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Abstract. Achieving constant-round adaptively secure protocols (where all par-
ties can be corrupted) in the plain model is a notoriously hard problem. Very
recently, three works published in TCC 2015 (Dachman-Soled et al., Garg and
Polychroniadou, Canetti et al.), solved the problem in the Common Reference
String (CRS) model. In this work, we present a constant-round adaptive UC-
secure computation protocol for all well-formed functionalities in the tamper-
proof hardware model using stateless tokens from only one-way functions. In
contrast, all prior works in the CRS model require very strong assumptions, in
particular, the existence of indistinguishability obfuscation.
As a corollary to our techniques, we present the first adaptively secure protocols
in the Random Oracle Model (ROM) with round complexity proportional to the
depth of circuit implementing the functionality. Our protocols are secure in the
Global Random Oracle Model introduced recently by Canetti, Jain and Scafuro in
CCS 2014 that provides strong compositional guarantees. More precisely, we ob-
tain an adaptively secure UC-commitment scheme in the global ROM assuming
only one-way functions. In comparison, the protocol of Canetti, Jain and Scafuro
achieves only static security and relies on the specific assumption of Discrete
Diffie-Hellman assumption (DDH).

1 Introduction

Background. Secure multi-party computation enables a set of parties to mutually run
a protocol that computes some function f on their private inputs, while guarantee-
ing maximal privacy of the inputs. It is by now well known how to securely com-
pute any efficient functionality [57, 31, 48, 3, 5] in various models and under the strin-
gent simulation-based definitions. However, these results were originally investigated
in the stand-alone setting, where a single instance of the protocol is run in isolation.
A stronger notion is that of concurrent security, which guarantees security even when
many different protocol executions are carried out concurrently. The strongest (as well
as most realistic) model of concurrent security is universally-composable (UC) security
[5] which guarantees security even when an unbounded number of different protocol ex-
ecutions are run concurrently in an arbitrary uncontrolled environment. Unfortunately,
UC-security cannot be achieved for general functions, unless trusted setup is assumed
[10, 13, 43]. Previous works overcome this barrier either by using some trusted setup
infrastructure [10, 15, 1, 7, 40, 16, 42], or by relaxing the definition of security [53, 55,
2, 14, 28, 38].



Typical protocols, including results mentioned above only consider benign models
of static corruption in which the adversary is required to pick which parties it corrupts
before the execution (which may include many concurrent protocol sessions) begins.
In practice, this is a highly restrictive model. A more realistic model known as the
adaptive corruption model, introduced by Canetti et al., considers an adversary that can
hijack a host any time during the course of the computation [9]. This models “hack-
ing” attacks where an external attacker breaks into parties’ machines in the midst of a
protocol execution and it captures additional threats. In general, security against static
corruptions does not guarantee security against adaptive corruptions [6]. Furthermore,
adaptive security has been a notoriously difficult notion to achieve.

Adaptive security requires stronger (general) computational assumptions. Lindell
and Zarosim showed that there exists no black-box construction of an adaptively secure
oblivious transfer (OT) protocol from enhanced trapdoor-permutations [46]. In practice,
the constructions we know, actually require much stronger assumptions. The smallest
general assumption to construct adaptively secure OT in the plain model is trapdoor
simulatable public-key encryption [18]. In the UC-setting, the work of [21, 56] showed
how to achieve adaptive UC-security in various models (including trusted setups and
relaxed security notions) assuming the existence of simulatable public-key encryption
[22]. In the Common Reference String model (CRS) model,4 the construction was im-
proved to rely on the weaker assumption of trapdoor simulatable public-key encryption
[37]. In the tamper-proof model, where the parties are assumed to have the capability
of creating “tamper-proof hardware tokens”, the work of Goyal et al. [34] shows how
to realize unconditional (and hence, adaptive) UC-security in the tamper-proof model
assuming stateful tokens. Yet, when we consider the weaker and more realistic model
of stateless tokens, there is no known construction of adaptively secure protocols.

Adaptive security requires higher round complexity. At present, we have no constant-
round adaptively secure protocols for general functionalities in the plain model, where
all parties can be corrupted. If we further restrict the constructions to rely on black-box
simulation techniques, the work of Garg and Sahai [30] shows that a linear number of
rounds are required (in the multi-party setting). A notable exception here, is the work of
[39, 23] who provide constant-round adaptively secure protocols under a restricted class
of adversaries that is allowed to corrupt at most n−1 parties among n parties. [39] also
presents constant-round adaptively secure protocols secure against arbitrary corruptions
assuming the stronger model of erasures. However, in standard models, where all par-
ties can be corrupted the round-complexity of the best protocol is proportional to the
depth of the circuit computing the function [15, 6, 39]. In fact, even in the UC-setting,
the round complexity suffers the depth of circuit barrier [15, 21, 56]. Only very recently,
and under very strong assumptions, namely existence of (subexponentially-hard) indis-
tinguishability obfuscation (iO) of circuits, the works of [29, 11, 20] provided the first
constant-round adaptively secure protocols in the CRS model.5

4 In the CRS model, all parties receive as common input in an initial setup phase, a string sam-
pled from an a priori fixed distribution (from some trusted authority).

5 The work of [20] assumes only polynomially-hard indistinguishability obfuscation.
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As such, the best known adaptively secure protocols require very strong assump-
tions and often higher round complexity. Given the state of affairs, in this work, we are
motivated by the following natural question concerning adaptive security:

– Can we construct adaptive UC-secure constant-round protocols under stan-
dard polynomial-time assumptions from minimal setup?

As mentioned before, concurrent security cannot be achieved without assuming
some form of trusted setup [10, 13, 43]. However, in many scenarios, it is impossible
to agree on a trusted entity. Specifically, protocols in the literature that rely on a trusted
setup are rendered completely insecure if the setup is compromised. In the absence of
setup, concurrently secure protocols have to rely on relaxed notions of security. The
most popular notion in this line of work is security with super-polynomial simulators
(SPS) [53, 2, 55, 42] which is a relaxation of the traditional simulation-based notion, that
allows the simulator to run in super-polynomial time. All these constructions require
super-polynomial security of the underlying cryptographic primitives. Breakthrough
work by Canetti, Lin and Pass showed how to obtain SPS security from standard poly-
nomial time assumptions [14]. In the adaptive setting, the works of [2, 21, 56] show how
to obtain adaptive UC-secure protocols with SPS under super-polynomial time assump-
tions. More recently, the work of [38] shows how to obtain a O(nϵ) (for any constant
0 < ϵ < 1) round adaptive UC-secure protocol with SPS under standard polynomial
time assumptions.

Motivated by designing practical protocols in the concurrent setting, another ap-
proach taken by Canetti, Jain and Scafuro [12] considers the Random Oracle Model
of Bellare and Rogaway [4]. In order to provide strong compositional guarantees, they
introduce the Global Random Oracle Model and show how to obtain UC-secure proto-
cols in the static setting. Their construction is based on the Decisional Diffie-Hellman
assumption (DDH). In this line of work, we are interested in addressing the following
questions that remain open:

Can we construct UC-secure protocols in the Global Random Oracle Model
from minimal general assumptions?, and
Can we construct adaptive UC-secure protocols in the Global Random Oracle
Model?

Our results. We answer all our questions in the affirmative. Furthermore, all our results
will be presented in the stronger global-UC (GUC) setting of [8] that provide strong(-er)
compositional guarantees. We will rely on the recent work [35] who model tokens for
the GUC-setting. In order to incorporate adaptive corruptions we will have to determine
the precise capabilities of the adversary when it can also corrupt the creator of the token
post-execution and know the actual code embedded in the token. This is discussed in
the next section and we argue that theFgWRAP-functionality introduced in the work [35]
will be sufficient to capture the adversary’s capabilities.

Our first result shows how to construct constant-round adaptive GUC-secure proto-
cols in the tamper-proof hardware model assuming only stateless tokens and the exis-
tence of one-way functions. More precisely, we obtain the following theorem.
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Theorem 1 (Informal). Assuming the existence of one-way functions, there exists a
constant-round GUC-secure protocol for the commitment functionality in the presence
of adaptive, malicious adversaries in the FgWRAP-hybrid.

Next, we extend the ideas in this protocol to obtain an adaptive GUC-secure protocol
for the oblivious-transfer functionality from one-way functions.

Theorem 2 (Informal). Assuming the existence of one-way functions, there exists a
constant-round GUC-secure protocol for the oblivious-transfer functionality in the pres-
ence of adaptive, malicious adversaries in the FgWRAP-hybrid.

Combining this protocol with the adaptive UC-secure protocol in the OT-hybrid of
Ishai et al. [39], we can obtain as a corollary an adaptive GUC-secure protocol in the
FgWRAP-hybrid assuming only one-way functions. However, this protocol will require
O(d) rounds where d is the depth of the circuit computing the function. Our main
contribution in this work is to reduce the round complexity and show how to realize
any well-formed functionality in O(1)-rounds independent of the complexity of the
function. Below, we state this main theorem.

Theorem 3 (Informal). Assuming the existence of one-way functions, there exists a
constant-round GUC-secure two-party protocol to realize any well-formed functionality
in the presence of malicious adaptive adversaries in the FgWRAP-hybrid.

As noted in [35], the FgWRAP-functionality closely follows the approach taken by
Canetti, Jain and Scafuro [12] where they capture the global non-programmable random
oracle using the FgRO-functionality described in Figure ??. In this work we show that a
variant of our GUC-commitment protocol directly yields a GUC-commitment scheme
in the FgRO-hybrid. More precisely, we obtain the following theorem.

Theorem 4 (Informal). Assuming the existence of one-way functions, there exists a
constant-round GUC-secure protocol for the commitment functionality in the presence
of adaptive, malicious adversaries in the global, non-programmable random oracle
model, i.e. FgRO-hybrid.

This commitment scheme can be combined with the protocol of [18], to obtain
a malicious adaptive GUC-oblivious transfer protocol assuming the existence of UC-
secure semi-honest adaptive oblivious-transfer protocol. This oblivious-transfer can be
further combined with the work of [39] to realize any functionality in the FgRO-hybrid
with adaptive security. More formally, we obtain the following corollary.

