
Better Two-Round Adaptive Multi-Party Computation?

Ran Canetti??, Oxana Poburinnaya? ? ?, and Muthuramakrishnan
Venkitasubramaniam†

Abstract. The only known two-round multi-party computation protocol that with-
stands adaptive corruption of all parties is the ingenious protocol of Garg and
Polychroniadou [TCC 15]. We present protocols that improve on the GP proto-
col in a number of ways. First, concentrating on the semi-honest case and taking
a different approach than GP, we show a two-round, adaptively secure protocol
where:

– Only a global (i.e., non-programmable) reference string is needed. In con-
trast, in GP the reference string is programmable, even in the semi-honest
case.

– Only polynomially-secure indistinguishability obfuscation for circuits and
injective one way functions are assumed. In GP, sub-exponentially secure IO
is assumed.

Second, we show how to make the GP protocol have only RAM complexity, even
for Byzantine corruptions. For this we construct the first statistically-sound non-
interactive Zero-Knowledge scheme with RAM complexity.

1 Introduction

Adaptive security of protocols, namely security against an adversary that decides whom
to corrupt adaptively during the execution of the protocol, has been an ongoing focus in
cryptography. Indeed, adaptive security better captures real life adversaries, which can
often make adaptive corruption choices.

Two cases which are of particular importance in this setting are (a) the case where
no data erasures are possible, hence the adversary gets to see all the past internal states
of a corrupted party, and (b) the case where all parties are eventually corrupted. In-
deed, while for static corruptions the case of all parties being corrupted is uninteresting,
for adaptive corruptions the case of all parties being eventually corrupted is of central
interest. For one, in the case of protocols for computing randomized functions, it al-
lows requiring that the internal randomness of the function remains hidden even when
the entire state of the system is exposed. It also allows arguing about the security of
other, uncorrupted parties in a larger system which uses our protocol. Furthermore, the
combination of these properties allows demonstrating leakage tolerance properties even
when all parties may leak some side-channel information on their local computations
[BCH12]. We call protocols that are secure in this setting fully adaptive.
? Research supported by the NSF MACS Frontier project, ISF grant 1523/14, Google Faculty

Research Grant and NSF Awards CNS-1526377/1618884.
?? Boston University, Tel Aviv University, and the CPIIS. canetti@bu.edu.

? ? ? Boston University. oxanapob@bu.edu
† University of Rochester. muthuv@cs.rochester.edu

Constructing fully adaptive protocols is a significant challenge. The difficulty here
is that the adversary eventually sees all the inputs and random choices of the parties,
and yet security of the output and the computational process should be maintained.
Indeed, such protocols with constant number of rounds appeared only recently [CGP15,
DKR14, GP14]; among these protocols, only [GP14] is a multiparty protocol with two
rounds (which is the minimum possible).

We construct better two-round, fully adaptive protocols for general multi-party com-
putation. Our improvements span a number of security, functionality, and efficiency
aspects. We start by presenting and discussing some of these aspects.

Randomness-hiding functionalities. Consider a set S of parties that want to run a
secure function evaluation protocol in order to jointly generate an obfuscated program,
where the program is to be used in some other protocol that involves additional parties.
Security of the obfuscated program should be preserved even when everybody in the
set S is corrupted (which could be important for the remaining honest parties in the
other protocol). Note that this program-obfuscating functionality is randomized, and
security of the overall system requires that the randomness of thsi function remains
secret even when all parties in S are corrupted. Another example of such a task is to
instruct parties to joinly sample an RSA public keyN = pq without knowing the actual
factorization p, q, even when the secret information of all parties is pooled together. We
call protocols that hide the actual randomness which was used to compute the function
even when everybody is corrupted randomness-hiding.

We note that the standard methodology of evaluating a randomized functionality via
secure evaluation of a circuit, where some of the input values to the circuit are the result
of xor-ing the local random inputs of all parties, results in a protocol that is inherently
not randomness-hiding.1. With this approach the adversary corrupting everybody learns
tthe randomness of each and every party, and therefore the internal randomness of the
function (e.g. random coins of obfuscation); thus no security is left.

Randomness hiding is also useful in another, perhaps less obvious, scenario. Adap-
tive security is often used to argue leakage tolerance ([BCH12]): assume parties are
computing a randomized functionality, and the adversary decides to leak 1 bit of each
party’s randomness. If the protocol looses security when everybody is corrupted, the
simulator from [BCH12] cannot simulate such leakage, since the argument from [BCH12]
requires that the simulator should be able to potentially simulate the full randomness
of each party whose internal state was leaked, even though the adversary actually sees
only a single bit of randomness of each party.2 In contrast, if the protocol supports
randomness-hiding functionalities, then the simulator can simulate randomness of all
parties, and therefore the protocol remains leakage-tolerant even if the adversary de-
cides to leak from everybody.

Global common reference string. In the common reference string (CRS) model, all
parties have access to a string, generated in advance by a trusted entity (which doesn’t

1 For instance, parties can choose randomness ri, make it part of their input, and evaluate the
functionality F ((x1, r1), . . . , (xn, rn)) = f(x1, . . . , xn;

⊕
ri).

2 To be more precise, [BCH12] require that there exist a translation function which maps ideal
world internal state into real world internal state.

2

need to participate in the protocol). In a local (sometimes called programmable) CRS
model, which is most often used, the simulator has the power to generate the CRS itself.
This makes the task of designing protocols easier, since the simulator can generate
the CRS in such a way that it knows corresponding trapdoors and therefore has more
power than the adversary. The major drawback of a local CRS is that when two different
protocols use the same CRS, there is no guarantee of security whatsoever, even if each
of them separately is secure. Thus, to preserve security of a protocol that was proven
secure in the local CRS model within a larger system, one has to make sure that no
other protocol in the system will ever use that same CRS, either inadvertently or via
malicious protocol design. See e.g. [CDPW07] for more discussion.

To overcome these issues with composability, the global CRS model was intro-
duced. In this model the simulator doesn’t have the power to generate the CRS; instead,
it has to work with a given CRS. The global CRS model makes significantly weaker
trust assumptions on the reference string and its generation process. In particular, a
global CRS can be known globally and used by all protocols in the system without any
prior coordination; in this sence composition-wise the global CRS model is very close
to the plain model: once we proved that the protocol is secure with a global CRS, we
don’t need to take this CRS into account anymore, since it can be used by any other
protocol without the risk of compromising security.

On the need of the common reference string. Our protocol works in a common refer-
ence string (CRS) model. While there is no evidence that computing randomness-hiding
functionalities require a CRS3, it is not known how to compute general randomness-
hiding functionalities in the plain model. In fact, this is an interesting open problem,
and solving it would allow to remove the CRS requirement from many works (includ-
ing this work), where the CRS is an obfuscated program whose keys and randomness
should remain hidden.

As discussed in [IKOS10], adaptively secure protocols for randomized functionali-
ties are tightly connected to extractable one way functions (EOWF). Namely, this work
shows that the existence of such a protocol for general functionalities in the plain model
implies that EOWFs with uniform auxiliary input don’t exist, since one-wayness of the
function can be broken by first using the simulator to obtain random coins for a given
output and then by running the extractor on these random coins to extract the actual
input of the EOWF.

We also stress that the CRS appears to be essential, even in the semi-honest setting.
Recall that in the case of non-adpative semi-honest security, CRS is not needed; indeed,
instead of having a CRS, parties can generate the CRS by themselves, in the plain
model, in the beginning of the protocol, at the cost of one more round. However, this
is not true in the case of adaptive security. The reason is that our CRS contains secrets
(e.g. randomness of the obfuscation, PRF keys) which shouldn’t be known to anybody,
including parties running the protocol. Working in the plain model would require parties

3 Indeed, some simple functions can be computed in a randomness-hiding way even in the plain
model; for instance, the function f(r) = gr , where g is a group generator and r is randomness,
can be simply computed by choosing a random element in a group; in this case randomness r
remains unknown.

3

to generate this CRS in a way that even all parties together do not know corresponding
secrets. As discussed in the previous paragraph, this is an open problem.

Computation and communication complexity. The majority of existing protocols as-
sume that the function is represented as a circuit. This means that the work of parties
and, in some cases, the length of communication both depend on the size of a circuit to
be computed. Given that Turing machines and RAM machines may have significantly
more efficient parameters than circuits, building MPC protocols which use the advan-
tage of more efficient models of computation is an important task. (In particular, in the
case of RAM computation that does not necessarily need to access all the input, the gap
could be exponential.)

Although we cannot take advantage of a potentially sublinear RAM computations
(indeed, unlike, say, the persistent garbled RAM setting where database garbling phase
could be long, but the actual computations are very short, the MPC setting requires the
computation to touch every input), multiparty computation can still benefit from the
RAM model in several ways. As one example, consider the case where parties are will-
ing to trade some security for efficiency; in this case they can obtain efficiency close
to the input-specific running time (rather than worst-case running time)4. For instance,
let’s say there is a database with medical data, and a group of researchers is interested
in average age of persons satisfying some sparse property P (say, having rare medical
condition). If these researches don’t care about hiding P , then they can compute the
average fairly efficiently, with running time comparable to the number of entries sat-
isfying P . However, if P cannot be made public, then need to run a protocol with P
being their secret input; this immediately makes their running time worst-case (for all
possible P), which is comparable to the size of the database. If these researches are
willing to sacrifice some security to gain efficiency (for instance, if others are allowed
to learn that P is a rare disease, but cannot learn which one), then they can perform
very efficient computation (like in the first case), while still having meaningful security
guarantees.

On the limitations of the [IK02, AIK06] approach in the fully adaptive setting.
A natural approach to obtaining protocols with RAM efficiency is to use ideas of
[IK02, AIK06]: Instead of directly evaluating the desired function, have the parties
jointly evaluate a garbling (or, randomized encoding) of the function and input. Then
each party locally computes the output. Plugging-in a RAM-efficient garbling scheme
([CHJV15, CH16]) results in RAM-efficient protocols. However, this approach has a
caveat in our fully adaptive setting: note that the functionality which needs to be com-
puted (i.e. garbling) is randomized. If we want to achieve full adaptive security, the
randomness used in the garbling should remain hidden even when everybody is cor-
rupted; in other words, for the whole construction to be secure, the underlying protocol
should be randomness-hiding. However, the only two-round protocol with full adaptive

4 Recall that the security of MPC requires that no information about inputs of parties is leaked.
Running time of a programM on input x could potentially leak information about x. Therefore
if full security is needed then programs should necessarily work as long as their worst-case
running time, even if computation on this particular input is short.

