CVPRF.Eval,
CVPRF.Prove, CVPRF.Constrain, CVPRF.Prove-Constrained, CVPRF.Verify) which
are described below:

CVPRF.Setup(1λ) → (skcvprf,vkcvprf) : The setup authority takes as input
the security parameter 1λ and generates a master CVPRF key skcvprf along
with a public verification key vkcvprf.

CVPRF.Eval(skcvprf, x) → y : Taking as input the master CVPRF key skcvprf
and an input x ∈ Xcvprf, the trusted authority outputs the value of the func-
tion y ∈ Ycvprf. For simplicity of notation, we will denote by CVPRF(skcvprf,
x) the output of this algorithm.

CVPRF.Prove(skcvprf, x) → πcvprf : Taking as input the master CVPRF key
skcvprf and an input x ∈ Xcvprf, the trusted authority outputs a proof
πcvprf ∈ Πcvprf.

CVPRF.Constrain(skcvprf,M) → skcvprf{M} : On input the master CVPRF
key skcvprf and a TM M ∈ Mλ, the setup authority provides a constrained
key skcvprf{M} to a legitimate user.

CVPRF.Prove-Constrained(skcvprf{M}, x) → (y, πcvprf) or ⊥ : A user takes
as input its constrained key skcvprf{M} corresponding to a legitimate TM
M ∈ Mλ and an input x ∈ Xcvprf. It outputs either a value-proof pair
(y, πcvprf) ∈ Ycvprf ×Πcvprf or (⊥,⊥) indicating failure.

CVPRF.Verify(vkcvprf, x, y, πcvprf)→ β̂ ∈ {0, 1} : A verifier takes as input the
public verification key vkcvprf, an input x ∈ Xcvprf, a value y ∈ Ycvprf,
together with a proof πcvprf ∈ Πcvprf. It outputs a bit ˆbeta ∈ {0, 1}.

The algorithms CVPRF.Setup, CVPRF.Prove, CVPRF.Constrain and
CVPRF.Prove-Constrained are randomized, while the other two algorithms are
deterministic.

� Provability: For any security parameter λ, (skcvprf,vkcvprf) $←−
CVPRF.Setup(1λ), M ∈ Mλ, skcvprf{M}

$←− CVPRF.Constrain(skcvprf,M), x ∈
Xcvprf, and (y, πcvprf) $←− CVPRF.Prove-Constrained(skcvprf{M}, x), the follow-
ing holds:

• If M(x) = 1, then y = CVPRF(skcvprf, x) and CVPRF.Verify(vkcvprf, x, y,
πcvprf) = 1.

• If M(x) = 0, then (y, πcvprf) = (⊥,⊥).

CPRF’s for Unconstrained Inputs Revisited 21

The security requirements of a CVPRF are formally defined in the full version of
this paper.

4.2 Techniques Adapted in Our CVPRF Construction
Let us now sketch our technical ideas to extend our CPRF construction to in-
corporate the verifiability feature. The additional tool that we use for this en-
hancement is a public key encryption (PKE) scheme which is perfectly correct
and chosen plaintext attack (CPA) secure. Besides the PPRF key K, used to gen-
erate the PRF output, and the SSB hash key, we include within the master key
another PPRF key Kpke to generate randomness for the setup and encryption
algorithms of PKE. As earlier, the PRF output on some input x is F(K, (h, `x)),
where h and `x are respectively the SSB hash value and length of x. The non-
interactive proof of correctness consists of a PKE public key pkpke together
with a pseudorandom string rpke,2. The randomness rpke,1 for setting up the
PKE public key pkpke along with the pseudorandom string rpke,2 are formed as
rpke,1‖rpke,2 = F(Kpke, (h, `x)).

The public verification key comprises of the same SSB hash key as included
in the master PRF key, together with an IO-obfuscated program Vcvprf, known as
the verifying program. The verifying program Vcvprf has the PPRF keys K and
Kpke hardwired in it. It takes as input an SSB hash value h and PRF input length
`inp. It first computes the concatenated pseudorandom strings r̂pke,1‖r̂pke,2 =
F(Kpke, (h, `inp)). Next, it runs the PKE setup algorithm using the generated ran-
domness r̂pke,1 and creates a PKE public key cpkpke. The program outputs cpkpke
together with the ciphertext cctpke encrypting the PRF value F(K, (h, `inp)) un-
der cpkpke utilizing the randomness r̂pke,2.

