
Chosen-Ciphertext Secure Fully Homomorphic
Encryption?

Ran Canetti1,3, Srinivasan Raghuraman2, Silas Richelson1,2, and
Vinod Vaikuntanathan2

1 Boston University
2 MIT

3 Tel-Aviv University & CPIIS

Abstract. We give three fully homomoprhic encryption (FHE) schemes
that are secure against non-adaptive chosen ciphertext attacks (CCA1).
For the first two, we extend the generic transformation of Boneh, Canetti,
Halevi and Katz to turn any multi-key identity-based FHE scheme into
a CCA1-secure FHE scheme. We then show two instantiations of multi-
key identity-based FHE: One from LWE in the random oracle model, and
one from sub-exponentially secure indistinguishability obfuscation. Both
constructions are compact with respect to the function evaluated homo-
morphically but not compact with respect to the number of ciphertext
involved in the homomorphic evaluation. The third scheme uses succinct
non-interactive arguments of knowledge (SNARKs) and is fully compact.

1 Introduction

Fully homomorphic encryption (FHE) [RAD78,Gen09,BV11] is a powerful cryp-
tographic primitive that allows anyone to compute on encrypted data without
decrypting it, and without knowledge of the secret key. The basic security prop-
erty considered for FHE is semantic security [GM84], also known as security
against chosen plaintext attacks (CPA), where it is required that an adversary
that has access to the public parameters cannot distinguish between ciphertexts
that result from encrypting two adversarially chosen plaintexts. This should hold
even though the public parameters allow for encrypting messages and for homo-
morphic evaluation of ciphertexts.

However, CPA security provides only a weak guarantee in settings where
ciphertexts can be generated maliciously. Indeed, it is easy to come up (either
intentionally or unintentionally) with CPA-secure encryption schemes where one
can maliciously generate ciphertexts that completely compromise the security of

? Research supported in part by DARPA and the U.S. Army Office under contract
number W911NF-15-C-0226 and W911NF-15-C-0236, NSF CAREER Award CNS-
1350619, NSF Grant CNS-1413964 (MACS: A Modular Approach to Computer Secu-
rity, Israel Science Foundation grant, Alfred P. Sloan Research Fellowship, Microsoft
Faculty Fellowship, NEC Corporation, a Steven and Renee Finn Career Development
Chair from MIT, and a SIMONS Investigator Award Agreement Dated 6-5-12.



the scheme. The same holds, of course, for CPA-secure FHE schemes, So, for
instance, a client that sends a ciphertext c = Enc(x) along with a function f
to a server, expecting to obtain a ciphertext c′ =HomEval(f, c) that decrypts to
f(x), may instead receive a maliciously formed ciphertext c′′ such that Dec(c′′)
will output the secret decryption key which allows the server to fully recover x.
This is so even when using CPA-secure FHE, and even when x is much larger
than both the decryption key and c′′. Such attacks can indeed be taken care of
by adding verifiability mechanisms “at the protocol level” on top of plain CPA-
secure FHE schemes. However, can we have FHE scheme that guarantee, in of
themselves, security against malformed ciphertexts?

The golden standard of security for encryption schemes against malformed ci-
phertetxts is security against chosen ciphertext attacks, also called CCA security
(see, e.g., [NY90,RS91,DDN91,CS98,Sah99] and more) which requires that se-
mantic security holds even when the adversary gets to ask for decryption queries.
CCA security comes in two flavors: the non-adaptive flavor, called CCA1 or
lunchtime attack, where the adversary is limited to ask decryption queries be-
fore she receives the challenge ciphertext, and the adaptive, or CCA2 version,
where she can continue asking decryption queries even after she receives the
challenge ciphertext (as long as the decryption queries are different from the
challenge ciphertext itself).

CCA2 security prevents any meaningful modification of a given ciphertext,
and so appears to be in direct contradiction with homomorphism (althouth
some works do manage to reconcile the two notions in a meaningful way, see
e.g. [CKN03,BSW12]). However, CCA1 security, which does consider security
in face of malformed ciphertexts, but only ones that were generated before the
challenge ciphertext is given, does not appear to be in contratiction for homo-
morphism. Indeed, the Cramer-Shoup-lite [CS98] scheme is both CCA1-secure
and additively homomorphic. Still, several works [LMSV10,ZPS12,DGM15] show
CCA1 attacks against (leveled) FHE schemes.4 Moreover, the key paradigm for
constructing unleveled FHE schemes goes through Gentry’s bootstrapping the-
orem [Gen09], wherein one publishes a circular encryption of the secret key as
part of the public evaluation key, an approach that by its very definition falls to
a CCA1 attack.

Loftus et al. [LMSV10] give a leveled CCA1-secure FHE scheme under a
highly non-standard “lattice-based knowledge assumption”. This state of affairs
leads us to ask:

Can we construct CCA1-secure fully homomorphic encryption schemes
under better-understood computational assumptions? Can they be un-
leveled? Can they be compact?

4 A leveled FHE scheme is one that permits evaluation of circuits of a-priori bounded
polynomial depth on encrypted data. In contrast, a pure FHE scheme is one that
permits evaluation of circuits of any depth.

ii



1.1 Our Results and Techniques

We answer the above question positively.

CCA1-Secure FHE from Multi-Key Identity-based FHE. Our starting point is
the work of Boneh, Canetti, Halevi and Katz [BCHK07] who showed that any
(semantically secure) identity-based encryption scheme can be used to construct
a chosen-ciphertext-secure encryption scheme. An encryption of a message m
in their (CCA1) construction is simply an ID-based encryption of m under a
randomly chosen identity. Namely, the public key of the scheme is the IBE master
public key, and the encryptor chooses a fresh random id every time, and outputs
IBE.Enc(mpk, id,m). In a nutshell, CCA1-security of the scheme follows from the
fact that an ID-based encryption under an identity id∗ is secure even given the
secret keys for all identities id 6= id∗.

A natural idea to get a CCA1 fully homomorphic encryption scheme is to
start with an Id-based fully homomorphic encryption scheme. This runs into a
difficulty since in an FHE scheme, one has to be able to homomorphically eval-
uate ciphertexts that come from different sources (encryptors) but all encrypted
to the same person (i.e., encrypted under the same public key). When we use
the [BCHK07] transformation, this translates to being able to compute on IBE
ciphertexts that all use the same master public key, but different identities. This
leads us to our first connection: we define the notion of a multi-key Id-based
FHE (IBFHE) scheme, and show that being able to construct one directly gives
us a CCA1-secure FHE scheme.

This immediately gives two constructions of leveled CCA1 FHE based on
two prior constructions of leveled multi-key IBFHE. The first is a generic con-
struction from leveled multi-key FHE and IBE due to Brakerski, Cash, Tsabary
and Wee [BCTW16]. Their scheme is very simple: to encrypt, draw a key pair
and encrypt using the multi-key FHE; also encrypt the secret key using IBE.
The second construction is based on LWE in the random oracle model, due to
Clear and McGoldrick [CM15]. See Section 3 for our adaptation of the proof
of [BCHK07], and more information on these transformations.

Obfuscation Construction. Recently, [CLTV15] showed how to use indistin-
guishability obfuscation to build homomorphism into an encryption scheme by
publishing an obfuscation of a program which decrypts a pair of ciphertexts, eval-
uates and re-encrypts. Crucial to the proof of security is the ability to switch the
underlying encryption scheme to lossy mode so that the output of the program
which behaves honestly is statistically close to the output of the program which
ignores the inputs and outputs an encryption of 0. We use this same idea, though
in our setting things are more complex as we need to have the program continue
to output valid encryptions for all identities except for the challenge. This is our
main construction and is presented in Section 4.

A Note on Compactness. Compactness in FHE requires that the complexity of
decryption (and thus ciphertext size) does not grow too much with the com-
plexity of the function being evaluated. This prevents trivial schemes where the

iii



evaluator simply sends the circuit to be evaluated to the decryptor who decrypts
and then evaluates the circuit. The ciphertexts in all of the above mentioned
schemes grow with the number of inputs to the circuit to be evaluated, but not
with the complexity of the circuit. We refer to such schemes as compact w.r.t.
circuit complexity and we stress that this is less ideal than true compactness.
The generic construction inherently is only compact w.r.t. circuit size (even if the
underlying multi-key FHE is truly compact). The LWE and IO based construc-
tions are also only compact w.r.t. circuit complexity, though it is not clear that
this is inherent. Obtaining a truly compact CCA1 FHE would represent progress
in either case, and would be particularly important for the LWE scheme as this
would improve other constructions which have used the multi-key FHE scheme
of [CM15]. We note that in many use cases multiple inputs to the FHE can be
“batched together” and encrypted with the same key in order to keep ciphertext
growth small.

CCA1 FHE from Knowledge Assumptions. Naor and Yung [NY90] show how
to go from CPA encryption to CCA1 encryption using non-interactive zero-
knowledge proofs (NIZKs). The CCA1 ciphertext is simply a (pair of) CPA
ciphertexts along with a NIZK proving correctness. We adopt this approach to
the FHE setting. We replace the NIZK with a zero-knowledge succinct non-
interactive argument of knowledge (zkSNARK) to preserve compactness since
otherwise the proof length would grow with the circuit being evaluated. This
construction is described in Section 5.