4

security we know (that of [GP14]) is not randomness-hiding, and therefore to use this
approach we need to come up with adaptively secure randomness-hiding protocol first.

1.1 Our results: semi-honest setting

Our main result is the first two-round MPC protocol with global (non-programmable)
CRS, which is secure against adaptive semi-honest corruption of all parties. Besides
globality, our protocol has other features: First, the protocol allows to securely com-
pute even randomness-hiding functionalities, and furthermore, it guarantees leakage
tolerance even when every party can be leaked from (for the discussion on why this is
usually not the case, see the paragraph about randomness-hiding functionalities in the
first part of the introduction). Second, the protocol is RAM-friendly, i.e. the amount of
communication in our protocol only depends on the RAM size of a function, not on
its circuit size, and the work of each party which obtains the output is proportional to
RAM complexity of the function. Third, we assume only polynomially secure IO and
injective OWFs.

Theorem 1. Assuming injective one way functions and indistinguishability obfusca-
tion for circuits, there exists a two-round multiparty protocol with global CRS for com-
puting any randomized functionalities, even randomness-hiding ones. The protocol is
adaptively secure against honest-but-curious corruptions of possibly all parties, with
oblivious simulation. Its communication complexity depends on λ, {|xi|}ni=1, y, |f |RAM
(logarithmic parameters omitted), and time and space of every party depends on λ,
{|xi|}ni=1, y, |f |RAM, and time or space needed to evaluate RAM f(x1, . . . , xn) in the
worst case.

Our result improves the state of the art in a number of ways. In particular, this is:

– The first 2-round fully adaptive semi-honest MPC with global setup5

– The first 2-round fully adaptive semi-honest MPC which doesn’t require subexpo-
nential security of iO;

– The first 2-round fully adaptive semi-honest MPC which supports all (even randomness-
hiding) functionalities, and which therefore is fully leakage tolerant.

Making this protocol secure against malicious adversaries. The common tech-
niques [CLOS02] can be applied to compile this protocol into its malicious version.
The resulting protocol needs 4 rounds - two rounds should be added in the beginning
to do a malicious coin toss by first committing to inputs and randomness and then par-
tially opening randomness. We observe however that the first round of the semi-honest
protocol is a commitment round as well, and thus in the malicious version we can use
CLOS commitments as if they were round-1 messages of the semi-honest protocol.
Thus, then protocol requires only three rounds (round 1 for commitments, round 2 for
partial opening randomness, and round 3 for round 2 of the semi-honest protocol). The
resulting protocol preserves all properties of the semi-honest version (in particular, it

5 We underline that the approach of [GP14] requires a local CRS even in the honest-but-curious
setting.

5

remains randomness-hiding as long as there is at least one uncorrupted party during
round 2, which could be corrupted later). The only property that is lost is globality
of the CRS, which is inherent in the malicious setting). The resulting protocol out-
performs the protocol by Dachman-Soled et al [DKR14], which is a 4-round protocol
against semi-honest adversaries.

1.2 Our results: malicious setting

As an additional result, we show how to make the protocol of [GP14] RAM-efficient:
namely, we construct the first RAM-efficient statistically-sound non-interactive zero-
knowledge proofs, and then plug this NIZK into the protocol of [GP14]. Compared
to the malicious version of our first protocol, this protocol needs only two rounds (in-
stead of three), however, it requires subexponentially-secure iO, and is not randomness-
hiding.

Theorem 2 ([GP14]). Assuming the existence of RAM-efficient statistically sound NIZK,
subexponentially secure iO for circuits, and one way functions, there exists a two-round
multiparty protocol with local CRS adaptively secure against malicious corruptions of
possibly all parties. Its communication complexity depends on λ, {|xi|}ni=1, y, |f |RAM
(logarithmic parameters omitted), and time and space of every party depends on λ,
{|xi|}ni=1, y, |f |RAM, and time or space needed to evaluate RAM f(x1, . . . , xn) in the
worst case.

RAM-efficient statistically sound NIZK. We construct the first RAM-efficient NIZK
with statistical soundness, assuming statistically-sound NIZK for circuits (which can
be obtained from trapdoor permutations) and a RAM-efficient garbling scheme (which
can be built from iO and OWFs [CH16]) :

Theorem 3. (Informal) Assuming statistically sound non-interactive zero knowledge
(NIZK) for circuits and a succinct garbling scheme for RAM, there exists a NIZK for
RAM, where the work of the prover and the size of the proof depends on |R|RAM, and the
work of the verifier depends on the RAM complexity of R (where R(x,w) is a relation
which defines the language for the proof).

We note that our succinct NIZK is useful also in other settings. For instance, in the
two-round protocol of Garg et. al. ([GGHR14]) the parties exchange obfuscated pro-
grams which compute next message functions (of some underlying many-round proto-
col) together with a proof that the computation was done correctly. If the underlying
protocol has number of rounds proportional to the RAM complexity of the function
(say, the protocol by Damgard et. al., [DMN11]), plugging our RAM-efficient NIZK
makes [GGHR14] protocol RAM-efficient.

1.3 Related work

Fully adaptively secure protocols. Until now, only three constant-round fully adap-
tively secure protocols were known. [CGP15] is a two-round protocol for two-party

6

computation; [DKR14] is an MPC protocol, but requires 4 rounds; both protocols have
global CRS and allow to compute randomness-hiding functionalities. [GP14] is a two-
round MPC protocol secure against malicious adversaries; thus their reference string is
necessarily local6. Their protocol doesn’t support randomness-hiding functionalities.

All three protocols require the function to be represented as a circuit: namely, the
core part in both [CGP15, DKR14] are Yao garbled circuits7. The protocol of [GP14]
requires a statistically-sound NIZK for the statement f(x1, . . . , xn) = y, and prior to
our work such proofs required verification time proportional to the size of the circuit.

In addition, [CGP15, GP14] require subexponentially-secure iO.

RAM-efficient protocols. Existing protocols for (even static) RAM MPC follow one of
the two approaches. The work of Boyle et al ([BCP15]) shares a paradigm of Damgard
et al ([DMN11]) which instructs parties to jointly evaluate steps of a RAM CPU; this
approach results in number of rounds proportional to the number of CPU steps needed
to compute a function.

The other approach, introduced by Ishai and Kushilevitz ([IK02], [AIK06]), re-
quires parties to jointly evaluate a randomized encoding of the function and input
and then locally compute the output of this randomized encoding. Thus, plugging a
RAM-efficient garbling scheme ([CHJV15, CH16]) into known constructions results in
statically-secure RAM-efficient protocols. However, in order to achieve adaptive secu-
rity, the underlying protocol must support randomness-hiding functionalities. Prior to
our work, no fully adaptive, two round protocol with randomness hiding was known.

Constant round adaptively secure RAM-efficient protocols. Combining several exist-
ing techniques, it is possible to construct adaptively secure protocols for RAM. Namely,
following the Ishai-Kushilevitz approach outlined above, we can plug the succinct gar-
bling schemes for RAM into constant-round adaptively secure MPC (such as [DKR14,
GP14]). The first protocol yields a fully adaptive MPC for RAM with 4 rounds; we refer
to this protocol as “augmented [DKR14]”.

The second construction, however, loses full security, since evaluating a garbling is
a randomized functionality, and since their protocol doesn’t guarantee secrecy of ran-
domness of the function when everybody is corrupted. Namely, the simulator of the
composed scheme will not be able to simulate the random coins of each party, since it
needs to simulate generation randomness of the garbling scheme, consistent with sim-
ulated garbled values. This can be circumvented by using a garbling scheme where
the simulator can also simulate random coins of the garbling, i.e. “adaptively secure”
garbling 8 It is possible to construct such a garbling scheme by putting a mechanism

6 We note however that merely using their protocol in the semi-honest case doesn’t allow for
a local CRS: their approach requires proving statements to an obfuscated program, which
requires NIZK (and therefore a local CRS) even in the honest-but-curious case.

7 Which cannot be easily switched to the garbling scheme for RAM. For instance, in both proto-
cols the underlying garbling scheme should support bit-by-bit garbling of an input. [DKR14]
makes even further use of the actual construction of garbled circuits.

8 Note that usually the term “adaptive security” in the context of garbling is used to denote a
different property: that the adversary can choose new inputs and functions after seeing garbled
values.

7

allowing deniability (like in deniable encryption of [SW14]) on top of a garbling al-
gorithm of RAM-efficient garbling scheme, say, [CH16], and obfuscating the whole
circuit. This obfuscated circuit is a CRS of an adaptive garbling scheme9. Such a con-
struction seems to give a RAM-efficient MPC protocol, which even allows to com-
pute randomness-hiding functionalities (roughly, because the deniability mechanism
of [SW14] generates random coins which are hidden from everybody). Still, this ap-
proach, which we call “augmented [GP14]”, requires subexponentially-secure iO, and,
since they use NIZK even in the semi-honest case, a local CRS.

In the table below we compare our result with existing work on constant round fully
adaptive MPC([DKR14, GP14]), as well as with augmented versions of these protocols
described above. All parameters are for the semi-honest setting.

Rounds supports global randomness assumptions
RAM CRS hiding

[DKR14] 4 - + + iO+OWF
[GP14] 2 - - - subexp. iO+OWF
augmented [DKR14] 4 + + + iO+OWF
augmented [GP14] 2 + - + subexp. iO+OWF
our result 2 + + + iO+OWF

Succinct NIZK proofs. The only approach for building NIZK proof systems where
the length of the proof is independent of a circuit is based on encrypting satisfying
assignment via FHE and making the verifier homomorphically evaluate the SAT circuit.
This includes the work of [Gen09], who proposed the approach, and [Gro11], who
shows how to bring the size of the proof down from |w|·poly(λ) to |w|+poly(λ) (where
w is the witness and λ is a security parameter); thus, the question of communication
complexity of NIZK is resolved. However, in both schemes the verifier needs to do
the work proportional to the circuit complexity of the function. Up to now we didn’t
know any fully succinct NIZK proof system (i.e. NIZK where both communication
complexity and work of both parties is smaller than the circuit size).

1.4 Our techniques: semi-honest case

Our MPC protocol takes a different approach than either of [GP14, DKR14, CGP15].
We present and motivate the approach.

First attempt. A natural idea for building MPC protocols is to use an obfuscated pro-
gram to emulate a trusted party. That is, the CRS contains an obfuscated program which
collects all inputs, does the computation, and outputs the result.