Corollary 1. Assuming the existence of semi-honest UC-secure adaptive oblivious-
transfer protocol, there exists a malicious adaptive O(dF )-round GUC-secure protocol
to securely realize any (well-formed) functionality in the FgRO-hybrid where dF is the
depth of the circuit that implements FgRO.

If we instead combine the commitment scheme with the protocol of Hazay and
Venkitasubramaniam [37], we obtain a GUC-secure protocol in the static setting as-
suming stand-alone semi-honest oblivious-transfer.
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Corollary 2. Assuming the existence of semi-honest oblivious-transfer protocol, there
exists a constant-round static and malicious GUC-secure protocol to securely realize
any (well-formed) functionality in the FgRO-hybrid.

We remark that the round complexity of our adaptively secure protocol in Corol-
lary 1 is proportional to the depth of the circuit implementing the functionality, while
the protocol in Corollary 2 in the static setting requires only constant number of rounds.
These corollaries improve the result of [12] in two ways. First, we show that under the
minimal assumption of one-way functions, we can get a GUC-commitment that is adap-
tively secure. In contrast, the result of [12], obtains a GUC-commitment secure in the
static setting assuming DDH. Second, we obtain static and adaptive GUC-secure com-
putation of general functionalities under minimal assumptions, namely, semi-honest OT
in the static setting and GUC-secure semi-honest adaptive OT in the adaptive setting.

Related work. The work of Goldreich and Ostrovsky [32] first considered the use of
hardware tokens in the context of software obfuscation via Oblivious RAMs. A decade
later, Katz in [41] demonstrated the feasibility of achieving UC-secure protocols for
arbitrary functionalities assuming tamper-proof tokens under static corruptions. In his
formulation, the parties can create a token that computes arbitrary functionalities such
that any adversary that is given access to the token can only observe the input/output be-
havior of the token. In the UC framework, Katz described an ideal functionality FWRAP

that captures this model. Note that tokens can either be stateful or stateless, depending
on whether the tokens are allowed to maintain some state between invocations (where
stateless tokens are easier to implement). Following [41], Goldwasser et al. [33] inves-
tigated the use of one-time programs, that allow a semi-honest sender to create simple
stateful tokens where a potentially malicious receiver executes them exactly once (or a
bounded number of times). Their work considered concrete applications such as zero-
knowledge proofs and focused on minimizing the number of required tokens.

The construction of [41] relied on stateful tokens based on the DDH assumption,
and was later improved by Lin et al. [42] to rely on the minimal assumption of one-way
functions. Goyal et al. [34] resolved the power of stateful tokens and showed how to
obtain unconditionally secure protocols using stateful tokens. The work of Chandran,
Goyal and Sahai [17] was the first to achieve UC-security using only stateless tokens.
Choi et al. [19] gave the first constant-round UC-secure protocols using stateless tokens
assuming collision-resistant hash-functions. The works of [51, 47] consider a GUC-
like formulation of the tokens for the two-party setting where the parties have fixed
roles. The focus in [51, 47] was to obtain a formulation that accommodates reusability
of a single token for several independent protocols in the UC-setting for the specific
two-party case. In contrast to the work of [35] , [51, 47] does not explicitly model or
discuss adversarial transferability of the tokens. Finally, the work of Hazay et al. [35]
resolved the question of identifying the minimal assumptions to construct UC-secure
protocols under static corruptions with stateless tokens, namely, they show how to re-
alize constant-round two-party and multi-party UC-secure protocols assuming only the
existence of one-way functions. Besides these works, there have been several works in
the tamper-proof token model [17, 49, 42, 34, 25, 21, 27, 26, 19]) addressing various ef-
ficiency parameters. In the adaptive setting, the works of [21, 56] and [34] construct
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adaptive UC-secure protocols in the tamper-proof model using stateful tokens with
round-complexity proportional to the depth of the circuit. While the works of [21, 56]
rely on simulatable public-key encryption schemes, Goyal et al. in [34] provide uncon-
ditionally secure protocols (which in particular imply adaptive UC-security). As such,
none of the previous works have addressed the feasibility of adaptive security using
stateless tokens, and our work is the first to address this question.

2 Modelling Tamper Proof Model with Adaptive Corruptions

We begin with a brief overview of the tamper-proof hardware model and point out some
subtleties that arise when considering adaptive adversaries.

In recent work [35], it was shown that the standard (and most popular) formal-
ization of the tamper proof hardware tokens (namely the FWRAP-functionality due to
Katz [41],) does not fully capture the power of the adversary in a concurrent setting. In
particular, the formulation in [41] does not capture a man-in-the-middle attack where
an adversary can transfer the tokens received from one session to another. In [35], a
new formulation of tamper-proof hardware in the Global Universal Composable (GUC)
framework was introduced that addressed these shortcomings. A side effect of this for-
mulation is that this functionality denies the ability of the simulator to “program” the
token.6 In the same work [35], they provide constant-round constructions of two party
and multi-party secure protocols in the GUC-setting tolerating static adversaries. Our
approach is to extend this framework to incorporate adaptive adversaries. First, we ex-
plain a subtlety that arises when considering adaptive adversaries. Consider a protocol
where one party P1 creates a token T and sends it to party P2. Suppose an adversary
corrupts P2 at the beginning of the protocol and P1 at the end of the execution. This
adversary can gain access to the token received by P2 during the protocol and the code
of the program P installed in the token at the end of the execution after corrupting P1.
In such a scenario, one needs to determine the extent to which an adversary can verify
that program P was installed in token T . There are two possible ways to model this:

First Model: In this model, if the receiver of a token is corrupted the adversary has
input/output access to the token. If in addition the adversary corrupts the creator of
the token, it will obtain the code of the program, i.e. a circuit layout, and it will be
able to completely verify that the token precisely contains this circuit.

Second Model: In this model, if the receiver of a token is corrupted the adversary has
input/output access to the token. If in addition the adversary corrupts the creator of
the token, it will obtain the code of the program (by concluding it from the random-
ness provided by the simulator), however, it will continue to have only input/output
access to the physical token. In essence, it will be able to verify the “functionality”
on a arbitrary (but bounded) number of points of the function.

It is clear that the first model is stronger as it guarantees that the functionality of the
token is exactly the code provided by the creator. In the second model, the adversary

6 In contrast, in many previous constructions that relied on tamper-proof hardware, the simulator
emulated the token for the adversary. In such a simulation, it would be possible for a simulator
to program the responses to the queries made by the adversary.
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will only be able to verify in a polynomial number of points of the function. We argue
that the second model is realistic as it is reasonable to assume that the integrity of a
physical token remains intact even for an adversary with some auxiliary digital infor-
mation, such as the code or circuit embedded in the token. In essence, we require that
a tamper-proof token remain “tamper-proof” always and restrict the adversary to only
input/output access.

All our results will be in the second model with the exception of our adaptive GUC-
commitment which will be secure even in the first model. As mentioned before we
will rely on the FgWRAP-functionality to capture tokens. In order to incorporate the
second model, we can use the FgWRAP-functionality without modification. If the creator
is corrupted, the creator simply provides the token to the adversary together with the
creator’s secret input and randomness, which induce the program code as would have
embedded by the honest creator. The FgWRAP-functionality will continue to provide
only input/output access to the functionality in the token throughout the lifetime of
the execution. We remark however that if one wanted to capture the first model, the
FgWRAP-functionality would have to be modified so that when the creator of a token
is corrupted, the functionality directly provides the code embedded in the token to the
adversary. As we will be considering only the second model, we do not formalize the
first model in this work.

3 Our Techniques

We begin with our approach for our main theorem where we construct a constant-round
adaptively secure protocol in the FgWRAP-hybrid.

Constant-round secure computation. Recently, the works of [29, 11, 20] show how to
get constant-round malicious adaptive UC-secure protocols in the CRS model assuming
indistinguishability obfuscation. A first attempt here would be to replace the obfuscated
programs with tokens. Several problems arise with this intuition:

– The main advantage of the CRS model with obfuscation is that it can provide pub-
licly available (concealed) code that is correct by simply placing an obfuscated
code in the CRS. In contrast with tokens, one of the parties need to generate the
tokens and it could be malicious.

– Second and more importantly in the case of adaptive corruption, the creator of the
token can be corrupted at which point the code embedded in the token needs to
be revealed. In contrast, in the CRS model, no adversary can get the random coins
used to generate the CRS model.

We instead pursue a different approach. Let us begin with the following simple (yet,
incorrect) approach. On a high-level the idea is to use tokens to enable evaluation of
the garbled circuit in Yao’s garbling technique [57]. That basic intuition here is that
we view the garbling technique as system of labels where evaluation can be performed
by “multiplexer” tokens (MPLX) where for each gate given labels corresponding to
the inputs, the MPLX picks the corresponding output label for a gate. This basic idea
can be made to work in the static setting to construct a secure computation protocol.
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However, in the adaptive setting things get problematic. The simulator in the garbling
technique relies on a “fake” garbled circuit where only the “active keys” are correctly
embedded in the garbled tables for the evaluator.7 In the adaptive setting, if the garbled
circuit evaluator is corrupted at the beginning and the generator is corrupted at the end
of the execution the simulator needs to reveal the fake garbling as a real garbling. This
is not possible in the FgWRAP modelling of the tokens as the simulator is not allowed to
“program” the token after creation.8

Instead, we solve this problem differently. We will not alter the honest generator’s
strategy. We modify the simulation strategy as follows:

– We embed a key K to a symmetric encryption scheme in each gate token.
– The token will be hardwired with three labels, ℓω1 , ℓω2 and ℓω3 which will be the

active labels for this gate and a random string r.
– On input ℓ1, ℓ2, the token will behave as follows: If ℓ1 = ℓω1 and ℓ2 = ℓω2 it will

output ℓω3 . This corresponds to what the evaluator can obtain prior to corrupting
the generator.