Another Approach to CCA1 FHE. In the appendix, we present a different ap-
proach to constructing CCA1-secure FHE through what we call a linear-algebraic
encryption scheme, a variant of a single-key-secure functional encryption scheme
for linear functions. Although this approach currently only works to obtain ad-
ditive homomorphism, we present it in the appendix as a potential approach to
obtain alternative constructions of CCA1-secure FHE.

2 CCA-Secure Fully Homomorphic Encryption

Definition 1. Let M, be a message space. A CCA1-secure fully homomor-
phic encryption scheme (CCA1 FHE) is a tuple of polynomial time algorithms
(Gen,Enc,Dec,Eval), defined as follows, which satisfy the correctness, compact-
ness and security properties below.

– Gen
(
1λ
)
: a randomized algorithm which outputs a public key, secret key pair

(pk, sk).
– Enc

(
µ, pk

)
: a randomized algorithm which outputs a ciphertext ct.

– Dec
(
ct, sk

)
: an algorithm which outputs a message µ ∈M.

– Eval
(
{cti}, C

)
: an algorithm which takes a collection of ciphertexts {cti} and

a circuit to be evaluated C and outputs an evaluated ciphertext cteval.

iv



Correctness: For any µ ∈M, and whp over (pk, sk)← Gen
(
1λ
)
,

Pr
[
Dec

(
Enc(µ, pk), sk

)
= µ

]
= 1− negl.

Homomorphic Correctness: For any {µi} ∈ Mpoly(λ), polynomially sized cir-
cuit C, and whp over (pk, sk)← Gen

(
1λ
)
, cti ← Enc

(
µi, pk

)
,

Pr
[
Dec

(
Eval

(
{cti}, C

)
, sk
)

= C
(
{µi}

)]
= 1− negl.

Compactness: There exists a polynomial poly(·) st |cteval| ≤ poly(λ) for all
cteval ← Eval

(
{cti}, C

)
. In particular, poly(·) is independent of the size, depth

or number of inputs to C.
CCA1 Security: For any PPT adversaryA, its chance of winning the following

game against a challenger C is at most 1/2 + negl.

1. C draws (pk, sk)← Gen(1λ) and sends pk to A.
2. For α = 1, . . . , poly:
− A sends ctα to C;
− C computes µα = Dec(ctα, sk) and returns µα to A.

3. A sends µ0, µ1 ∈M to C.
4. C draws ct∗ ← Enc(µbit, pk) for a random bit ∈ {0, 1} and sends ct∗ to
A.

5. A outputs guess ∈ {0, 1} and wins if guess = bit.

Remark. The query ciphertexts ctα above are chosen by the adversary and can
be base ciphertexts, evaluated ciphertexts, or may be altogether malformed.

Remark. We say that a CCA1 FHE scheme is leveled if there exists a polynomial
` = `(λ) such that homomorphic correctness only holds when C has depth at
most `. Also, we say that a CCA1 FHE is compact wrt circuit complexity if a
weaker compactness condition holds which allows |cteval| to grow with the number
of inputs to C, but demands that it remain independent of the size and depth of
C.

Remark. In general, evaluated ciphertexts are allowed to have a slightly different
form from fresh ciphertexts, in which case evaluated ciphertexts are decrypted
with a separate decryption algorithm EvalDec. For notational simplicity, we re-
frain from explicitly specifying EvalDec. For all the schemes in this paper, evalu-
ated decryption is the same as ordinary decryption except for minor differences.

3 Multi-Key Identity-Based FHE to CCA1 FHE

In this section, we define the notion of multi-key identity-based FHE (IBFHE),
and show that it implies CCA1-secure FHE. The transformation preserves the
homomorphic (i.e., leveled or full) and compactness properties of the multi-
key IBFHE scheme. By applying this transformation on prior multi-key IBFHE

v



schemes we obtain two constructions of CCA1 FHE. Neither construction is fully
compact as in each construction, the evaluated ciphertext size grows with the
number of inputs to the circuit. They are however compact wrt circuit com-
plexity as evaluated ciphertext sizes are independent of the size or depth of the
circuit being evaluated. In Section 3.3 we apply our transformation to a recent
construction of [BCTW16] to obtain CCA1 FHE from any multi-key FHE and
IBE. In Section 3.4 we apply our transformation to the construction of [CM15] to
obtain leveled CCA1 FHE based on sub-exponential LWE in the random oracle
model.

We point out that in both of these constructions, the ciphertext size grows
only with the number of batches of inputs to be evaluated. In settings where
the total number of users is small and the input to the circuits are known all at
once, this growth can be easily controlled.

3.1 Multi-Key IBFHE

Definition 2. LetM, ID be message and identity spaces. A multi-key identity-
based fully homomorphic encryption scheme is a tuple of polynomial time algo-
rithms

(
Setup,Extract,Enc,Dec,Eval

)
, defined as follows, which satisfy the cor-

rectness and security properties below.

– Setup
(
1λ
)
: outputs the master key pair (mpk,msk).

– Extract
(
id,msk

)
: outputs a secret key skid for the identity id.

– Enc
(
µ, id,mpk

)
: encrypts message µ to identity id, outputting (ctid, id).

– Dec
(
ctid, id, skid

)
: decrypts ctid using skid, outputting µ.

– Eval
(
{(cti, idi)}, C

)
: takes a family of ciphertexts and a circuit and outputs(

cteval, ideval
)
.

Correctness: For any µ ∈M, id ∈ ID, and whp over (mpk,msk)← Setup
(
1λ
)
,

skid ← Extract(id,msk),

Pr
[
Dec

(
Enc(µ, id,mpk

)
, skid

)
= µ

]
= 1− negl.

Homomorphic Correctness: For any {µi} ∈ Mpoly(λ), {idi} ∈ IDpoly(λ),
circuit C, and with high probability over (mpk,msk) ← Setup

(
1λ
)
, ski ←

Extract(idi,msk), cti ← Enc
(
µi, idi,mpk

)
,

Pr
[
Dec

(
Eval

(
{(cti, idi)}, C

)
, skeval

))
= C

(
{µi}

)]
= 1− negl,

where skeval ← Extract(ideval,msk).
Compactness: There exists a polynomial poly(·) st |ideval|, |cteval| ≤ poly(λ)

for all evaluated (ideval, cteval) ← Eval
(
{idi, cti}, C

)
. In particular, poly(·) is

independent of the size, depth or number of inputs to C.

vi



Selective Security for Random Identities: For any PPT adversary A, its
chance of winning the following game against a challenger C is at most 1/2+
negl.

1. C draws id∗ ← ID and (mpk,msk)← Setup(1λ) and sends mpk to A.
2. For α = 1, . . . , poly:
− A sends idα to C;
− if idα = id∗, the game ends and A loses; if idα = idβ for β < α, C

returns skβ ; otherwise C draws skα ← Extract(idα,msk), sends skα to
A and stores (idα, skα).

3. A sends µ0, µ1 ∈M to C.
4. C draws ct∗ ← Enc(µb, id

∗,mpk) for a random b ∈ {0, 1} and sends ct∗

to A.
5. A outputs b′ ∈ {0, 1} and wins if b′ = b.

Remark. A stronger version of security allows A to specify the identity id∗ he
wishes to attack after seeing mpk and the skα. Additionally, we could allow A
to ask another round of identity queries after receiving the challenge ciphertext
(provided he does not ask id∗). We use the above notion as it is sufficient for
CCA1 FHE.

Remark. As with CCA1 FHE, we consider relaxations of the above definition
where homomorphic correctness is only required to hold for circuits whose depth
is at most some polynomial ` = `(λ). We call such schemes leveled. Similarly, we
consider relaxations of compactness where |ideval| and |cteval| may grow polyno-
mially with the number of inputs to C, but remain otherwise independent of the
complexity of C.

3.2 CCA1 FHE from Multi-Key IBFHE

Let E be a multi-key IBFHE scheme. Our CCA1 FHE scheme is as follows.

– Gen
(
1λ
)
: Output (pk, sk) = (mpk,msk)← E .Setup

(
1λ
)
.

– Enc
(
µ, pk

)
: Draw id ← ID and ctid ← E .Enc

(
µ, id,mpk

)
. Output ct =

(ctid, id).
– Dec

(
ct, sk

)
: Parse ct = (E .ct, id). Draw skid ← E .Extract(id,msk), output

µ← E .Dec(ctid, id, skid).
– Eval

(
{cti}, C

)
: Parse cti = (E .cti, idi), output cteval = (E .cteval, ideval) ←

E .Eval
(
{(E .cti, idi)}, C

)
Lemma 1. The above scheme is a CCA1-secure FHE scheme.

