
A Modular Security Analysis of EAP and
IEEE 802.11

Chris Brzuska1 and Håkon Jacobsen2,∗

1 Hamburg University of Technology, Hamburg, Germany
brzuska@tuhh.de

2 Norwegian University of Science and Technology, Trondheim, Norway
hakoja@item.ntnu.no

Abstract. We conduct a reduction-based security analysis of the Exten-
sible Authentication Protocol (EAP), a widely used three-party authenti-
cation framework. We show that the main EAP construction, considered
as a 3P-AKE protocol, achieves a security notion which we call AKEw un-
der the assumption that the EAP method employs channel binding. The
AKEw notion resembles two-pass variant of the eCK model. Our analysis
is modular and reflects the compositional nature of EAP. Furthermore,
we show that the security of EAP can easily be upgraded by adding
an additional key-confirmation step. This key-confirmation step is often
carried out in practice in the form of a link-layer specific AKE protocol
that uses EAP for bootstrapping its authentication. A concrete example
of this is the extremely common IEEE 802.11 4-Way-Handshake proto-
col used in WLANs. Building on our modular results for EAP, we get as
our second major result the first provable security result for IEEE 802.11
with upper-layer authentication.

1 Introduction

The Extensible Authentication Protocol (EAP), specified in RFC 3748 [4], is a
widely used authentication framework for network access control. It is partic-
ularly common in wireless networks, being used by protocols like IEEE 802.11
(Wi-Fi), IEEE 802.16 (WiMAX) and various 3G/4G mobile networks. The typ-
ical use case of EAP is in settings where a client seeks to gain access to a
network controlled by an authenticator, but where the client and authenticator
do not share any common credentials. EAP allows the client and authenticator
to authenticate each other based on a mutually trusted server. Technically, EAP
is not a specific authentication mechanism on its own, but rather specifies a
certain generic three-party construction that composes other concrete authen-
tication protocols into a unified framework. This provides applications of EAP
the freedom to choose whatever concrete instantiation is suitable for their own
specific setting. The success of this approach is apparent by the huge and diverse
set of real-life deployments using the EAP framework.
∗Håkon Jacobsen was supported by a STSM Grant from COST Action IC1306.



Client Authenticator Server

EAP method (EAP-TLS)

Key transport (RADIUS-over-TLS)

Link-layer protocol (IEEE 802.11)

←− Link-addresses −→ ←− IP-addresses −→

Fig. 1. The three-party EAP architecture. Example protocols shown in parenthesis.

Surprisingly then, given its prevalence and importance, there has been no
formal reduction-based provable security analysis of EAP. One reason for this
might be due to the general nature of EAP itself. As mentioned above, EAP is
not a single protocol on its own, but relies on other sub-protocols to instantiate it.
As such, many things in the EAP specification are left unspecified or considered
out of scope. However, in order to conduct a formal security analysis of EAP,
these details matter and require a careful treatment. Generally, the need to make
assumptions on protocols outside of EAP makes analysis harder (see also [15]),
because now it is not sufficient to consider a single protocol in isolation, but
rather it has to be considered it in tandem with other protocols.

Another reason for the lack of provable security analyses of EAP might be
the fact that it is a three-party protocol. As pointed out by Schwenk in his
recent work on Kerberos [28], apart from a few papers like [8,3,24,5,28] relatively
little work has been done on three-party protocols3 in the computational setting
compared to the huge literature on two-party protocols.

In this paper we aim to remedy this state-of-affairs by providing a formal
reductionist analysis of EAP. We then build on our result to obtain a result for
the extremely common IEEE 802.11 wireless standard with upper-layer authen-
tication. Current results on IEEE 802.11 have so far only focused on the much
simpler pre-shared key setting, while we can now provide an analysis of the full
protocol. Below we will further expand upon our results, but first we provide a
brief description of the EAP architecture and how IEEE 802.11 relates to it.

Review of EAP and IEEE 802.11. The general EAP architecture is shown in
Fig. 1. The exchange begins with the client and trusted server authenticating
each other using some concrete authentication protocol, like TLS. However, the
whole TLS exchange is wrapped within a generic set of EAP messages, known as
Request/Response messages. The combination of a concrete authentication pro-
tocol together with the EAP encapsulation is called an EAP method. Numerous
EAP methods have been defined, with EAP-TLS being one of the most widely

3Considered distinct from group-key exchange protocols.

2



supported. Besides authenticating each other, the EAP-method usually also re-
sults in the client and server agreeing upon a shared key. The server will forward
this key to the authenticator over some separately established channel. The EAP
standard does not specify which protocol to use here, but in practice the de-facto
standard is RADIUS [26].4 Once the key is transported from the server to the
authenticator—which so far has only operated in pass-through mode between
the client and the server—the EAP exchange is technically complete. However,
the client and authenticator now typically use the key distributed by EAP to
authenticate each other using some link-layer specific protocol. If the link-layer
media is a wireless link provided by the IEEE 802.11 protocol [2], then this entire
exchange is usually referred to as “802.11 with upper-layer authentication”.

On the difficulty of modeling EAP. In this paper we consider the provable secu-
rity of both EAP and 802.11 with upper-layer authentication in the game-based
setting. We do this in a modular way: first considering the security properties
provided by EAP and 802.11 in isolation, then using a composition theorem to
link them together. However, since EAP inherently depends on other protocols,
assessing the exact security guarantees it provides is in a sense harder than for
“standalone” protocols like TLS, IKE and SSH. While the EAP specification de-
fines the security requirements of each EAP method ([4, §7]), this only covers the
communication between the client and the trusted server. Still, as pointed out
in the beginning, it is more accurate to think of EAP as a three-party protocol.
But RFC 3748 leaves unspecified how, for example, the derived key should be
transferred from the server to the authenticator. Hence, solely using the security
claims from RFC 3748 is not sufficient to decide the security of EAP considered
as a three-party protocol. In fact, without making further assumptions on the
various protocols that make up EAP, it is impossible to talk about “the” EAP
and its security. Consequently, in order to be able to analyze EAP, we will have
to make some assumptions on these protocols.

Firstly, in this paper we are going to assume that the communication be-
tween the authenticator and the trusted server takes place over a secure channel.
Specifically, we model the link as a two-party authenticated channel establish-
ment protocol (2P-ACCE) based on symmetric long-term pre-shared keys5 (see
Section 2.3 for a formal definition). Since most key-transport protocols used be-
tween the server and the authenticator support to be run over a secure channel
(see e.g. RADIUS-over-TLS [30]), this assumption seems reasonable.

Second, a well-known issue with the EAP architecture is the so-called “ly-
ing authenticator problem”. Namely, a malicious authenticator may present
false identity information to the client and the trusted server. Unless the EAP

4Within the EAP standard lingo, the protocol run between the server and authen-
ticator is generally referred to as an Authentication, Authorization and Accounting
(AAA) protocol.

5There is nothing fundamental about our assumption on symmetric PSKs here.
We made the choice simply because the trust-relationship between the server and
authenticator is commonly based on symmetric PSKs in practice. Our results work
just as well for certificate-based authentication.

3



method provides a feature known as channel binding [14], there is no way for
the client and server to verify that they are in fact talking to the same au-
thenticator (see [14, §3] for examples of attacks that this may enable). Hence,
in this paper we are generally going to assume that EAP provides channel
binding, although we will also briefly explore the security guarantees provided
by EAP without channel binding in Section 4.3. While there are a couple of
ways to achieve channel binding in EAP (see [14, §4.1]), here we are only go-
ing to focus on the cryptographically simplest one, described in RFC draft
draft-ohba-eap-channel-binding-02 [25]. In this approach, the client and
authenticator identities are being input to the key-derivation step of EAP, cryp-
tographically binding the session key to the right pair of identities (see Section 4.2
for details).

Our contributions. The main contributions of this paper are the following.

– We provide the first reductionist-based provable security result for three-
party EAP with channel binding.

– We show how the security guarantees of EAP can be upgraded by adding an
additional key-confirmation step (modeled as a 2P-AKE). This corresponds
to a common usage pattern where EAP is first used to bootstrap the estab-
lishment of a common key among the client and authenticator, then some
lower-layer specific 2P-AKE is run between the client and authenticator to
mutually prove possession of that key (in addition to establishing session
keys for the lower-layer link).

– We provide the first game-based provable security result for the IEEE 802.11
4-way-handshake protocol in the pre-shared key setting. This corresponds to
the setting typically found in home WLANs.

– More importantly however, the results above combine to provide the first
reductionist-based provable-security result for the full IEEE 802.11 proto-
col with upper-layer authentication. This corresponds to the setting usually
found in enterprise and university WLANs. For instance, the eduroam net-
work, which is used to provide wireless roaming services to university and
research institutions, uses IEEE 802.11 with upper-layer authentication.

– Our technical means for obtaining the above results are two modular com-
position theorems which may be of separate interest. Namely, the two theo-
rems consider a fairly generic way of constructing a 3P-AKE protocol, using
generic 2P-AKEs and secure channels as building blocks. For instance, both
Kerberos and the AKA protocol used within the UMTS and LTE mobile
networks, fit the description of our 3P-AKE construction. In particular, for
the latter protocol, our theorems might enable a more general and modular
analysis than the one recently provided by Alt et al. [5].

Technical overview of our results. The main technical contributions of this paper
are two fairly generic composition theorems which correspond to the “crypto-
graphic core” of EAP and IEEE 802.11 with upper-layer authentication, respec-
tively. To obtain these theorems, however, we have to provide an appropriate

4

draft-ohba-eap-channel-binding-02


security model. Our starting point is the original 3P-AKE model of Bellare and
Rogaway [8], but which we update to accommodate our needs. Most importantly,
EAP and IEEE 802.11—both when considered separately and when combined—
can achieve different levels of security. In order to capture these differences we
have to define three different corruption models of differing strengths. These def-
initions are based on the eCK model6 [21], and are primarily concerned with the
level of adaptivity afforded to the adversary with respect to corruption queries.
Preempting our own results a bit, we show that standalone EAP can achieve
a restricted variant of forward secrecy, while IEEE 802.11 without upper-layer
authentication achieves no forward secrecy (this is natural since it relies on sym-
metric primitives exclusively). However, when EAP and 802.11 are combined,
the security is upgraded to achieve forward secrecy in our strongest corruption
model. Briefly, the difference between the strongest security model and the inter-
mediate one depends on what happens if the test-session does not have partner.
When the test-session does not have a partner in the strongest model, the adver-
sary is still allowed to learn all the long-term keys of the parties involved, as long
as this happens after the test-session accepted. On the other hand, if the test-
session does not have a partner in the intermediate model, then the adversary is
forbidden from learning any of these long-term keys. If the test-session does have
a partner, then there is no difference between the two models: the adversary is
allowed to learn any long-term key at any time. The formal definitions of these
models are provided in Section 2.2.