– If either ℓ1 or ℓ2 is different from the hardwired labels, it attempts to do the fol-
lowing. It decrypts the label that is different using the key K to obtain a string z
that it reads as (x, y). The token then evaluates the circuit assuming the generator’s
input is x and the evaluator’s input is y to obtain the actual values in the wires ω1

and ω2 that are the inputs to this gate, say b1 and b2. With this information, the
token internally assigns the bit b1 to label ℓω1 and b2 to label ℓω2 and G(b1, b2) to
ℓω3 where G ∈ {AND,XOR} is the gate function. Next, it outputs based on the
following strategy:
1. If ℓ1 = ℓω1 and ℓ2 ̸= ℓω2 output ℓω3 if G(b1, 1 − b2) = G(b1, b2), and output

Enc(K, (x, y); r) otherwise.
2. If ℓ1 ̸= ℓω1 and ℓ2 = ℓω2 output ℓω3 if G(1 − b1, b2) = G(b1, b2), and output

Enc(K, (x, y); r) otherwise.
3. If ℓ1 ̸= ℓω1 and ℓ2 ̸= ℓω2 output ℓω3 if G(1 − b1, 1 − b2) = G(b1, b2), and

output Enc(K, (x, y); r) otherwise.
In essence, this strategy figures out what bits the active labels should be associ-
ated with, and outputs the labels correctly. Furthermore, the information required
to figure out the association is passed along. While this high-level idea allows to
“equivocate” the circuit, we need the encryption to satisfy some additional prop-
erties such as non-malleability and evasiveness. Note that the above strategy does
provide a fake code to be embedded in the token, but once the sender is corrupted
post-execution the simulator reveals an honest looking code to the adversary which
does not include any information about the fake code e.g., the secret key K.

We formally described our protocol and argue correctness in Section 6. Then we show
how to adopt the cut-and-choose compilation of Lindell and Pinkas [44] in conjunction
with our adaptive GUC-commitment protocol and adaptive GUC-OT protocol that we

7 Using the terminology of [45], active keys are observed by the evaluator while evaluating the
garbled circuit, while inactive labels are the labels that remain hidden during the evaluation.

8 In the FgWRAP-hybrid programmability is explicitly removed so as to provide stronger com-
positional guarantees.
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explain next to obtain a protocol that is secure against malicious adaptive adversaries in
Section 6.1.

Commitments. Recall that an adaptive GUC-commitment is a commitment scheme be-
tween a sender and a receiver that can be (straight-line) equivocated and also allows
both parties to be corrupted at the end of the execution. Moreover, as we rely on the
FgWRAP-functionality to model tokens we need a simulator that is only allowed to ob-
serve queries to the tokens made by the adversary but not program them.

Our starting point is the static GUC-commitment scheme from [35] which in turn
rely on the work of [34]. Roughly speaking, in order to extract the sender’s input, the re-
ceiver chooses a function F from a pseudorandom function family that maps {0, 1}m to
{0, 1}n bits where m >> n, and incorporates it into a token which is transferred to the
sender. Next, the sender commits to its input message b by first querying the PRF token
on a random string u ∈ {0, 1}m to obtain v. Then, it sends comb = (Ext(u; r)⊕ b, r, v)
where Ext(·, ·) is a (strong) randomness extractor. Now, since the PRF is highly com-
pressing, it holds with high probability that conditioned on v, u has high min-entropy
and therefore Ext(u; r) ⊕ b, r statistically hides b. Furthermore, since the simulator
monitors the queries made by the sender to the PRF token, by observing which query
yielded the response v and with the knowledge of this query u it extracts the message
b. The commitment is statistically binding since it is computationally infeasible for an
adversarial receiver to obtain two values u, u′ that map to v. This commitment scheme
allows for extraction but not equivocation. To make this protocol equivocal, [35] use
the Pass-Wee look-ahead commitment scheme [54] that allows for transforming an ex-
tractable commitment to one that also admits equivocation.

If we consider the same protocol under adaptive corruption, we need a simulator
that will be able to equivocate. Unfortunately, the previous protocol fails to be secure
when the receiver is corrupted first and the sender is corrupted post-execution. This is
because, in the Pass-Wee scheme, several commitments are made using the extractable
commitment scheme and only a subset of them are revealed during the commitment and
decommitment phase. If additionally, the sender is corrupted at the end of the execution,
the simulator will have to open the remaining commitments. The simulator will not be
able to do this since they will not contain messages generated according to the honest
sender’s strategy and given a commitment to some message b, comb = (Ext(u; r) ⊕
b, r, v), the simulator cannot equivocate the message since the value v binds u. This is
because given a PRF it is infeasible for a simulator to find u ̸= u′ such that PRF(u) =
PRF(u′) (even if the key of the PRF is revealed).

As such this approach does not help us with adaptive corruption. We instead follow
a different approach, starting from the work of [37]. More precisely, in this work, the
authors show how to construct an adaptive UC-commitment scheme in the CRS model
starting from a public-key encryption scheme which additionally has the property that
ciphertexts can be obliviously generated and any valid ciphertext can be later revealed
as obliviously generated. The high-level idea is that such an encryption scheme pro-
vides a mechanism to construct a straight-line extractable commitment scheme which
additionally has an oblivious generation property (i.e., analogous to the property for ci-
phertexts just specified above). Then given such a primitive, it is shown how to compile
it into a commitment scheme that is adaptively secure. We will first directly construct
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a primitive that has this extractability property in the FgWRAP-hybrid and then use their
compilation to get a full-fledged adaptive GUC-commitment.

To obtain an extractable commitment with oblivious generation, our first attempt is
to modify the static extractable commitment from [35] as follows: Instead of sending
comb = (Ext(u; r)⊕ b, r, v) as the message, suppose that the sender sent (Ext(u; r)⊕
b, r,Com(v)) where Com is any non-interactive commitment scheme with pseudoran-
dom commitments.9 This commitment scheme has an oblivious generation property
where the sender can simply send a random string. However, it loses its extractability
property as the simulator will no longer be able to identify the right “u” query that leads
to v, as it only sees Com(v) rather than v.

To regain extractability, we use unique unforgeable signatures. More precisely, the
receiver generates a (sk, vk)-pair of a signature scheme and sends vk to the sender. The
sender commits to its query u using the scheme Com and obtains a signature σ on the
commitment from the receiver. Then we modify the PRF token, to reply with PRF(u)
only if it can provide (c, d, σ) such that c is a commitment to u with decommitment
information d and σ is a valid signature of c using sk. We also modify the decommitment
phase, were in addition to u, we require the sender to provide a decommitment of u to c.
This will allow to regain extractability as this protocol will force the sender to use only
the commitment that it used to obtain a signature from the receiver to obtain a response
from the PRF token. More precisely, let c be the message that the sender sends in the
first step to receive a signature σ from the receiver. Then, the simulator will monitor the
queries made by the sender to the PRF token and wait until the sender makes a valid
query of the form (c, d, σ) and use d (i.e., a decommitment of c to u) to extract u.

The binding property of this scheme will follow from the binding property of the
Com scheme and the unforgeability of the signature scheme. Given this extractable
commitment scheme with oblivious generation property we compile using the protocol
of [37] to obtain a full-fledged adaptive GUC-commitment. We describe and prove cor-
rectness of our extractable commitment scheme in Section 4.1 and full-fledged GUC-
commitment in the full version [36].

Oblivious Transfer. Our oblivious transfer protocol will closely follow the static GUC-
secure OT protocol in [35]. On a high-level, the idea here is that the receiver commits
to its input bit b and the sender sends a token that contains s0, s1 and reveals sb only
if the receiver provides a valid decommitment to b. We refer to such a token as an OT-
type token. This basic protocol is vulnerable to input-dependent attacks and we rely on
standard mechanisms to design a combiner to address this. In particular, following an
approach analogous to [35], we will adapt the combiner of [52]. While our protocol
structure remains the same as [35], certain subtleties arise that we list below and briefly
mention how we address them.

– The protocol in [35] involves the sender sending several OT-type tokens and along
with it commitments to all the entries in these tokens via a GUC-commitment.
Furthermore, the OT-type tokens in addition to revealing one of the entries in the
token given the receiver’s bit b, also reveals a decommitment of that entry for the

9 In our protocol, we only need a statistically binding commitment scheme and we will rely on
the construction of Naor [50] based on one-way functions.
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GUC-commitment scheme. A main issue that arises here is that we require a token
to reveal a decommitment of a GUC-commitment scheme and this is infeasible if
the GUC-commitments were made in a FCOM-hybrid since there is no notion of a
decommitment besides a message communicated from FCOM. Previous works in
this area [15] rely on a Commit-and-Prove functionality to address this issue. We
instead construct an OT protocol directly in the FgWRAP-hybrid instead of con-
structing it in the (FCOM,FgWRAP)-hybrid. More precisely, we first describe an
(adaptively secure) commitment scheme ΠCOM in the FgWRAP-hybrid that comes
with an NP-relation for verifying decommitments and is straight-line extractable
and equivocable. We then use this as a sub-protocol in our OT-protocol. The formal
properties and realization of our commitment scheme, as well as our OT protocol
and its security proof can be found in the full version [36].

– Since we need to deal with adaptive corruptions, in the case of a malicious receiver
where the adversary also corrupts the sender post-execution we have the following
subtle issue. Here the simulator can extract the receiver’s input b and obtain sb from
the FOT functionality. However, the simulator needs to provide the OT-type tokens
in the protocol without having complete knowledge of the sender’s real inputs.
This is because in the FgWRAP-hybrid the simulator is not allowed to program the
tokens and needs to provide an actual code to the FgWRAP-hybrid whenever the
adversary expects to receive a token. Furthermore, when the sender is corrupted at
the end of the execution and the simulator learns the real inputs of the sender, it
needs to provide the code incorporated in the tokens (that looks like something the
honest sender strategy generated). We handle this issue by providing a strategy for
the simulator to provide a fake code to be embedded in the token but later reveal
an honest looking code to the adversary. Indistinguishability of the real and ideal
world will then follow by establishing that it would be computationally infeasible
for the adversary to find the query that distinguishes the alleged code revealed by
the simulator and the actual code embedded in the token.