Proof. Correctness and homomorphic correctness follow immediately from the
same properties of E . CCA1 security follows from the security of E via the proof
from [BCHK07]. We sketch this proof for completeness. The idea is to use an
adversary A who wins the CCA1 game to construct B who wins the selective
IBE security game against a challenger C. This B receives mpk which he forwards

vii



to A. Each time A asks a ciphertext query ctα, B asks C for secret keys for the
identity in ctα so he can decrypt them for A. As id∗ is random, the chance that
some idα = id∗ is negligible. When A sends (µ0, µ1), B forwards it to C and
receives ct∗. B sends (id∗, ct∗) to A, and forwards A’s guess to C. B wins the IBE
security game if and only if A wins the CCA1 game.

3.3 Generic Instantiation of Multi-Key IBFHE

In a recent work, Brakerski, Cash, Tsabary and Wee [BCTW16] give a generic
construction of a multi-key, attribute-based fully homomorphic encryption scheme
from a multi-key FHE and an ABE scheme. Their scheme is very simple: to en-
crypt, draw a key pair and encrypt using the multi-key FHE; also encrypt the
secret key using ABE. Their transformation applies in our setting as well to give
a generic construction of multi-key IBFHE from multi-key FHE and IBE. The
scheme is only compact wrt circuit complexity. We omit the definitions of multi-
key FHE and IBE as they are analogous to our definition of multi-key IBFHE
with proper relaxations. We refer the reader to [MW16,GPV08] for definitions
of these primitives.

BuildingBlocks: Let (MK.Gen,MK.Enc,MK.Dec,MK.Eval) be a multi-key FHE
scheme, and let (IBE.Setup, IBE.Extract, IBE.Enc, IBE.Dec) be an IBE scheme.

Setup
(
1λ
)
: Draw and output (mpk,msk)← IBE.Setup.

Extract
(
id,msk

)
: Draw and output skid ← IBE.Extract(id,msk).

Enc(µ, id,mpk): Draw (pk, sk) ← MK.Gen(1λ), ct1 ← MK.Enc(µ, pk) and ct2 ←
IBE.Enc(sk, id,mpk). Output (id, ctid) where ctid = (ct1, ct2).

Dec
(
ctid, id, skid

)
: Parse ctid = (ct1, ct2). Compute sk = IBE.Dec(ct2, id, skid),

output MK.Dec(ct1, sk).

Eval
(
{(idi, cti)}, C

)
: Set ideval = {idi}. Parse cti = (cti,1, cti,2). Draw multi-key

evaluation cteval,1 ← MK.Eval
(
{cti,1}, C

)
, and set cteval,2 = {cti,2}. Set cteval =

(cteval,1, cteval,2) and output (cteval, ideval).

Lemma 2. If MK and IBE are multi-key FHE and IBE schemes, respectively
and MK is compact wrt circuit complexity, then the above scheme is a multi-key
IBFHE scheme which is compact wrt circuit complexity.

Remark. The second component of the evaluated ciphertext cteval is the con-
catenation of the encryptions of all of the secret keys from the MK ciphertexts.
Therefore, the above multi-key IBFHE scheme is only compact wrt circuit com-
plexity even if MK is fully compact. Moreover, if MK is a leveled multi-key FHE
scheme then the resulting scheme is also leveled.

viii



Remark. In the above scheme, evaluated identities are collections of identities:
ideval = {idi}. We define Extract to work on such inputs: Extract(ideval,msk) =
{ski} where ski ← Extract(idi,msk).

Proof (Proof Sketch). Correctness follows immediately from correctness of MK
and IBE. Security follows from security of IBE to change the IBE portion of the
challenge ciphertext to an encryption of 0 instead of sk and then the security of
MK to say that A cannot distinguish encryptions of µ0 from µ1.

Combining Lemma 2 with Lemma 1 we get the following.

Theorem 1. If there exists a multi-key FHE scheme which is compact wrt cir-
cuit complexity and an IBE scheme with selective security for random identities
then there is a CCA1 FHE scheme which is compact wrt circuit complexity. If
the multi-key FHE scheme is leveled, then the resulting CCA1 FHE scheme is
also.

3.4 Multi-Key IBFHE from LWE and ROs

Clear and McGoldrick [CM15] construct multi-key IBFHE (under the name
“multi-identity IBFHE”) from learning with errors in the random oracle model.
Like the generic construction above, their scheme is only compact wrt circuit
complexity, as their evaluated ciphertexts grow in size with the number of in-
puts to the circuit. However, unlike the generic construction, their ciphertext
growth is dominated by the ciphertext growth in the multi-key FHE. In other
words, the failure of their scheme to be fully compact is due only to the fail-
ure of current multi-key FHE scheme to be fully compact. Combining the main
theorem of [CM15] with Lemma 1 we get the following.

Theorem 2. Assuming sub-exponential LWE, there is a leveled CCA1 FHE
scheme in the random oracle model which is compact wrt circuit complexity.
The size of the evaluated ciphertexts in the scheme is S · poly(λ, log |C|, ` where
S is the number of inputs to C, the circuit being evaluated, and ` ≥ Depth(C) is
the maximum allowable depth for which homomorphic correctness still holds.

4 Instantiation from IO and Lossy Encryption

In this section, we construct a multi-key IBFHE from a sub-exponentially secure
indistinguishability obfuscation (IO) and sub-exponentially secure lossy encryp-
tion. The latter primitive can be instantiated from standard assumptions, e.g.,
the decisional Diffie-Hellman (DDH) assumption. The multi-key IBFHE scheme
in this section is fully compact and unleveled. The following lemma combined
with Lemma 1 gives compact, non-leveled CCA1 FHE.

Lemma 3. Assuming sub-exponential IO and sub-exponential hardness of DDH,
there is a compact, non-leveled multi-key IBFHE scheme.

ix



In order to prove Lemma 3, we abstract an intermediate notion of encryption
that we call tag-puncturable encryption. We then show that a tag-puncturable
encryption scheme, together with IO, implies a multi-key IBFHE scheme, and
finish up with showing a construction of tag-puncturable encryption from IO
and additively homomorphic lossy encryption.

4.1 Tag-Puncturable Encryption

Definition 3. Let M, T AG be message and tag spaces where M is an abelian
group. Let BAD : T AG → {U : U ⊂ T AG} be such that |BAD(tag)| ≤ Bmax

for some parameter Bmax. Let ε > 0. A (BAD,Bmax, ε)−tag-puncturable, addi-
tively homomorphic encryption scheme is a tuple

(
Gen,Punc.Gen,Enc,Dec,Add

)
of polytime algorithms, defined as follows, which satisfy the properties below.

– Gen
(
1λ
)
: outputs the key pair (pk, sk).

– Punc.Gen
(
tag∗

)
: outputs the keys (pk, sk, pktag∗ , sktag∗).

– Enc
(
µ, tag, pk

)
: encrypts µ to tag, outputting ciphertext cttag.

– Dec
(
cttag, tag, sk

)
: outputs message µ.

– Add
(
{cti}, tag

)
: outputs a homomorphically evaluated ciphertext ctadd.

Correctness: For any µ ∈M, tag ∈ T AG, and whp over (pk, sk)← Gen
(
1λ
)
,

Pr
[
Dec

(
Enc(µ, tag, pk

)
, tag, sk

)
= µ

]
= 1.

Homomorphic Correctness: For any {µi} ∈ Mk, tag ∈ T AG, and whp over
(pk, sk)← Gen

(
1λ
)
, and cti ← Enc

(
µi, tag, pk

)
,

Pr
[
Dec

(
Add({cti}, tag), tag, sk

)
= µ1 + · · ·+ µk

]
= 1.

Key Indistinguishability: This property comes in two parts. First, for any
tag∗ ∈ T AG,

{
(pk, sk) : (pk, sk, pktag∗ , sktag∗) ← Punc.Gen(tag∗)

}
is dis-

tributed identically to Gen(1λ).
Secondly, for all PPT A,∣∣∣PrPunc.Gen(tag∗)

(
A(pk, sktag∗) = 1

)
−PrPunc.Gen(tag∗)

(
A(pktag∗ , sktag∗) = 1

)∣∣∣ ≤ ε.
(We remark that an alternate exposition could completely do away with Gen
and simply refer to Punc.Gen for both the “real” public keys and punctured
ones. We choose to keep Gen around for familiarity.)

Punctured Key Utility: For every tag∗ ∈ T AG, and with high probability
over (pk, sk, pktag∗ , sktag∗)← Punc.Gen(tag∗), we have:
• Lossiness with Bad Keys: For all tag ∈ BADtag∗ , and µ0, µ1 ∈M,

Enc(µ0, tag, pktag∗) ≈s Enc(µ1, tag, pktag∗).

• Correctness with Good Keys: For all tag /∈ BADtag∗ , and µ ∈M,

Dec
(
Enc(µ, tag, pktag∗

)
, tag, sktag∗

)
= µ.

x



4.2 Multi-Key IBFHE from Tag-Puncturable Encryption

The key ideas in this construction here borrow from recent works Canetti,
Lin, Tessaro and Vaikuntanathan [CLTV15] and Dodis, Halevi, Rothblum and
Wichs [DHRW16].