Intuitively, the reason why EAP on its own cannot achieve security in our
strongest model is because it does not provide explicit entity authentication.
Specifically, the client has no guarantee that the key-transport protocol between
the server and authenticator actually took place without running some lower-link
protocol to confirm. Suppose an adversary could learn the long-term key shared
between the server and the authenticator after the client accepted, but before the
key transport took place. Then it could simply impersonate the authenticator
towards the server and have it send over the session key it previously established
with the client. According to our strongest security model this adversary would
be valid (since the exposure of the PSK happened after the client accepted this
is allowed), whereas in the intermediate one it would not (since the client session
does have a partner, the PSK cannot be exposed at all). Essentially, the pur-
pose of the lower-layer protocol is to provide key-confirmation to the standalone
EAP protocol, which ensures that the client will always have a partner before it
accepts.

Besides the introduction of the three different corruption models, we only
provide a few other changes to the original 3P-AKE model of Bellare and Ro-
gaway [8]. For example, we support both asymmetric and symmetric long-term
keys, and dispense with the explicit SendS query to the trusted server (now
modeled simply as a regular Send query).

One thing we do keep from [8] however, is the concept of partner functions.
Interestingly, the use of partner functions has seen rather limited adoption when

6However, we do not consider ephemeral key leakage in this paper.

5



compared to partnering based on matching conversations [7] or abstract session
identifiers (SIDs) [6]. However, when modeling EAP, we are in the peculiar situ-
ation that the parties that we need to partner (the client and the authenticator)
do not have any messages in common! Naturally, this makes partnering based
on matching conversations more difficult, but it also severely limits our choice
of SIDs: we are essentially forced to pick their session keys as the SID. While
using the session key as the SID is reasonable in many settings (cf. [17]), it does
not guarantee public partnering (see [11]). This is important for modular com-
position proofs like our own. While partnering functions have been criticized
for being non-intuitive and hard to work with (even by Rogaway himself [27,
§6]), they generalize more naturally to the three-party setting than SIDs. Essen-
tially, this is because partner functions can take global transcript information
into consideration rather than only the local views of the two partners. In a
companion manuscript [10] we explore partner functions in more detail, showing
their soundness as a partnering tool for analyzing key exchange protocols.

After proving the two composition results in Section 3 for generic protocols,
we show how to apply them to EAP with and without upper-layer authentication
in Sections 4 and 5, respectively.

2 Formal models

2.1 A unified execution model

Protocol participants. An AKE protocol is carried out by a set of parties U ∈ P,
where U either takes on the role of initiator, responder or server, i.e., P is parti-
tioned into three disjoint sets I, R and S, consisting of the initiators, responders
and servers, respectively. In this paper we assume that all initiators and servers
are in possession of a long-term asymmetric key-pair (skU , pkU ), while all respon-
ders and servers share a symmetric pre-shared key K. For every party holding
a public key, we assume that the other parties have an authenticated copy of it.

Syntax. A protocol is a tuple Π = (KG, Σ) of probabilistic polynomial-time
algorithms, where KG specifies how long-term keys are generated for each party,
and Σ specifies how (honest) parties behave. Each party U ∈ P can take part in
multiple executions of the protocol, both concurrently and subsequently, called
a session. We use an administrative label πiU to refer to the ith session at user
U . This will sometimes also be simplified to π . Associated to each session πiU ,
there is a collection of variables that embodies the (local) state of πiU during the
protocol.

– skU , pkU – the long-term private/public key of party U ,
– peers – a list of the identities of the intended communication peers of πiU ,
– peerPK – a list of the public keys of the parties in πiU .peers,
– peerPSK – a list of the long-term PSKs shared between U and πiU .peers,
– #»α = (α1, . . . , αn) – a vector of accept states αi ∈ {running, accepted,

rejected},

6



ExpΠ,Q,A(λ):
1: for all U ∈ I ∪ S do
2: (skU , pkU )←$ KG(1λ)
3: for all (U, V ) ∈ R× S do
4: KUV = KV U←${0, 1}λ

5: pks← {(U, pkU ) | U ∈ I ∪ S}
6: out←$AQ(1λ, pks)

Fig. 2. Generic security experiment for a three-party protocol where all initiators and
servers are in possession of a public key, and all responders and servers share a sym-
metric PSK.

– k ∈ {0, 1}λ ∪ {⊥} – the symmetric session-key derived by πiU .

Only initiators and responders accepts sessions keys, i.e., if S ∈ S, then we
always have πiS .k = ⊥. Note that this is pure formalism; we certainly except
many protocols in which the trusted server might be in possession of the session
key—in fact, the trusted server might be the one that choses and distributes
it—we simply do no not associate it with the variable k.

Remark 1. We use a list of acceptance states #»α in order to model protocols
that are logically built out of sub-protocols. The individual acceptance states αi
provides a convenient way to signal to the adversary that a session has accepted
in some intermediate sub-protocol Πi of the full protocol Π. By convention, we
will let αn represent the running-state of the full protocol, and use αF

def= αn to
denote this state. Specifically, αF has the same role as the single running-state
variable α which is typically used by most other formal protocol models. Saying
that π is running, or that it has accepted or rejected, refers to the value of αF .

We require the following semantics of the variables #»α = (α1, . . . , αn) and k:

αi = accepted =⇒ αi−1 = accepted, (1)
αi = rejected =⇒ αi+1 = rejected, (2)
π.αn = accepted =⇒ π.k 6= ⊥ . (3)

By convention, whenever we set αi = rejected, we also automatically set αj =
rejected for all i < j, in accordance with (2). Moreover, we assume that the
session key π.k is set only once.

A unified security experiment. To define the security goals of both AKE and
ACCE protocols we use the unified experiment shown in Fig. 2. Experiment
ExpΠ,Q,A(λ) is parameterized on the protocol Π, a query set Q, and the adversary
A. While the query sets used to define AKE and ACCE security will be different,
they will both contain the following “base” query set Qbase:

7



– NewSession(U, [V,W ]): This query creates a new session πiU at party U ,
optionally specifying its intended communication peers V and W . The
state variables are initiated as follows: πiU .k = ⊥, πiU . #»α = {running, . . . ,
running}, if V and/or W are specified as U ’s peers, then πiU .peers = {V,W},
πiU .sk = skU , πiU .pk = pkU , π.peerPK = {pkV , pkW }7 and π.peerPSK =
{KUV ,KUW }.7 It is required that U , V and W all have different roles. Fi-
nally, if U ∈ I, then πiU also produces its first message m according to
specification of protocol Π. Both the administrative label πiU and m are
returned to A.

– Send(π,m): If π.αF 6= running, return ⊥. Otherwise, π creates a response
message m∗ according to the specification Σ. This depends on π ’s role and
current internal state. Both m∗ and π. #»α are returned to A.

– Reveal(πiU ): If π.αF 6= accepted or U ∈ S, return ⊥. Else, return πiU .k.
From this point on πiU is said to be revealed. Note that πiU is not considered
revealed if the Reveal query was made before π accepted.

– LongTermKeyReveal(U, [V ]): Depending on the second input parameter, this
query returns a certain long-term key of party U .
• LongTermKeyReveal(U): If U has an associated private-public key-pair

(skU , pkU ), return the private key skU .
• LongTermKeyReveal(U, V ): If U and V share a symmetric long-term key
KUV , return KUV .

After a long-term key is leaked we say that it is exposed and the correspond-
ing party corrupted.

Note that we are working in the post-specified peer model [13], meaning that
the identities of a session’s peers might not necessarily be known by the session
at the onset of the protocol, but are instead learned as the protocol progresses.

Protocol correctness. It is required that a protocol satisfies the following correct-
ness requirement. In an honest execution of the protocol between an initiator
πiA, a responder πjB and a trusted server πkS—meaning that all messages are
faithfully transmitted between them according the protocol description—then
all sessions end up accepting, and πiA and πjB both hold the same session key
k 6= ⊥.

Remark 2. Note that experiment ExpΠ,Q,A(λ) does not provide any output and
does not define any “winning condition” forA. Instead, it provides a single execu-
tion experiment on which we can define many different winning conditions. This
is convenient when we later want to define AKE-security and ACCE-security.

Transcripts and partner functions. Consider a run of experiment ExpΠ,Q,A(λ),
where Qbase ⊆ Q. Let T be the ordered transcript consisting of all the Send and
NewSession queries made by A, together with their responses. A transcript T is a
prefix of T ′, written T ⊆ T ′, if the first |T | entries of T ′ are identical to T . We let

7In case V or W does not hold a public key, or if U does not a share a PSK with
V or W , then these values are set to ⊥.

8



T denote the set of all possible transcripts generated from running experiment
ExpΠ,Q,A(λ). To define partnering in our security analysis we use the concept of
partner functions as introduced by Bellare and Rogaway [8].

Definition 1 (Partner functions). A partner function is a polynomial-time function
f : T × (P \ S)× N→ ((P \ S)× N) ∪ {⊥}, subject to the following requirement

f(T,U, i) = (V, j) =⇒ f(T ′, U, i) = (V, j) for all T ⊆ T ′. (4)

Instead of f(T,U, i) = (V, j), we also write fT (πiU ) = πjV , or even just
fT (π) = π ′ if the exact identities of the sessions are irrelevant.

Definition 2 (Partnering). Let f be a partner function. A session π ′ is a partner
to π if fT (π) = π ′.

Remark 3. Partnering is only defined between initiators and responders. Servers
are not considered partners to any session.

Partnering soundness. For a security analysis based on partner functions to be
meaningful, the partner function needs to satisfy certain soundness properties.
Briefly, soundness demands that partners should: (1) end up with the same
session key, (2) agree upon who they are talking to, (3) have compatible roles, and
(4) be unique. These requirements are essentially the same as those demanded
for SIDs through the “Match-security” notion introduced by Brzuska et al. [11].