Note that a reader can first read our two-party protocol in Section 6 since the OT
(Section 5) and commitment (Section 4) protocols are treated in a black box way.

4 Adaptive GUC-Commitments from OWF Using Tokens

In this section we construct adaptively secure GUC-commitment schemes using tokens.
In the heart of our construction lies the observation that the adaptive UC-commitment
scheme from [37] can be realized using extractable commitment schemes with some ad-
ditional feature. Loosely speaking, extractable commitment scheme is a weaker primi-
tive than UC-commitment in the sense that it does not require equivocality. Namely, the
simulator is not required to commit to one message and then later convince the receiver
that it committed to a different value. In the following section we consider extractable
commitment schemes with oblivious generation, for which the committer can oblivi-
ously generate a commitment without knowing the committed message. This property
is analogue to public key encryption scheme with oblivious sampling of ciphertexts
(where the plaintext is not known), and allows to use this primitive as a building block
in our adaptively secure GUC-commitments. Moreover, any commitment made to a
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message can later be revealed as a commitment that was obliviously generated. In Sec-
tion 4.1 we define our new notion of security for extractable commitment schemes with
oblivious generation of commitments and present our extractable commitment scheme.
In [36] we discuss how to realize UC-commitment schemes based on the construction
from [37] and our new notion of extractable commitments with oblivious generation.

4.1 Extractable Commitments with Oblivious Generation

We begin with our definition of extractable commitment schemes. A commitment scheme
is a protocol between a sender S with input a message m and a receiver R. The protocol
is marked by two distinct phases: a commitment phase and a decommitment phase. We
will consider our definition in the FgWRAP-hybrid, i.e. both the sender and the receiver
will have access to the ideal FgWRAP-functionality. Since, this protocol will eventu-
ally be incorporated into a protocol in the GUC-setting, the parties will have as com-
mon input a session identifier sid. All the commitment schemes presented in this work
will have a non-interactive decommitment phase that can be verified via a NP-relation
Rdecom with the statement being the transcript of the commitment phase. This relation
will be referred to as the decommitment relation. While our definitions can be general-
ized, for simplicity of exposition, we will restrict our definition to such protocols in this
work. We call this property stand-alone verifiability and define it formally below.

Definition 1. We say that a commitment scheme ⟨S,R⟩ in the FgWRAP-hybrid is stand-
alone verifiable with NP-relation R if in the decommitment phase the sender sends a
single decommitment message (m, d) and the receiver outputs 1 if and only ifR(τ, (m,
d)) = 1 where τ is the transcript of the interaction between S and R in the com-
mitment phase (excluding the communication between the parties and the FgWRAP-
functionality).

Definition 2. A commitment scheme (⟨S,R⟩,Rdecom) with stand-alone verifiability is
said to be an extractable with oblivious generation if the following properties hold.

Straightline extractability: For every malicious sender S∗, there exists a strategy Ext
that, after the completion of commitment phase in an interaction between S∗ and
the honest receiver R with common input (1κ, sid) in the FgWRAP-hybrid can do
the following: On input the transcript of the commitment phase τ and the queries
made by S∗ to all tokens it receives via FgWRAP for the current session sid can
output m such that, the probability that S∗ outputs (m′, d′) with m′ ̸= m and
Rdecom(τ, (m

′, d′)) = 1 is negligible.
Oblivious generation: There is a PPT algorithm Ŝ and polynomial-time computable

function Adapt such that for any message m and any malicious receiver R∗, it can
produce random coins for Ŝ which “explains” a (possibly partial) transcript gener-
ated in an interaction using ⟨S,R⟩ with R∗ where S’s input is m. More formally, for
every PPT machine R∗, it holds that, the following ensembles are computationally
indistinguishable.

– {(τ, v)← staR
∗

⟨Ŝ,R⟩
(1κ, sid, r,m, z) : (v, r)}

– {(τ, v)← staR
∗

⟨S,R⟩(1
κ, sid, r′, z) : (v,Adapt(τ))}
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where κ ∈ N,m ∈ {0, 1}κ, r ∈ {0, 1}p(n), r′ ∈ {0, 1}q(n), z ∈ {0, 1}∗ and where
staR

∗

⟨S,R⟩(1
κ, sid, r,m, z) and staR

∗

⟨Ŝ,R⟩
(1κ, sid, r′, z) denote the random variables

describing the (possibly partial) transcript of the interaction and output of R∗(z)

upon interacting with the sender S on input m randomness r and Ŝ on randomness
r′, respectively.

Next, we construct a commitment scheme that satisfies these properties. We present
our protocol in Figure 1. Informally speaking, our construction follows by having the
sender commit using a PRF token, where extraction is carried out by monitoring the
sender’s queries to this token. In order to force the sender to use the token only once, the
receiver signs on a commitment of the PRF query, where the token verifies the validity
of both the decommitment and the signature. A similar approach was pursued in the
work of [19] where digital signatures, which require an additional property of unique
signatures, are employed. Recall first that a signature scheme (GenSig, Sig,Ver) is said
to be unique if for every verification key vk and every message m, there exists only one
signature σ for which Vervk(m,σ) = 1. Such signature schemes can be constructed
based on specific number theoretic assumptions [24]. In [35] a different approach was
taken using one-time signatures based on statistically binding commitment schemes
that can be based on one-way functions. Their scheme ensures uniqueness in the sense
of [19]. We follow their approach in this paper as well.

Lemma 1. Assume the exitance of one-way functions. Then protocol ΠOBL−EXT pre-
sented in Figure 1 is an extractable commitment scheme with oblivious generation in
the global FgWRAP-hybrid in the presence of adaptive malicious adversaries.

Proof. We prove that the protocol ΠOBL−EXT satisfies both straight-line extractability
and the oblivious generation property:

Straightline extractability: We need to define the Ext algorithm. Recall that Ext re-
ceives the transcript τ and the queries that S∗ makes to the token it receives from R,
namely the PRF token. This can be obtained from theFgWRAP functionality by issu-
ing the query (retreive, sid,mid). In the list of queries, Ext finds a tuple (c, u, σ, r)
where c is the first message sent by the sender and σ is the signature the receiver re-
turned. Then, it checks if the randomness r correctly decommits c to u. If no valid
query is made or the decommitment is incorrect, the extracted value is set to ⊥.
Otherwise, it retrieves the message by computing m = m′ + H(u) where (m′, c′)
is the second message sent by the sender in the commit phase. If there are multiple
valid queries then it sets the extracted value to ⊥.
Correctness of extraction follows from the unforgeability of the signature scheme
and the statistically-binding property of the commitment scheme Com. More for-
mally, we show that the probability that Ext fails to retrieve the correct message is
negligible. First, we claim that the sender will be able to run the PRF token only
on one input, namely (c, u, σ, r) for which σ is a valid signature for c and c is a
valid commitment to u that was computed using randomness r. This is because for
any other valid query, the sender is able to produce a valid signature for message
other than c or produce two decommitments of c to Com. Now, since Ext receives
all queries from the FgWRAP, given any adversarial sender S∗ that is able to give a
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Protocol ΠOBL−EXT

The commitment scheme ExtCom is run between sender S and receiver R and relation
Rdecom. Let (1) Com denote the Naor commitment scheme [50] which is statistically
binding and has pseudorandom commitments (2) (GenSig, Sig,Ver) denote a one-time
signature scheme with unique signatures (3) PRFk : {0, 1}5κ → {0, 1}κ is a PRF and
(4) H : {0, 1}κ 7→ {0, 1} denote a hardcore predicate.

Input: S holds a message m ∈ {0, 1}. Common inputs are 1κ and session identifier
sid.

Commit Phase:
R→ S: R generates (sk, vk)← GenSig(1κ) of a unique (or one-time) signature

scheme ΠSIG and sends vk to S.
S→ R: S samples u← {0, 1}5κ and sends c = Com(u; r) to R.
R → S: R computes σ ← Sig(sk, c) and forwards σ to S. R also sends a PRF

token TKPRF
R by sending (Create, sid, S,R,mid,M1) to FgWRAP where M1

is the functionality that on input (sid∗, (c, σ, u, r)) proceeds as follows:
– If sid∗ ̸= sid return ⊥.
– Otherwise, if c = Com(u; r) and Ver(vk, c, σ) = 1 return v =

PRFk(u).
S obtains (Create, sid,R,S,mid,M1) from the functionality FgWRAP.

S → R: S sends (Run, sid, S,mid, (c, σ, u, r)) and obtains v. It then sends
(m′, c′) to R where m′ = H(u) +m and c′ = Com(v; r′)).

Decommit Phase:
S reveals (m,u, r, r′) and R checks if the relation Rdecom(τ, (m, (u, r, r′))) is
satisfied where the transcript τ = (vk, c,m′, c′) and

Rdecom((vk, c,m
′, c′), (m, (u, r, r′))) = 1 iff

c = Com(u; r) ∧ PRFk(u) = v ∧m′ = H(u) +m ∧ c′ = Com(v; r′))

Fig. 1. Extractable commitments with oblivious generation.

valid query (c′, u′, σ′, r′) where c′ ̸= c or u′ ̸= u, we can construct an adversary
that respectively breaks the unforgeability of the signature scheme or the binding
property of Com.

Oblivious generation: The oblivious sender algorithm Ŝ simply sends random strings
of appropriate length in the first and second messages. Namely, in the first message
it picks a random string of length C and in the second message it sends |m| + C
where |m| = 1 is the length of the message and C is the length of the commitment
message using Com. Given a partial transcript, the Adapt algorithm simply recon-
structs the random tape of S by observing the messages sent in the transcript by the
honest sender S and placing that message in the random tape.
The indistinguishability property of the randomness output by the Adapt algorithm
follows essentially from the pseudorandomness of the Naor’s commitment scheme
Com [50] and the statistically hiding property of H(u) given v for any length com-
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pressing PRF. More formally, we consider a sequence of hybrids executions, start-
ing from an execution of a commitment to a message m and obtaining an oblivious
generated commitment.