More precisely, the CRS should contain an encryption program Enc, which takes
an input xi and outputs its encryption ci, and a decryption/evaluation program Eval,
which takes c1, . . . , cn, decrypts them, computes y = f(x1, . . . , xn) and outputs y. The

9 With this approach the environment has to fix inputs before seeing the CRS, i.e. this garbling
scheme is only selectively secure. However, this is good enough for the protocol of [GP14],
since they anyway use complexity leveraging and subexponentially-secure iO.

8

parties can compute f(x1, . . . , xn) by encrypting ci = Enc(xi), broadcasting ci, and
computing y ← Eval(c1, . . . , cn). However, such a protocol is clearly insecure: each
party (say, P1) can compute many different y′ = f(x′1, x2, . . . , xn) for any desired x′1
by generating c′1 = Enc(x′1) and running Eval(c′1, c2, . . . , cn).

A natural way to mitigate such an attack is to make the parties commit to their input
first, and only then exchange ciphertexts and do the computation. Therefore we now
have two rounds: in the first round parties exchange their commitments ai, and in the
second round they exchange ciphertexts ci. To make sure that no party can run Eval
on a different input than the one he committed to, Eval should check that xi in ci is
consistent with the commitment ai in the previous round. To achieve this, we need to
put into ci not only xi, but also ai together with its opening. Note however that this
still allows a curious party to generate a different c′i encrypting a different x′i and a
different, but valid commitment a′i to x′i, and then run Eval; thus we have to include all
first-round commitments a1, . . . , an within each ci (together with an opening for ai),
so that a curious party couldn’t modify its own ai without being noticed.

At this point the protocol looks like this:

1. The CRS: Programs Enc and Eval, a CRS for a commitment scheme µbind

2. Round 1: Each party broadcasts ai ← Commit(xi), and keeps decommitment
information ri;

3. Round 2: Each party broadcasts ci ← Enc(xi; ri; a1, . . . , an)
4. Evaluation: Each party computes y ← Eval(c1, . . . , cn)

Here Eval decrypts each ci and performs two checks: first, it checks that the set of
(a1, . . . , an) is the same in each ci. Second, it checks that for all i ri is a correct opening
of ai to xi. If all checks pass, it outputs f(x1, . . . , xn).

While this idea works in general, the exact implementation becomes a challenge.
Our goal is to show that a real execution is indistinguishable from a simulated one,
where the simulated execution (and in particular, programs and communication) is gen-
erated by a simulator who doesn’t know inputs of parties. One difficulty is to be able
to switch the ciphertext from real (encrypting xi) to simulated, and at the same time be
able to generate Eval with the secret key of encryption inside. Several ways to accom-
plish this are known. One approach is to use a “double encryption + NIZK” paradigm
([NY90]); this method is chosen by [GP14] and it leads to a protocol secure against
malicious adversaries. However, one disadvantage of this approach is that the CRS is
necessarily local, even in the semi honest case.

The approach we take in order to switch ci from real to simulated in the presence of
the secret key is the “punctured key” technique, which guarantees that real and dummy
ciphertexts are indistinguishable, even in the presence of “almost all” key - i.e. the
key which decrypts everything except for this ciphertext. This allows us to first indis-
tinguishably modify Eval such that it needs only a punctured key, and then switch a
ciphertext (which the punctured secret key cannot decrypt) to a dummy ciphertext.

However, this approach has two shortcomings, which are not obvious from this dis-
cussion, but which would appear if we went deeper into the simulation and proofs. First,
the technique requires hardwiring input-dependent values (such as xi and ci) into the
program in the proof. This means that the inputs have to be fixed before the adversary
sees Eval (and therefore the whole CRS), giving only selective security. Second, with

9

this approach the programs in the simulated CRS have to contain simulated ciphertexts,
and therefore we can only hope to get local, or programmable, CRS.

Second attempt. To solve both issues, we exploit an indirection technique similar to the
one used in [KSW14, CPR16]: namely, we generate Enc and Eval during the runtime
instead of fixing them in the CRS. Note that Enc is needed only in round 2 (and Eval is
needed even later). Therefore we can let parties agree on generation randomness rGen
in round 1, and then, after round 1 is complete, each party can run a special generation
program Gen (which is now in the CRS instead of Enc and Eval) to produce a fresh
pair of Enc and Eval, which are then used as before. In addition, we add to the CRS
a special program Explain, which inverts Gen, i.e. for any given output it produces
consistent randomness rGen; this is used by the simulator only.

Therefore the protocol now looks like this:

– The global CRS: programs Gen,Explain, a CRS for a commitment scheme µbind

– Round 1: parties broadcast commitments ai = Commit(xi; ri) together with ran-
domness rGen,i;

– After round 1: each party sets generation randomness rGen ←
⊕
rGen,i and ob-

tains Enc,Eval← Gen(rGen);
– Round 2: each party broadcasts ci ← Enc(xi; ri; a1, . . . , an);
– Evaluation: each party computes y ← Eval(c1, . . . , cn).

The simulator works as follows. First it generates programs Enc′,Eval′ (which, as
we said earlier, are different from real world programs). Next it uses Explain to gener-
ate randomness rGen on which Gen outputs these simulated Enc′,Eval′. It generates all
rGen,i such that they xor to rGen, and sets ai and ci to be a dummy commitment and a
dummy ciphertext. (rGen,i, ai, ci) constitute simulated communications. To handle cor-
ruption of a party, the simulator equivocates the commitment; also the simulator needs
to show the randomness for encryption, which it can do as long as underlying encryp-
tion is non-committing or deniable. Note that the the only reason why the simulator
needs to generate the CRS is a commitment scheme.

Third attempt. So far our CRS is still local due to a commitment scheme. However, it
turns out that we don’t need the full power of the commitments; for the proof of security
our commitment scheme should be statistically binding only at round-1 commitments,
not everywhere. Since we are in the semi-honest setting, it is enough to have a commit-
ment scheme that is statistically binding only on honestly generated commitments. We
call this primitive honest-but-curious (HBC) commitments.

Such a primitive can be easily constructed from one way functions: consider a
length-doubling prg mapping {0, 1}l to {0, 1}2l. For random s ∈ {0, 1}l, r ∈ {0, 1}2l,
let (prg(s), r) be a commitment to 0 and (r, prg(s)) be a commitment to 1. To open
the commitment, show s. As long as a commitment was generated honestly, i.e. r
was truly random, it doesn’t have a valid prg preimage and therefore this commit-
ment is statistically binding. The simulator can simulate the commitment by generating
prg(s0), prg(s1) and later open it to any bit. (Note that dishonest sender could cheat in
the same way, and therefore binding holds only for honestly generated commitments.

10

But it suffices for our MPC protocol, since we need a statistical binding property only
for round 1 commitments ai, which are generated by honest parties.)

Note that HBC commitments don’t require a CRS, and therefore the CRS of the
overall scheme is now global.

The choice of encryption scheme for the MPC protocol. As we said earlier, perhaps
the most challenging part of the proof is to switch ciphertexts from real to simulated,
while keeping the decryption key inside Eval. For this we take a punctured program-
ming approach, and therefore we need an encryption scheme where it is possible to give
a partial key, called a punctured key, which doesn’t reveal anything about the challenge
ciphertext. Our goal is the following: first we want to modify Eval so that it uses a punc-
tured key instead of a real one; this should be done without changing the functionality
of Eval, since we want to base security on iO. Importantly, modified Eval should not
contain xi, or any input-dependent values, since Eval should be generated by a simu-
lator during the protocol execution, when the simulator might not know inputs of the
parties yet. Next we want to use security of the punctured key and switch the ciphertext
from real to simulated.

The puncturable deterministic encryption ([Wat15]), which is commonly used in
this scenario, doesn’t help us: if we were using this scheme, the punctured program
would depend on inputs, making the simulation impossible. We therefore use a different
encryption scheme, which we call a puncturable randomized encryption (PRE)10. In
addition, this primitive may be viewed as a simulation-secure variant of PDE, and might
be of independent interest.

Puncturable randomized encryption (PRE). In a definition of a semantically secure
encryption scheme a real ciphertext is indistinguishable from a simulated one, even in
the presence of a public key. A much stronger CCA security requires that ciphertexts are
still indistinguishable even given access to a decryption oracle, i.e. to the functionality
of a secret key everywhere except the challenge ciphertext. One can consider an ulti-
mate version of CCA security and require that ciphertexts are indistinguishable even
when the secret key itself is given in the clear (of course, for this to be meaningful,
the secret key shouldn’t be able to decrypt the challenge ciphertext, just like in case
of standard definition of CCA-security). This is exactly what our puncturable random-
ized encryption achieves. In other words, a PRE scheme is a symmetric key encryption
scheme secure under simulation security definition, where the simulator needs to sim-
ulate a punctured key as well: that is, we require that a real-world punctured key and a
ciphertext (k{c}, c) are indistinguishable from simulated (k{c}, c).

We build a secret key version of this primitive using puncturable PRFs and an in-
jective public key encryption scheme (injective means that there doesn’t exist a tuple
(x, r, x′, r′) such that (x, r) 6= (x′, r′) and Encpk(x; r) = Encpk(x

′; r′)). The secret key
of a PRE consists of a public key of encryption scheme pk and a PRF key k. To encrypt
a message m with randomness r, compute T ← Encpk(m; r), C ← Fk(T) ⊕ (m, r),
and set the ciphertext to be (T,C). To decrypt (T,C), compute (m, r) ← C ⊕ Fk(T)
and verify that T = Encpk(m; r).

10 Note that merely randomizing the PDE plaintext doesn’t yield a PRE.

11

To puncture a key at a ciphertext (T ∗, C∗) = PRE.Enc(m; r), output (pk, k{T ∗}),
i.e. puncture PRF key k at T ∗. This punctured PRE key doesn’t give any information
about plaintext of the ciphertext (T ∗, C∗): intuitively,C∗ looks uniformly random since
k is punctured at T ∗, and T ∗ itself doesn’t reveal m since it is a ciphertext of a public
key encryption. On the other hand, the punctured key still allows to encrypt all other
plaintexts-randomness pairs and decrypt all other ciphertexts: note that for a given T
there is only a single C which makes (T,C) a valid encryption; therefore puncturing
out k{T ∗} affects exactly one valid ciphertext, i.e. (T ∗, C∗).