– Parameters: Lmax = λω(1) is an upper bound on the number of levels, ε > 0
such that ε · Lmax = negl; let E be a (Lmax, ε)−tag-puncturable additively
homomorphic encryption scheme with tag space E .T AG = ID × [Lmax], and
for any tag∗ = (id∗, L∗) ∈ E .T AG, define the bad set BADtag∗ = {(id∗, L) :
L ≥ L∗}. Let the message space of E be E .T AG×M whereM is the message
space of our multi-key IBFHE. Assume M is a ring. Also assume that the
homomorphism of E is only over the second coordinate of the message. Let
piO be an ε-secure PIO scheme.

– Setup
(
1λ
)
: Draw (pk, sk)← E .Gen

(
1λ
)
. Also, let Peval[pk, sk] and Pcomb[pk, sk]

be the following probabilistic programs:
• (pk, sk) is hardwired into both; both take inputs (tag, ct), (tag′, ct′) ∈
E .T AG × E .CT ;

• both compute (id, L, µ) = E .Dec(ct, tag, sk) and (id′, L′, µ′) = E .Dec(ct′, tag′, sk),
if either decryption is not of this form, or if tag 6= (id, L) or tag′ 6= (id′, L′),
or if either of L or L′ is ≥ Lmax, output ⊥;

• now the programs differ:
Peval[pk, sk]: let η, η′ ∈M be random st η + η′ = µ · µ′, draw

ctout ← E .Enc
(
(id, L+1, η), tag, pk

)
and ct′out ← E .Enc

(
(id′, L′+1, η′), tag′, pk

)
;

output
(
(id, L + 1, ctout), (id

′, L′ + 1, ct′out)
)
; E-encryptions to tags

(id, L + 1), (id′, L′ + 1), respectively.
Pcomb[pk, sk]: let idout = id ⊕ id′, Lout = max{L, L′} + 1 and tagout =

(idout, Lout). Draw ctout ← E .Enc
(
(idout, Lout, µ + µ′), tagout, pk

)
; out-

put (tagout, ctout).
Let Oeval[pk, sk] = piO

(
Peval[pk, sk]

)
and Ocomb[pk, sk] = piO

(
Pcomb[pk, sk]

)
.

Set msk = sk and mpk =
(
pk,Oeval[pk, sk],Ocomb[pk, sk]

)
.

– Extract
(
id,msk

)
: Parse msk = sk. Let Pdec[id, sk] be the deterministic pro-

gram:
• id and sk are hardwired, take input ct ∈ E .CT ;
• compute (id, L, µ) = E .Dec(ct, id, sk), if the decryption is not of this form,

or if L > Lmax, output ⊥; otherwise output µ.
Let Odec[id, sk] = iO

(
Pdec[id, sk]

)
. Output skid = Odec[id, sk].

– Enc
(
µ, id,mpk

)
: Parse mpk =

(
pk,Oeval[pk, sk],Ocomb[pk, sk]

)
, set tag = (id, 0),

msg = (id, 0, µ); draw ctid ← E .Enc(msg, tag, pk), and output (ctid, id).
– Dec

(
ctid, id, skid

)
: Parse skid = Odec[id, sk], output µ = Odec[id, sk](ctid).

– Eval
(
(ct1, id1), . . . , (ctt, idt), C,mpk

)
: Parse mpk =

(
pk,Oeval,Ocomb

)
and write

C as an algebraic circuit, organized so that each layer consists either entirely
of addition gates or entirely of multiplication gates.

xi



1. Evaluate C a la GMW: For i, j = 1, . . . , t, define ciphertext ctij by

ctii = cti and ctij ← E .Enc
(
(idj , 0, 0), (idj , 0), pk

)
for i 6= j. This defines

a set of ciphertexts {ctij}j for each input wire i, where for each j, ctij
is an E−ciphertext to tagj,0 = (idj , 0). Consider a gate of C with input
wires (u, v) and output wire w. Assume by induction that we have ci-
phertext families {ctuj }j and {ctvj}j , where ctuj and ctvj are E−ciphertexts
for tagj,L = (idj , L), we describe how to construct {ctwj }j .
• Addition Gate: Set ctwj = E .Add(ctuj , ct

v
j , tagj,L), so ctwj is an E−ciphertext

to tagj,L.
• Multiplication Gate: For i, j = 1, . . . , t, draw(

idi, L+ 1,CTui,j
)
,
(
idj , L+ 1,CTvj,i

)
← Oeval

(
(idi, L, ct

u
i ), (idj , L, ct

v
j )
)
.

Note that CTuj,i and CTvi,j are both E−ciphertexts to tagj,L+1. Set

ctwj = E .Add
(
{CTuj,i}i, {CT

v
i,j}i, tagj,L+1

)
.

After all gates of C have been computed as above we have (id1, . . . , idt, ct
out
1 , . . . , ctoutt )

where {ctoutj }j is the ciphertext family for the output wire of C. Note ctoutj

is an E-ciphertext to tagj,Ldepth
where Ldepth is the multiplicative depth of

C.
2. Combine output ciphertexts: Initialize tageval = (id1, Ldepth) and

cteval = ctout1 . For j = 2, . . . , t:

• draw (tageval, cteval)← Ocomb

(
(tageval, cteval), (tagj,Ldepth

, ctoutj )
)
;

• parse tageval = (ideval, Leval); output (cteval, ideval). Note cteval is an E-
ciphertext to tageval, where ideval =

⊕
i idi, and Leval = Ldepth+t−1�

Lmax.

Lemma 4. The above scheme is a multi-key identity-based FHE assuming the
existence of sub-exponential iO and that E is a (Lmax, ε)−tag-puncturable addi-
tively homomorphic encryption scheme.

4.3 Proof of Lemma 4

Correctness: This follows from the correctness of E and iO. For any µ ∈ {0, 1},
id ∈ ID, whp over (pk, sk)← E .Gen(1λ), and ct← E .Enc

(
(id, 0, µ), (id, 0), pk

)
,

E .Dec
(
ct, (id, 0), sk

)
= (id, 0, µ), and so Odec[id, sk](ct) = µ.

Homomorphic Correctness: For any {µi} ∈ Mt, {idi} ∈ IDt, circuit C, we
show that for any wire w at (multiplicative) level L, the ciphertexts {ctwj }j
satisfy µw =

∑
j E .Dec

(
ctwj , tagj,L, sk

)
. Homomorphic correctness then fol-

lows from correctness of piO. This equality holds for the input wires by
construction. Assume it is true for {ctuj } and {ctvj}, the ciphertexts for wires
u and v which are the input wires to a gate of C with output wire w. If the
gate is addition then we have

xii



∑
j

E .Dec
(
ctwj , tagj,L, sk

)
=
∑
j

E .Dec
(
E .Add(ctuj , ct

v
j , tagj,L), tagj,L, sk

))
=
∑
j

µuj + µvj = µu + µv = µw.

If the gate is multiplication then we have

∑
j

E .Dec
(
ctwj , tagj,L, sk

)
=
∑
j

E .Dec
(
E .Add

(
{CTuj,i}i, {CT

v
i,j}i, tagj,L+1

)
, tagj,L+1, sk

)
=
∑
i,j

ηui,j + ηvi,j =
∑
i,j

µui · µvj = µu · µv = µw.

Security: We show that for any PPT A, its chance of winning the selective IBE
security game for random identities is at most 1/2 + negl. We use a hybrid
argument.

Hybrid H0 : The IBE security game.

1. C draws id∗ ← E .ID and (pk, sk) ← E .Gen(1λ), computes the obfuscated
programs Oeval[pk, sk], Ocomb[pk, sk] and sends

(
pk,Oeval[pk, sk],Ocomb[pk, sk]

)
to A.

2. For α = 1, . . . , poly(λ):
– A sends idα to C;
– if idα = id∗, the game ends A loses; if idα = idβ for β < α, C sends skβ ;
– otherwise, C sends skα = Odec[idα, sk] to A, and records (idα, skα).

3. A sends µ0, µ1 ∈M to C.
4. C chooses bit ← {0, 1}, ct∗ ← E .Enc

(
(id∗, 0, µbit), (id

∗, 0), pk
)
, and sends ct∗

to A.
5. A outputs guess ∈ {0, 1} and wins if guess = bit.

Hybrid H1 : This is the same as H0 except that C draws (pk, sk, pktag∗ , sktag∗)←
E .Punc.Gen(tag∗), in step 1, where tag∗ = (id∗, Lmax). C still sends pk in step
1 and uses sk in all obfuscations. The following claim holds because (pk, sk)
output by E .Punc.Gen(tag∗) are distributed identically to E .Gen(1λ), by key in-
distinguishability of E .

Claim 1. For any (unbounded) A, Pr
(
A wins H0

)
= Pr

(
A wins H1

)
.

Hybrid H2 : This is the same as H1 except that C now uses sktag∗ , tag∗ =
(id∗, Lmax) in all obfuscations instead of sk. Note that Peval[pk, sk] (resp. Pcomb[pk, sk])
is functionally equivalent to Peval[pk, sktag∗ ] (resp. Pcomb[pk, sktag∗ ]), as BADtag∗ =
{(id∗, Lmax)} and neither program ever decrypts at level Lmax. Moreover, since
A does not query idα = id∗ whp, Pdec[idα, sk] is functionally equivalent to
Pdec[idα, sktag∗ ]. The claim follows from the security of iO.