Definition 3 (Partnering soundness predicate). Consider a run of experiment
ExpΠ,Q,A(λ), and let T be the corresponding transcript. Predicate Sound is true if and
only if the following holds for all T ′ ⊆ T . If sessions πiU and πjV have both accepted
and fT ′(πiU ) = πjV , then

1. πiU .k = πjV .k 6= ⊥,
2. πiU .peers = {V,W}, πjV .peers = {U,W}, and W ∈ S,
3. U ∈ I ∧ V ∈ R or U ∈ R ∧ V ∈ I,
4. there is no π ′ 6= πiU such that fT ′(π ′) = fT ′(πiU ).

We let ExpSound
Π,Q,A(λ)⇒ 1 denote the event that predicate Sound evaluated to true.

Remark 4. Note that predicate Sound depends on the partner function f .

Remark 5. The use of partner functions to analyze key exchange protocols is
rare in the literature. To the best of our knowledge, besides the original paper
by Bellare and Rogaway [8], it has only been used in one other paper by Shoup
and Rubin [29].

2.2 2P-AKE and 3P-AKE

Syntax. A 2P/3P-AKE protocol has the same syntax as the general protocol
defined in Section 2.1. Moreover, in our framework, there is no syntactical dif-
ference between a 2P-AKE protocol and a 3P-AKE protocol. However, in a 2P-
AKE protocol there is no trusted server session S ∈ S, and the session variables
π.peers, π.peerPK and π.peerPSK contain at most a single entry.

9



FreshAKE∗ (πiU ):

1: {V,W} ← πiU .peers
2: LTKeys← {skV , skW , KUV , KUW , KVW }
3: if πiU .αF = accepted
4: ∧πiU and fT (πiU ) not revealed
5: ∧ LTKeysLeaked∗ = false:
6: return true
7: else
8: return false

FreshACCE(πiU ):

1: {V,W} ← πiU .peers
2: LTKeys← {skV , skW , KUV , KUW , KVW }
3: if πiU .αF = accepted
4: ∧πiU and fT (πiU ) not revealed
5: ∧ LTKeysLeaked = false:
6: return true
7: else
8: return false

- LTKeysLeaked = true⇐⇒ fT (πiU ) = ⊥ ∧ a key in LTKeys were exposed before πiU accepted.
- LTKeysLeakedw = true⇐⇒ fT (πiU ) = ⊥ ∧ a key in LTKeys is exposed.
- LTKeysLeakedstatic = true⇐⇒ a key in LTKeys is exposed.

Fig. 3. Freshness predicates for security models AKE∗ ∈ {AKE,AKEw,AKEstatic} and
ACCE. The list LTKeys only contains actually existing long-term keys, e.g., if V is a
responder party, then there is no corresponding private key skV .

AKE security. Besides soundness, a secure AKE protocol is supposed to provide
secrecy of the distributed session keys. To capture this, the base query set Qbase
is extended with the following query.

– Test(πiU ): If πiU .αF 6= accepted or U ∈ S, return ⊥. Otherwise, draw a
random bit b, and return πiU ’s session key if b = 0, or a random key if b = 1.
We call πiU the test-session and the returned key the challenge-key. The Test
query can only be made once.

Let Q = Qbase ∪ {Test}. Experiment ExpΠ,Q,A(λ) stops when A outputs a
bit b′. The goal of the adversary is to correctly guess the secret bit b used to
answer the Test query. However, A is only given “credit” if the chosen test-session
was fresh. A session is fresh if the adversary did not learn its session by trivial
means, for example by revealing it or by impersonating its peers after having
obtained their long-term keys etc. Formally, in Fig. 3, we specify three freshness
predicates FreshAKE, FreshAKEw , and FreshAKEstatic , of various permissiveness with
respect to long-term key leakage. Each freshness predicate also give rise to a
corresponding security notion AKE, AKEw and AKEstatic.

The AKE model is our “partner function analogue” of the standard eCK
model (as defined in the updated version [21] of the original paper [22]), with
the main difference being that we do not consider leakage of ephemeral values. In
particular, the AKE model captures both key-compromise impersonation (KCI)
attacks and forward secrecy. KCI attacks are captured since the test-session’s
own long-term private key can always be exposed by the adversary. Forward
secrecy is captured since the adversary can, under certain conditions, learn the
long-term keys of the peers of the test-session too. Specifically, the forward se-
crecy guarantees provided by the AKE model are rather strong: if a session has
a partner, then the adversary is allowed to expose any long-term key it wants,

10



while if the session does not have a partner, then the adversary must wait un-
til after the session accepted before it can expose the relevant keys. Note that
partnering is used to model passiveness by the adversary in the test-session. In-
tuitively, even if the adversary knew all the long-term keys before the test-session
started, if the test-session ends up with a partner, then the adversary cannot
actually have exploited its knowledge of the keys.

Compared to the AKE model, the AKEw model is more restrictive with re-
spect to forward secrecy: if the test-session does not have partner, then the adver-
sary is disallowed from exposing any of the relevant long-term keys. The AKEw
model is similar to the two-pass variant of the eCK model (see [21, Def. 3]). As
mentioned in the introduction, standalone EAP does not achieve security in the
AKE model, but we will show that it is secure in the AKEw model.

Finally, the AKEstatic model targets protocols that do not provide any for-
ward secrecy, hence it disallows the adversary from exposing the long-term keys
altogether (of course, the adversary is allowed to expose long-term keys unrelated
to the test-session and its peers).

Definition 4 (Key-indistinguishability predicate). Suppose π was the test-
session chosen by A in a run of experiment ExpΠ,Q,A(λ), b was the random bit used in
answering the Test query, and suppose b′ was the final output of A. Define predicate
AKE∗ ∈ {AKE,AKEw,AKEstatic} as follows:

AKE∗ def=
{
b = b′, if Fresh∗AKE(π) = true

true with probability 1/2, if Fresh∗AKE(π) = false.
(5)

Let ExpAKE∗
Π,Q,A(λ)⇒ 1 denote the event that AKE∗ evaluated to true.

Definition 5 (AKE security). A protocol Π is AKE∗-secure, if there exists a part-
nering function f , such that for all PPT adversaries A,

– AdvSound
Π,A,f (λ) def= 1− Pr[ExpSound

Π,QA(λ)⇒ 1] is negligible in security parameter λ, and
– AdvAKE∗

Π,A,f (λ) def= |2 · Pr[ExpAKE∗
Π,Q,A(λ)⇒ 1]− 1| is negligible in security parameter λ,

where AKE∗ ∈ {AKE,AKEw,AKEstatic}.

2.3 (2P)-ACCE

Syntax. A (2P)-ACCE protocol is a two-party protocol as defined in Section 2.1,
together with an associated stateful authenticated encryption scheme (stAE)
stE = (st.Gen, stE.Init, stE.Enc, stE.Dec) (following [20] 8). Intuitively, an ACCE
protocol is an amalgamation of an ordinary 2P-AKE protocol and a secure chan-
nel based on symmetric keys, where the session keys of the 2P-AKE protocol are
used to key the secure channel.

Correctness of the stAE scheme demands that if the deterministic algorithm
st.Init produced initial states st0E , st0D; and the ACCE session key k was used to

8For simplicity, we omit the properties of length-hiding and associated data in our
treatment of ACCE. This omission is immaterial for the results established in this
paper.

11



Encrypt(π,m0,m1):
1: if π.αF 6= accepted ∨ |m0| 6= |m1|:
2: return ⊥
3: u← u+ 1
4: (C0, st0E)← stE.Enc(k,m0, stE)
5: (C1, st1E)← stE.Enc(k,m1, stE)
6: ( #»

C [u], stE)← (Cb, H, stbE)
7: return #»

C [u]

Decrypt(π,C):
1: if π.αF 6= accepted:
2: return ⊥
3: π ′ ← fT (π)
4: v ← v + 1;
5: (m, stD)← stE.Dec(k, C, stD)
6: if π ′ = ⊥ ∨ v > π ′.u ∨ C 6= π ′.

#»
C [v]:

7: in-sync← false
8: if in-sync = false:
9: return m

10: return ⊥

Fig. 4. The Encrypt and Decrypt queries for the ACCE security experiments. The vari-
ables k, b, stE, stD,

#»
C, u, v and in-sync all belong to the internal state of π . At the

creation of every session π , a bit b is drawn uniformly at random from {0, 1}, stE and
stD and are initialized by stE.Gen, the list #»

C is initialized to ∅, the counters u and v
are set to 0, and in-sync is set to true.

produce a sequence of ciphertext/state pairs (Ci, sti+1
E ) ← stE.Enc(k,mi, st

i
E)

such that Ci 6= ⊥ for all i ≥ 0; then one must have, for all i ≥ 0, that m′i = mi

in the sequence of decryptions (m′i, sti+1
D )← stE.Dec(k,Ci, stiD).

ACCE security. To define security of an ACCE protocol, we extend the base
query set Qbase with two additional queries, Encrypt and Decrypt, that allow
the adversary to interact with the channels established in the protocol. The two
queries are specified in Fig. 4.

Let Q = Qbase ∪ {Encrypt,Decrypt}. Experiment ExpΠ,Q,A(λ) stops when A
outputs a pair (π, b′), consisting of a session π and a bit b′. The goal of the
adversary, formally captured in the following predicate, is to break either the
confidentiality or integrity of one of the channels established by a fresh session.

Definition 6 (ACCE predicates). Consider a run of experiment ExpΠ,Q,A(λ), and
let T be the corresponding transcript. Suppose (π, b′) was the final output by A.

– Predicate ACCE-int is true if and only if, sometime during ExpΠ,Q,A(λ), A made
a Decrypt query that output something other than ⊥ for a fresh session π.

– Predicate ACCE-priv is defined as follows:

ACCE-priv def=
{
π.b = b′, if Fresh(π) = true

true with probability 1/2, if Fresh(π) = false.
(6)

Let ExpACCE-int
Π,Q,A (λ)⇒ 1 (resp. ExpACCE-priv

Π,Q,A (λ)⇒ 1 ) denote the event that ACCE-int (resp.
ACCE-priv) evaluated to true.