The simulator can generate a dummy ciphertext (T ∗, C∗) by setting T ∗ ← Encpk(0; r)
and choosing C∗ at random. It can also generate a corresponding punctured key as
(pk, k{T ∗}). This simulated ciphertext and punctured key (T ∗, C∗), (pk, k{T ∗}) can
be shown to be indistinguishable from real ones by invoking security of a punctured
PRF and an encryption scheme.

Computing randomness-hiding functionalities. So far we described a protocol for de-
terministic functionalities. Here we describe how we handle randomized functionalities
in a randomness-hiding way, i.e. the actual randomness used to compute the function
should remain hidden even when all parties are corrupted and all their randomness is
learned by the adversary.

It might seem first that to achieve randomness hiding we can use ideas of [SW14]
and let the encryption program internally choose randomness by applying an extractor
to the random input provided by a party - the technique used in both [CGP15, DKR14]
to achieve randomness hiding. Namely, let the encryption program B generate a cipher-
text containing not only input xi of a party, but also randomness ri derived internally
by the program without help of the party. Later Eval can decrypt ciphertexts, learn all
xi and ri and compute the function as f(x1, . . . , xn;

⊕
ri). However, this approach is

bound to fail in our case: for our proof of security to go through, we crucially need the
fact that round-1 messages (i.e. commitments) completely determine the computation,
and therefore parties would have to commit to ri in round 1. This means that parties
have to know ri themselves, and therefore the randomness of the computation will be
revealed upon corruption.

Another idea to let our protocol compute randomized functionalities while hiding
the randomness is to randomize program Eval in a natural way, i.e. let Eval apply a PRF
on its inputs, and use the resulting randomness for computing the function. Hopefully,
security of a PRF will guarantee that this randomness remains hidden. However, this
idea still doesn’t work in of itself: it again violates our crucial property that round-1
messages should determine the computation. Namely, if randomness was derived as a
PRF of inputs to Eval (recall that Eval takes round-2 ciphertexts as inputs), this property
would be violated, since for a given set of round-1 messages there may be many corre-
sponding round-2 ciphertexts, and thus many possible randomness of the computation.

Our actual solution modifies the previous attempt so that the crucial computation-
fixing property is not violated. For this, we let program Eval decrypt ciphertexts, com-
pute a PRF on round-1 commitments and evaluate a randomized functionality with re-
sulting randomness. Intuitively, security of a PRF (and obfuscation on top of it) guar-
antees that this value remains hidden. The simulator can generate simulated Eval where
this PRF is punctured and the result of the computation is hardcoded. For this idea to

12

work it is important that Eval is generated during the runtime; if it was fixed in the CRS,
we would have to hardwire outputs for every execution and therefore the CRS would
have to grow with the number of executions.

Achieving RAM efficiency. There are two ways to use our construction in order to
achieve an efficient protocol. One way is to use iO for RAM in all programs involved.
However, iO for RAM requires sub-exponential security of underlying iO for circuits.
The other way, which only needs polynomially-secure iO for circuits, is to use the pro-
tocol to evaluate a functionality which takes parties’ inputs and a function and outputs
garbled function and garbled inputs; then parties can evaluate garbling themselves lo-
cally. If a RAM-efficient garbling scheme is used ([CH16]), then the whole protocol
becomes RAM-efficient. Note that it is enough to use statically secure garbling scheme,
since our base protocol supports randomness-hiding functionalities, i.e. doesn’t reveal
randomness of the computation even when everybody is corrupted11. The composed
scheme also supports randomized randomness-hiding functionalities: to evaluate such a
functionality f(x1, . . . , xn; r), parties should use basic protocol to evaluate a random-
ized function F (x1, . . . , xn; (r1, r2)) which uses r1 as randomness to garble function
f and inputs x1, . . . , xn, r2 (r2 being random input of f).

1.5 Our techniques: malicious case

To obtain a two-round RAM efficient protocol in a malicious setting, we observe that
the protocol of [GP14] becomes RAM-efficient, as long as statistically-sound NIZK
they use is RAM-efficient. Let us briefly describe their protocol. Very roughly, in their
protocol parties exchange commitments in round 1, and in round 2 they broadcast their
input encrypted twice together with a NIZK proof that plaintexts are the same (the actual
statement for the proof is more complicated, as discussed below). The CRS contains an
obfuscated program which expects to see commitments from round 1, together with
ciphertexts from round 2 and corresponding proofs. This program checks NIZKs and
uses a hardwired decryption key of a double encryption to decrypt the ciphertexts and
evaluate the function. Each party can feed its transcript to this program and obtain the
output.

So far the protocol seems to work in any model of computation: indeed, if we use iO
for RAM to obfuscate the evaluation program in the CRS, then the work of each party
becomes proportional to RAM complexity of a function. However, the problem is that
the NIZK statement is more complicated than described above: it also requires proving
that y = f(x1, . . . , xn), which is needed for the security proof to go through. As usual
in “iO + NIZK” techniques, the NIZK has to be statistically sound. For all known

11 If the protocol revealed randomness of the computation, then the garbling scheme would have
to be adaptively secure , i.e. the simulator of the garbling scheme would have to first simulate
it and then, once it learned inputs, provide consistent generation randomness of the garbling
scheme (note that the term “adaptive security” is ambiguous: in the context of garbling it usu-
ally denotes a different property, saying that simulation is possible even if inputs or functions
are chosen adaptively after seeing some garbled values. Here by adaptive security we mean
that random coins can be generated by the simulator).

13

NIZKs, this means that the verifier (in our case, the obfuscated evaluation program) has
to do work proportional to the circuit complexity of f , even if the program is obfuscated
with iO for RAM.

Therefore to make this protocol RAM-efficient, it suffices to build RAM-efficient
statistically sound NIZK.

RAM-efficient statistically sound NIZK for NP. Let a language L be specified by a
relation R(x,w). We build a statistically sound NIZK where, roughly, the work of the
prover and NIZK length depends on |R|RAM, and the work of the verifier depends on
worst-case RAM complexity of R.

Our main idea is the following: to prove that x∗ ∈ L, the prover should send to a
verifier a garbled program GProg(R(x,w)), a garbled input GInp(x∗, w∗), and a NIZK
proof (for circuits) that the garbling was done correctly: i.e. that the prover followed
the garbling algorithm, and that it garbled correct function R and input x. The verifier
should accept the proof if the NIZK proof verifies, and if the evaluation of a garbled
program on a garbled input results in 1.

However, there are two issues. First, since we assume that we only have a NIZK for
circuits, we need to make sure that the statement which we prove (i.e. that garbling was
done correctly) is independent of the circuit complexity of R (in particular, we need
a garbling scheme where the size of circuits which generate garbling, i.e the size of
GInp,GProg, only depend on a size of RAM description of a program to be garbled).

Second, note that this scheme guarantees that the garbler follows the garbling in-
structions (because of the NIZK), but there is no way to guarantee that the prover
uses truly random coins to garble. This might introduce problems. Consider a garbling
scheme which is not perfectly correct: say, for some choice of parameters the garbled
program always outputs 1, no matter what the underlying program does12. In this case
a malicious and unbounded prover could choose these bad parameters and therefore
convince the verifier in wrong statements, since the evaluation of a garbled program
results in 1 no matter whether R(x,w) holds or not. Thus, we need a garbling scheme
where the evaluation can never result in the wrong answer, i.e. where the computation
always results in either a correct result or ⊥. We call this property perfect correctness
with abort.

We observe that the garbling scheme of Canetti and Holmgren ([CH16]) already has
both properties; see full version [CPV16] for details. Thus, our scheme yeilds a NIZK
system when instantiated with the garbling scheme by [CH16].

Organization. Section 2 contains definitions and constructions of building blocks for
our protocol, namely, of an honest-but-curious commitment and a puncturable random-
ized encryption. The protocol itself is given in section 3, together with an overview
of hybrids. The full proof of security and our NIZK is presented in the full version
[CPV16]. The description of the malicious version of our main protocol is given in
appendix B.

12 Note that the proof of garbling done correctly doesn’t save us, since the garbler followed the
garbling algorithm; it’s just the scheme itself allows for wrong garbling.

14

2 Building blocks

In this section we define and build puncturable randomized encryption (PRE) and an
honest-but-curious commitment - primitives used in our MPC protocol (section 3).

2.1 Puncturable randomized encryption

Puncturable randomized encryption (PRE) is a randomized, symmetric key encryption.
Besides standard algorithms Gen,Enc,Dec, there is additional procedure Puncture(k,
c∗) which takes as input a key k and a ciphertext c∗ = Enc(m∗; r∗) and outputs a
partial, or punctured, key k{c∗}. Such a key has two properties. First, it doesn’t reveal
any information about the plaintext of c∗; this is captured by requiring that a simulator
should simulate a ciphertext and a punctured key without knowing a plaintext. Second,
the key should still have the same functionality in all other points: namely, it should
correctly decrypt all other c 6= c∗, and it should correctly encrypt all other (m, r) 6=
(m∗, r∗).

PRE can be viewed as a randomized, simulation-secure analog of a puncturable
deterministic encryption (PDE) [SW14].

Definition 1 Puncturable randomized encryption (PRE) is a tuple of algorithms
(Gen,Enc,Dec,Puncture,Sim), which satisfy the following properties:

– Statistical correctness: With overwhelming probability over the choice of the key
k ← Gen(1λ), for any message m and randomness r Deck(Enck(m; r)) = m.

– Statistical correctness of the punctured key: With overwhelming probability over
the choice of the key k ← Gen(1λ), for any message m∗ and randomness r∗, let
c∗ ← Enck(m

∗; r∗), and k{c∗} ← Puncture(k, c∗). Then:
• for any (m, r) such that (m, r) 6= (m∗, r∗), Enck(m; r) = Enck{c∗}(m; r);
• for any c 6= c∗ Deck(c) = Deck{c∗}(c) (in particular, both decryptions should

output ⊥ on the same set of ciphertexts, except c∗).
– Simulation security with the punctured key: For any PPT adversary A and for

any message m∗, consider the following experiment: k ← Gen(1λ), r∗ is chosen at
random, c∗ ← Enck(m

∗; r∗), k{c∗} ← Puncture(k, c∗), and (cSim, k{cSim}) ←
Sim(). Then
Pr[A(k{c∗},m∗, c∗) = 1]− Pr[A(k{cSim},m∗, cSim) = 1] < negl(λ).

Simulation security says that even if an adversary has almost all key, it cannot tell
whether it sees an encryption of a known message m∗ or a simulated encryption (as
long as randomness of encryption remains hidden). Note that simulation security with
the punctured key implies normal security of PRE as a secret-key encryption, since with
k{c∗} the adversary can answer encryption-decryption queries itself.