Claim 2. For any PPT A,
∣∣∣Pr
(
A wins H1

)
− Pr

(
A wins H2

)∣∣∣ = negl.

xiii



Hybrid H3 : This is the same as H2 except that C uses sktag∗ where tag∗ = (id∗, 0)
in all obfuscations instead of (id∗, Lmax). The following claim is more involved
than the others, requiring a few sub-hybrids. We prove it below.

Claim 3. For any PPT A,
∣∣∣Pr
(
A wins H2

)
− Pr

(
A wins H3

)∣∣∣ = negl.

Hybrid H4 : This is the same as H3 except that C uses (pktag∗ , sktag∗) where
tag∗ = (id∗, 0), instead of (pk, sktag∗). Indistinguishability follows from key-
indistinguishability of E . As pktag∗ is lossy, even an unbounded adversary cannot
have noticeable advantage in this hybrid’s game. This completes our proof of
security.

Claim 4. For any PPT A,
∣∣∣Pr
(
A wins H3

)
− Pr

(
A wins H4

)∣∣∣ = negl.

Claim 5. For any (unbounded) A, Pr
(
A wins H4

)
≤ 1/2 + negl.

Proof (Proof of Claim 3). Recall we must argue that H2 and H3 are indistin-
guishable, where the only difference is that C uses (pk, sktag∗) where in H2,
tag∗ = (id∗, Lmax) and in H3, tag∗ = (id∗, 0). Let H3,i be the game where
C uses tag∗ = (id∗, i), so that H3,0 = H3 and H3,Lmax = H2. We prove that∣∣∣Pr
(
A wins H3,i

)
−Pr

(
A wins H3,i−1

)∣∣∣ ≤ 4ε for each i = 1, . . . , Lmax, from which

it follows that
∣∣∣Pr
(
A wins H2

)
− Pr

(
A wins H3

)∣∣∣ ≤ 4ε · Lmax = negl.

Let G0 = H3,i and let G1 be the same as G0 except that C uses (pktag∗ , sktag∗)
in the obfuscationsOeval andOcomb instead of (pk, sktag∗). The key-indistinguishability

of E implies that for all PPT A,
∣∣∣Pr
(
A wins G0

)
− Pr

(
A wins G1

)∣∣∣ ≤ ε.
Let G2 be the same as G1 except we change Peval and Pcomb so that instead of

outputting an encryption of an evaluated value under the tag (id∗, j) for j ≥ i,
they just output encryptions of 0. As pk(id∗,j) is lossy, the output distributions
of Peval and Pcomb in G2 are statistically close to those in G1. The security of piO
ensures that for all PPT A,

∣∣∣Pr
(
A wins G1

)
− Pr

(
A wins G2

)∣∣∣ ≤ ε.
Let G3 be the same as G2 except that C uses (pk, sktag∗) where tag∗ = (id∗, i)

instead of (pktag∗ , sktag∗), but Peval and Pcomb still encrypt 0 instead of valid
messages to tags (id∗, j) with j ≥ i. The key-indistinguishability of E again gives∣∣∣Pr
(
A wins G2

)
− Pr

(
A wins G3

)∣∣∣ ≤ ε for all PPT A.

Finally, let G4 be the same as G3 except that C uses (pk, sktag∗) where tag∗ =
(id∗, i− 1) instead of (id∗, i). Since neither obfuscation ever decrypts ciphertexts
with tag (id∗, i), program functionality does not change. Security of piO gives∣∣∣Pr
(
A wins G3

)
− Pr

(
A wins G4

)∣∣∣ ≤ ε for all PPT A. G4 = H3,i−1 so the result

follows.

4.4 Statistical Trapdoor Encryption

In order to instantiate our tag-puncturable encryption used in the previous
section, we start from a statistical trapdoor encryption scheme, defined be-
low. This was also the starting point for the piO−based construction of FHE

xiv



from [CLTV15], who note that any lossy encryption scheme implies statistical
trapdoor encryption. Our construction also has the property that if the statis-
tical trapdoor scheme is additively homomorphic then so will be the resulting
tag-puncturable scheme. We can therefore use a DDH-based additively homo-
morphic, lossy encryption scheme as our starting point.

Definition 4. An ε−statistical trapdoor encryption scheme is a tuple of poly-
time algorithms

(
Gen,Enc,Dec, tGen

)
such that (Gen,Enc,Dec) is a semantically

secure encryption scheme and additionally tGen
(
1λ
)

outputs a trapdoor public
key pk∗ such that

– for any µ0, µ1 ∈M and whp over pk∗ ← tGen(1λ),

{Enc(µ0, pk
∗)} ≈s {Enc(µ1, pk

∗)};

– for all PPT A,∣∣∣PrGen(1λ)
(
A(pk) = 1

)
− PrtGen(1λ)

(
A(pk∗) = 1

)∣∣∣ ≤ ε.
4.5 From Statistical Trapdoor Encryption to Tag-Puncturable

Encryption

– Setup: Let E be a statistical trapdoor encryption scheme. Let piO be a piO
scheme and F be a puncturable PRF.

– Gen
(
1λ
)
: Sample a PRF key K and set sk = K. Let Pgen[K] be the proba-

bilistic program:

• K is hardwired, take input tag ∈ T AG;
• computes (pktag, sktag) = E .Gen(1λ;FK(tag));
• outputs pktag.

Set pk = piO
(
Pgen[K]

)
= Ogen[K]. Output (pk, sk).

– Enc
(
µ, tag, pk

)
: Parse pk = Ogen. Compute pktag = Ogen(tag) and output

cttag ← E .Enc(µ, pktag).
– Dec

(
cttag, tag, sk

)
: Compute (pktag, sktag) = E .Gen

(
1λ;FK(tag)

)
, output µ =

E .Dec(cttag, sktag).
– Punc.Gen

(
tag∗

)
: Sample a PRF key K set sk = K, and pk = Ogen[K] =

piO
(
Pgen[K]

)
, as in Gen. Additionally, let Ktag∗ be K punctured at all tag ∈

BADtag∗ and set sktag∗ = Ktag∗ . Finally, let P∗gen[Ktag∗ ] be the probabilistic
program:

• Ktag∗ is hardwired, take input tag ∈ T AG;
• if tag /∈ BADtag∗ , compute (pktag, sktag) = E .Gen

(
1λ;FKtag∗ (tag)

)
;

• if tag ∈ BADtag∗ , sample pk∗ ← E .tGen(1λ)
• output either pktag in the first case, or pk∗ in the second.

Output the data (pk, sk, pktag∗ , sktag∗) = (Ogen,K,O∗gen,Ktag∗) where O∗gen =

piO
(
P∗gen[Ktag∗ ]

)
.

xv



Lemma 5. The above scheme is a tag-puncturable encryption scheme assuming
that E is an ε−statistical trapdoor encryption scheme and that sub-exponential
iO exists.

Proof. Correctness follows immediately from correctness of E and piO. The
above scheme clearly satisfies the required punctured key utility properties as
Enc(µ, tag, pktag∗) is lossy if and only if tag ∈ BADtag∗ and piO is correct. We
now prove key-indistinguishability through a hybrid argument.

Hybrid H0 : This is the distribution (pk, sktag∗) where (pk, sk, pktag∗ , sktag∗) ←
Punc.Gen(tag∗).

Hybrid H1 : This is the distribution (pk′, sktag∗) where pk′ = piO(P′gen[Ktag∗ ])
and P′gen[Ktag∗ ] be the probabilistic program:

– Ktag∗ is hardwired, take input tag ∈ T AG;
– if tag /∈ BADtag∗ , compute (pktag, sktag) = E .Gen

(
1λ;FKtag∗ (tag)

)
;

– if tag ∈ BADtag∗ , sample (pktag, sktag) = E .Gen
(
1λ; r

)
where r is sampled at

random
– output pktag.

The following claim holds because from the security of the puncturable PRF,
even in the presence of the punctured key Ktag∗ = sktag∗ , the output distributions
of the programs Pgen[K] and P′gen[Ktag∗ ] are close, and hence, the security of piO
implies that the obfuscations of the programs are also indistinguishable even
given the punctured key.

Claim 6. For any PPT A,
∣∣∣Pr
(
A wins H0

)
− Pr

(
A wins H1

)∣∣∣ = negl.

Hybrid H2 : This is the distribution (pktag∗ , sktag∗) where (pk, sk, pktag∗ , sktag∗)←
Punc.Gen(tag∗).

The following claim holds because from the key-indistinguishability of E ,
the output distributions of the programs P′gen[K] and P∗gen[Ktag∗ ] are close (the
constrained key is not relevant here and hence security holds even in its presence),
and hence, the security of piO implies that the obfuscations of the programs are
also indistinguishable (even given the punctured key).