– Hybrid H1: The output of this hybrid is the view of R∗ when it is interacting
with a simulator that follows the honest sender’s strategy S with input m.

– Hybrid H2: In this hybrid, the simulator follows the honest strategy with the
exception that in the fourth message instead of committing to v, it sends a
random string. The indistinguishability of Hybrids H1 and H2 follows from
the pseudorandomness of the commitment made using Com.

– Hybrid H3: In this hybrid, the simulator follows the strategy as in H2 with
the exception that instead of sending H(u) +m as part of the fourth message,
it sends a random bit. Indistinguishability follows from the hiding property
of the Com scheme. More formally, consider any adversary R∗ such that the
outputs of Hybrid H2 and H3 can be distinguished. Using R∗ we construct
an adversary A, that on input a commitment c made using Com, can extract
the committed value by internally emulating H2 (or H3), by feeding c as part
of the first message and then using the Goldreich-Levin theorem to extract
u. In this reduction, A cannot obtain the value v = PRF(u) since it cannot
produce a decommitment of c. Yet, since in hybrid H2 we already replaced
the commitment to v in the fourth message to a random string, A can still
complete the execution without knowing the value v. This adversaryA violates
the hiding property of Com.

– Hybrid H4: In this hybrid, the simulator follows the strategy Ŝ. Observe that
this strategy is the same strategy as in H3 with the exception that instead of
sending a commitment to randomly sampled u in the second message, it sends
a random string. The indistinguishability of Hybrids H3 and H4 follows from
the pseudorandomness of the commitment made using Com.

We further address here an adaptive corruption of the sender as we use our protocol as a
sub-protocol in order to construct a GUC commitment scheme that maintains adaptive
security. In case of such corruption the adversary demands the sender’s actual random-
ness or the randomness according to oblivious generation. The only case we will need
to address in our proof is explaining a valid commitment as an obliviously generated
one, for which our Adapt algorithm takes care even on partial transcripts.

4.2 Obtaining GUC-Commitments in the gRO Model

An implication of the above extractable commitment scheme is that we can further
realize FCOM in the global random oracle model [12]. Specifically, our commitment,
shown in the full version [36], calls an extractable commitment which is implemented,
in turn, using PRF tokens (for which the simulator exploits in order to extract the com-
mitted message). A similar construction can be shown using a global random oracle
that is used instead of the PRF tokens. Namely, instead of using signature schemes and
pseudorandom commitment schemes in order to enforce a single usage of the PRF to-
ken, the sender directly calls the random oracle on some random value u, obtaining
the value v, and then masking the committed message by sending (u + m, v). Conse-
quently, we obtain the first GUC-commitment construction in the global random oracle
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model from OWF with adaptive security. In contrast, the scheme in [12] only achieves
security against static corruptions and relies on concrete number theoretic assumptions.
We remark here that while the construction of an extractable commitment scheme with
oblivious generation is easy to construct in the gRO model following our construction
from the previous section, obtaining this corollary relies on the compilation of such a
commitment to a full-fledged adaptively secure commitment that we present in the full
version [36].

More formally, we claim the following.

Corollary 3. Assume the existence of one-way functions. Then the protocol specified
above is an extractable commitment scheme with oblivious generation in the FgRO-
hybrid in the presence of adaptive malicious adversaries.

Intuitively, this scheme is extractable since the simulator can monitor the sender’s
queries to the random oracle. That is, the simulator obtains from FgRO the query list
made by the adversary and search a pair (u, v) that is consistent with the commitment
(m′, v). If so, it outputs the message m = m′ +u. Else, it sets the extracted message to
⊥. Finally, oblivious sampling holds trivially as well due to the fact that the random or-
acle behaves like a truly random function and given an honestly generated commitment
(u + m, v) the message is indistinguishable from a truly random string and therefore
can be revealed as something that is obliviously generated.

In [18], they show how to obtain adaptive UC-secure computation of arbitrary func-
tionalities assuming UC-secure adaptive semi-honest oblivious-transfer in the FCom-
hybrid (See Theorem 1). Combining this result with Corollary 3, we obtain the follow-
ing corollary.

Corollary 4. Assume the existence of UC-secure adaptive semi-honest oblivious trans-
fer. Then for any well-formed functionlaity F , there exists a O(dF )-round protocol that
securely realizes F in the GUC-setting in the presence of adaptive malicious adver-
saries, where dF is the depth of the circuit that implements F .

In [37], they provide a compiler that takes any extractable commitment scheme
(even without oblivious generation) and constructs a UC-secure protocols for gen-
eral functionalities in the static setting assuming semi-honest (static) oblivious transfer.
Combining this result with Corollary 3, we obtain the following result:

Corollary 5. Assume the existence of (static) semi-honest oblivious-transfer. Then for
any well-formed functionality F , there exists a O(1)-round protocol that securely real-
izes F in the GUC-setting in the presence of malicious adversaries.

This result improves the result of Canetti, Jain and Sahai that relies on the specific
DDH assumption for their construction.

5 Adaptive OT from OWF Using Tokens

In this section we present our GUC OT protocol. On a high-level, our protocol is iden-
tical to the OT protocol from [35] with the exception that the parties apply the adap-
tive commitment scheme from Section 4. In contrast, [35] relies on a UC-commitment
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scheme in the token model that is secure only against static corruptions. Namely, we
describe our protocol ΠOT in the FgWRAP-hybrid model with sender S and receiver R
using the following building blocks: let (1) Com be a non-interactive perfectly bind-
ing commitment scheme, (2) let SS = (Share,Recon) be a (κ + 1)-out-of-2κ Shamir
secret-sharing scheme over Zp, together with a linear map ϕ : Z2κ

p → Zκ−1
p such that

ϕ(v) = 0 iff v is a valid sharing of some secret, (3) F, F ′ be two families of pseudo-
random functions that map {0, 1}5κ → {0, 1}κ and {0, 1}κ → {0, 1}p(κ), respectively
(4) H denote a hardcore bit function and (5) Ext : {0, 1}5κ × {0, 1}d → {0, 1} denote
a randomness extractor where the source has length 5κ and the seed has length d. Our
protocol is presented in Figure 2 and involves using our GUC-commitment scheme.

Theorem 5. Assume the existence of one-way functions. Then protocol ΠOT presented
in Figure 2 GUC realizes FOT in the FgWRAP-hybrid model in the presence of adaptive
malicious adversaries.

Proof overview. On a high-level, our proof follows analogously to the proof in [35]
(which in turn relies on the simulation strategy of [52]). Crucially, we need to address
the issue of adaptive corruptions in our proof of both parties. In case of a receiver cor-
ruption we need to be able to generate a view for the receiver corresponding to its input
and output. As part of the protocol, the receiver commits to its input before receiving the
tokens and uses the decommitment as input to the tokens. We further note that the sim-
ulation strategy in [35] for a corrupted sender relies on following the honest receiver’s
strategy and extracting the sender’s input by monitoring the sender’s queries to the to-
kens. While this strategy is appropriate to handle static corruptions, it requires handling
new subtleties in case of adaptive corruption. Specifically, it is still possible to rely on
the honest receiver’s strategy, however, upon post corrupting the receiver the simulator
must be able to produce random coins for the receiver that demonstrates consistency
with its real input. To achieve this, we make the receiver commit its input using a GUC-
commitment scheme secure against adaptive corruptions. Such a scheme is described
in our previous section. This enables us to equivocate the receiver’s input. Next, in case
of sender corruption we again need to be able to equivocate the sender’s OT inputs. In
fact, we need to be able to equivocate s1−b among (s0, s1) of the sender’s inputs where
b is the receiver’s input. In the protocol, the sender commits to the secret-sharing of
two random strings x0 and x1 and masks the real inputs with them. The tokens allow
the receiver to extract the shares of xb and obtain sb. The main argument in [35] is
that the receiver will not be able to receive sufficiently many shares of x1−b and hence
s1−b remains hidden. In our protocol we first rely on an adaptive GUC-commitment,
and thus able to equivocate the sender’s commitments. However, the tokens reveal the
values stored in the commitments (by producing the decommitments) and these values
need to be changed corresponding to x1−b for equivocation.

In more details, for sender corruption, our simulation proceeds analogously to the
simulation from [52] where the simulator generates the view of the malicious sender
by following the honest receiver’s strategy to simulate messages and then extracting all
the values committed to by the sender. In [52] they rely on extractable commitments
and extract the sender’s inputs via rewinding, we here directly extract its inputs by
monitoring the queries made by the malicious sender to the tokens embedded within our
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Protocol ΠOT

Input: S holds two strings s0, s1 ∈ {0, 1}κ and R holds a bit b.

The Protocol:
R↔ S:

1. R selects a random subset T1−b ⊆ [2κ] of size κ/2. Define Tb = [2κ]/T1−b. For
every j ∈ [2κ], R sets bj = β if j ∈ Tβ .

2. R samples uniformly at random c1, . . . , cκ ← {0, 1}.
3. Finally, R and S engage in 3κ instances of protocol ΠCOM, described in

the full version [36], where upon completing the commitment phase S holds
transcripts of the commitment phase ({combj}j∈[2κ], {comci}i∈[κ]) to values
({bj}j∈[2κ], {ci}i∈[κ]), respectively.

S↔ R:

1. S picks two random strings x0, x1 ← Zp and secret shares them using SS. In
particular, S computes [xb] = (x1

b , . . . , x
2κ
b )← Share(xb) for b ∈ {0, 1}.

2. S commits to the shares [x0], [x1] as follows. It picks random matrices A0, B0 ←
Zκ×2κ

p and A1, B1 ← Zκ×2κ
p such that ∀i ∈ [κ]:

A0[i, ·] +B0[i, ·] = [x0], A1[i, ·] +B1[i, ·] = [x1].

S computes two matrices Z0, Z1 ∈ Zκ×κ−1
p and sends them in the clear such that:

Z0[i, ·] = ϕ(A0[i, ·]), Z1[i, ·] = ϕ(A1[i, ·]).