Our construction in a nutshell. The key of a PRE consists of a key K of a puncturable
PRF and a public key pk of an injective encryption scheme. To encrypt message m un-
der randomness r, the sender computes T ← Encpk(m; r), C ← FK(T)⊕ (m, r), and
sets its ciphertext to be (T,C). To decrypt, the receiver computes (m, r)← FK(T)⊕C

15

and checks whether T = Encpk(m; r). To puncture the key at a ciphertext (T,C), out-
put (pk,K{T}), where K{T} is a PRF key punctured at T .

In this construction the encryption scheme should be injective for both message and
randomness. We observe that the encryption scheme by [SW14], where the ciphertext
is (prg(r), Fk(prg(r)) ⊕ m), satisfies this property, as long as the underlying prg is
injective. In turn, (the family of) injective prgs exists assuming iO and injective OWFs:
indeed, the fact that iO(PRF) is a hardcore function [BST14] immediately implies that
this is also a prg family; this prg can be made injective by putting an injective PRF
[SW14] inside. Note that injective PRF doesn’t require injective OWFs; instead, the
existence of injective OFWs is required for the proof of [BST14] (that iO(PRF) is a
hardcore function) to go through.

Therefore we obtain PRE assuming iO and injective OWFs.

More detailed description. We construct PRE from puncturable PRFs and a public
key encryption which is injective with respect to both message and randomness (i.e. it
should hold that Encpk(m1; r1) = Encpk(m2; r2) implies (m1, r1) = (m2, r2)).

Lemma 1. [SW14, BST14] Assuming indistinguishability obfuscation for circuits and
injective one way functions, there exists a public key encryption which is statistically
injective with respect to both message and randomness.

Proof. In short, the work of [BST14] essentially builds an injective prg, which can be
plugged into encryption scheme of [SW14] to obtain injective PKE. We briefly present
all constructions here for completeness.

Overall encryption scheme. Recall that in the PKE scheme of [SW14] the public key is
an obfuscated program which takes (m, r) as input, computes t = prg(r), and outputs
(t, Fk(t) ⊕ m) as a ciphertext. Note that this scheme is only injective for messages,
but not for randomness, since underlying prg could map two different randomness to
the same output. Thus for this encryption to be injective, we need an injective prg. In
addition, note that for this construction it is enough to have a family of prgs (which is
statistically injective): the prg could be chosen from the family during the process of
the key generation for the encryption scheme.

Injective prg family. We note that the work of Bellare et al.[BST14], which proves that
iO(PRF) is a hardcore function for any injective OWF13, also implies that iO(PRF) is
a prg family, as long as there exist injective OWFs. Indeed, in their work they show
that H = iO(PRF) is a hardcore function for any injective OWF f , i.e. that for random
r (f,H, f(r), H(r)) ≈c (f,H, f(r), U|H(r)|). This implies the following: as long as
there exists an injective OWF f , it holds that (f,H, f(r), H(r)) ≈c (f,H, f(r), U|H(r)|)
and therefore it also holds that (H,H(r)) ≈c (H,U|H(r)|), which means that this is a
prg family.

This prg family is statistically injective, as long as the underlying PRF is statistically
injective.

13 In fact, for them it is enough that OWF is poly-to-one. Thus we can relax our assumptions for
MPC protocol from injective OWF to poly-to-one OWF.

16

Injective PRF family. Sahai and Waters [SW14] build a statistically injective punc-
turable PRF family from a PRF family {Fk(x)} (which in turn can be built from OWFs)
and a 2-universal hash function h(x) (which exists unconditionally) as Fk(x) ⊕ h(x),
as long as the output of a PRF is large enough. Namely, they show that as long as
m(λ) > 2n(λ) + e(λ), there exists such a statistically injective PRF family which
maps n(λ) bits to m(λ) bits and has a failure probability 2−e(λ) (i.e. with probability
2−e(λ) over the choice of the PRF key the PRF is not injective).

This concludes the proof that a statistically injective PKE exists assuming iO and
injective OWFs. We underline that this PKE is only statistically injective, since under-
lying PRFs might be non-injective with some negligible probability.

From injective PKE to PRE. Our PRE is constructed as follows (see fig. 1 for a more
concise description):

– Key generation: PRE.Gen(1λ, rGen) uses rGen to sample a PRF key K and gener-
ate (pk, sk)-pair of a public key encryption scheme which is statistically injective
for messages and randomness. It sets PRE.k ← (K, pk).

– Encryption: PRE.EncPRE.k(m; r) sets T ← Encpk(m; r) and C ← FK(T) ⊕
(m, r) (if the key K is punctured at point T , encryption outputs ⊥). It outputs the
ciphertext c = (T,C).

– Decryption: PRE.DecPRE.k(c) parses c as (T,C) and sets (m, r)← FK(T)⊕ C
(if the key K is punctured at point T , decryption outputs ⊥). Next it verifies that
Encpk(m; r) = T ; if this check passes, it outputs m, otherwise it outptus ⊥.

– Puncture: PRE.Puncture(PRE.k, c) parses c as (T,C) and punctures the PRF key
at T ; it outputs the PRE punctured key (pk,K{T}).

– Simulation: PRE.Sim() first chooses the key PRE.k by sampling a PRF key K
and generating (pk, sk)-pair of a public key encryption scheme. Next it generates
T = Encpk(0; r) for random r and setsC to be a random string. It sets the simulated
ciphertext cSim to be (T,C) and outputs it. Next, it punctures the PRF key K at T
and sets the simulated punctured key k{cSim} to be (pk,K{T}).

Theorem 4. Assuming that PKE is a public key encryption scheme, injective for both
messages and randomness, and assuming one way functions, the construction presented
on fig. 1 is a puncturable randomized encryption.

Proof. Before showing correctness and security, we note the following useful property
of our encryption:

First part of a ciphertext determines the second. For a given T ∗, there exists at most
one C∗ such that (T ∗, C∗) is a valid (i.e. decrypted to non-⊥) ciphertext. Indeed, due
to injectivity of underlying PKE, there exists at most one (m∗, r∗) pair such that T ∗ =
PKE.Encpk(m

∗; r∗). Therefore the check in the decryption algorithm will only pass for
C∗ = FK(T ∗)⊕ (m∗, r∗).

Correctness. This scheme is statistically correct, as immediately follows from correct-
ness of encryption C = FK(T) ⊕ (m, r) and the fact that the check T = Encpk(m; r)
passes for honestly generated ciphertext.

17

Construction of a PRE

PRE.Gen(1λ, rGen):

1. Sample PRF.K and (PKE.pk,PKE.sk);
2. Output (PRF.K, PKE.pk)

PRE.EncPRE.k(m; r):

1. T ← Encpk(m; r)
2. If K is punctured at T , output ⊥ and halt;
3. C ← FK(T)⊕ (m, r).
4. outputs (T,C).

PRE.DecPRE.k(T,C):

1. If K is punctured at T , output ⊥ and halt;
2. (m, r)← FK(T)⊕ C
3. If Encpk(m; r) = T then output m, else ⊥.

PRE.Puncture(PRE.k, c = (T,C)):

1. Output PRE.k{c} = (pk,K{T})

PRE.Sim():

1. PRE.k ← PRE.Gen(rGen) for random rGen;
2. T = Encpk(0; r) for random r;
3. C ← random ;
4. output c = (T,C), PRE.k{c} = (pk,K{T});

Fig. 1: Construction of a PRE from a puncturable PRF and injective PKE.

Next, correctness of the punctured key also holds, as long as underlying PKE is
injective: indeed, there is only a single (m, r)-pair which results in T = T ∗, and there-
fore puncturing out T ∗ in k only affects encryption of m∗ with r∗. On a decryption
side, since only (T ∗, C∗) is a valid ciphertext with T = T ∗, puncturing k only affects
the decryption of (T ∗, C∗). Indeed, ciphertexts of the form (T 6= T ∗, C) are decrypted
in the same way regardless of which key is used, the full key or the punctured one. On
the other hand, ciphertexts of the form (T ∗, C 6= C∗) are rejected by decryption with
both real and punctured keys: indeed, decryption with the full key rejects it since the
ciphertext is invalid, and decryption with the punctured key rejects it since decryption
tries to evaluate the PRF at the punctured point T ∗, so the check in line 1 of decryption
fails.

Security. To show security, we need to show that the punctured key, the message,
and the ciphertext, i.e. ((K{T ∗}, pk),m∗, (T ∗, C∗)), is indistinguishable in the two
cases: in one case T ∗ = Encpk(m

∗; r∗), C∗ = FK(T ∗) ⊕ (m∗, r∗), and in the other
case T ∗ = Encpk(0) and C∗ is randomly chosen. We do this by considering a middle
distribution where T ∗ is real, i.e. T ∗ = Encpk(m

∗; r∗), but C∗ is random. The middle

18

and the real distribution are indistinguishable due to the property of a punctured PRF:
FK(T ∗) is indistinguishable from random, therefore so is FK(T ∗)⊕ (m∗, r∗). Middle
and simulated distributions are indistinguishable by security of a PKE.

2.2 Honest-but-curious Equivocal Commitments

Motivated by the fact that standard non-interactive commitments are unnecessary strong
for our protocol (i.e. support malicious behavior of the sender) and at the same time
make the CRS local, we consider a weaker semi-honest commitment which doesn’t
have this disadvantage.

Namely, an honest-but-curious commitment scheme (HBCCommit,Verify) can be
used to commit to a value x with randomness r using c ← HBCCommit(x; r), which
later can be opened to convince the verifier that it was x that was committed to. The
difference between this primitive and the standard commitment is in the security guar-
antee. Here we only require that an honestly generated commitment cannot be opened
in a different way, even by an unbounded adversary. The other way to state this property
is to say that for overwhelming fraction of randomness, commitments are statistically
binding; this means that a semi-honest sender will generate a statistically binding com-
mitment. (Still, there can be a negligible fraction of commitments which can be easily
opened in both ways).

In addition, we require the commitment scheme to be equivocal, or adaptively se-
cure, i.e. the simulator should be able to provide randomness consistent with the simu-
lated commitment.

Unlike its stronger counterpart, honest-but-curious commitment can be constructed
in a plain model, in a fairly simple way.