Claim 7. For any PPT A,
∣∣∣Pr
(
A wins H1

)
− Pr

(
A wins H2

)∣∣∣ = negl.

This completes the proof of key-indistinguishability.

5 CCA1 FHE from Knowledge Assumptions

Naor and Yung [NY90] show how to go from CPA encryption to CCA1 encryp-
tion using non-interactive zero-knowledge proofs (NIZKs). The CCA1 ciphertext
is simply a (pair of) CPA ciphertexts along with a NIZK proving correctness. In

xvi



this section we adopt this approach to the FHE setting. Applying this transfor-
mation directly results in a non-compact CCA1 FHE scheme even if the underly-
ing CPA FHE scheme is compact as the proof length grows with the complexity
of the circuit being evaluated. Thus we replace the NIZK with a zero-knowledge
succinct non-interactive argument of knowledge (zkSNARK) to preserve com-
pactness (argument of knowledge will be important in our proof of security).
The zkSNARKs we use in our scheme are defined in [BCCT13,BCC+14] and
constructed from knowledge assumptions. In Section 5.1 we formally define the
zkSNARK primitive we will use, and in Section 5.2 we give our scheme based
on them.

5.1 Zero-Knowledge SNARKs

Definition 5. Let L be a language in NP. A zero-knowledge succinct non-
interactive argument of knowledge (zkSNARK) for L is a tuple of algorithms
(Setup,Gen,Prove,Verify), defined as follows, which satisfy the correctness, suc-
cinctness, proof of knowledge, and zero-knowledge properties below.

– Setup
(
1λ
)
: is executed by a trusted third party and outputs crs ∈ {0, 1}poly(λ).

– Gen
(
1λ
)
: is executed by the verifier and outputs a reference string σ ∈

{0, 1}poly(λ).
– Prove

(
(crs, σ);x;w

)
: is executed by the prover and outputs a proof π certi-

fying (x,w) ∈ L.
– Verify

(
(crs, σ);x;π

)
: is executed by the verifier and outputs 1 or 0 according

to whether V accepts or rejects P’s proof.

Correctness: If (x,w) ∈ L then for any (crs, σ)← Setup(1λ)× Gen(1λ),

Pr
[
Verify

(
(crs, σ);x;Prove((crs, σ);x;w)

)
= 1
]

= 1.

Succinctness: The length of the proof π output by Prove and the running time
of Verify are bounded by p(λ + |x|) where p(·) is a polynomial which does
not depend on the language L.

Proof of Knowledge: For all PPT cheating provers Prove∗ who output (x, π)
on input (crs, σ), there exists a PPT extractor EProve∗ such that with high
probability over (crs, σ)← Setup(1λ)× Gen(1λ),

Pr
[
Verify

(
(crs, σ);Prove∗(crs, σ)

)
= 1 & EProve∗(crs, σ) = (x,w) /∈ L

]
= negl.

Zero Knowledge: For all PPT cheating verifiers Verify∗ who output an adver-
sarial reference string σ∗, there exists a simulator S such that for all PPT
distinguishers D, and all (x,w) ∈ L,∣∣∣∣Prπ←Prove(crs,σ∗,x,w)

[
D(π) = 1

]
− Prπ←S(Verify∗,crs,x)

[
D(π) = 1

]∣∣∣∣ = negl.

xvii



Remark. The zkSNARKs defined above are publicly verifiable; one could (and
often does) consider a weaker designated verifier variant, where Gen(1λ) outputs
(σ, τ) where σ is a public reference string as above and τ is a private verification
tag, known only to the verifier. Our use of publicly verifiable zkSNARKS is for
convenience; our construction could be made to work using designated verifier
zkSNARKs using techniques of [BCCT12]. zkSNARKS can be constructed from
a variety of non-standard assumptions including knowledge assumptions and
extractable CRHF [BCCT12,BCCT13,BCC+14].

5.2 The Scheme

BuildingBlocks: Let (Gfhe,Efhe,Dfhe,Evfhe) be an FHE scheme, and let (Ssnark,Gsnark,Psnark,Vsnark)
be a zkSNARK.

Gen(1λ): Draw (pk0, sk0), (pk1, sk1) ← Gfhe(1
λ), and (crs, σ) ← Ssnark(1

λ) ×
Gsnark(1

λ). Output (pk, sk) =
(
(pk0, pk1, crs, σ), (sk0, sk1)

)
.

Enc(µ, pk): For α = 0, 1, draw ωα ← $ and set ctα = Efhe(µ, pkα;ωα) for α = 0, 1.

Also draw π ← Psnark

(
(crs, σ); (ct0, ct1); (µ, ω0, ω1)

)
, a proof for the statement:

“∃ (µ, ω0, ω1) st ctα = Efhe(µ, pkα;ωα) for α = 0, 1.”

Output ct = (ct0, ct1, π).

Dec
(
ct, sk

)
: Parse ct = (ct0, ct1, π), and sk = (sk0, sk1). If Vsnark

(
(crs, σ); (ct0, ct1);π

)
=

1, output Dfhe(ct
0, sk0), otherwise output ⊥.

Eval
(
{cti}, C

)
: Parse cti = (ct0i , ct

1
i , πi). For α = 0, 1, draw ω′α ← $ set ctαeval =

Evfhe
(
{ctαi }, C;ω′α

)
. Also draw πeval ← Psnark

(
(crs, σ); (ct0eval, ct

1
eval); ({ct0i }, {ct1i }, {πi}, C, ω′0, ω′1)

)
,

a proof for:

∃ ({ct0i }, {ct1i }, {πi}, C, ω′0, ω′1)
)

st both
1. ctαeval = Evfhe({ctαi }, C, ;ω′α) for α = 0, 1;
2. Vsnark

(
(crs, σ); (ct0i , ct

1
i );πi

)
= 1 ∀ i.

Output cteval = (ct0eval, ct
1
eval, πeval).

Theorem 3. If (Gfhe,Efhe,Dfhe,Evfhe) is an FHE scheme, and (Ssnark,Gsnark,Psnark,Vsnark)
is a zkSNARK then the above scheme is CCA1 FHE.

Proof (Proof Sketch). We use essentially the same hybrid argument as [NY90].

Hybrid H0
0 : The CCA1 security game where C chooses bit = 0.

1. C draws (pk0, sk0), (pk1, sk1)← Gfhe(1
λ) and (crs, σ)← Ssnark(1

λ)×Gsnark(1
λ),

and sends pk = (pk0, pk1, crs, σ) to A, and holds sk = (sk0, sk1) for later use.
2. For β = 1, . . . , poly(λ):

– A sends ctβ = (ct0β , ct
1
β , πβ) to C.

xviii



– C returns Dec(ctβ , sk) toA. This involves checking Vsnark

(
(crs, σ); (ct0β , ct

1
β);πβ

)
=

1, and outputting Dfhe(ct
0
β , sk0).

3. A chooses (µ0, µ1)←M and sends (µ0, µ1) to C.
4. C draws ωα ← $ and sets ctα = Efhe(µ0, pkα;ωα) for α = 0, 1. Furthermore,
C draws a certificate π ← Psnark

(
(crs, σ); (ct0, ct1); (µ0, ω0, ω1)

)
, sets ct∗ =

(ct0, ct1, π) and sends ct∗ to A.

5. A outputs guess ∈ {0, 1} and wins if guess = 0.

Hybrid H0
1 : This is the same as H0

0 except for the way A’s queries are answered.
Each timeA sends (ct0β , ct

1
β , πβ), C verifies πβ as usual: if Vsnark

(
(crs, σ); (ct0β , ct

1
β);πβ) =

0, C returns ⊥. However, in addition, C computes µαβ = Dfhe(ct
α
β , skα) for α = 0, 1

and checks that µ0
β = µ1

β . If not, C aborts and A wins the game. Otherwise, C
returns µ0

β as usual.

Claim 8. For any PPT A,
∣∣∣Pr
(
A wins H0

0

)
− Pr

(
A wins H0

1

)∣∣∣ = negl.

Proof (Proof Sketch). This follows immediately from the proof of knowledge of
the zkSNARK.

Hybrid H0
2 : This is the same as H0

1 except that C simulates the proof π in the
challenge ciphertext. Specifically, C produces ct∗ by drawing ctα ← Efhe(µbit, pkα)
as usual, but draws π ← S

(
A, (crs, σ), (ct0, ct1)

)
instead of from Psnark(·) as in

H1.

Claim 9. For any PPT A,
∣∣∣Pr
(
A wins H0

1

)
− Pr

(
A wins H0

2

)∣∣∣ = negl.

Proof (Proof Sketch). This follows immediately from the zero knowledge of the
zkSNARK.

Hybrid H0,1
2 : This is the same as H0

2 except for the way C produces ct∗. This
time, C draws ciphertexts ctα ← Efhe(µα, pkα) for α = 0, 1 as well as a simulated
π, and sends ct∗ = (ct0, ct1, π).

Claim 10. For any PPT A,
∣∣∣Pr
(
A wins H0

2

)
− Pr

(
A wins H0,1

2

)∣∣∣ = negl.