3. S and R engage in 8κ2 instances of protocol ΠCOM, described in the full version
[36], where upon completing the commitment phase R holds the transcripts of the
commitment phase (comA0 , comB0 , comA1 , comB1) to matrices A0, B0, A1, B1,
respectively.

4. S sends C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1 to R.
5. For all j ∈ [2κ], S creates a token TKj by sending

(Create, sid,R, S,mid3κ+j ,M3) to FgWRAP where M3 is the functional-
ity that on input (bj , decombj ), aborts if decombj is not a valid decom-
mitment of the commitment in the first round to bj . Otherwise it outputs
(Abj [·, j], decomAbj

[·,j], Bbj [·, j], decomBbj
[·,j]).

6. For all i ∈ [κ], S creates a token T̂Ki by sending (Create, sid,R,S,mid5κ+i,M4)
to FgWRAP where M4 is the functionality that on input (ci, decomci) aborts if
decomci is not verified correctly. Otherwise it outputs,

(A0[i, ·], decomA0[i,·], A1[i, ·], decomA1[i,·]), if c = 0

(B0[i, ·], decomB0[i,·], B1[i, ·], decomB1[i,·]), if c = 1

Output Phase: See Figure 3.

Fig. 2. GUC OT with Tokens.

GUC-commitment protocol ΠCOM. The proof of correctness follows analogously. More
explicitly, the share consistency check ensures that for any particular column that the
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Output Phase for ΠOT

Output Phase:
1. For all j ∈ [2κ], R sends (Run, sid, S,mid3κ+j , (bj , decombj )) receiving

back (Abj [·, j], decomAbj
[·,j], Bbj [·, j], decomBbj

[·,j]).
2. For all i ∈ [κ], R sends (Run, sid, S,mid5κ+i, (ci, decomci)) receiving back

(A0[·, i], A1[·, i]) or (B0[·, i], B1[·, i]).
Combiner:

Shares Validity Check Phase: For all i ∈ [κ], if ci = 0 check that Z0[i, ·] =
ϕ(A0[i, ·]) and Z1[i, ·] = ϕ(A1[i, ·]). Otherwise, if ci = 1 check that
ϕ(B0[i, ·]) + Z0[i, ·] = 0 and ϕ(B1[i, ·]) + Z1[i, ·] = 0. If the tokens do
not abort and all the checks pass, the receiver proceeds to the next phase.

Shares Consistency Check Phase: For each b ∈ {0, 1}, R randomly chooses a
set Tb for which bj = b of κ/2 coordinates. For each j ∈ Tb, R checks that
there exists a unique xj

b such that Ab[i, j] + Bb[i, j] = xj
b for all i ∈ [κ]. If

so, xj
b is marked as consistent. If the tokens do not abort and all the shares

obtained in this phase are consistent, R proceeds to the reconstruction phase.
Else it abort.

Reconstruction Phase: For j ∈ [2κ]/T1−b, if there exists a unique xj
b such that

Ab[i, j] + Bb[i, j] = xj
b, mark share j as a good column. If R obtains less

than κ + 1 good shares, it aborts. Otherwise, let xj1
b , . . . , x

jκ+1

b be any set
of κ + 1 consistent shares. R computes xb ← Recon(xj1

b , . . . , x
jκ+1

b ) and
outputs sb = Cb ⊕ xb.

Fig. 3. Output Phase for ΠOT.

receiver obtains, if the sum of the values agree on the same bit, then the receiver extracts
the correct share of [xb] with high probability. Note that it suffices for the receiver to
obtain κ + 1 good columns for its input b to extract enough shares to reconstruct xb

since the shares can be checked for validity. Namely, the receiver chooses κ/2 indices
Tb and sets its input for these OT executions as b. For the rest of the OT executions, the
receiver sets its input as 1− b. Denote this set of indices by T1−b. Then, upon receiving
the sender’s response to its challenge and the OT responses, the receiver first performs
the shares consistency check. If this check passes, it performs the shares validity check
for all columns, both with indices in T1−b and for the indices in a random subset of size
κ/2 within Tb. If one of these checks do not pass, the receiver aborts. If both checks
pass, it holds with high probability that the decommitment information for b = 0 and
b = 1 are correct in all but s ∈ ω(log n) indices. Therefore, the receiver will extract
[xb] successfully both when its input b = 0 and b = 1. Furthermore, it is ensured that if
the two checks performed by the receiver pass, then a simulator can extract both x0 and
x1 correctly by simply extracting the sender’s input to the OT protocol and following
the receiver’s strategy to extract.

On the other hand, when the receiver is corrupted, our simulation proceeds analo-
gous to the simulation in [52] where the simulator generates the view of the malicious
receiver by first extracting the receiver’s input b and then obtaining sb from the ideal
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functionality. It then completes the execution by following the honest sender’s code
with (s0, s1), where s1−b is set to random. Moreover, while in [52] the authors rely on
a special type of interactive commitment that allows the extraction of the receiver’s in-
put via rewinding, we instead extract this input directly by monitoring the queries made
by the malicious receiver to the tokens embedded within protocol ΠCOM. The proof of
correctness follows analogously. Informally, the idea is to show that the receiver can
learn κ + 1 or more shares for either x0 or x1 but not both. In other words there exists
a bit b for which a corrupted receiver can learn at most κ shares relative to s1−b. Thus,
by replacing s1−b with a random string, it follows from the secret-sharing property that
obtaining at most κ shares keeps s1−b information theoretically hidden. The proof can
be found in the full version [36].

6 Adaptively Secure Two-Party Computation

In this section we demonstrate the feasibility of constant-round adaptively secure two-
party computation in the token model. Loosely speaking, the idea is to associate a token
with each gabled gate where the gabled table is embedded within the token, where the
token mimics the circuit’s evaluator in the sense that it returns the output label that cor-
responds to the pair of the input labels of this gate entered by the receiver (if such a key
exists). This allows to implement each garbled gate in a form of OT rather than pro-
viding a set of four ciphertexts. We further make use of notions such as active/inactive
labels as defined in [45], where active labels are the labels that observed by the receiver
while evaluating the garbled circuit, while inactive labels are the labels that remain
hidden during the evaluation.

In more detail, the basic tokens that we will use in our protocol will intuitively
implement the functionality of a garbled gate in Yao’s construction. Given a function
f , let C be the boolean circuit (with the conventions made in [45]) such that for every
x, y ∈ {0, 1}n, C(x, y) = f(x, y) where f : {0, 1}n × {0, 1}n → {0, 1}n. The sender
will follow typical garbled circuit constructions and first create labels for each wire in
the circuit. Next, instead of garbling a gate by using the labels as keys to an encryption
scheme, we will incorporate in a token the functionality that on input, labels of the
incoming wires, will output the correponding label of the output wire. In essence, the
token behaves as 1-out-of-4 OT token. More precisely, for every wire identified by index
ω in the circuit, we pick two random strings lab0ω, lab

1
ω ∈ {0, 1}κ. Then corresponding

to gate Gatec, the sender S creates a token that on input (ℓ1, ℓ2) finds α and β such that
ℓ1 = labαω1

and ℓ1 = labβω2
and outputs labGatec(α,β)ω3

where ω1, ω2 are the incoming wire
identifiers, ω3 is the identifier of the output wire to gate c and Gatec ∈ {AND,XOR} is
the corresponding boolean function of the gate c.

Furthermore, assume that the oblivious transfer protocol that realizes FOT is simu-
latable in the presence of malicious receivers and semi-honest senders, then the com-
bined protocol is secure with these security guarantees. We note that the main challenge
in achieving security for protocols that are based on garbled circuits, is proving the case
where the sender is corrupted after the garbled circuit has been sent, whereas the re-
ceiver is statically corrupted. This is due to the fact that the corrupted receiver observes
active labels that are determined by an arbitrary input for the sender. Then, upon cor-
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Adaptively secure 2PC Π in the presence of malicious receivers

Protocol Π is presented in the (FgWRAP,FOT)-hybrid model with sender S and receiver
R.

Auxiliary Input: A boolean circuit C such that for every x, y ∈ {0, 1}n, C(x, y) =
f(x, y) where f : {0, 1}n × {0, 1}n → {0, 1}n.

Inputs: S holds x ∈ {0, 1}n and R holds y ∈ {0, 1}n. Let x = x1, . . . , xn and
y = y1, . . . , yn.

The Protocol: Let (lab01, lab
1
1), . . . , (lab

0
n, lab

1
n) be the circuit-input labels corre-

sponding to input wires ω1, . . . , ωn, and let (lab0n+1, lab
1
n+1), . . . , (lab

0
2n, lab

1
2n)

be the circuit-input labels corresponding to input wires ωn+1, . . . , ω2n. Then,
1. For every i ∈ [n], the parties call the FOT functionality in which S sends the

message (S, sid, lab0n+i, lab
1
n+i) and R sends (R, sid, yi). Then, R receives

(sid, labyin+i).
2. S sends the labels labx1

1 , . . . , labxn
n and the decoding information d to R.

3. Next, the sender creates tokens for machines Mc for every gate c and sends
them to the R via FgWRAP. More precisely, for every intermediate wire iden-
tified by index ω in the circuit, S chooses two random strings lab0ω, lab

1
ω ∈

{0, 1}κ. Then corresponding to gate Gatec, S creates a token TKGatec
S by send-

ing (Create, sid,R, S,midc,Mc) to FgWRAP, where Mc is the functionality
that on input (sid∗, (ℓ1, ℓ2)) proceeds as follows:

– If sid∗ ̸= sid, then return ⊥.
– Otherwise, if ℓ1 = labαω1

and ℓ2 = labβω2
output labGatec(α,β)

ω3 .
Where ω1, ω2 are the incoming wire identifiers, ω3 is the identifier of the
output wire to gate Gatec and Gatec ∈ {AND,XOR} is the corresponding
boolean function of this gate.