To verify a purported PRF value-proof pair (y, πcvprf = (pkpke, r)) for some
input x using the public verification key, a verifier first hashes x using the SSB
hash key and then obtains a PKE public key-ciphertext pair (cpkpke,cctpke) by
running the obfuscated verifying program Vcvprf on input the computed hash
value and length of the input x. The verifier accepts the proof if cpkpke matches
with pkpke, as well as cctpke matches with the ciphertext formed by encrypt-
ing the purported PRF value y under pkpke using the string r included within
the proof. Observe that the soundness of verification follows directly from the
perfect correctness property of the underlying PKE scheme. Specifically, due to
the perfect correctness of PKE, it is guaranteed that two different values cannot
map to the same ciphertext under the same public key.

Finally, to enable the generation of the proof along with the PRF value using
a constrained key, we modify the obfuscated next step program, which we denote
as Pcvprf, included in the constrained key to output the proof together with the
PRF value when it reaches the accepting state.

4.3 Formal Description of our CVPRF
Here we will provide our CVPRF for TM’s. This construction is obtained by
extending our CPRF construction described in Section 3.4. Let λ be the under-
lying security parameter. Let Mλ be a class of TM’s, the members of which have
(worst-case) running time bounded by T = 2λ, input alphabet Σinp = {0, 1}, and

22 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

tape alphabet Σtape = {0, 1, }. Our CVPRF construction for TM family Mλ will
employ all the building blocks utilized in our CPRF construction. Additionally,
we will use a perfectly correct and chosen plaintext attack (CPA) secure public
key encryption scheme PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) with an
appropriate message space. The formal description of our CVPRF construction
follows:

CVPRF.Setup(1λ) → (skcvprf = (K,Kpke,hk),vkcvprf = (hk,Vcvprf)): The
setup authority takes as input the security parameter 1λ and proceeds as
follows:
1. It first chooses PPRF keys K,Kpke

$←− F .Setup(1λ).
2. Next it generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).
3. Then, it creates the obfuscated program Vcvprf = IO(Verify.Progcvprf[K,
Kpke]), where the program Verify.Progcvprf is described in Fig. 4.1.

4. It sets the master CVPRF key as skcvprf = (K,Kpke,hk) and publishes
the public verification key vkcvprf = (hk,Vcvprf).

Constants: PPRF keys K,Kpke
Inputs: SSB hash value h, Length `inp

Output: (PKE public key cpkpke, Encryption of CVPRF value cctpke)

1. Compute r̂pke,1‖r̂pke,2 = F(Kpke, (h, `inp)), (cpkpke, Òskpke) = PKE.Setup(1λ; r̂pke,1).
2. Compute cctpke = PKE.Encrypt(cpkpke,F(K, (h, `inp)); r̂pke,2).
3. Output (cpkpke,cctpke).

Fig. 4.1. Verify.Progcvprf

CVPRF.Eval(skcvprf, x)→ y = F(K, (h, `x)): Taking as input the master CVPRF
key skcvprf = (K,Kpke,hk) along with an input x = x0 . . . x`x−1 ∈ Xcvprf,
where |x| = `x, the setup authority proceeds in an identical fashion to
CPRF.Eval(skcprf, x) described in Section 3.4.

CVPRF.Prove(skcvprf, x)→ πcvprf = (pkpke, rpke,2): The setup authority takes
as input the master CVPRF key skcvprf = (K,Kpke,hk) along with an input
x = x0 . . . x`x−1 ∈ Xcvprf, where |x| = `x. It proceeds as follows:
1. At first, it computes h = Hhk(x).
2. Then, it computes rpke,1‖rpke,2 = F(Kpke, (h, `x)), (pkpke, skpke) =

PKE.Setup(1λ; rpke,1).
3. It outputs πcvprf = (pkpke, rpke,2).