Proof (Proof Sketch). This follows immediately from the semantic security of
the underlying FHE scheme.

Hybrid H0,1
3 : This is the same as H0,1

2 except that now C answers ciphertext
queries by sending µ1

β instead of µ0
β . This game is identical to H0,1

2 because of
the equality check performed during decryption.

Claim 11. For any (unbounded) A, Pr
(
A wins H0,1

2

)
= Pr

(
A wins H0,1

3

)
.

xix



Hybrid H1,1
3 : This is the same as H0,1

3 except for the way C produces ct∗. Now,
C draws ctα ← Efhe(µ1, pkα) for α = 0, 1 and simulates π as usual. C sends
ct∗ = (ct0, ct1, π).

Claim 12. For any PPT A,
∣∣∣Pr
(
A wins H0,1

3

)
− Pr

(
A wins H1,1

3

)∣∣∣ = negl.

Proof (Proof Sketch). This follows immediately from the semantic security of
the underlying FHE scheme.

Hybrid H1
2 : This is the same as H1,1

3 except that C answers ciphertext queries
by sending µ0

β again instead of µ1
β . This game is identical to H1,1

3 because of the
equality check performed during decryption.

Claim 13. For any (unbounded) A, Pr
(
A wins H1

2

)
= Pr

(
A wins H1,1

3

)
.

We now complete the argument by going from H1
2 to H1

0 in reverse just as we went
from H0

0 to H2
0. The next claim follows, and completes the proof of Theorem 3.

Claim 14. For any PPT A,
∣∣∣Pr
(
A wins H0

0

)
− Pr

(
A wins H1

0

)∣∣∣ = negl.

References

BCC+14. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia
Lin, Aviad Rubinstein, and Eran Tromer. The hunting of the SNARK.
IACR Cryptology ePrint Archive, 2014:580, 2014.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Goldwasser [Gol12], pages 326–349.

BCCT13. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for SNARKS and proof-carrying data. In
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 111–120, 2013.

BCHK07. Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-
ciphertext security from identity-based encryption. SIAM J. Comput.,
36(5):1301–1328, 2007.

BCTW16. Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee. Targeted
homomorphic attribute based encryption. manuscript, 2016.

BSW12. Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomor-
phic encryption for restricted computations. In Goldwasser [Gol12], pages
350–366.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, FOCS, pages
97–106. IEEE, 2011. Invited to SIAM Journal on Computing.

CKN03. Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-
ciphertext security. In Dan Boneh, editor, Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729
of Lecture Notes in Computer Science, pages 565–582. Springer, 2003.

xx



CLTV15. Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Ob-
fuscation of probabilistic circuits and applications. In Theory of Cryp-
tography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part II, pages 468–497, 2015.

CM15. Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled
FHE from learning with errors. In Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part II, pages 630–656, 2015.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer
Science, pages 13–25. Springer, 1998.

DDN91. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography
(extended abstract). In Cris Koutsougeras and Jeffrey Scott Vitter, editors,
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
May 5-8, 1991, New Orleans, Louisiana, USA, pages 542–552. ACM, 1991.

DGM15. Ricardo Dahab, Steven D. Galbraith, and Eduardo Morais. Adaptive key re-
covery attacks on ntru-based somewhat homomorphic encryption schemes.
In Anja Lehmann and Stefan Wolf, editors, Information Theoretic Security
- 8th International Conference, ICITS 2015, Lugano, Switzerland, May 2-
5, 2015. Proceedings, volume 9063 of Lecture Notes in Computer Science,
pages 283–296. Springer, 2015.

DHRW16. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky
encryption and its applications. IACR Cryptology ePrint Archive, 2016:272,
2016.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, 2009.

GM84. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

Gol12. Shafi Goldwasser, editor. Innovations in Theoretical Computer Science
2012, Cambridge, MA, USA, January 8-10, 2012. ACM, 2012.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 197–206, 2008.

LMSV10. Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On
cca-secure fully homomorphic encryption. IACR Cryptology ePrint Archive,
2010:560, 2010.

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II, pages 735–763, 2016.

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In Harriet Ortiz, editor, Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA, pages 427–437. ACM, 1990.

xxi



RAD78. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, pages 169–177.
Academic Press, 1978.

RS91. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, Ad-
vances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceed-
ings, volume 576 of Lecture Notes in Computer Science, pages 433–444.
Springer, 1991.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In 40th Annual Symposium on Foundations of
Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA,
pages 543–553. IEEE Computer Society, 1999.

ZPS12. Zhenfei Zhang, Thomas Plantard, and Willy Susilo. On the CCA-1 security
of somewhat homomorphic encryption over the integers. In Mark Dermot
Ryan, Ben Smyth, and Guilin Wang, editors, Information Security Prac-
tice and Experience - 8th International Conference, ISPEC 2012, Hangzhou,
China, April 9-12, 2012. Proceedings, volume 7232 of Lecture Notes in Com-
puter Science, pages 353–368. Springer, 2012.

A Linear Algebraic Encryption

In this section we define linear algebraic encryption, LAE, as an intermediate
type of encryption with which to instantiate CCA. Roughly speaking, a LAE
scheme is an encryption scheme whose plaintext space M is a finite field, and
which supports M−linear operations on ciphertexts. If one encrypts v ∈ Mk,
coordinate by coordinate obtaining ciphertexts {cti}i=1,...,k, then for any lin-
ear map ϕ :Mk →M`, one can compute evaluated ciphertexts {ct′j}j=1,...,` ←
Eval

(
{cti}, ϕ

)
which decrypt, using evaluated secret keys {sk′j} ← KeyEval

(
{ski}, ϕ

)
,

to ϕ(v) ∈ M`. Syntactically, this puts LAE very close to functional encryp-
tion for linear circuits; the correctness and security properties are essentially
the same. LAE, however, also requires soundness. Specifically, it must be that
evaluating ciphertexts and decrypting is the same as decrypting and evaluat-
ing plaintexts even for adversarially chosen ciphertexts. This will be crucial to
obtain CCA security. We now define LAE formally.

Definition 6 (Linear Algebraic Encryption). LetM, CT , PK, and SK rep-
resent the message, ciphertext, public key, and secret key spaces of the scheme,
respectively; let M be a finite field. A linear algebraic encryption scheme is a
tuple

(
Gen,Enc,Dec,CTEval,SKEval,EvalDec

)
of polytime algorithms, defined as

follows, which satisfy the correctness, soundness and security properties below.

– Gen
(
1λ, 1k

)
: takes security parameter λ, k ∈ Z and outputs

(
{pki}, {ski}

)
∈

PKk × SKk. The algorithms below all also take (1λ, 1k) as implied inputs.
– Enc

(
{msgi}, {pki}

)
: is a randomized algorithm which takes

(
{msgi}, {pki}

)
∈

Mk × PKk and outputs ciphertexts {cti} ∈ CT k.

xxii



– Dec
(
{cti}, {ski}

)
: takes

(
{cti}, {ski}

)
∈ CT k × SKk and outputs {msgi} ∈

Mk.
– CTEval

(
{cti}, ϕ

)
: takes {cti} ∈ CT k, linear map ϕ :Mk →M` and outputs

{ct′j} ∈ CT
`.

– SKEval
(
{ski}, ϕ

)
: takes {ski} ∈ SKk, a linear map ϕ : Mk → M` and

outputs {sk′j} ∈ SK
`.

– EvalDec
(
{ct′j}, {sk

′
j}
)
: takes

(
{ct′j}, {sk

′
j}
)
∈ CT `×SK` and outputs {msg′j} ∈

M`.

Correctness: For any {msgi} ∈ Mk, and whp over
(
{pki}, {ski}

) $← Gen
(
1λ, 1k

)
,

Pr
[
Dec

(
Enc({msgi}, {pki}

)
, {ski}

)
= {msgi}

]
= 1− negl.

Soundness: For any ϕ :Mk →M` and whp over
(
{pki}, {ski}

) $← Gen
(
1λ, 1k

)
,

for any (potentially malformed) ciphertexts {cti} ∈ CT k, the following dis-
tributions are statistically close:
• draw {msgi} ← Dec

(
{cti}, {ski}

)
, output ϕ

(
{msgi}

)
;

• draw {ct′j} ← CTEval
(
{cti}, ϕ

)
, {sk′j} ← SKEval

(
{ski}, ϕ

)
, output EvalDec

(
{ct′j}, {sk

′
j}
)
.

Security: For any PPT adversary A, its chance of winning the following game
against a challenger C is at most 1/2 + negl.
1. A sends (k, `, ϕ) to C where k = poly(λ), ` < k and ϕ :Mk →M` is a

linear map.

2. C draws
(
{pki}, {ski}

) $← Gen
(
1λ, 1k

)
, {sk′j} ← SKEval

(
{ski}, ϕ

)
, and

sends
(
{pki}, {sk

′
j}
)

to A.

3. A chooses {msg0i }, {msg1i } ∈ Mk st ϕ
(
{msg0i }

)
= ϕ

(
{msg1i }

)
, and sends(

{msg0i }, {msg1i }
)

to C. C draws b← {0, 1}, {ct∗i } ← Enc
(
{msgbi}, {pki}

)
and sends {ct∗i } to A.