Circuit Evaluation: Upon receiving the labels labx1
1 , . . . , labxn

n and
laby1n+1, . . . , lab

yn
2n , R evaluates the circuit, obtaining the output f(x, y) as

follows.
1. For every gate Gatec ∈ C, let ω1

c , ω
2
c (resp., ω3

c ) denote the input (resp., out-
put) wires of gate Gatec, then R sends (Run, sid, S,midc, (lab

α
ω1
c
, labβ

ω2
c
)) and

obtains labGatec(α,β)

ω3
c

.
2. R runs the algorithm z ← De(d, z̃) and outputs z, where z̃ is the encoding of

the output wires.

Fig. 4. Adaptively secure 2PC in the presence of malicious receivers

rupting the sender, the simulator must provide randomness that is consistent with the
sender’s real input which is a difficult task. Our idea follows by having the simulator
define a different set of tokens in the simulation that are embedded with the active labels
and a symmetric key K, where the inactive labels are determined on the fly using key
K upon corrupting the sender and obtaining its input x. The complete proof follows.

Theorem 6. Let f be a well-formed functionality. Then, protocol Π from Figure 4
GUC realizes f in the presence of malicious receivers and semi-honest senders in the
{FgWRAP,FOT}-hybrid.
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Proof. Let A be a malicious PPT real adversary attacking protocol Π from Figure 4
in the {FgWRAP,FOT}-hybrid model. We construct an ideal adversary S with access to
Ff which simulates a real execution of Π with A such that no environment Z can dis-
tinguish the ideal process with S and Ff from a hybrid execution of Π withA. S starts
by invoking a copy ofA and running a simulated interaction ofA with environment Z ,
emulating the honest party. We describe the actions of S for every corruption case.

Simulating the communication with Z: Every message that S receives from Z is inter-
nally fed to A and every output written by A is relayed back to Z .

The hardest adaptive corruption case to argue here is if the receiver is corrupted at
the begining of the execution and the sender is corrupted at the end.

Simulating static corruption of the receiver and adaptive corruption of the sender post-
execution. We begin by describing our simulation:

1. Upon corrupting R the simulator S generates first the codes to be emulated in the
tokens. Towards this it first samples a single label for each wire ω, i.e. l̃abω ←
{0, 1}κ. For each gate c, it sends (Create, sid,S,R,midc,Mc) to FgWRAP for all
Gatec ∈ C where the code Mc is defined as follows: Let l̃abω1

c
, l̃abω2

c
, l̃abω3

c
, a

secret key K for a non-malleable symmetric encryption ΠENC = (Gen,Enc,Dec)
with pseudorandom ciphertext, and randomness r be hardwired in the token where
ω1
c , ω

2
c are the input wire identifiers and ω3

c is the output wire identifier.10 Upon
receiving the input (ℓ1, ℓ2), Mc proceeds in one of the following four cases:
Case 1: Both labels are active key labels. If ℓ1 = l̃abω1

c
and ℓ2 = l̃abω2

c
of this

gate then output l̃abω3
c
.

Case 2: One of them is active and the other is not. If ℓ1 ̸= l̃ab
α

ω1
c

and ℓ2 = l̃ab
β

ω2
c

then perform the following actions:
(a) Compute τc = DecK(ℓ1). Check if τc is of the form (x, y, ω1

c ) where
x, y ∈ {0, 1}n, and abort if it is not of that form.

(b) Next determine inputs α, β and output γ to gate c assuming S’s input is x
and R’s input is y by running C(x, y).

(c) Set labαω1
c
= l̃abω1

c
and labβω2

c
= l̃abω1

c
and labγω3

c
= l̃abω3

c
. Let lab1−γ

ω3
c

=

EncK(x, y, ω3
c ; r) where r is the randomness hardwired in the token.

(d) Output labGatec(1−α,β)
ω3

c
.

If ℓ1 = l̃ab
α

ω1
c

and ℓ2 ̸= l̃ab
β

ω2
c
, we first compute τc = DecK(ℓ2) and checking

if τc is of the form (x, y, ω2
c ). Next, we perform the same steps (c) and (d) as

above to determine α, β and γ and make label associations. Finally, instead of
the last step (e), we output labGatec(α,1−β)

ω3
c

.

Case 3: Neither of them is active. If ℓ1 ̸= l̃ab
α

ω1
c

and ℓ2 ̸= l̃ab
β

ω2
c
, we first com-

pute τc = DecK(ℓ1) and τ̃c = DecK(ℓ2). Next we check if τc is of the form

10 Looking ahead, these input labels are the (respective inputs/output) active labels observed by
the evaluator. Moreover, the input labels for each gate equal the output labels of the gates
connected to it.
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(x, y, ω1
c ) and τ̃c is of the form (x, y, ω2

c ) for the same x and y. If so, we per-
form the same steps (c) and (d) as above to determine α, β and γ and make label
associations. Finally, instead of the last step (e), we output labGatec(1−α,1−β)

ω3
c

.
Else, if the plaintexts are of incorrect format the token aborts.

Making the size of tokens proportional to the width of the evaluated circuit. We
consider a levelled circuit with fan-in two. A levelled circuit is a circuit in which
the incoming edges to the gates of depth i comes only from the gates of depth i− 1
or from the inputs. That said, edges only exist between adjacent levels of the circuit.
Furthermore, the width of a levelled circuit is the maximum size of any level. We
define the evaluated circuit as a sequence of circuits C = C1||...||Cd where Ci

denotes the circuit in level i for i ∈ [d]. The high-level idea is to evaluate the circuit
level by level where each level will receive the labels of the previous level and
will output the output labels for the next level. In particular, each token will run
Cd(xd, yd) instead of C(x, y) where xd denotes the input of S in level d and yd
denotes the input of R in level d. In addition, the underlying encryption scheme
will encrypt plaintexts of the form (xd, yd, ·). Therefore, each token performs a
computation proportional to the width of the circuit rather than the entire circuit.

2. S emulates the OT executions by playing the role of FOT and extracting the re-
ceiver’s inputs y = y1, . . . , yn to these executions. The simulator sends y to the
trusted party computing f , receiving back f(x, y). S completes the FOT execu-
tions by sending the receiver the active labels that it picked for the receiver’s input
wires.

3. When the sender is corrupted post execution, it receives the sender’s real input x.
In this case the simulator needs to explain the sender’s view, i.e. it needs to explain
the sender’s input to the OT queries and the code for Mc supplied to the FgWRAP.
Towards this, the sender first generates labels for the inactive label for all gates. For
any input wire ω, the inactive label is set as EncK(x, y, ω) where the randomness is
chosen uniformly and for any intermediate wire it is set to EncK(x, y, ω; r) where
r is the randomness hardwired in the gate for which ω is the output wire. It supplies
all the labels to the adversary.

4. S outputs whatever A does.

Note that the receiver’s view is composed of the set of input labels it obtains from the
OT executions and the tokens evaluations. Indistinguishability of real and simulated
cases, assuming that the receiver cannot invoke any of the tokens on an inactive label,
boils down to the ability of generating a fresh valid ciphertext that encrypts the parties’
inputs and the corresponding identifiers under the key K that is hardwired inside the
tokens. Intuitively, this event occurs with negligible probability due to the evasiveness
property of the encryption scheme. More formally, we prove indistinguishability of the
real and simulated executions via the following sequence of hybrid games.

Hybrid1: The hybrid is the real execution as defined in Protocol Π in Figure 4.

Hybrid2: In this hybrid game we consider a simulator S2 that knows the sender’s real
input and generates the tokens just like honest sender. This game produces an identical
distribution as the real execution.
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Hybrid3: In this game simulator S3 generates all active labels uniformly at random,
but the inactive labels are generated using random encryptions of zc = (x, y, idc). To
prove that this game is indistinguishable from the previous hybrid game, we consider
a sequence of sub-hybrids Hybridi

2 for i ∈ [m] the total number of inactive labels.
Specifically, in Hybridi

2 the first i inactive labels are encryptions of (x, y, ωj) whereas
the rest of the inactive labels are picked uniformly as random. Note that Hybrid0

2 is
identically distributed to hybrid Hybrid2, whereas Hybridm

2 is identically distributed
to hybrid Hybrid3. The indistinguishability of Hybridi−1

2 and Hybridi
2 directly fol-

lows from the pseudorandomness of the ciphertexts. More formally, assume by contra-
diction the existence of an adversary A, a distinguisher D and a polynomial q(·) such
that

∣∣Pr[D(Hybrid2) = 1]− Pr[D(Hybrid3) = 1]
∣∣ ≥ 1/q(κ)

for infinitely many κ’s, where D obtains the malicious receiver’s view in the corre-
sponding hybrid execution. Then we claim that there exists an index i ∈ [m] such that∣∣Pr[D(Hybridi−1

2 ) = 1]− Pr[D(Hybridi
2) = 1]

∣∣ ≥ 1/(q(κ) ·m).

We define an adversaryAENC that breaks the pseudorandom property of the underlying
symmetric encryption scheme as follows. Upon receiving access to the encryption ora-
cle,AENC uses its oracle to generate the first i−1 inactive labels as required in the sim-
ulation. For the rest of the inactive labels, namely those with indices in {(i+1), . . . ,m}
the adversary picks random strings. Finally, for the ith inactive label, the adversary pro-
vides the message (x, y, ωi) to the challenger. The challenger either returns a uniform
random string or an encryption of (x, y, ωi). The adversary feeds whatever the chal-
lenger provides in the pseudorandomness security game internally, as the label for the
ith inactive label. It follows from our construction that depending on the challenger’s
message, the view of the receiver is distributed according to Hybridi−1

2 or Hybridi
2

and thus, this adversary breaks the pseudorandomness property of the ciphertexts. In
addition, we would like to claim that the adversary, who corrupts the sender after the
generation of the garble circuit and the tokens, cannot produce a ciphertext for a valid
input which will allow it to query the token on EncK(g1(x), g2(y), ·) where g1, g2 are
arbitrary functions that produce related plaintexts. As such an attack will allow the
adversary to learn some additional information about the receiver’s input breaking its
privacy or learning a new, in addition to an output he may already learns. We claim
that the probability of this event to occur is negligible due to the non-malleability of the
encryptions scheme. Specifically, the simulator may monitor the adversary’s queries to
the token and observe if such an event occurs.