Definition 2 An honest-but-curious commitment scheme for a message space M is a
pair of PPT algorithms (HBCCommit(x; r),Verify(x, r, c)), such that the following
properties hold:

– Correctness: For any x, r Verify(x, r,HBCCommit(x; r)) = 1;
– Most commitments are statistically binding: For any x ∈M
Pr
r
[∃r′, x′ s.t. x′ 6= x ∧ Verify(x′, r′,HBCCommit(x; r)) = 1] < negl(λ).

– Computational hiding and equivocation: There exist a PPT simulator Sim such
that for any x ∈M it holds that

{(r, x, c) : c←HBCCommit(x; r), r ← {0, 1}|r|} ≈c
{(r, x, c) : (c, state)← Sim(), r ← Sim(x, state)}.

Construction. We build a semi-honest commitment scheme for message space M =
{0, 1}. Consider a prg with exponentially sparse range (say, length-doubling prg, map-
ping λ bits to 2λ bits). To commit to 0, output (prg(s), r), and to commit to 1, output
(r, prg(s)), where s is a random value of size λ, and r is a random value of size 2λ. To
open the commitment, show (s, r).

Since honestly generated (i.e. random) r is outside the image of the prg with over-
whelming probability, there is no s such that prg(s) = r, and therefore for honestly

19

generated commitment there doesn’t exist the wrong opening. On the other hand, the
simulator can generate its commitment as (prg(s0), prg(s1)) and later open it to any bit
b, showing sb and claiming that the other value is randomly chosen. Thus we proved
the following statement:

Theorem 5. Assuming the existence of one way functions, the above scheme is an
honest-but-curious commitment scheme for the message space M = {0, 1}.

3 Our MPC protocol against semi-honest adversaries

In this section we present our two-round, RAM-efficient, semi-honest protocol with
global CRS.

Our protocol is described in Fig. 2 and corresponding programs are given in Fig. 3,
Fig. 4. The CRS consists of two programs, Gen and ExplainGen. Gen is a generation
algorithm which produces “encryption” program B, “decryption-and-evaluation” pro-
gram Eval and program ExplainB. Both ExplainGen and ExplainB are not used in the
protocol execution; they are used in the simulation only in order to provide consistent
randomness for Gen and B.

In the first round everybody uses the semi-honest commitment scheme (defined and
constructed in section 2.2) to “commit” to (i, xi) with randomness rcom,i. In addition,
parties exchange randomness rGen,i and everybody sets (the same) rGen ←

⊕
rGen,i.

Everybody runs Gen(rGen) to obtain the same programs B,Eval,ExplainB.
In round 2 everybody runs bi ← B(i, xi, rcom,i, a1, . . . , an; rB,i) (which essen-

tially encrypts all round 1 messages together with a party’s own opening of a com-
mitment, under some randomness rB,i) and sends out bi. Then everybody computes
y ← Eval(b1, . . . , bn). Eval decrypts every ciphertext, validates each commitment us-
ing opening provided in corresponding ciphertext, and in addition checks that all ci-
phertexts agree on the set of round-one commitments. If these checks pass, Eval does
the computation (computing randomness as a PRF of commitments, if the function is
randomized) and outputs y.

The central encryption scheme used by program B to encrypt and by Eval to de-
crypt is a puncturable randomized encryption (PRE), which we built in section 2.1)
from iO and injective OWFs. In addition, both Gen and B have a trapdoor branch

The protocol

CRS: programs Gen and ExplainGen
inputs: xi; randomness: rcom,i, rB,i, rGen,i

1. Round 1: Each party Pi computes ai ← HBCCommit(i, xi; rcom,i) and broadcasts
(ai, rGen,i);

2. Each party sets rGen ←
⊕
rGen,i and runs {B,Eval,ExplainB} ← Gen(rGen);

3. Round 2: Each party broadcasts bi ← B(i, xi, rcom,i, a1, . . . , an; rB,i);
4. Each party sets its output to be y ← Eval(b1, . . . , bn).

Fig. 2: MPC protocol.

20

Programs in the CRS:

Program Gen(rGen)
Constants: an extracting PRF key ExtGen, faking PDE key fGen

– Trapdoor branch:
1. set (Prog1,Prog2,Prog3, ρ̃)← PDE.DecfGen(rGen). If decryption returns⊥ then goto

normal branch;
2. output Prog1,Prog2,Prog3 and halt;

– Normal branch:
1. uGen ← FExtGen(rGen);
2. use uGen to sample extracting PRF key ExtB, PRE key K, PRF key k, faking PDE key
fB and obfuscation randomness for B,Eval,ExplainB;

3. output obfuscated programs B[ExtB, fB,K],Eval[K, k],ExplainB[fB].

Program ExplainGen(Prog1,Prog2,Prog3; ρ)
Constants: faking PDE key fGen

1. Set M = ((Prog1,Prog2,Prog3), prg(ρ));
2. Set rGen ← PDE.EncfGen(M);
3. output rGen.

Fig. 3: Programs in the CRS of our protocol. Program Gen chooses keys and outputs
obfuscated programs B,Eval,ExplainB, defined in figure 4. Program ExplainGen is only
used by the simulator in order to generate consistent random coins for Gen.

which helps the simulator to generate consistent randomness with the help of programs
ExplainGen,ExplainB. Essentially helper programs ExplainGen,ExplainB use a special
encryption scheme (puncturable deterministic encryption, PDE, [Wat15]), in order to
encode an instruction “output output∗ and halt” into a random-looking value, which
pretends to be true randomness of a party. Gen and B try to decrypt this value in a
trapdoor branch and follow the instruction encoded. In addition, this technique requires
to use a special PRF, called extracting PRF, FExt ([SW14]) We don’t elaborate on this
mechanism further since it closely follows the original idea of [SW14], [DKR14].

Theorem 6. Assuming injective one way functions14 and indistinguishability obfusca-
tion for circuits, the presented protocol is a two-round multiparty protocol with global
CRS adaptively secure against honest-but-curious corruptions of possibly all parties.
The protocol allows to compute any randomized functionalities, even randomness-hiding
ones. Its communication complexity depends on λ, {|xi|}ni=1, y, |f |RAM (logarithmic
parameters omitted), and time and space of every party depends on λ, {|xi|}ni=1, y, |f |RAM,
and time or space needed to evaluate RAM f(x1, . . . , xn) in the worst case.

14 In fact, this requirement can be relaxed down to one way functions with at most polynomial-
size preimage, since such OWF suffices to prove that the construction of [BST14] is secure;
and therefore the PRE scheme (section 2.1) exists under this assumption and iO.

21

Programs produced by the CRS:

Program B(i, xi, rcom,i, a1, . . . , an; rB,i)
Constants: an extracting PRF key ExtB, faking PDE key fB, PRE key K

– Trapdoor branch:
1. set (i′, x′, r′com,i, a

′
1, . . . , a

′
n, b
′, ρ̃)← PDE.DecfB(rB,i). If decryption returns ⊥ then

goto normal branch;
2. if (i′, x′, r′com,i, a

′
1, . . . , a

′
n) 6= (i, xi, rcom,i, a1, . . . , an) then goto normal branch;

3. output b′ and halt;
– Normal branch:

1. Set M = (i, xi, rcom,i, a1, . . . , an)
2. uB,i ← FExtB(M, rB,i)
3. Set b← PRE.EncK(M ; prg(uB,i))
4. Output b

Program Eval(b1, . . . , bn)
Constants: PRE key K, key k of a PRF G

1. For every i decrypt:
(a) Set Mi ← PRE.DecK(bi);
(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an). If the format is wrong (in particular, if i is

wrong), output ⊥.
2. For every i check consistency:

(a) Verify that the set (a1, . . . , an) is the same in all M1, . . . ,Mn;
(b) Verify that ai = HBCCommit(i, xi; rcom,i)

3. Set R← Gk(a1, . . . , an).
4. Output y ← f(x1, . . . , xn;R). (If f is deterministic, ignore R).

Program ExplainB(i, x, rcom,i, a1, . . . , an; b; ρ)
Constants: PDE key fB

1. Set M = ((i, x, rcom,i, a1, . . . , an), b, prg(ρ))
2. Set rB,i ← PDE.EncfB(M)
3. output rB,i

Fig. 4: Programs used in the protocol.

On achieving RAM efficiency. There are two ways to use our construction in order to
achieve an efficient protocol. One way is to use iO for RAM in all programs involved (in
particular, the program Gen, which obfuscates three programs, should use an obfuscator
for RAM). The other way is to use the protocol to evaluate a functionality which takes
parties’ inputs and a function and outputs garbled function and garbled inputs; then
parties can evaluate garbling themselves locally. If a RAM-efficient garbling scheme is
used ([CH16]), then it suffices to use iO for circuits to make the whole protocol RAM-
efficient. Note that it is enough to use statically secure garbling scheme, since our base
protocol supports randomness-hiding functionalities, i.e. doesn’t reveal randomness of

22

the computation even when everybody is corrupted15. The composed scheme also sup-
ports randomized randomness-hiding functionalities: to evaluate such a functionality
f(x1, . . . , xn; r), parties should use basic protocol to evaluate a randomized function
F (x1, . . . , xn; (r1, r2)) which uses r1 as randomness to garble function f and inputs
x1, . . . , xn, r2 (r2 being random part of input).

Unlike the first approach, the second approach doesn’t require subexponentially-
secure iO (which is an assumption currently required for iO for RAM).

In both cases, we assume that the simulator gets all necessary information about the
computation (such as worst-case running time, space, etc) from the ideal functionality.
As discussed in the introduction, setting a lower (than the worst-case) bound on the
running time/space of the computation might be useful if parties agree to sacrifice some
security for efficiency.

Correctness. Correctness of the scheme can be immediately verified. Note that in case
of randomized functionalities the randomness for the computation is obtained via a PRF
G, and therefore the distribution of the output is only computationally close to the ideal
distribution.

Simulation. The simulator works as follows:
CRS: The simulator generates the CRS honestly.
Round 1: Each a∗i is simulated by a simulator of a semi-honest commitment scheme.

Each b∗i is simulated by PRE.Sim, together with a punctured keyK{{b∗i }ni=1}. Eval1,B1
are generated as in fig. 5 (using punctured keysK{{b∗i }ni=1} and k{(a∗1, . . . , a∗n)}), and
ExplainB is generated as in fig. 3. r∗Gen is set to explain these B1,Eval1,ExplainB (i.e. it
is generated as r∗Gen ← ExplainGen(Eval1,B1,ExplainB; ρ) for random ρ). Each r∗Gen,i
is set to sum up to r∗Gen. (a∗i , r

∗
Gen,i) is a simulated first message of each party.