CVPRF.Constrain(skcvprf,M) → skcvprf{M} = (hk,ppacc, w0, store0, ppitr,
v0,P1,P2,P3,Pcvprf): On input the master CVPRF key skcvprf = (K, Kpke,
hk) and a TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈Mλ, the setup authority
proceeds identically to CPRF.Constrain(skcprf,M) with the only difference
that in place of Pcprf it includes Pcvprf = IO(Constrained-Key.Progcvprf[M,
T = 2λ,ppacc,ppitr,K,Kpke,K1, . . . ,Kλ,Ksps,A]) within the constrained key
skcvprf{M}, where the program Constrained-Key.Progcvprf is depicted in
Fig. 4.2.

CPRF’s for Unconstrained Inputs Revisited 23

Constants: PPRF key Kpke along with everything hardwired within the program
Constrained-Key.Progcprf (Fig. 3.4)

Inputs: Same as those to the program Constrained-Key.Progcprf (Fig. 3.4)
Output: (CVPRF evaluation F(K, (h, `inp)), CVPRF proof πcvprf =

(pkpke, rpke,2)) or Header Position (posout, Symbol symout, TM
state stout, Accumulator value wout, Iterator value vout, Signature
σsps,out, String seedout), or ⊥

The functionality of this program is exactly the same as that of the program
Constrained-Key.Progcprf (Fig. 3.4) except that Step 4.(b) is replaced with the fol-
lowing:

4.(b) If stout = qrej, output ⊥.
Else if stout = qac, perform the following:
(I) Compute rpke,1‖rpke,2 = F(Kpke(h, `inp)) and (pkpke, skpke) =

PKE.Setup(1λ; rpke,1).
(II) Output (F(k, (h, `inp)), πcvprf = (pkpke, rpke,2)).

Fig. 4.2. Constrained-Key.Progcvprf

CVPRF.Prove-Constrained(skcvprf{M}, x) → (y = F(K, (h, `x)), πcvprf =
(pkpke, rpke,2)) or ⊥: A user takes as input its constrained key skcvprf{M} =
(hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pcvprf) corresponding to some le-
gitimate TMM = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 and an input x = x0 . . . x`x−1
∈ Xcvprf with |x| = `x. It proceeds in the exact same manner as the algo-
rithm CPRF.Eval-Constrained(skcprf{M}, x) described in Section 3.4. How-
ever, note that now the constrained key skcvprf{M} of the user contains the
obfuscated program Pcvprf instead of Pcprf. Thus, it utilizes the program
Pcvprf in place of Pcprf in the course of execution.

CVPRF.Verify(vkcvprf, x, y, πcvprf) → β̂ ∈ {0, 1}: A verifier takes as input the
public verification key vkcvprf = (hk,Vcvprf), an input x = x0 . . . x`x−1 ∈
Xcvprf, where |x| = `x, a value y ∈ Ycvprf, and a proof πcvprf = (pkpke, r) ∈
Πcvprf. It executes the following:
1. It first computes h = Hhk(x).
2. Next, it computes (cpkpke,cctpke) = Vcvprf(h, `x).
3. If [pkpke = cpkpke] ∧ [PKE.Encrypt(pkpke, y; r) = cctpke], it outputs 1.

Otherwise, it outputs 0.

Theorem 4.1. Assuming IO is a secure indistinguishability obfuscator for P/poly,
F is a secure puncturable pseudorandom function, SSB is a somewhere statis-
tically binding hash function, ACC is a secure positional accumulator, ITR is a
secure cryptographic iterator, SPS is a secure splittable signature scheme, PRG is
a secure injective pseudorandom generator, and PKE is a perfectly correct CPA
secure public key encryption scheme, our CVPRF construction satisfies all the
properties of a secure CVPRF.

The proof of Theorem 4.1 is given in the full version of this paper.

24 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

5 Our DCPRF for Turing Machines
5.1 Notion
Definition 5.1 (Delegatable Constrained Pseudorandom Function
for Turing Machines: DCPRF). Let Mλ be a family of TM’s with (worst-case)
running time bounded by T = 2λ. A delegatable constrained pseudorandom func-
tion (DCPRF) with key space Kdcprf, input domain Xdcprf ⊂ {0, 1}∗, and output
space Ydcprf ⊂ {0, 1}∗ for the TM family Mλ consists of an additional key space
Kdcprf-const and PPT algorithms (DCPRF.Setup, DCPRF.Eval, DCPRF.Constrain,
DCPRF.Delegate, DCPRF.Eval-Constrained) described as follows:
DCPRF.Setup(1λ) → skdcprf : The setup authority takes as input the security

parameter 1λ and generates the master DCPRF key skdcprf ∈ Kdcprf.
DCPRF.Eval(skdcprf, x) → y : On input the master DCPRF key skdcprf along

with an input x ∈ Xdcprf, the setup authority computes the value of the
DCPRF y ∈ Ydcprf. For simplicity of notation, we will use DCPRF(skdcprf, x)
to indicate the output of this algorithm.