Hybrid4: In this game simulator S4 generates all the tokens as in the simulation. To
prove that this game is indistinguishable from the previous hybrid game, we will rely on
the evasiveness of the underlying encryption scheme. First, we observe that the distribu-
tion of the labels provided by the real simulator before and after the sender is corrupted
are identically distributed in both hybrids. This is because the active labels are uni-
formly generated in both hybrids and the inactive labels are encryptions of (x, y, ωi)
for the different wires in the circuit. Next, we observe that the only way an adversary
can distinguish Hybrid4 from Hybrid3 is if it feeds any of the tokens a fresh valid
ciphertext of a message that is different from all the labels provided by the simulator
after the sender is corrupted. By the evasiveness of the underlying encryption scheme
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the probability that an adversary can generate such ciphertexts is negligible. Therefore,
the view of the adversary in Hybrid3 and Hybrid4 is statistically close.

Hybrid5: The last hybrid game is the simulation which is identical to hybrid Hybrid4.

Simulating static corruption of the sender. We begin by describing our simulation:

1. Upon corrupting S the simulator receives the adversary’s input x and proceeds as
follows.

2. S first communicates with the functionality FgWRAP, that upon receiving the mes-
sages for creating the tokens {(Create, sid,R, S,midc,Mc)}Gatec∈C from A stores
the codes of these tokens.

3. S obtains the inputs labels from A and then plays the role of FOT, receiving from
the adversary n pairs of input labels.

4. S outputs whatever A does.

Security for this case is proven in a straightforward manner as the adversary does not
receive any message from the receiver in the hybrid model.

- In case no party is corrupted yet, the simulator generates the active labels for the
entire set of wires and simulates the message from the sender to the receiver that
includes the sender’s input labels and the decoding information.

Simulating the adaptive corruption of the receiver after corrupting the sender.

– Upon corrupting the sender, the simulator receives the adversary’s input x and pro-
ceeds as follows.
1. S emulates the tokens transfer phase as the honest sender would do. Namely,
S creates the tokens honestly and provides the corrupted sender with the ran-
domness that is used to generate the garbled gates.

2. Next, S provides the sender’s queries made to FOT where the input to the ith

OT query is the pair of the random labels ((lab0n+1, lab
1
n+1), . . . , (lab

0
2n, lab

1
2n))

that correspond to the receiver’s input labels. S further explains the message
that includes the sender’s input labels and the decoding information.

– Upon corrupting the receiver second, the simulator receives the adversary’s input y
and output f(x, y)) and proceeds as follows.
1. In this case the simulator needs to explain the receiver’s internal state condition

on the sender’s view. This implies that the simulator needs only to explain the
OT queries and the messages to FOT and FgWRAP. Specifically, the descrip-
tion of the garbled circuit is already determined upon corrupting the sender,
whereas the sender’s active input labels are already fixed in the protocol com-
munication. The receiver’s OT queries/responses can be explained accordingly
to y1, . . . , yn and the active input labels of the receiver, respectively. Note that
the simulator knows the active input labels of the receiver as it generated the
garbled circuit.

2. Finally, the communication with FgWRAP can be explained by mimicking the
flow of the garbled circuit evaluation as determined by the simulator. Simula-
tion here follows honestly as the simulator generated the tokens honestly.
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3. S outputs whatever A does.
Indistinguishability for this case follows directly as the parties observe the same
messages as in the real execution. Specifically, the simulator generates the tokens
honestly and the receiver obtains the correct input labels in the OT and thus, the
correct labels for the entire evaluation.

6.1 Adaptively Secure Malicious Two-Party Computation

We recall that the protocol presented in Figure 4 obtains security in the presence of
malicious receiver and semi-honest sender. In the following, we briefly discuss how to
transform this protocol into fully secure in the presence of malicious senders as well
by adopting the protocol from [44]. Loosely speaking the main tool for achieving cor-
rectness of garbling is by applying the cut-and-choose technique, where the sender gen-
erates s garbled circuits and the receiver asks to open half of them at random. One
immediate issue that emerges when considering tokens, is what does it mean to open a
garbled circuit that is implemented using tokens and how can the token’s functionality
be verified for correctness. Our approach considers asking the sender to commit to any
pair of labels through the garbling (that is, the labels associated with each wire). Then,
upon receiving an opening request for a garbled circuit, the sender further decommit
these commitments for which the receiver can invoke the token on each pair of labels
and verify whether the correct output label has been obtained.

We give a high-level description of our protocol based on the [44] protocol with the
modifications required for embedding the tokens.

– Auxiliary Input: A boolean circuit C such that for every x, y ∈ {0, 1}n, C(x, y) = f(x, y)
where f : {0, 1}n × {0, 1}n → {0, 1}n and a statistical parameter s.

– Inputs: S holds x ∈ {0, 1}n and R holds y ∈ {0, 1}n. Let x = x1, . . . , xn and y =
y1, . . . , yn.

– The protocol:
0. Circuit Construction. The parties decide on a circuit computing f . They then change

the circuit by replacing each input wire of R by a gate whose input consists of s new
input wires of R and whose output is the exclusive-or of these wires (such an s-bit
exclusive-or gate can be implemented using s− 1 two-bit exclusive-or gates).

1. Tokens and Commitments Constructions. Next, the sender constructs s independent
copies of a garbled circuit of C, where for each such garbled circuit it creates a set
of tokens as in Protocol Π from Figure 4. More precisely, for every intermediate wire
identified by index ω in the circuit, let the two random strings lab0ω, lab

1
ω ∈ {0, 1}κ

denote the labels associated with this wire. Then corresponding to gate Gatec, S creates
a token TKGatec

S by sending (Create, sid,R,S,midc,Mc) to FgWRAP, where Mc is the
functionality that on input ℓ1, ℓ2 proceeds as follows:
• If ℓ1 = labαω1

and ℓ2 = labβω2
output labGatec(α,β)

ω3 .
Where ω1, ω2 are the incoming wire identifiers, ω3 is the identifier of the output wire
to gate Gatec and Gatec ∈ {AND,XOR} is the corresponding boolean function of this
gate.
S commits to the garbled values of the wires corresponding to R’s input to each cir-
cuit by running n instances of ΠCOM. Moreover, S executes additional s× n instances
of ΠCOM for the garbled values corresponding to the input wires of the circuits. These
commitments-sets are constructed in a special way in order to enable consistency checks
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(here we follow the same method of [44]). Finally, S commits to the labels associated
with each internal wire in each garbled circuit (we note that these commitments in-
stances are not part of the [44] protocol and are required to verify the tokens’ function-
ality).

2. Oblivious Transfers. For every i ∈ [n], the parties call the FOT functionality in which
R receives the garbled values for the wires that correspond to its input bit (in every
circuit). This phase is carried out exactly as in [44].

3. Send Tokens and Commitments. S sends R all the commitments of Step 1 and for-
wards the tokens generated in that step to FgWRAP.

4. Coin Tossing. S and R run a coin-tossing protocol in order to choose a random string
that defines which commitments and garbled circuits will be opened.

5. Decommitment Phase for Check Circuits. S opens the garbled circuits and committed
input values that were chosen in the previous step. R verifies the correctness of the
opened circuits and runs consistency checks based on the decommitted input values and
internal wires while verifying the tokens functionality.
More specifically, the check phase is computed as in [44] with the following additional
phase. Upon opening some garbling and obtaining the labels that are associated with all
wires, the receiver first verifies that the output label of each garbled gate is consistent
with the corresponding committed label from Step 1. Next, the receiver invokes each
token on each possible pair of input labels and verifies that the output label is consistent
with the committed wires. Meaning, the receiver checks that the token indeed imple-
ments a lookup table of size four and that the entries of the table correspond to a valid
garbled gate.

6. Send Input Labels. S sends R the garbled values corresponding to S’s input wires in
the unopened circuits as well as the decoding information.

7. Circuits Evaluations. Assuming that all of the checks pass, R evaluates the unopened
circuits and takes the majority value as its output. Namely, upon receiving the labels
labx1

1,j , . . . , lab
xn
n,j and laby1n+1,j , . . . , lab

yn
2n,j for the jth unopened circuit, R evaluates

the circuit, obtaining the output f(x, y) as follows.
(a) For every gate Gatec ∈ C, let ω1

c , ω
2
c (resp., ω3

c ) denote the input (resp., output)
wires of gate Gatec, then R sends (Run, sid, S,midc, (lab

α
ω1
c ,j

,

labβ
ω2
c ,j

)) and obtains labGatec(α,β)

ω3
c ,j

.
(b) R runs the algorithm z ← De(d, z̃) and outputs z, where z̃ is the encoding of the

output wires.

Theorem 7. Let f be a well-formed functionality. Then, the above two-party protocol
GUC realizes f in the presence of malicious adversaries in the {FgWRAP,FOT}-hybrid.

The proof for a corrupted receiver remains almost identical to the proof of Theorem 6
and the proof from [44], where input extraction is carried out via the OT executions and
the original simulation for a single set of tokens is repeated s times with the exception
that the simulator prepares s/2 valid garbled circuits and then biases the coin tossing
outcome so that the valid garbled circuits are the check circuits.

The main difference is with respect to the security proof of the sender. Loosely
speaking, we apply the same standard cut-and-choose analysis from [44], where a cor-
rupted sender cannot cheat in the garbling constructions and the input labels it provides
for the evaluations. Yet, when using tokens the prime challenge is to ensure that the
tokens’ functionality is correct. We recall that in our protocol the tokens functionality
is a lookup table of four rows that corresponds to the garbling of some gate. Then, by
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enforcing the sender to commit to all wire labels, the receiver can be convinced that the
tokens were generated correctly with very high probability. Namely, with all but neg-
ligible probability, the tokens’ functionality (for the evaluation circuits) are consistent
with the committed labels. We stress that this does not imply that the token cannot be
maliciously designed, encoded with some internal state, yet the cut-and-choose argu-
ment ensures that with high probability the tokens are encoded with a valid lookup table
for their corresponding gates.
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