Definition 7 (ACCE security). A protocol Π is ACCE-secure, if there exists a part-
nering function f , such that for all PPT adversaries A, the following are all negligible
in the security parameter λ,

– AdvSound
Π,A,f (λ) def= Pr[ExpSound

Π,Q,A(λ)⇒ 1],
– AdvACCE-int

Π,A,f (λ) def= Pr[ExpACCE-int
Π,Q,A (λ)⇒ 1],

– AdvACCE-priv
Π,A,f (λ) def= |2 · Pr[ExpACCE-priv

Π,Q,A (λ)⇒ 1]− 1|.

12



Remark 6. Our definition of ACCE security is slightly different from the stan-
dard one introduced by Jager et al. [16]. Specifically, in the standard formulation
of ACCE, the Decrypt oracle is conditional, meaning that if π.b = 0, then Decrypt
always returns ⊥ irregardless of whether the supplied ciphertext was a valid
forgery or not. This is done in order to encode both the channel privacy and the
channel integrity goal as a single distinguishing game. However, this makes proofs
relying on ACCE security more cumbersome since the Decrypt query does not
actually provide a proper decryption oracle. By casting ACCE channel security
as two separate security goals, the Decrypt query becomes a proper decryption
oracle. In the full version we prove that our definition of ACCE is equivalent
with the standard one.

2.4 Explicit entity authentication

Explicit entity authentication is frequently considered one of the required secu-
rity properties of a protocol. However, in this paper we will only prove/assume
it for some protocols, because some of the protocols we consider simply cannot
achieve it. The need for AKE protocols to provide explicit entity authentication
has actually been somewhat disputed in the literature (see e.g. [8, §1.6], [27, §6]
or [19, §1.2]). On the other hand, explicit entity authentication has always been
part of the requirements of ACCE security [16,20,18]. Since the definition of en-
tity authentication is formulated identically for both AKE and ACCE protocols,
we give a merged definition here. Let QAKE denote the query set of the AKE
experiment, and let QACCE denote the query set of the ACCE experiment.

Definition 8 (Entity authentication predicate). Let T be the transcript of exper-
iment ExpΠ,A,QX

(λ). Predicate Auth is true if and only if the following holds for all
T ′ ⊆ T . For all fresh sessions π in T ′:

π.α = accepted =⇒ ∃π ′ such that fT ′(π) = π ′. (7)

Let ExpX-Auth
Π,QX,A(λ)⇒ 1 denote the event that Auth is true, where X ∈ {AKE,ACCE}.

Definition 9 (Explicit entity authentication). A protocol Π provides explicit en-
tity authentication if there exists partner function f , such that for all PPT adversaries
A, it holds that

1. Π is X-secure, and
2. AdvX-EA

Π,A,Q(λ) def= 1− Pr[ExpX-Auth
Π,A,f (λ)⇒ 1] is negligible in security parameter λ,

where X ∈ {AKE,AKEw,AKEstatic,ACCE}.

Remark 7. Note that the explicit entity authentication of an AKE (resp. ACCE)
scheme needs to hold with the same partner function as used to prove its AKE
(resp. ACCE) security.

13



A B S

A, B, Π1 (2P-AKE)

Π2 (2P-ACCE)

Ckey-message

Π4 (2P-AKEstatic)

kAS , kAB

α3 = accepted
kAS , kAB

α1 = accepted

α2 = accepted

A, kAB

α3 = accepted

α2 = accepted

A, kAB

α3 = accepted

α4 = α5 = accepted α4 = α5 = accepted

Π3

(3P-AKEw)Π5

(3P-AKE)

kAB ← PRF(kAS , A,B)

Fig. 5. (Right) Construction of a 3P-AKEw-secure protocol Π3, using as building
blocks a 2P-AKE-secure protocol Π1, an ACCE-secure protocol Π2, and a pseudo-
random function PRF. (Left) Construction of a 3P-AKE secure protocol Π5, using as
building blocks a 3P-AKEw secure protocol Π3 and a 2P-AKEstatic-secure protocol Π4.

3 Generic composition results

In this section we prove two composition theorems for two fairly generic con-
structions of 3P-AKE protocols. The first construction, shown as protocol Π3
in Fig. 5, resembles the standalone EAP. It uses as building blocks any secure
2P-AKE protocol (in the strongest AKE model), any secure 2P-ACCE proto-
col, and a pseudorandom function for channel binding. The second construction,
shown as protocol Π5 in Fig. 5, resembles the EAP combined with a subsequent
key-confirmation step, modeled here as a 2P-AKE protocol secure in the weakest
AKEstatic model. We emphasize that the 3P-AKE protocol used as the underly-
ing building block by protocol Π5, does not necessarily have to be based on the
Π3 construction. Any 3P-AKE protocol secure according to the AKEw model
works. In Section 4 and Section 5, we will see how these generic constructions
can be instantiated with EAP and IEEE 802.11 with upper-layer authentication,
respectively.

3.1 2P-AKE + 2P-ACCE + channel binding =⇒ 3P-AKEw

Construction. From a 2P-AKE protocol Π1 (based on public keys), a 2P-ACCE
protocol Π2 (based on pre-shared symmetric keys), and a pseudorandom function
PRF, we construct the 3P-AKE protocol Π3 shown in Fig. 5. Specifically, protocol
Π3 works as follows. First, sub-protocol Π1 is run between the initiator A and
the trusted server S to derive an intermediate key kAS . A also communicates
the identities A and B to S, where B is the identity of responder that A wants
to talk to. Note that A knows both S and B at the beginning of the protocol
whereas S learns about B from the identities communicated by A. Technically,
this means that a session at A needs to be initialized with the identities of S
and B (setting the peers variable accordingly), while a session at S will update
its peers variable to include B after receiving this identity from A.

14



From kAS , both A and S derive the key kAB ← PRF(kAS , A,B). This key
will be the ultimate session key shared between A and B in protocol Π3. In order
for S to transfer kAB to B they establish a secure channel using sub-protocol Π2.
Once established, S sends the session key kAB over the channel to B. Alongside
kAB , the server S also sends the identity of A to B (causing the receiving B to
update its peers variable). For simplicity, we assume that the transfer of A and
kAB is done using a single channel message, which we call the Ckey message.
Note that the initiator A accepts in protocol Π3 when it has derived kAB , while
the responder B accepts once it has received—and properly decrypted—the Ckey
message, finally obtaining kAB .

Result. Our first composition result shows that protocol Π3 is 3P-AKEw-secure
if sub-protocol Π1 is 2P-AKE-secure, sub-protocol Π2 is 2P-ACCE-secure, and
PRF is a pseudorandom function. Note that since Π3 does not provide explicit
entity authentication—in fact, no initiator session A will have a partner at the
time it accepts—it cannot achieve security in the strongest AKE model due to
the attack mentioned for standalone EAP in the introduction.

Roughly, the proof of the first composition theorem works as follows. The 2P-
AKE-security of sub-protocol Π1 allows us to swap out the intermediate keys
kAS with random ones. The PRF-security of the function PRF then allows us
to replace the derived session keys kAB with random ones. Finally, the ACCE
channel-privacy of sub-protocol Π2 ensures that the adversary learns nothing
about the session keys transfered in the Ckey messages.

However, in order to make our proof work, we have to make one technical
assumption on the partner function of sub-protocol Π2. Namely, we have to
assume that it is symmetric, meaning that f2(π) = π ′ implies f2(π ′) = π . Note
that this requirement is straightforwardly met by partner functions based on
SIDs.

Theorem 1. Let Π3 be the protocol described in Section 3.1. If protocol Π1 is 2P-AKE-
secure, Π2 is ACCE-secure using a symmetric partner function, and PRF is a secure
PRF, then there exists a partner function f3, such that protocol Π3 is 3P-AKEw-secure.

Concretely, if Π1 is AKE-secure with the partner function f1, and Π2 is ACCE-
secure with the symmetric partner function f2, then we can create a partner function f3,
and adversaries B1, . . . ,B4 and D, such that

Adv3P-AKEw
Π3,A,f3 (λ) ≤ AdvACCE-EA

Π2,B1,f2 (λ) + AdvACCE-int
Π2,B2,f2 (λ)

+ (nπ + 1)2 · |I ∪ R|2 ·
(

AdvACCE-priv
Π2,B3,f2

(λ) + Adv2P-AKE
Π1,B4,f1 (λ) + AdvPRF

PRF,D(λ)
)
,

(8)

where nπ is an upper bound on the number of sessions at each party.

Proof. We begin by defining the partner function f3 using the partner functions
for sub-protocols Π1 and Π2.

15



Defining the partner function for Π3. Intuitively, f3 is constructed by “compos-
ing” the two partner functions f1 and f2 assumed to exist for sub-protocols Π1
and Π2. For example, if πiA is an initiator session, then f3(πiA) = πjB if there
exists a trusted server session πkS , such that f1(πiA) = πkS and f2(πkS) = πjB ,
That is, πjB is πiA’s f3-partner if there exists a server session πkS that acts as the
connection between them in the two sub-protocols Π1 and Π2.9

More detailed, when πiA is an initiator session having intended peers B (re-
sponder) and S (server), then:
– f3,T3(πiA) = πjB if,

1. f1,T1(πiA) = πkS and f2,T2(πkS) = πjB ,
2. πjB .peers = {A,S},
3. πkS .peers = {A,B} (in particular, this means that πkS received the same

identities that πiA sent on the A-S link Fig. 5),
– f3,T3(πiA) = ⊥, otherwise.

When πjB is a responder session having intended peers A and S, then f3 is defined
similarly by “reversing” the order of f1 and f2:

– f3,T3(πjB) = πiA if,
1. f2,T2(πjB) = πkS and f1,T1(πkS) = πiA;
2. πiA.peers = {B,S},
3. πkS .peers = {A,B},

– f3,T3(πjB) = ⊥, otherwise.

Soundness. The soundness of f3 follows from the soundness of f1 and f2, the
ACCE-security of protocol Π2 (specifically, its channel integrity), together with
the fact that PRF is deterministic. The proof is given in the full version.

AKEw-security. The proof of AKEw-security of protocol Π3 is structured as a
sequence of games. In the following, when we say that a certain game aborts, we
mean that the challenger stops the execution of the experiment and outputs a
random bit on A’s behalf.