Round 2: b∗i (generated in round 1) is a simulated second message of each party.
Simulating internal state: r∗com,i ← HBCCommit.Sim(a∗i , xi) is generated, and

r∗B,i is set to explain b∗i on input (i, x∗i , r
∗
com,i, a

∗
1, . . . , a

∗
n) (i.e. it is generated as r∗B,i ←

ExplainB((i, x∗i , r
∗
com,i, a

∗
1, . . . , a

∗
n), b

∗
i ; ρi)) for some random ρi. (r∗com,i, r

∗
B,i) is inter-

nal state of each party.

Simulator’s knowledge of the output. Note that the simulator is required to hardwire
the output y∗ into Eval1 (fig. 5); Eval1 has to be generated at the end of round 1, since
r∗Gen (which is determined right after round 1 ends) depends on it. It could be that at
that moment nobody is corrupted, and the simulator, formally speaking, doesn’t know
the output y∗.

However, we can always assume that it knows y∗ as soon as the simulation starts.
The idea is similar to the idea allowing parties to compute different outputs: they
15 If the protocol revealed randomness of the computation, then the garbling scheme would have

to be adaptively secure , i.e. the simulator of the garbling scheme would have to first simulate
it and then, once it learned inputs, provide consistent generation randomness of the garbling
scheme (note that the term “adaptive security” is ambiguous: in the context of garbling it usu-
ally denotes a different property, saying that simulation is possible even if inputs or functions
are chosen adaptively after seeing some garbled values. Here by adaptive security we mean
that random coins can be generated by the simulator).

23

should evaluate a different function f ′((x1, r1), . . . , (xn, rn)) = f1(x1, . . . , xn) ⊕
r1|| . . . ||fn(x1, . . . , xn) ⊕ rn, where ri is randomness chosen by party i. In this new
protocol the simulator can set the output to be a random value z (which can be chosen
even before the protocol starts), and as soon as party i is corrupted and the simulator
learns yi, it can set ri ← zi ⊕ yi (where zi is the i-th block of z corresponding to the
output of party i).

Leakage Resilience. For an adaptively secure protocol to be leakage resilient, the sim-
ulator has to be corruption oblivious, i.e. when simulating leakage from a party, the
simulator can only use ideal-world leakage from this party; even if some information
was leaked from other parties before (and therefore the simulator knows the informa-
tion and simulated leakage), it cannot be used in simulation of leakage of the current
party.

A convenient way to think about this is to imagine that the simulator S should have
special subroutines S1, . . . , Sn (each Si handles leakage from party i), such that the
only possible information flow between them all is S → Si. In other words, Si gets
as input ideal leakage together with necessary information from S (e.g. trapdoors, but
not leakage from other parties, since S doesn’t know it) and simulates leakage based on
this information. S itself doesn’t see anything Si learns from the ideal functionality or
simulates. For a more formal treatment, see [BCH12].

Our simulation is corruption oblivious. Each internal state of the party (i.e. r∗com,i, r
∗
B,i)

can be simulated by a subroutine Si which gets from S a trapdoor to open HBC com-
mitment, the program ExplainB, and communication a∗1, . . . , a

∗
n, b∗i . Si can first set

r∗com,i by opening the commitment appropriately, and then it can generate r∗B,i ←
ExplainB((i, xi, rcom,i, a

∗
1, . . . , a

∗
n); b

∗
i ; ρ) for random ρ.

3.1 An Overview of the Hybrids

Here we present an overview of the hybrids. The full proof with security reductions is
in section ??.

We start with a real execution, where r∗com,i, r
∗
B,i, r

∗
Gen are randomly chosen, each a∗i

is set to HBCCommit(i, x∗i ; r
∗
com,i), (B,Eval)← Gen(r∗Gen), b

∗
i ← B(i, x∗i , r

∗
com,i, a

∗
1 . . . , a

∗
n; r
∗
B,i),

y∗ ← Gk(a
∗
1, . . . , a

∗
n).

Hybrid 1: We make challenge programs B, Eval, and ExplainB independent of Gen:
Namely, we choose internal keys of B,Eval,ExplainB, as well as their obfuscation ran-
domness, at random (instead of generating these values by running Gen). In addition,
r∗Gen is now a simulated randomness such that Gen(r∗Gen) outputs B,Eval via the trap-
door branch (instead of r∗Gen being randomly chosen). Indistinguishability holds by se-
lective indistinguishability of source and explanation for program Gen (sec. A).

Hybrid 2: We make randomness for challenge ciphertexts b∗i independent of B:
Namely, we use randomness prg(u∗i), where u∗i is chosen at random (instead of u∗i
being computed according to B). In addition, r∗B,i is now a simulated randomness such
that B(i, x∗i , r

∗
com,i, a

∗
1, . . . , a

∗
n; r
∗
B,i) outputs b∗i via the trapdoor branch (instead of r∗B,i

being randomly chosen). Indistinguishability holds by selective indistinguishability of
source and explanation for program B (sec. A).

This modification is done for every party.

24

Hybrid 3: For every party i we switch randomness used to generate challenge b∗i
from prg(u∗B,i) to truly random ũ∗B,i, by security of a prg.

Hybrid 4: We modify programs B, Eval so that they only use a punctured version
of a PRE key K{{b∗i }ni=1} and a PRF key k{(a∗1, . . . , a∗n)} (see fig. ??. Note that K
is punctured at several points, while k is punctured at a single point (a∗1, . . . , a

∗
n)). We

don’t change functionality of these programs and rely on security of iO.
In program B we can puncture the key K directly (since challenge ciphertexts use

truly random ũ∗B,i as randomness for encryption, and since B always computes ran-
domness as prg(u∗i), the program never tries to compute a ciphertext with challenge
randomness ũ∗B,i; by correctness of a punctured PRE key, this key correctly computes
ciphertexts with randomness different from randomness used for puncturing, i.e. ũ∗B,i).

Eval is modified as follows: if it gets as input the challenge set (b∗1, . . . , b
∗
n), then it

just outputs hardwired y∗. If none of the input ciphertext is a challenge ciphertext, then
it just uses a punctured key K{{b∗i }ni=1} to do its normal computation (by correctness
of a PRE punctured key, these ciphertexts are decrypted correctly). The only difference
is that it uses punctured PRF key k{(a∗1, . . . , a∗n)} to compute randomness R for the
computation. (If it happened that b’s decrypted to the challenge set a∗1, . . . , a

∗
n, then the

program outputs hardwired y∗, if consistency checks pass. Recall that honestly gener-
ated {a∗i }ni=1 completely define all inputs and randomness of the computation, therefore
y∗ is the only non-⊥ output in this case). Thus the evaluation of both punctured keys
on punctured inputs is avoided.

The question is what to do in Eval when some inputs are challenge ciphertexts and
some are not. We claim that in this case the program should output either y∗ or ⊥ (but
cannot output a different y′ 6= y∗): indeed, since at least one of the ciphertexts is a
challenge ciphertext, it contains challenge a∗1, . . . , a

∗
n, and by statistical binding of an

honest-but-curious commitment, each a∗i can be verified only for x∗i . R is completely
determined by (a1, . . . , an) too; thus Eval can only output y∗ = f(x∗1, . . . , x

∗
n;R

∗)
or ⊥. Therefore we modify the program as follows: we decrypt only non-challenge
ciphertexts, and compare their a1, . . . , an with challenge a∗1, . . . , a

∗
n. In addition, we

check that their openings of commitments are correct. If these checks pass, we output
hardwired y∗, otherwise ⊥.

Hybrid 5: We switch each ciphertext b∗i from a real ciphertext encrypting (i, x∗i , r
∗
com,i,

a∗1, . . . , a
∗
n) to a simulated one. At the same time we switch the PRE key from the real

punctured key to the simulated punctured key. Indistinguishability holds by the simula-
tion security of a PRE with the punctured key.

Hybrid 6: We exploit the computational hiding property of an equivocal honest-
but-curious commitment scheme and switch commitments a∗i to simulated, together
with commitment randomness r∗com,i, for each party.

Hybrid 7: Finally, using security of a PRF G with punctured key k{(a∗1, . . . , a∗n)},
we switch randomnessR∗ fromGk(a

∗
1, . . . , a

∗
n) to truly random value, thus making the

output y∗ = f(x∗1, . . . , x
∗
n;R

∗) independent of our programs.
At this point the transcript can be simulated by a simulator who might not know

inputs during the execution of the protocol (and only gets them upon corruption of
a party), but knows the output, as explained in the beginning of the proof. Namely,
commitments a∗i and ciphertexts b∗i are simulated; Eval,B,ExplainB are programs gen-

25

Programs used in the proof and the simulation

Program B1(i, xi, rcom,i, a1, . . . , an; rB,i)
Constants: an extracting PRF key ExtB, faking PDE key fB, punctured PRE key K{{b∗i }ni=1}

– Trapdoor branch:
1. set (i′, x′, r′com,i, a

′
1, . . . , a

′
n, b
′, ρ̃)← PDE.DecfB(rB,i). If decryption returns ⊥ then

goto normal branch;
2. if (i′, x′, r′com,i, a

′
1, . . . , a

′
n) 6= (i, xi, rcom,i, a1, . . . , an) then goto normal branch;

3. output b′ and halt;
– Normal branch:

1. Set M = (i, xi, rcom,i, a1, . . . , an)
2. uB,i ← FExtB(M, rB,i)
3. Set b← PRE.EncK{{b∗i }ni=1}(M ; prg(uB,i))
4. Output b

Program Eval1(b1, . . . , bn)
Constants: punctured PRE keyK{{b∗i }ni=1}, punctured PRF key k{(a∗1, . . . , a∗n)} , a∗1, . . . , a∗n,
b∗1, . . . , b

∗
n, y
∗

Case 0: If there is i 6= j such that bi = b∗j , output ⊥.
Case 1: If for all i bi = b∗i , then output y∗ and halt.
Case 2: If for some i bi = b∗i (denote such set as I), then:

1. For every i 6∈ I decrypt:
(a) Set Mi ← PRE.DecK{{b∗i }ni=1}(bi);
(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an)

2. For every i 6∈ I check consistency:
(a) Verify that the set (a1, . . . , an) is the same as (a∗1, . . . , a∗n)
(b) Verify that ai = HBCCommit(i, xi; rcom,i)

3. Output y∗.

Case 3: If for all i bi 6= b∗i , then:

1. For every i decrypt:
(a) Set Mi ← PRE.DecK{{b∗i }ni=1}(bi);
(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an)

2. For every i check consistency:
(a) Verify that the set (a1, . . . , an) is the same in all M1, . . . ,Mn;
(b) Verify that ai = HBCCommit(i, xi; rcom,i)

3. If (a1, . . . , an) = (a∗1, . . . , a
∗
n) then output y∗

4. Set R← Gk{(a∗1 ,...,a∗n)}(a1, . . . , an).
5. Output y ← f(x1, . . . , xn;R).

Fig. 5: Programs used in the proof and the simulation.