DCPRF.Constrain(skdcprf,M) → skdcprf{M} : Taking as input the master
DCPRF key skdcprf ∈ Kdcprf and a TM M ∈ Mλ, the setup authority pro-
vides a constrained key skdcprf{M} ∈ Kdcprf-const to a legitimate user.

DCPRF.Delegate(skdcprf{M},fM) → skdcprf{M ∧ fM} : Taking as input a
constrained key skdcprf{M} ∈ Kdcprf-const corresponding to a legitimate
TM M ∈ Mλ along with another TM fM ∈ Mλ, a user gives a delegated
constrained key skdcprf{M ∧ fM} ∈ Kdcprf-const to a legitimate delegate.

DCPRF.Eval-Constrained(skdcprf{M}/skdcprf{M ∧ fM}, x)→ y or ⊥ : A user
takes as input a constrained key skdcprf{M} ∈ Kdcprf-const obtained from
the setup authority, corresponding to TM M ∈ Mλ, or a delegated con-
strained key skdcprf{M ∧ fM} ∈ Kdcprf-const delegated by a constrained
key holder holding the constrained key skdcprf{M} ∈ Kdcprf-const, corre-
sponding to TM fM ∈Mλ, along with an input x ∈ Xdcprf. It outputs either
a value y ∈ Ydcprf or ⊥ indicating failure.

The algorithms DCPRF.Eval and DCPRF.Eval-Constrained are deterministic, while,
all the others are randomized.

� Correctness under Constraining/Delegation: Let us consider any se-
curity parameter λ, x ∈ Xdcprf, skdcprf

$←− DCPRF.Setup(1λ), M,fM ∈ Mλ,
skdcprf{M}

$←− DCPRF.Constrain(skdcprf,M) and skdcprf{M ∧ fM} $←−
DCPRF.Delegate(skdcprf{M},fM). The following must hold:

DCPRF.Eval-Constrained(skdcprf{M}/skdcprf{M ∧ fM}, x) =�
DCPRF(skdcprf, x), if M(x) = 1/[M(x) = 1] ∧ [fM(x) = 1]
⊥, otherwise

The security notion of a DCPRF, namely, the pseudorandomness property is
formally defined in the full version of this paper.

CPRF’s for Unconstrained Inputs Revisited 25

5.2 Techniques Adapted in our DCPRF Construction
Here again our starting point is our CPRF construction. We again use a perfectly
correct and CPA secure PKE scheme for accomplishing key delegation. Precisely,
while generating a constrained key corresponding to some TM M , we create a
PPRF key K ′ specific to that constrained key. We then modify the output of the
next step program, which we refer to as Pdcprf, when it reaches the accepting
state. In stead of outputting the PRF value, the program Pdcprf outputs an
encryption of the PRF value. For performing this encryption it generates a PKE
public key pkpke. The program computes the randomness rpke,1 for generating
the PKE public key pkpke as well as the randomness rpke,2 for the encryption
as rpke,1‖rpke,2 = F(K ′, (h, `inp)), where h and `inp denote respectively the SSB
hash value and length of the PRF input. We also include the PPRF key K ′ in
the clear within the constrained key. Thus, while evaluating the PRF on some
input using the constrained key, the evaluator will be able to recompute the
pseudorandom string rpke,1 using K ′ and then can generate the necessary PKE
secret key skpke by running the setup algorithm using the randomness rpke,1 on
its own. Once the secret key skpke is obtained, the evaluator can simply decrypt
the ciphertext obtained from the next step program Pdcprf to uncover the PRF
value. However, if a party does not have the key K ′ or the randomness that
would have to be used for creating the required PKE secret key, then it cannot
derive the PRF value from the ciphertext obtained from the next step program
Pdcprf. We encash this idea to design the key delegation functionality.