Game 0: This is the real 3P-AKEw security game, hence

AdvG0
Π3,A,f3

(λ) = Adv3P-AKEw
Π3,A,f3

(λ) .

Game 1: This game proceeds as the previous one, but aborts if a fresh responder
or trusted server session accepts maliciously in sub-protocol Π2, meaning that it
accepted without a partner in Π2 according to f2.

Lemma 1. AdvG0
Π3,A,f3

(λ) ≤ AdvG1
Π3,A,f3

(λ) + AdvACCE-EA
Π2,B1,f2

(λ).
9Technically, to make this formally precise, one needs to extract from the 3P-AKE

transcript T two transcripts T1 and T2, containing the queries pertaining to the two-
party sub-protocols Π1 and Π2, respectively, so that running f1 and f2 on them is
well-defined. The details are provided in the full paper.

16



Proof (sketch). Reduction B1 begins by creating all the long-term keys for sub-
protocol Π1 and selecting a random bit b. Essentially, B1 will simulate the Π1
part of Π3 itself, while forwarding all messages pertaining to Π2 to its 2P-ACCE
challenger. In particular, B1 creates all the intermediate keys kAS itself, and
from them derive the session keys kAB . In order to create the Ckey message of
some trusted server session π , B1 issues an Encrypt(π, kAB , kAB) query to its
own ACCE experiment. Moreover, when A issues a Test query, then depending
on bit b, B1 returns the real session key or a random key. When A terminates,
then B1 terminates too (in this case no malicious accept has occurred).

To analyze B1’s winning probability, we only have to observe that B1 provides
a perfect simulation of Π3 for A. This means that if a malicious accept occurs in
sub-protocol Π2, then a malicious accept also occurs in B1’s ACCE experiment.

ut

Remark 8. Note that the abort condition in Game 1 does not mean that every
session in protocol Π3 will have a partner (according to f3). In fact, all the
initiator sessions in protocol Π3 will accept without a partner.

Game 2: This game proceeds as the previous one, but it aborts if a fresh re-
sponder session accepts on receiving a Ckey message that was not legitimately
produced by its partner in Π2.

Lemma 2. AdvG1
Π3,A,f3

(λ) ≤ AdvG2
Π3,A,f3

(λ) + AdvACCE-int
Π2,B2,f2

(λ).

Proof (sketch). B2 works exactly like algorithm B1 in the previous proof, but it
also simulates the abort on malicious accept. This simulation is possible because
the partnering function f2 is based on the public transcript T2. It only remains
to argue that the new abort event of Game 2 implies a forgery in B2’s ACCE
experiment. This amounts to showing that if a session in Π3 is fresh according to
FreshAKEw , then the corresponding session in Π2 is fresh according to FreshACCE.
But this is true because the FreshAKEw predicate is more restrictive than the
FreshACCE predicate. ut

Game 3: In this game the challenger tries to guess the test-session chosen by A,
together with its eventual partner (if any). If the guess is wrong, or if A violates
the freshness of the guessed test-session, the challenger aborts with a random
output. Technically, the challenger proceeds as follows.

For m ≤ n, let [m,n] def= {m,m + 1, . . . n}. First, the challenger randomly
guesses the test-session (U, i)←$ (I ∪ R)× [1, nπ ], where nπ is an upper bound
on the number of sessions at each party. Then, depending on the role of U , the
challenger either guess (V, j)←$ I×[0, nπ ] or (V, j)←$R×[0, nπ ] as the expected
partner of (U, i), where a pick of j = 0 means that (U, i) is not expected to get
any partner session at its peer V . Finally, the challenger aborts by outputting a
random bit if either of the following bad event occurs:

(i) (U, i) was not selected as the test-session by A.
(ii) (U, i) was guessed to be without a partner, but gets one.

17



(iii) (U, i) was guessed to have a partner, but either gets none or someone different
from (V, j).

(iv) A makes a Reveal or Corrupt query that would make (U, i) unfresh.

Lemma 3.

AdvG2
Π3,A,f3

(λ) ≤ (nπ + 1)2 · |I ∪ R|2 · AdvG3
Π3,A,f3

(λ). (9)

Proof. The occurrence of the bad events is independent from A’s view up to the
moment of where the bad event occurs. When none of the bad events occurs, then
A’s success probability is the same in G2 and G3, and the challenger guesses the
right (pair of) session(s) with probability at least 1/

(
(nπ + 1) · |I ∪ R|

)2. And
if a bad event occurs, then A wins G3 with probability at least 1/2. ut

In the remaining games, let π∗ = πiU denote the guessed test-session, and
let π ′ = πjV denote its expected partner. Define the co-partner of π∗ to be the
trusted server session being involved in the protocol run between π∗ and π ′.
Specifically, if π∗ is an initiator, then its co-partner is defined to be f1,T1(π∗);
while if π∗ is a responder, then its co-partner is defined to be f2,T2(π∗).

Game 4: This game proceeds as the previous one, except that it swaps out the
intermediate key kAS derived in sub-protocol Π1 with a random key for the
guessed initiator session (either π∗ or π ′) and its co-partner (if any).

Lemma 4. AdvG3
Π3,A,f3

(λ) ≤ AdvG4
Π3,A,f3

(λ) + Adv2P-AKE
Π1,B3,f1

(λ) .

Proof (sketch). Reduction B3 begins by drawing a random bit b and creates all
the long-term PSKs for sub-protocol Π2. It also guesses the sessions π∗ and
π ′ as in Game 3. B3 then runs A and forwards all of its queries pertaining
to sub-protocol Π1 to its own AKE experiment, while all queries pertaining
to sub-protocol Π2 reduction B3 answers itself using the PSKs it created. It
also implements all the abort conditions of the previous games. To answer A’s
Test(π∗) query, B3 does the following. If b = 1 then it responds with a random
key as normal. If b = 0 and π∗ is an initiator session, then B3 forwards A’s
Test(π∗) query to its own AKE game to obtain π∗’s intermediate key kAS in sub-
protocol Π1. B3 then uses kAS to derive the session key kAB which it returns to
A. If b = 0 and π∗ is a responder session, then by our abort conditions, π∗ must
have a co-partner πkS by Game 1. To obtain the intermediate key kAS needed to
derive kAB , B3 queries Test(πkS) to its own AKE experiment and returns kAB to
A. When A outputs its guess b′, then B3 stops and outputs 0 if b = b′, and 1
otherwise.

Note that if the test-query in B3’s own AKE experiment returns real keys
kAS , then B4 perfectly simulates Game 3, while if it returns random keys then B3
simulates Game 4. However, we still need to argue that the test-session chosen
in B3’s experiment is fresh. If π∗ is an initiator session then B3 also uses π∗ as
the test-session in its own AKE experiment, hence it is fresh since the predicate
FreshAKEw is more restrictive than FreshAKE. If π∗ is a responder session, then

18



the test-session chosen by B3 is π∗’s co-partner πkS , so we need to argue that πkS
is fresh in B3’s AKE experiment. There are two cases to consider: either π∗ has
an f3-partner or it does not. If π∗ does have a partner (which by Game 3 must
be π ′), then A cannot have made any Reveal(π ′) queries since this would violate
the AKEw-freshness of π∗. Moreover, since f3 is constructed from f1 and f2, π ′
must be πkS ’s f1-partner. Thus, B3 is also allowed to forward any Corrupt query
to either A or S without violating the freshness of πkS according to FreshAKE. If
π∗ does not have an f3-partner, then A cannot have made any Corrupt query
to A or S (since this would violate AKEw-freshness), and thus neither has B3.
Moreover, if π∗ does not have an f3-partner then in particular its co-partner πkS
cannot have an f1-partner. Thus, B3 can safely forward all of A’s Reveal queries
without violating the AKE-freshness of πkS . ut

Game 5: This game proceeds as the previous one, except that when deriving
the session key kAB for the guessed initiator session (either π∗ or π ′) and its
co-partner (if it exists), the challenger uses a random function $(·, ·) rather than
PRF(kAS , ·, ·).

Lemma 5. AdvG4
Π3,A,f3

(λ) ≤ AdvG5
Π3,A,f3

(λ) + AdvPRF
PRF(D).

Proof. Algorithm D has access to an oracle O which either implements the func-
tion PRF(k̃, ·, ·) with an independent and uniformly distributed key k̃, or a ran-
dom function $(·, ·). D begins by drawing a random bit b and creates all the
long-term keys for sub-protocols Π1 and Π2. Next, it runs A and answers all
its queries according to Game 4 by using the keys it created, except that it an-
swers A’s Test(π∗) query as follows. If b = 1, then D returns a random key. If
b = 1, then D answers as follows. If π∗ is an initiator session, then D answers
with O(U, V ) (recall that π∗ = πiU and π ′ = πjV ). If π∗ is a responder session,
then D answers with O(V ′, U ′), where V ′ and U ′ were the identities that the
co-partner of π∗ received over the initiator-server link in Fig. 5 (recall that if π∗
is a responder session it is guaranteed to have a co-partner by Game 1). When
A outputs its guess b′, then D stops and outputs 0 if b = b′, and 1 otherwise.

When D’s oracle O implements PRF, then D perfectly simulates Game 4,
while if O implements a random function $(·, ·), then D perfectly simulates
Game 5. Thus, the advantage difference of A winning in Game 4 and Game 5
corresponds exactly to the probability difference that D outputs 1 when inter-
acting with PRF or a random function $(·, ·) as its oracle O. ut

Note that by the change in Game 5, the session key of π∗ and π ′ is derived
using a random function rather then the pseudorandom function PRF. In the
following, let k̃AB denote the session key derived in this manner at the co-partner
of π∗ (if it exists).

Game 6: This game proceeds as the previous one, but when creating the Ckey
message of the co-partner of π∗, the challenger encrypts the “dummy” string 0λ

instead of the session key k̃AB . If this Ckey message is eventually delivered to

19



the intended responder session (either π∗ or π ′), then its session key is still set
to k̃AB however.

Lemma 6. AdvG5
Π3,A,f3

(λ) ≤ AdvG6
Π3,A,f3

(λ) + AdvACCE-priv
Π2,B4,f2

(λ).