26

erated by the simulator using the PRE key K{{b∗i }ni=1}, PRF key k{(a∗1, . . . , a∗n)}.
Hardwired variables inside programs B,Eval are {a∗i }ni=1, {b∗i }ni=1, y

∗, which are all
known to the simulator at the end of round 1; thus, Eval,B,ExplainB, and therefore
r∗Gen and each r∗Gen,i, can be simulated. Internal state of the party can be generated by
opening the commitment and by running ExplainB to get randomness consistent with
simulated Eval,B,ExplainB.

Acknowledgments

We thank Justin Holmgren for pointing out that our MPC protocol can be used to
compute a garbling scheme in [IK02] manner, which allows us to avoid the use of
subexponentially-secure iO even in the RAM setting.

References

AIK06. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006. 4, 7

BCH12. Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols.
In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 266–284, 2012. 1, 2,
24

BCP15. Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation:
Multi-party computation for (parallel) RAM programs. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II, pages 742–762, 2015. 7

BST14. Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Poly-many hardcore bits for
any one-way function and a framework for differing-inputs obfuscation. In Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory
and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, pages 102–121, 2014. 16, 21

CDPW07. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally compos-
able security with global setup. In Theory of Cryptography, 4th Theory of Cryptog-
raphy Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007,
Proceedings, pages 61–85, 2007. 3

CGP15. Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively secure two-
party computation from indistinguishability obfuscation. In Theory of Cryptography
- 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-
25, 2015, Proceedings, Part II, pages 557–585, 2015. 2, 6, 7, 8, 12

CH16. Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge,
MA, USA, January 14-16, 2016, pages 169–178, 2016. 4, 6, 7, 8, 13, 14, 22

CHJV15. Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 429–437, 2015. 4, 7

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In Proceedings on 34th An-
nual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,
Canada, pages 494–503, 2002. 5, 29, 30

27

CPR16. Ran Canetti, Oxana Poburinnaya, and Mariana Raykova. Optimal-rate non-
committing encryption in a CRS model. IACR Cryptology ePrint Archive, 2016:511,
2016. 10

CPV16. Ran Canetti, Oxana Poburinnaya, and Muthuramakrishnan Venkitasubramaniam.
Better two-round adaptive multiparty computation. Cryptology ePrint Archive, Re-
port 2016/614, 2016. http://eprint.iacr.org/2016/614. 14, 30

DKR14. Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. Adaptively secure, uni-
versally composable, multi-party computation in constant rounds. IACR Cryptology
ePrint Archive, 2014:858, 2014. 2, 6, 7, 8, 12, 21, 29

DMN11. Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivi-
ous RAM without random oracles. In Theory of Cryptography - 8th Theory of Cryp-
tography Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceed-
ings, pages 144–163, 2011. 6, 7

Gen09. Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA,
USA, 2009. AAI3382729. 8

GGHR14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 74–94, 2014. 6

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, pages 339–358, 2006. 29

GP14. Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from
indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2014:844, 2014.
2, 5, 6, 7, 8, 9, 13

Gro11. Jens Groth. Minimizing non-interactive zero-knowledge proofs using fully homo-
morphic encryption. IACR Cryptology ePrint Archive, 2011:12, 2011. 8

IK02. Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via per-
fect randomizing polynomials. In Automata, Languages and Programming, 29th In-
ternational Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings,
pages 244–256, 2002. 4, 7, 27

IKOS10. Yuval Ishai, Abishek Kumarasubramanian, Claudio Orlandi, and Amit Sahai. On
invertible sampling and adaptive security. In Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 5-9, 2010. Proceedings, pages 466–
482, 2010. 3

KSW14. Dakshita Khurana, Amit Sahai, and Brent Waters. How to generate and use universal
parameters. IACR Cryptology ePrint Archive, 2014:507, 2014. 10

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 427–437, 1990. 9

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 475–484, 2014. 8, 12, 15, 16, 17, 21,
29

Wat15. Brent Waters. A punctured programming approach to adaptively secure functional en-
cryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
678–697, 2015. 11, 21

28

http://eprint.iacr.org/2016/614

A Explainability Compiler

The original construction of a deniable encryption by Sahai and Waters [SW14] gives
a way to make a single algorithm “adaptively secure”: i.e. it transforms a randomized
program Alg(x; r) into a different one Ãlg(x; r) (by adding a trapdoor branch and reran-
domizing the program) so that is possible to generate fake randomness consistent with
a given input and output.

The important property which we use in our proofs is indistinguishability of source
and explanation. Roughly speaking, indistinguishability of source says that for random
r Alg(x; r) and Ãlg(x; r) are indistinguishable. Indistinguishability of explanations says
that real randomness r is indistinguishable from fake randomness r which results in the
same output a = Ãlg(x; r). These properties combined together state that random r and
the output a = Ãlg(x; r) are indistinguishable from the output of original program a =
Alg(x;u) on some random u, together with fake randomness r which makes compiled
Ãlg(x; r) output a. This holds even when the program to generate fake randomness is
publicly available.

The way to think about indistinguishability of source and explanation is the follow-
ing: it is possible to move from “a real world” (random r, a← Ãlg(x; r)) to a “hybrid”
where a ← Alg(x;u), and r is fake, but pretending to be real randomness. Essentially
this step allows to “detach” a from a complicated Ãlg and make it the result of a simpler
Alg. Because of this detaching, in the next hybrid we could use security of the primitive
realized by Alg while still being able to generate internal state r: say, if Alg is an en-
cryption scheme, then in the next hybrid we could switch it to encryption of a different
value.

We also note that this indistinguishability is only selective, i.e. the input x has to be
known before the indistinguishability game can be played. This imposes some restric-
tions on the constructions and proofs (in particular, this is one of the reasons why we
need nested programs).

Since this technique became standard in the world of adaptive security, we only
briefly outlined it here. For formal definitions, constructions, and proofs, we refer the
reader to the paper of Dachman-Soled et al ([DKR14]) who formalized the technique
under the name of explainability compiler.

B Three Round MPC against Malicious Adversaries

In this section we present our three-round, RAM-efficient, maliciously secure protocol
with local CRS. Our protocol is described in Fig. 6. The CRS consists of two pro-
grams, Gen and ExplainGen. The CRS will also contain a CRS σCLOS corresponding to
the adaptively secure commitment scheme of [CLOS02] and a CRS σNIZK correspond-
ing to a NIZK argument system that is simulation sound and secure against adaptive
adversaries [GOS06].16 We will denote by adComx(msg; r) the procedure to commit
using the commitment scheme of [CLOS02] where x is the common reference string

16 We remark that the [GOS06] do not explicitly claim simulation soundness. It is easy to obtain
a simulation-sound argument by sampling an independent CRS for every pair of parties.

29

The protocol

CRS: σCLOS, σNIZK and programs Gen and ExplainGen,
inputs: xi; randomness: r1com,i, r

2
com,i, r

3
com,i, {rB,i,j}j=1,...,n , rGen,i

1. Round 1: Each party Pi computes ai ← adComσCLOS(i, xi; r
1
com,i), r̃Gen,i ←

adComσCLOS(rGen,i; r
2
com,i), r̃B,i,j ← adComσCLOS(rB,i,j ; r

3
com,i) and broadcasts

(ai, r̃Gen,i, r̃B,i,j);
2. Round 2: Each party Pi broadcasts rGen,i, {rB,i,j}j 6=i and proof Πi of the statement Si

using an NIZK proof with CRS σNIZK;
3. Each party sets rGen ←

⊕
rGen,i and runs {B,Eval,ExplainB} ← Gen(rGen);

4. Round 3: Each party broadcasts bi ← B(i, xi, rcom,i, a1, . . . , an; rB,i) where rB,i =⊕
j rB,j,i;

5. Each party sets its output to be y ← Eval(b1, . . . , bn).

Language Si used in the protocol:

Si := ((r̃Gen,i, rGen,i, r̃B,i,j , rB,i,j) : ∃r2com,i, r3com,i, such that
r̃Gen,i = adComσCLOS(rGen,i; r

2
com,i) and r̃B,i,j = adComσCLOS(rB,i,j ; r

3
com,i))

Fig. 6: Malicious MPC protocol.

for the commitment, msg is the message and r is the randomness required. We will
rely exactly on the same programs for Gen and ExplainGen from the semi-honest pro-
tocols described in Figures 3 and 4. Recall that Gen is a generation algorithm which
produces “encryption” program B, “decryption-and-evaluation” program Eval and pro-
gram ExplainB.

In the first round everybody uses the commitment scheme of [CLOS02] to sep-
arately commit to (i, xi), {rB,i,j}j=1,...,n (to be used as a coin toss for encryption
randomness) and rGen,i (to be used as a coin toss for generation randomness).

In the second round, all parties reveal rGen,i and {rB,i,j}j 6=iand prove using an
NIZK proof that this is indeed the string committed to in the first round. More formally,
party Pi proves the following NP-statement:

Si := ((r̃Gen,i, rGen,i, r̃B,i,j , rB,i,j) : ∃r2com,i, r3com,i, such that

r̃Gen,i = adComσCLOS
(rGen,i; r

2
com,i) and r̃B,i,j = adComσCLOS

(rB,i,j ; r
3
com,i)),

where r̃Gen,i is defined in round 1 of the protocol and rGen,i is the message revealed by
party Pi in round 2. Then everybody sets (the same) rGen ←

⊕
rGen,i. Everybody runs

Gen(rGen) to obtain the same programs B,Eval,ExplainB.
In the third round, all parties perform exactly the same instructions as they executed

in round 2 of the semi-honest protocol. Namely, everybody runs the programB as: bi ←
B(i, xi, rcom,i, a1, . . . , an; rB,i) (using randomness rB,i =

⊕
j rB,j,i) and broadcasts

bi. Then everybody computes y ← Eval(b1, . . . , bn).

Theorem 7. The protocol described above UC-securely implements Fmulti−f for any
functionality f in the presence of malicious adaptive adversaries.

We present a formal proof of the Theorem in the full version [CPV16].

30

	Better Two-Round Adaptive Multi-Party Computation