The structure of our delegated key is as follows: Suppose a party holding a
constrained key, corresponding to some TM M , wishes to construct a delegated
key for M ∧fM , where fM is some other TM. The party generates all the compo-
nents and obfuscated programs as those formed while constructing a constrained
key for fM with the only exception that it embeds the PPRF key K ′, included
in its constrained key, inside the obfuscated next step program for fM in place
of the PPRF key K, which is part of the master PRF key and provides the PRF
output. In fact, since the party only has a constrained key and not the master
key, it does not possess the key K in the clear and hence cannot embed it within
the obfuscated programs that it generates. The delegated key, corresponding to
M ∧ fM consists of all the generated components and obfuscated programs forfM together with all the components and obfuscated programs included in the
constrained key for M possessed by the delegator except the PPRF key K ′.

The idea is that, while evaluating the PRF on some input x using the del-
egated key for M ∧ fM , the evaluator proceeds in three steps. In the first step,
provided fM(x) = 1, the evaluator computes the output of F with key K ′ on the
SSB hash value and length of x by making use of the delegated key components
pertaining to fM . Next, using the obtained PPRF output, the evaluator runs the
PKE setup algorithm to obtain the necessary PKE secret key. In the second step,
utilizing the delegated key components associated to M , the evaluator obtains
a ciphertext encrypting the PRF output on x, provided M(x) = 1. Finally, the
evaluator decrypts the ciphertext using the computed PKE secret key to reveal
the PRF output.

26 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

5.3 Formal Description of Our DCPRF
In this section, we will present our DCPRF for TM’s. The construction pre-
sented here considers only one level of delegation, however, it can readily be
generalized to support multiple delegation levels. Let λ be the underlying se-
curity parameter. Consider the class Mλ of TM’s, the members of which have
(worst-case) running time bounded by T = 2λ, input alphabet Σinp = {0, 1},
and tape alphabet Σtape = {0, 1, }. Our DCPRF construction is an augmenta-
tion of our CPRF construction with a delegation functionality and employs all
the cryptographic building blocks utilized by our CPRF construction. In addi-
tion, we use a perfectly correct and CPA secure public key encryption scheme
PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) with an appropriate message
space. The formal description of our DCPRF follows:

DCPRF.Setup(1λ) → skdcprf = (K,hk): The setup authority takes as input
the security parameter 1λ and proceeds the same way as CPRF.Setup(1λ)
described in Section 3.4.

DCPRF.Eval(skdcprf, x) → y = F(K, (h, `x)): Taking as input the master
DCPRF key skdcprf = (K,hk) and an input x = x0 . . . x`x−1 ∈ Xdcprf, where
|x| = `x, the setup authority executes identical steps as CPRF.Eval(skcprf, x)
described in Section 3.4.

DCPRF.Constrain(skdcprf,M) → skdcprf{M} = (K ′,hk,ppacc, w0, store0,
ppitr, v0,P1,P2,P3,Pdcprf): On input the master DCPRF key skdcprf =
(K,hk) and a TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈ Mλ, the setup au-
thority performs the following steps:
1. At first, it selects PPRF keysK ′,K1, . . . ,Kλ,Ksps,A,Ksps,E

$←− F .Setup(1λ).
2. Next, it generates (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ)

and (ppitr, v0) $←− ITR.Setup(1λ, nitr = 2λ).
3. Then, it constructs the obfuscated programs

– P1 = IO(Init-SPS.Prog[q0, w0, v0,Ksps,E]),
– P2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,ppitr,Ksps,E]),
– P3 = IO(Change-SPS.Prog[Ksps,A,Ksps,E]),
– Pdcprf = IO(Constrained-Key.Progdcprf[M,T = 2λ,ppacc,ppitr,K,K

′,
K1, . . . ,Kλ,Ksps,A]),

where the programs Init-SPS.Prog,Accumulate.Prog, and Change-SPS.Prog
are depicted respectively in Figs. 3.1, 3.2 and 3.3 in Section 3.4, while the
program Constrained-Key.Progdcprf is described in Fig. 5.1.

4. It provides the constrained key skdcprf{M} = (K ′,hk,ppacc, w0, store0,
ppitr, v0,P1,P2,P3,Pdcprf) to a legitimate user.