Proof (sketch). Reduction B4 begins by drawing a random bit band creates all
the long-term keys for sub-protocol Π1. It also guesses the sessions π∗ and π ′ as
in Game 3, and implements all of the abort conditions introduced so far. All of
A’s queries pertaining to sub-protocol Π1 B4 answers itself using the long-term
keys it created, while queries pertaining to sub-protocol Π2 B4 forwards to its
own ACCE experiment. In particular, B4 creates the Ckey message of a server
session πkS as follows.

If πkS is not the co-partner of the test-session π∗, then B4 makes the query
Encrypt(πkS , A‖kAB , A‖kAB) to its ACCE experiment, where “A” is the identity
of the initiator that π received on the A-S link in Fig. 5, and kAB is the session
key B4 derived from π ’s intermediate key kAS in sub-protocol Π1. The returned
ciphertext is used as the Ckey message of πkS . If π is the co-partner of π∗, then
B4 instead makes the query Encrypt(πkS , A‖kAB , A‖0λ) to create Ckey.

Finally, when A outputs its guess b′, then B4 outputs the following to its
ACCE experiment. If the test-session π∗ has a co-partner πkS , then B4 outputs
(πkS , 0) if b = b′ and (πkS , 1) otherwise. If the test-session does not have a co-
partner, then B4 simply outputs an arbitrary session together with a random
bit.

Note that if the test-session does not have a co-partner then there is no
difference between Game 5 and Game 6, and B4 perfectly simulates it. If the
test-session has a co-partner πkS , and πkS .b = 0 in B4’s ACCE experiment, then
B4 perfectly simulates Game 5 (since the Ckey message of πkS is an encryption
of the actual session key kAB). On the other hand, if πkS .b = 1 then B4 perfectly
simulates Game 6 (since the Ckey message of πkS is an encryption of 0λ). What
remains to show that πkS is fresh in B4’s ACCE experiment, i.e., that πkS is fresh
according to predicate FreshACCE.

Suppose first that the test-session π∗ is a responder. This is where we will use
the assumption that the partner function f2 for sub-protocol Π2 is symmetric.
By Game 1 π∗ has a co-partner f2(π∗) = πkS , and by the symmetry of f2 we also
have f2(πkS) = π∗. It follows that πkS is fresh according to FreshACCE (note that
since B4 makes no Reveal query to πkS in its ACCE experiment, we only have to
consider the exposure of its PSK).

Now suppose the test-session is an initiator. There are two cases to consider:
either π∗ has an f3-partner or it does not have an f3-partner. If π∗ has an f3-
partner π ′, then by the construction of f3 from f1 and f2, we have in particular
that f2(πkS) = π ′. Again, this implies that πkS is fresh according to FreshACCE.
Conversely, if π∗ does not have an f3-partner, then none of the long-term keys
and PSKs of its peers can be exposed if π∗ is to be fresh according to FreshAKEw .
In particular, this means that the long-term PSK of πkS must be unexposed.
Thus, πkS is fresh according to FreshACCE (this is regardless of whether it has an
f2-partner or not). ut

20



Concluding the proof of Theorem 1. We argue that AdvG6
Π3,A,f3

(λ) = 0. By the
change in Game 5, the session key of the test-session π∗ is derived using a
random function $(A,B), where “A” and “B” are the identities of the initiator
and responder that π∗ believes took part in this protocol run. We claim that the
only other session that holds a session key derived from $(·, ·) using the same
identities “A” and “B”, is π∗’s partner π ′ (if it exists).

First, note that the random function is evaluated for at most two sessions:
one initiator session and one server session. Second, the session key derived by
the server session is delivered to at most one responder session. Finally, the
identities used to evaluate $(·, ·) at the initiator and server might be different
since the adversary can modify the communicated identities at the A-S link in
Fig. 5.

However, if the adversary modifies these identities, then the initiator and
server derive independent keys, which ultimately means that the initiator and
responder will have independent keys too. Moreover, the initiator and responder
sessions will not be partners since the communicated identities at the S-B link
in Fig. 5 will be different too (recall that f3-partnering includes the sessions’
recorded peers, and by Game 2 the adversary is unable to change the Ckey
message). On the other hand, if the identities were the same, then the initiator
and responder session would necessarily be f3-partners. This follows because the
initiator has the server session as its co-partner (in sub-protocol Π1), and the
server session’s Ckey message is only delivered to its co-partner (in sub-protocol
Π2). Combined with their agreement on their peers, this means that they would
be partners by the definition of f3.

Altogether, since the session key of the test-session is derived using an in-
dependent random function, and since the corresponding Ckey message leaks
nothing about the session key by Game 6, the adversary has zero advantage in
Game 6 as claimed. Combining all the lemmas yields the theorem. ut

Note that the conclusion above only holds because of the channel binding.
In particular, if the identities of A and B did not go into to the evaluation of
the pseudorandom function PRF, then Π3 would be vulnerable to a simple UKS
attack: just change the responder identity sent over the (unauthenticated) A-S
link from B to B′. Without channel binding, A and B′ obtain the same session
key but disagree on their intended peers.

3.2 3P-AKEw + 2P-AKE =⇒ 3P-AKE

Construction. From a 3P-AKE protocol Π3 and a 2P-AKE protocol Π4, we
construct the 3P-AKE protocol Π5 shown in Fig. 5. Specifically, protocol Π5
works as follows. First, sub-protocol Π3 is run between A, B and S in order
to establish an intermediate “session key” KΠ3 . Then, sub-protocol Π4 is run
between A and B using KΠ3 as the their shared “long-term key”. The session
key derived in Π4 becomes A and B’s final session key in Π5.

21



Result. Our second composition result shows that protocol Π5 is 3P-AKE-secure
if sub-protocol Π3 is 3P-AKEw-secure and sub-protocol Π4 is 2P-AKEstatic-secure
with explicit entity authentication. We remark that the last requirement is nec-
essary in order for our proof to go through. In fact, Π5 inherits the property of
explicit entity authentication from sub-protocol Π4. On the other hand, while
Π4 does not achieve forward secrecy on its own, protocol Π5 does. The reason
is that within Π5, sub-protocol Π4 is merely used to upgrade the security of Π3,
which does provide forward secrecy (albeit limited).
Theorem 2. Let Π5 be the protocol described in Section 3.2. If protocol Π3 is 3P-
AKEw-secure and protocol Π4 is 2P-AKEstatic-secure with explicit entity authentication,
then there exists a partner function f5 such that protocol Π5 is 3P-AKE-secure.

Concretely, for partner functions f3 and f4, we can create a partner function f5,
and adversaries B1, B2 and B3, such that

Adv3P-AKE
Π5,A,f5 (λ) ≤ (nπ + 1)2 · |I ∪ R|2 ·

(
2 · Adv3P-AKEw

Π3,B1,f3 (λ) + Adv2P-AKEstatic
Π4,B2,f4 (λ)

)
+ (nπ + 1)2 · |I ∪ R|2 · Adv2P-AKEstatic-EA

Π4,B3,f4 (λ)
(10)

where nπ is an upper bound on the number of sessions at each party.

The proof of Theorem 2 is very similar to that of Theorem 1 and is provided
in the full version.

4 Security of EAP

4.1 EAP with channel binding
In this section we explore the security guarantees provided by EAP. As men-
tioned in the introduction, there is no single definitive version of EAP which we
can use for this purpose, because the specification itself (RFC 3748 [4]) leaves
many of its components undefined. Thus, any analysis of EAP will have to make
assumptions on these components.

In Theorem 1, let us identify sub-protocol Π1 with the EAP method run be-
tween the client and the trusted server. Let sub-protocol Π2 be the key-transport
protocol run between the server and the authenticator. Finally, suppose that
EAP employs the channel binding mechanism defined in [25]. Then we immedi-
ately get the following result for EAP.
Theorem 3 (3P-AKEw security of EAP). If the chosen EAP method used within
EAP is 2P-AKE-secure, the key-transport protocol is 2P-ACCE-secure, and the em-
ployed key derivation function is a secure PRF that provides channel binding on the
client’s and authenticator’s identities, then EAP is 3P-AKEw-secure.

To be even more concrete, we can also instantiate sub-protocols Π1 and Π2
with some actual protocols. For example, Brzuska et al. [12] recently showed
that the EAP-TLS method constitutes a secure 2P-AKE protocol, thus sat-
isfying the requirements on sub-protocol Π1. For sub-protocol Π2 we take
RADIUS-over-TLS [30], which then reduces to the security of TLS. Multiple pa-
pers [16,20,18,23,9] have shown TLS to be a secure 2P-ACCE protocol. Hence,
RADIUS-over-TLS fulfills the requirement on sub-protocol Π2.

22



4.2 Channel-binding scope

In Theorem 1, and 3, we assumed that the channel binding mechanism included
the identity of the client and the authenticator in order to bind the identities
cryptographically to the session key. Implicitly, this also assumes that all iden-
tities are globally unique and belong to the same namespace. This is a standard
assumption when doing cryptographic modeling. However, in reality, the various
links in EAP take place over different types of communication media with dif-
ferent types of identities and addressing schemes. For instance, in IEEE 802.11
with upper-layer authentication, the communication between the client and the
access point is based on link-layer addresses, the communication between the
client and the server is typically based on usernames (client) and domain names
(server), while the communication between the server and the access point might
be based solely on IP addresses. Mapping between these identifiers is not always
straightforward (see [15]). In fact, some of the identifiers might not even be
available to all the protocol participants. Specifically, since the communication
between the client and the access point happens at the link-layer, the IP ad-
dresses used by the access point towards the server might not be available to the
client unless the access point broadcasts it. In practice, most link-layer protocols
have facilities for providing this kind of information to the client10, but there is
no guarantee that the authenticator will actually provide it.

Moreover, in some settings this information may not even be relevant. For
example, in a WLAN supported by many access points, the client might not
care about which specific access point it connects to, as long as it connects to a
legitimate access point of that WLAN. Thus, in this case the granularity of the
channel-binding should not be at the individual access point level, but rather at
the WLAN level, defined by all the access points broadcasting the same network
identifier (SSID). However, in this case the security guarantees provided by the
channel-binding will be weaker. Specifically, when channel-binding occurs at the
individual level, then the corruption of a single access point will not influence
clients connecting to access points having a different identity. On the other hand,
when channel-binding occurs at the network level, then a single corrupted access
point will affect all connections within that network. In this case, the channel
binding only protects connections occurring in networks having a different SSID.

More generally, the information included in the channel-binding defines the
scope of the protection it provides, and can include more than just identities. For
instance, physical media types, data rates, cost-information, channel frequencies,
etc., can all be used as input to the channel-binding. The specifications for
channel-binding within EAP [25,14] leaves open exactly the kind of information
that should go into the binding, because the amount of information that will be
available to both the client and the server can vary.

10For instance, the Identity type field in EAP Request messages are often “piggy-
backed” by layer 2 protocols (like EAPOL/802.1X [1]) to include this information.

23



4.3 EAP without channel binding

Without channel binding, it suffices to compromise a single access point in order
to compromise an entire network. As access points are typically not highly pro-
tected devices, this is a substantial attack vector on enterprise networks. Even if
the channel binding only included the network name, it would clearly be an up-
grade over EAP without channel binding, and comes at essentially no cost. The
situation in the AKA protocol used in the UMTS and LTE mobile networks is
similar. The AKA protocol is similarly structured as the EAP protocol11, where
a mobile client that wants to connect to a base station first has to authenticate
to its home operator. So-called authentication vectors, which in particular in-
cludes a session key, are then forwarded from the operator to the base station in
much the same way as the server forwards the session key to the authenticator
in EAP. Moreover, similar to many EAP methods, the AKA protocol too lacks
channel-binding for its authentication vectors. In their recent analysis of the
AKA protocol, Alt et al. [5] noted (Section 5) this lack of channel-binding, and
suggested a fix identical to the key-derivation approach analyzed in this paper.

5 Security of IEEE 802.11

5.1 Description of the IEEE 802.11 protocol

IEEE 802.11 [2] is the most widely used standard for creating WLANs. It sup-
ports three modes of operation depending on the network topology: infrastruc-
ture mode, ad-hoc mode, and mesh network mode. In ad-hoc mode and mesh-
networking mode there is no central infrastructure, and the wireless clients talk
directly to each other. On the other hand, in infrastructure mode the clients
only communicate through an access point (AP), which provides connectivity to
a larger WAN. In this paper we only cover IEEE 802.11 in infrastructure mode,
which is by far the most common mode.

The IEEE 802.11 protocol is a layer 2 protocol, aiming to secure the wire-
less link between the client and the AP. It defines two main security proto-
cols: the 4-Way-Handshake (4WHS), used to authenticate and establish session
keys between the client and the AP; and the Counter Mode CBC-MAC proto-
col (CCMP), used to secure the actual application data. We will only cover the
4WHS in this paper.

The 4WHS is based on a symmetric Pairwise Master Key (PMK), shared
between the client and the AP. The analysis of IEEE 802.11 will therefore cru-
cially depend on how this PMK is obtained. In Section 5.2 we will analyze the
4WHS when the PMK is simply taken for granted, i.e., the PMK is a pre-shared
key. This is already quite significant on its own because it corresponds to the
setting found in virtually every wireless home-network. Still, in most enterprise
and university environments, the PMK is not a pre-shared key, but is rather
distributed to the client and AP through some upper-level authentication mech-
anism involving a mutually trusted server. While technically outside the scope

11In fact, EAP is widely used within mobile networks.

24



of the IEEE 802.11 standard, the de-facto protocol for this is EAP. The analysis
of IEEE 802.11 with upper-level authentication is the topic of Section 5.3.

5.2 Analyzing the 4-Way-Handshake

The 4WHS is shown in Figure 6. It depends on a pseudorandom function PRF
and a MAC scheme Σ = (kg,MAC,Vrfy). Identities are based on the parties’
48-bit link-layer addresses. This makes it possible to compare the parties’ iden-
tities based on their corresponding numerical values. Particularly, the functions
max{A,B} and min{A,B} returns, respectively, the largest and the smallest of
two link-layer addresses A and B. We use the notation [x]k

def= x‖σ to denote a
message x together with its MAC tag σ, computed with Σ.MAC and key k.

The 4WHS begins with the AP sending the message m1 = ηAP ‖p1 to the
client C, where ηAP is a nonce and p1 is some auxiliary information included in
the IEEE 802.11 packet.

On receiving m1, C generates its own nonce ηC and derives a key PTK =
kµ‖kα ← PRFK(P‖η) using the pseudorandom function PRF and the long-term
key it shares with AP . Here P‖η = min{AP,C}‖max{AP,C}‖min{ηAP , ηC}‖
max{ηAP , ηC}. The sub-key kα will be the session key output by the 4WHS,
while kµ will be used by the MAC scheme Σ to protect the handshake mes-
sages. After deriving PTK, C creates and sends the next protocol message
m2 = [ηC‖p2]kµ .

On receiving m2 = [ηC‖p2]kµ , AP uses the containing nonce ηC to derive the
keys PTK = kµ‖kα ← PRFK(P‖η). Using kµ as the key, it verifies the integrity
of m2 with the MAC scheme Σ.Vrfy. If the verification goes through, AP creates
and send the third protocol message m3 = [ηAP ‖p3]kµ .

On receiving m3, C first verifies it using the MAC key kµ. If the check goes
through, it sends out the final handshake message m4 = [p4]kµ . Additionally, it
sets its own acceptance state to α = accepted. Once AP receives and verifies m4,
it sets its acceptance status to α = accepted too.

Remark 9. The fourth handshake message m4 serves no cryptographic purpose
and could safely have been omitted. However, to stay true to the actual 4WHS,
we leave it in.

In the following analysis, let PAP = I and PC = R, i.e., in the 4WHS
protocol APs are the initiators and the clients are the responders.

Theorem 4. The 4WHS protocol is AKEstatic-secure. In particular, for any PPT ad-
versary A, there exists a partner function f and algorithm D, such that

Adv2P-AKEstatic
4WHS,A,f (λ) ≤ |PC | · |PAP | · Advprf

PRF(D) +
(nPnπ )2

2λ+1 , (11)

where nπ is the number of sessions at each party, and nP = |PC |+ |PAP |.

For this protocol it is natural to use SIDs as our partnering mechanism.
However, because our paper is phrased in terms of partnering functions, we

25



C AP

m1 = (ηAP , p1)

m2 = [ηC , p2]kµ

m3 = [ηAP , p3]kµ

m4 = [p4]kµ

ηAP ← {0, 1}λ
ηC ← {0, 1}λ

kµ‖kα ← PRFK(P‖η)
kµ‖kα ← PRFK(P‖η)
if Σ.Vrfy(kµ,m2) = 1:
continueif Σ.Vrfy(kµ,m3) = 1:

α = accept
α = accepted

Fig. 6. The IEEE 802.11 4-Way-Handshake protocol. The client C and
the access point AP share a symmetric key PMK = K, P‖η =
min{AP,C}‖max{AP,C}‖min{ηAP , ηC}‖max{ηAP , ηC}, and Σ = (kg,MAC,Vrfy) is
MAC scheme.

“synthetically” encode the SID as a partnering function by saying that the part-
ner session is the first other session that gets the same SID P‖η. Taking the first
one is important because a partner function is a function and not a relation.

Proof. Suppose P‖η = min{U, V }‖max{U, V }‖min{ηU , ηV }‖max{ηU , ηV } was
the string that πiU input to its pseudorandom function PRF. Then fT (πiU ) is de-
fined to be the first session at V that input the same string P‖η to its PRF. Note
that this can be computed based on publicly available transcript information.

Soundness. The soundness of f is immediate from its definition and PRF being
deterministic.

AKEstatic-security.

Game 0: This is the real 2P-AKE security game, hence

AdvG0
4WHS,A,f (λ) = Adv2P-AKEstatic

4WHS,A,f (λ) .

Game 1: This game proceeds as the previous one, but aborts if not all the nonces
in the game are distinct, hence

AdvG0
4WHS,A,f (λ) ≤ AdvG1

4WHS,A,f (λ) +
(nPnπ )2

2λ+1 . (12)

Game 2: In this game the challenger guesses the pre-shared key that will be
used by the test-session and aborts if that guess was wrong, hence

AdvG1
4WHS,A,f (λ) ≤ |PAP | · |PC | · AdvG2

4WHS,A,f (λ) . (13)

Let PMK∗ denote the guessed pre-shared key. Note that by the FreshAKEstatic

requirement (Fig. 3), PMK∗ cannot be exposed.

26



Game 3: In this game the challenger replaces the pseudorandom function PRF
with a random function $(·) in all evaluations using the guessed pre-shared key
PMK∗. That is, calls of the form PRF(PMK∗, ·) are instead answered by $(·).

Lemma 7. AdvG2
4WHS,A,f (λ) ≤ AdvG3

4WHS,A,f (λ) + Advprf
PRF,D(λ).

Proof. Algorithm D has access to an oracle O, which either implements the
function Π.PRF(P̃MK, ·) for some independently and uniformly distributed key
P̃MK, or it implements a truly random function $(·). D begins by choosing
a random bit b and guessing a client-AP pair (C,AP ). All computations that
would normally involve the pre-shared key of C and AP , algorithm D will instead
forward to its oracle O. For all other client-AP pairs, D creates their the pre-
shared keys itself, allowing it to simulate them perfectly. If A outputs b′, then
D outputs 1 if b = b′, and 0 otherwise.

When O = Π.PRF(P̃MK, ·), then D perfectly simulates Game 2 since the
PMKs are chosen independently and uniformly at random; while when O = $(·),
then D perfectly simulates Game 3. ut

Concluding the proof of Theorem 4. Suppose the test-session in Game 3 accepted
with the “SID” P‖η. By Game 1 we know that the only sessions that evaluated
the pseudorandom function on this SID was the test-session and possibly its
partner. However, by Game 3 the PRF is now a truly random function unavail-
able to the adversary (since we are in the static corruption model). In particular,
this means that the PTK derived by the test-session (and possibly its partner)
is a truly random string P̃TK = k̃µ‖k̃α ← {0, 1}2λ, and where k̃α is independent
of all other values. Thus, AdvG3

4WHS,A,f (λ) = 0, and Theorem 4 follows. ut

We now turn to proving explicit entity authentication for the 4WHS.

Theorem 5. The 4WHS provides explicit entity authentication. In particular, for any
PPT adversary A, there exists algorithms D and F , such that

Adv2P-AKEstatic-EA
4WHS,A,f (λ) ≤ |PC | · |PAP | ·

(
Advprf

PRF,D(λ) +
(nPnπ )2

2λ+1 + 2nπ · AdvUF-CMA
Σ,F (λ)

)
,

(14)
where f , nπ , and nP are the same as in Theorem 4.