DCPRF.Delegate(skdcprf{M},fM)→ skdcprf{M ∧ fM} = (ÜK ′,hk,ppacc,fppacc,

w0, ew0, store0, àstore0, ppitr, fppitr, v0, ev0, P1, ÜP1, P2, ÜP2, P3, ÜP3,
Pdcprf, ÜPdcprf): A user takes as input a constrained key skdcprf{M} = (K ′,
hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pdcprf), corresponding to a legit-
imate TM M ∈ Mλ and another TM fM = 〈ÜQ,Σinp, Σtape, eδ, eq0, eqac, eqrej〉 ∈
Mλ. It proceeds as follows:

CPRF’s for Unconstrained Inputs Revisited 27

Constants: PPRF key K′ along with everything hardwired within the program
Constrained-Key.Progcprf (Fig. 3.4)

Inputs: Same as those to the program Constrained-Key.Progcprf (Fig. 3.4)
Output: Encryption of DCPRF value ctpke, or Header Position (posout, Symbol

symout, TM state stout, Accumulator value wout, Iterator value vout,
Signature σsps,out, String seedout), or ⊥

This program functions in the same fashion as the program Constrained-Key.Progcprf
(Fig. 3.4) except that Step 4.(b) is replaced with the following:

4.(b) If stout = qrej, output ⊥.
Else if stout = qac, perform the following steps:
(I) Compute rpke,1‖rpke,2 = F(K′, (h, `inp)) and (pkpke, skpke) =

PKE.Setup(1λ; rpke,1).
(II) Output ctpke = PKE.Encrypt(pkpke,F(K, (h, `inp)); rpke,2).

Fig. 5.1. Constrained-Key.Progdcprf

1. It first picks fresh PPRF keys ÜK ′, ÜK1, . . . , ÜKλ, ÜKsps,A, ÜKsps,E
$←− F .Setup(1λ).

2. Next it generates (fppacc, ew0,àstore0) $←− ACC.Setup(1λ, nacc-blk = 2λ)
and (fppitr, ev0) $←− ITR.Setup(1λ, nitr = 2λ) afresh.

3. Then, it constructs the obfuscated programs
– ÜP1 = IO(Init-SPS.Prog[eq0, ew0, ev0, ÜKsps,E]),
– ÜP2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fppacc,fppitr, ÜKsps,E]),
– ÜP3 = IO(Change-SPS.Prog[ÜKsps,A, ÜKsps,E]),
– ÜPdcprf = IO(Constrained-Key.Progdcprf[fM,T = 2λ,fppacc,fppitr,K

′,ÜK ′, ÜK1, . . . , ÜKλ, ÜKsps,A]),
where the programs Init-SPS.Prog,Accumulate.Prog, and Change-SPS.Prog
are depicted respectively in Figs. 3.1, 3.2 and 3.3 in Section 3.4, while the
program Constrained-Key.Progdcprf is described in Fig. 5.1.

4. It gives the delegated key skdcprf{M ∧ fM} = (ÜK ′,hk,ppacc,fppacc, w0, ew0,

store0,àstore0,ppitr,fppitr, v0, ev0,P1, ÜP1,P2, ÜP2,P3, ÜP3,Pdcprf, ÜPdcprf) to
a legitimate delegate.

DCPRF.Eval-Constrained(skdcprf{M}/skdcprf{M ∧ fM}, x)→ y = F(K, (h, `x))
or ⊥: A user takes as input a constrained key skdcprf{M} = (K ′,hk,ppacc,
w0, store0,ppitr, v0, P1,P2,P3,Pdcprf) obtained from the setup authority,
corresponding to some legitimate TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈
Mλ, or a delegated key skdcprf{M ∧ fM} = (ÜK ′,hk,ppacc,fppacc, w0, ew0,

store0,àstore0,ppitr, fppitr, v0, ev0,P1, ÜP1,P2, ÜP2,P3, ÜP3,Pdcprf, ÜPdcprf) ob-
tained from the holder of the constrained key skdcprf{M}, corresponding
to TM fM = 〈ÜQ,Σinp, Σtape, eδ, eq0, eqac, eqrej〉 ∈ Mλ, along with an input
x = x0 . . . x`x−1 ∈ Xdcprf with |x| = `x. It proceeds as follows:

(A) If M(x) = 0, it outputs ⊥. Otherwise, it performs the following steps:

28 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

1. It first computes h = Hhk(x).
2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . , `x, it iteratively performs the following:

(a) It computes πssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes auxj = ACC.Prep-Write(ppacc, storej−1, j − 1).
(c) It computes out = P2(j−1, xj−1, q0, wj−1,auxj , vj−1, σ̆sps,j−1, h,

πssb,j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out = (wj , vj ,

σ̆sps,j).
(e) It computes storej = ACC.Write-Store(ppacc, storej−1, j − 1,

xj−1).
4. It computes σsps,0 = P3(q0, w`x

, v`x
, h, `x, σ̆sps,`x

).
5. It sets posM,0 = 0 and seed0 = ε.
6. Suppose, M accepts x in tx steps. For t = 1, . . . , tx, it iteratively

performs the following steps:
(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc,

store`x+t−1,posM,t−1).
(b) It computes aux`x+t = ACC.Prep-Write(ppacc, store`x+t−1,

posM,t−1).
(c) It computes out = Pdcprf(t, seedt−1,posM,t−1, symM,t−1,

stM,t−1, w`x+t−1, πacc,t−1,aux`x+t, v`x+t−1, h, `x, σsps,t−1).
(d) If t = tx, it sets ctpke = out. Otherwise, it parses out as out =

(posM,t, sym(write)
M,t , stM,t, w`x+t, v`x+t, σsps,t, seedt).

(e) It computes store`x+t = ACC.Write-Store(ppacc, store`x+t−1,

posM,t−1, sym(write)
M,t).

(B) If the user is using the constrained key skdcprf{M}, then it computes
rpke,1‖rpke,2 = F(K ′, (h, `x)), (pkpke, skpke) = PKE.Setup(1λ; rpke,1), and
outputs PKE.Decrypt(skpke,ctpke). On the other hand, if the user is using
the delegated key skdcprf{M ∧ fM} and fM(x) = 0, then it outputs ⊥,
while if fM(x) = 1, it further executes the following steps:
1. It computes ĕσsps,0 = ÜP1(h).
2. Then for j = 1, . . . , `x, it iteratively performs the following:

(a) It computes eπssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes Þauxj = ACC.Prep-Write(fppacc,àstorej−1, j − 1).
(c) It computes Þout = ÜP2(j−1, xj−1, eq0, ewj−1,Þauxj , evj−1, ĕσsps,j−1, h,eπssb,j−1).
(d) If Þout = ⊥, it outputs Þout. Else, it parses Þout as Þout = (ewj , evj ,ĕσsps,j).
(e) It computes àstorej = ACC.Write-Store(fppacc,àstorej−1, j − 1,

xj−1).
3. It computes eσsps,0 = ÜP3(eq0, ew`x , ev`x , h, `x,

ĕσsps,`x).
4. It sets posÜM,0 = 0 and ßseed0 = ε.
5. Suppose, fM accepts x in etx steps. For t = 1, . . . ,etx, it iteratively

performs the following steps:

CPRF’s for Unconstrained Inputs Revisited 29

(a) It computes (symÜM,t−1, eπacc,t−1) = ACC.Prep-Read(fppacc,àstore`x+t−1,posÜM,t−1).
(b) It computes Þaux`x+t = ACC.Prep-Write(fppacc,àstore`x+t−1,

posÜM,t−1).
(c) It computes Þout = ÜPdcprf(t,ßseedt−1,posÜM,t−1, symÜM,t−1,

stÜM,t−1, ew`x+t−1, eπacc,t−1,Þaux`x+t, ev`x+t−1, h, `x, eσsps,t−1).
(d) If t = etx, it sets fctpke = Þout. Otherwise, it parses Þout as Þout =

(posÜM,t
, sym(write)ÜM,t

, stÜM,t
, ew`x+t, ev`x+t, eσsps,t,ßseedt).

(e) It computes àstore`x+t = ACC.Write-Store(fppacc,àstore`x+t−1,

posÜM,t−1, sym(write)ÜM,t
).

(C) Finally, it computes
– erpke,1‖erpke,2 = F(ÜK ′, (h, `x)),
– (fpkpke,fskpke) = PKE.Setup(1λ; erpke,1),
– rpke,1‖rpke,2 = PKE.Decrypt(fskpke,fctpke),
– (pkpke, skpke) = PKE.Setup(1λ; rpke,1),

and outputs PKE.Decrypt(skpke,ctpke).