Proof. This proof uses the exact same three game hops as in the proof of Theo-
rem 4, differing only in its interpretation of the guessed pre-shared key PMK∗:
instead of hoping that PMK∗ belongs to the test-session, we now hope that it
belongs to the first session that accepts maliciously. To recap, in Game 3 the
challenger aborts if any nonces collide, or the first session that accepts mali-
ciously uses a different pre-shared key then PMK∗. Moreover, all evaluations
of PRF(PMK∗, ·) are replaced with a truly random function $(·). Since all the
game hops are the same, we only have the analyze the probability that a session
accepts maliciously in Game 3.

Lemma 8. AdvG3-EA
4WHS,f,A(λ) ≤ 2nπ · AdvUF-CMA

Σ,F (λ).

27



Proof. The forger F has access to two oracles OMAC and OVrfy, which implements
the MAC and Vrfy algorithms of the MAC scheme Σ for some independent
random key k̃µ. Among all the sessions that use PMK∗, F will guess a random
session π∗ and embed the oracles OMAC and OVrfy into it. Let V ∗ denote the
intended communication partner of π∗. We consider two cases based on whether
π∗ is a client or an AP.

Case U∗ ∈ PAP . F will simulate Game 3 by creating all the pre-shared keys
and implementing the random function $(·) by lazy-sampling. However, when
creating and verifying the handshake messages of π∗, it will use the oracles
OMAC and OVrfy. Specifically, when receiving the handshake message m2, π∗ will
accept only if OVrfy(m2) = 1. Moreover, if any session accepts maliciously before
π∗, then F aborts. Additionally, F also aborts if the nonce ηC contained in m2
was created by a session at V ∗ that received the correct nonce ηAP from π∗. Note
that this event simply means that F ’s guess of π∗ was wrong, because if π∗ were
to accept on receiving this m2 message, it could not have accepted maliciously
by the definition of f , since the session creating ηC would be its partner (here
we are also using that all the nonces are unique).

By the uniqueness of nonces, and the assumptions above, no session will
evaluate $(·) on the same input as π∗. Hence, embedding the oracles OMAC,
OVrfy into π∗ provides a perfect simulation of Game 3. But this means that π∗
accepts maliciously iff OVrfy(m2) = 1, with m2 being a valid forgery.

Case U∗ ∈ PC . Similar to the previous case, F embeds OMAC, OVrfy into π∗,
and aborts if the guess was wrong. This again provides a perfect simulation of
Game 3, and π∗ accepts maliciously iff the call to OVrfy is a valid forgery.

Since in both cases malicious acceptance by π∗ implies a forgery for Σ, the
lemma follows. ut

5.3 Security of IEEE 802.11 with upper-layer authentication

In enterprise and university networks it is both inconvenient and less secure for
every user to share a common PMK when accessing the WLAN. In these environ-
ments, user authentication is instead handled by a central authentication server,
which is then accessed via some EAP variant. While the IEEE 802.11 standard
technically allows for upper-level authentication mechanisms other than EAP,
the de-facto standard is EAP. Since we have already proved that certain vari-
ants of EAP satisfies the 3P-AKEw notion (Theorem 3), and that the 4WHS is a
secure 2P-AKE protocol with static corruption (Theorem 4 and 5); the security
of IEEE 802.11 with upper-level authentication now follows directly by applying
our second composition theorem (Theorem 2) with Π3 = EAP and Π4 = 4WHS.

Theorem 6 (3P-AKE security of IEEE 802.11 w/upper-layer authentica-
tion). If the PMK for the 4WHS is derived using a variant of EAP that is 3P-
AKEw-secure, then the IEEE 802.11 protocol with upper-layer authentication is 3P-
AKE-secure.

28



Acknowledgments

We would like to thank Colin Boyd, Britta Hale and Cas Cremers for helpful
comments and discussions. Chris Brzuska is grateful to NXP for supporting his
chair for IT Security Analysis.

References
1. IEEE Standard for Local and metropolitan area networks - Port-Based Network

Access Control. IEEE Std 802.1X-2010 (Revision of IEEE Std 802.1X-2004) pp.
C1–205 (Feb 2010)

2. IEEE Standard for Information technology–Telecommunications and information
exchange between systems Local and metropolitan area networks–Specific require-
ments Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. IEEE Std 802.11-2012 pp. 1–2793 (March 2012)

3. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (Jan 2005)

4. Aboba, B., Blunk, L.J., Vollbrecht, J.R., Carlson, J., Levkowetz, H.: Extensible
Authentication Protocol. RFC 3748, RFC Editor (June 2004), https://tools.
ietf.org/html/rfc3748

5. Alt, S., Fouque, P.A., Macario-Rat, G., Onete, C., Richard, B.: A cryptographic
analysis of UMTS/LTE AKA. In: Manulis, M., Sadeghi, A.R., Schneider, S. (eds.)
ACNS 16. LNCS, vol. 9696, pp. 18–35. Springer, Heidelberg (Jun 2016)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (May 2000)

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: CRYPTO.
Lecture Notes in Computer Science, vol. 773, pp. 232–249. Springer (1993)

8. Bellare, M., Rogaway, P.: Provably secure session key distribution: The three party
case. In: 27th ACM STOC. pp. 57–66. ACM Press (May / Jun 1995)

9. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y., Zanella
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 235–255. Springer,
Heidelberg (Aug 2014)

10. Brzuska, C., Cremers, C., Jacobsen, H., Kohbrok, K., Warinschi, B.: Partner mech-
anisms in key exchange protocols. Unpublished manuscript (2017)

11. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
ACM CCS 11. pp. 51–62. ACM Press (Oct 2011)

12. Brzuska, C., Jacobsen, H., Stebila, D.: Safely exporting keys from secure channels:
On the security of EAP-TLS and TLS key exporters. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 670–698. Springer,
Heidelberg (May 2016)

13. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (Aug 2002), http://eprint.iacr.org/2002/120/

14. Hartman, S., Clancy, T.C., Hoeper, K.: Channel-Binding Support for Extensible
Authentication Protocol (EAP) Methods. RFC 6677, RFC Editor (July 2012),
https://tools.ietf.org/html/rfc6677

29

https://tools.ietf.org/html/rfc3748
https://tools.ietf.org/html/rfc3748
http://eprint.iacr.org/2002/120/
https://tools.ietf.org/html/rfc6677


15. Hoeper, K., Chen, L.: Where EAP security claims fail. In: QSHINE. p. 46. ACM
(2007)

16. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (Aug 2012)

17. Kobara, K., Shin, S., Strefler, M.: Partnership in key exchange protocols. In: Li, W.,
Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V. (eds.) ASIACCS
09. pp. 161–170. ACM Press (Mar 2009)

18. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA in
the standard model. Cryptology ePrint Archive, Report 2013/367 (2013), http:
//eprint.iacr.org/2013/367

19. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(Aug 2005)

20. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (Aug 2013)

21. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. Cryptology ePrint Archive, Report 2006/073 (2006), http://eprint.
iacr.org/2006/073

22. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (Nov 2007)

23. Li, Y., Schäge, S., Yang, Z., Kohlar, F., Schwenk, J.: On the security of the pre-
shared key ciphersuites of TLS. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 669–684. Springer, Heidelberg (Mar 2014)

24. Nam, J., Choo, K.K.R., Paik, J., Won, D.: Two-round password-only authenti-
cated key exchange in the three-party setting. Cryptology ePrint Archive, Report
2014/017 (2014), http://eprint.iacr.org/2014/017

25. Ohba, Y., Parthasarathy, M., Yanagiya, M.: Channel Binding Mech-
anism based on Parameter Binding in Key Derivation. RFC (Infor-
mational), RFC Editor (December 2006), https://tools.ietf.org/html/
draft-ohba-eap-channel-binding-02

26. Rigney, C., Willens, S., Rubens, A., Simpson, W.: Remote Authentication Dial
In User Service (RADIUS). RFC 2865, RFC Editor (June 2000), https://tools.
ietf.org/html/rfc2865

27. Rogaway, P.: On the of role of definitions in and beyond cryptography. In: ASIAN.
Lecture Notes in Computer Science, vol. 3321, pp. 13–32. Springer (2004)

28. Schwenk, J.: Nonce-based kerberos is a secure delegated AKE protocol. Cryptology
ePrint Archive, Report 2016/219 (2016), http://eprint.iacr.org/2016/219

29. Shoup, V., Rubin, A.D.: Session key distribution using smart cards. In: Maurer,
U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 321–331. Springer, Heidelberg
(May 1996)

30. Winter, S., McCauley, M., Venaas, S., Wierenga, K.: Transport Layer Security
(TLS) encryption for RADIUS. RFC 6614 (Experimental), RFC Editor (May
2012), https://tools.ietf.org/html/rfc6614

30

http://eprint.iacr.org/2013/367
http://eprint.iacr.org/2013/367
http://eprint.iacr.org/2006/073
http://eprint.iacr.org/2006/073
http://eprint.iacr.org/2014/017
https://tools.ietf.org/html/draft-ohba-eap-channel-binding-02
https://tools.ietf.org/html/draft-ohba-eap-channel-binding-02
https://tools.ietf.org/html/rfc2865
https://tools.ietf.org/html/rfc2865
http://eprint.iacr.org/2016/219
https://tools.ietf.org/html/rfc6614

	A Modular Security Analysis of EAP and IEEE 802.11
	1 Introduction
	2 Formal models
	2.1 A unified execution model
	2.2 2P-AKE and 3P-AKE
	2.3 (2P)-ACCE
	2.4 Explicit entity authentication

	3 Generic composition results
	3.1 2P-AKE + 2P-ACCE + channel binding -> 3P-AKE-
	3.2 3P-AKEw + 2P-AKE -> 3P-AKE

	4 Security of EAP
	4.1 EAP with channel binding
	4.2 Channel-binding scope
	4.3 EAP without channel binding

	5 Security of IEEE 802.11
	5.1 Description of the IEEE 802.11 protocol
	5.2 Analyzing the 4-Way-Handshake
	5.3 Security of IEEE 802.11 with upper-layer authentication

	Acknowledgments
	References