Theorem 5.1. Assuming IO is a secure indistinguishability obfuscator for P/poly,
F is a secure puncturable pseudorandom function, SSB is a somewhere statis-
tically binding hash function, ACC is a secure positional accumulator, ITR is a
secure cryptographic iterator, SPS is a secure splittable signature scheme, PRG is
a secure injective pseudorandom generator, and PKE is CPA secure, our DCPRF
construction satisfies the correctness and selective pseudorandomness properties.

The proof of Theorem 5.1 is given in the full version of this paper.

References
1. Abusalah, H., Fuchsbauer, G.: Constrained prfs for unbounded inputs with short

keys. In: Applied Cryptography and Network Security–ACNS 2016. pp. 445–463.
Springer (2016)

2. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained prfs for unbounded inputs.
In: Topics in Cryptology–CT-RSA 2016. pp. 413–428. Springer (2016)

3. Ananth, P., Chen, Y.C., Chung, K.M., Lin, H., Lin, W.K.: Delegating ram com-
putations with adaptive soundness and privacy. In: Theory of Cryptography–TCC
2016-B. pp. 3–30. Springer (2016)

4. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Theory of Cryptography–
TCC 2015. pp. 31–60. Springer (2015)

5. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Public Key
Cryptography–PKC 2014. pp. 520–537. Springer (2014)

6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their appli-
cations. In: Advances in Cryptology–ASIACRYPT 2013. pp. 280–300. Springer
(2013)

7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Public Key Cryptography–PKC 2014. pp. 501–519. Springer (2014)

30 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

8. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic prfs from stan-
dard lattice assumptions. In: Theory of Cryptography–TCC 2015. pp. 1–30.
Springer (2015)

9. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: Verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522
(2014)

10. Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for
unconstrained inputs. In: Advances in Cryptology–EUROCRYPT 2016. pp. 124–
153. Springer (2016)

11. Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions
for unconstrained inputs. Cryptology ePrint Archive, Report 2016/301, Version
20160819:153952 (2016)

12. Fuchsbauer, G.: Constrained verifiable random functions. In: Security and Cryp-
tography for Networks–SCN 2014. pp. 95–114. Springer (2014)

13. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of con-
strained prfs. In: Advances in Cryptology–ASIACRYPT 2014. pp. 82–101. Springer
(2014)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Foun-
dations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on. pp.
40–49. IEEE (2013)

15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM (JACM) 33(4), 792–807 (1986)

16. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. Cryptology ePrint Archive, Report 2014/720 (2014)

17. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseu-
dorandom functions in the standard model. In: Advances in Cryptology–
ASIACRYPT 2015. pp. 79–102. Springer (2015)

18. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: The 2015 Conference on Innovations in Theoretical
Computer Science. pp. 163–172. ACM (2015)

19. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: The 2013 ACM SIGSAC conference on
Computer & communications security. pp. 669–684. ACM (2013)

20. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: The 47th Annual ACM on Symposium on
Theory of Computing. pp. 419–428. ACM (2015)

21. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: Foundations of
Computer Science, 1999. 40th Annual Symposium on. pp. 120–130. IEEE (1999)

22. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of some-
where statistically binding hashing and positional accumulators. In: Advances in
Cryptology–ASIACRYPT 2015. pp. 121–145. Springer (2015)

23. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: The 46th Annual ACM Symposium on Theory of Computing.
pp. 475–484. ACM (2014)

	CPRF's for Unconstrained Inputs Revisited
	Introduction
	Preliminaries
	Turing Machines
	Indistinguishability Obfuscation
	IO-Compatible Cryptographic Primitives
	Puncturable Pseudorandom Function
	Somewhere Statistically Binding Hash Function
	Positional Accumulator
	Iterator
	Splittable Signature

	Our CPRF for Turing Machines
	Notion
	The CPRF Construction of Deshpande et al.
	Our Techniques to Fix the Flaw of deshpandeconstrained
	Formal Description of Our CPRF

	Our CVPRF for Turing Machines
	Notion
	 Techniques Adapted in Our CVPRF Construction
	Formal Description of our CVPRF

	Our DCPRF for Turing Machines
	Notion
	Techniques Adapted in our DCPRF Construction
	Formal Description of Our DCPRF