4. A sends a bit b′ ∈ {0, 1} to C and wins if b = b′.

Remark 1. If a LAE scheme is such that every tuple in CT k is a valid encryption
of some message vector in Mk, then perfect correctness implies soundness.

Remark 2. It is possible to define versions of the above security game where
A gets to choose ϕ after receiving {pki}, or in an adaptive, coordinate-by-
coordinate fashion. We use the above simple version as it is already sufficient for
CCA2 encryption.

A.1 Adding Homomorphism

Definition 7 (Additively Homomorphic LAE). Let LAE be a LAE scheme.
We say that LAE is additively homomorphic if there exists a PPT algorithm Add
which satisfies the properties below. Let m,m′ ∈M be arbitrary and (pk, sk)←
Gen(1λ).

– Add(ct, ct′): Given ct = Enc(m, pk) and ct′ = Enc(m′, pk), output ct + ct′

which satisfies Dec(ct + ct′, sk) = m+m′.

xxiii



Remark. Though the definition of homomorphic LAE only requires homomor-
phic additions on single ciphertexts, it extends coordinate-wise to give homo-
morphic addition on ciphertext vectors. We also have soundness.

Claim 15 (Homomorphic Soundness). For any (possibly malformed) ci-
phertexts ct, ct′ ∈ CT k and whp over (pk, sk) ← Gen(1λ, 1k) we have that for
any linear ϕ : Zkq → Z`q, if skϕ = SKEval(sk, ϕ) then

EvalDec
(
CTEval(ct+ct′, ϕ), skϕ

)
= EvalDec

(
CTEval(ct, ϕ), skϕ

)
+EvalDec

(
CTEval(ct′, ϕ), skϕ

)
.

Proof. Let v = EvalDec
(
CTEval(ct, ϕ), skϕ

)
and v′ = EvalDec

(
CTEval(ct′, ϕ), skϕ

)
.

We have

EvalDec
(
CTEval(ct+ct′, ϕ), skϕ

)
= ϕ

(
Dec(ct+ct′, sk)

)
= ϕ

(
Dec(ct, sk)

)
+ϕ
(
Dec(ct′, sk)

)
= v+v′,

using soundness of LAE, additive homomorphism and linearity of ϕ.

A.2 Additively Homomorphic CCA1 Encryption from LAE

– Setup: Let LAE, be an additively homomorphic LAE scheme with message

space M = Zq for a large prime q = λω(1).
– Gen(1λ): Draw

(
{pki}, {ski}

)
i=1,...,5

← LAE.Gen
(
1λ, 15

)
. Output (pk, sk) =(

{pki}, {ski}
)
.

– Enc(m, pk): Choose random r, s ← Zq, and compute ciphertexts {cti} ←
LAE.Enc

(
v, {pki}

)
, where v = (m− r− s, r, s, 0, 0) ∈ Z5

q. Output ct = {cti}.
– Add(ct, ct′): Given ct = {cti} and ct′ = {ct′i}, output ct + ct′ = {cti + ct′i}

where + denotes the ciphertext addition of LAE.
– Dec(ct, sk): Parse ct = {cti}. Compute v = LAE.Dec

(
{cti}, {ski}

)
∈ Z5. If

v4 = v5 = 0, output v1 + v2 + v3, otherwise output ⊥.

Theorem 4. The above scheme is an additively homomorphic CCA1 encryption
scheme.

Correctness and homomorphic correctness follow immediately from the same
properties of LAE. To prove security, we use a hybrid argument.

Hybrid Hbit
0 : The CCA1 Game

1. C draws
(
{pki}, {ski}

)
← LAE.Gen(1λ, 15) and sends {pki} to A.

2. For α = 1, . . . , poly(λ):

– A sends a ciphertext ctα to C;
– C computes vα = LAE.Dec

(
ctα, {ski}

)
, checks that vα,4 = vα,5 = 0, if

not C returns ⊥; if so sends vα,1 + vα,2 + vα,3 to A.

3. A sends two messages m0,m1 ∈ Zq to C.
4. C sets m∗ = mbit, draws ct∗ ← Enc

(
m∗, {pki}

)
and returns ct∗ to A.

5. A outputs guess ∈ {0, 1} and wins if guess = bit.

xxiv



Hybrid Hbit
1 : This is the same as Hbit

0 except for the way C answers ciphertexts
ctα. In step 1, in addition to

(
{pki}, {ski}

)
← LAE.Gen(1λ, 15) C chooses random

linear ϕ : Z5
q → Zq such that ϕ(H) = 0 where H = {v ∈ Z5

q : v4 = v5 = 0}.
Also, let ϕeval : Z5

q → Zq be a random linear map of the form ϕeval(v) = v1 +

v2 + v3 + av4 + bv5 for random a, b ∈ Zq. C computes vα = LAE.Dec
(
ctα, {ski}

)
,

as usual. If ϕ(vα) = 0, C returns ϕeval(vα), otherwise ⊥.

Claim 16. For any (computationally unbounded) adversary A and bit ∈ {0, 1},∣∣∣Pr
(
A wins Hbit

1

)
− Pr

(
A wins Hbit

0

)∣∣∣ = negl(λ).

Proof (Proof Sketch.). Note Hbit
1 is identical to Hbit

0 except that in Hbit
0 , C checks

that vα ∈ H, while in Hbit
1 , C checks that ϕ(vα) = 0. As ϕ : Z5

q → Zq is random
such that ϕ(H) = 0, for any vα /∈ H, Prϕ[ϕ(vα) = 0] = 1/q = negl(λ). Claim 16
follows from the union bound over the polynomially many query ciphertexts.

Hybrid Hbit
2 : This is the same as Hbit

1 except that instead of computing de-
cryptions honestly vα = LAE.Dec

(
ctα, {ski}

)
and checking ϕ(vα) = 0, C com-

putes ct′ = LAE.CTEval
(
{cti}, (ϕ,ϕeval)

)
, and evaluated decryption (v, w) =

LAE.EvalDec(ct′, sk′), where sk′ = LAE.SKEval
(
{ski}, (ϕ,ϕeval)

)
, and (ϕ,ϕeval) :

Z5
q → Z2

q is the linear map v 7→
(
ϕ(v), ϕeval(v)

)
. If v = 0 C returns w, otherwise

⊥. The claim follows immediately from the soundness of LAE.

Claim 17. For any (computationally unbounded) adversary A and bit ∈ {0, 1},∣∣∣Pr
(
A wins Hbit

2

)
− Pr

(
A wins Hbit

1

)∣∣∣ = negl(λ).

Hybrid Hbit
3 : This is the same as Hbit

2 except for the way the challenge ciphertext
is produced. Upon receiving (m0,m1) from A, C chooses a random v∗ ∈ Z5

q such

that v∗1 + v∗2 + v∗3 = mbit and ϕ(v∗) = 0. C draws ct∗ ← LAE.Enc
(
v∗, {pki}

)
, and

sends ct∗ to A.

Claim 18. For any PPTA and bit ∈ {0, 1},
∣∣Pr
(
A wins Hbit

2

)
−Pr

(
A wins Hbit

3

)∣∣ =
negl(λ).

Proof (Proof Sketch.). Let A be a PPT adversary who distinguishes between Hbit
2

and Hbit
3 with noticeable advantage, we construct B who breaks the security of the

LAE scheme. B chooses ϕ as above and sends (ϕ,ϕeval) to C and receives {pki}, sk
′

from C, and forwards {pki} to A. Every time A asks a query ctα, B uses sk′ to
decrypt the evaluated ciphertext like in both games. Upon receiving (m0,m1)
from A, B chooses v0,v1 such that ϕeval(v0) = ϕeval(v1) = mbit, v0 ∈ H and v1

is otherwise random such that ϕ(v1) = 0. B sends (v0,v1) to C and receives ct∗,
which he forwards to A. B forwards A’s guess back to C. It is clear that B wins
if and only if A guesses correctly between Hbit

2 or Hbit
3 .

Claim 19. For any A, Pr
(
A wins H0

3

)
= Pr

(
A wins H1

3

)
.

xxv



Proof (Proof Sketch.). Consider the random process specified by m ∈ Zq: 1)
choose random ϕ : Z5

q → Zq such that ϕ(H) = 0 and a, b ← Zq, defining
ϕeval : Z5

q → Zq 2) choose and output random v ∈ Z5
q such that ϕ(v) = 0 and

ϕeval(v) = m. The randomness of ϕ and ϕeval ensures that the output of this
process is identically distributed for all m ∈ Zq, so H0

3 and H1
3 are identical.

B Instantiating Homomorphic LAE from DDH

In this section, we describe instantiations of linear algebraic encryption schemes
from the Decisional Diffie-Hellman (DDH) assumption. The idea is to use El-
Gamal encryption under different public keys but using the same randomness
in order to enable the linear homomorphism we need. We describe the scheme
below. The system is designed for small message spaces such as M = {0, 1}.

– Gen
(
1λ, 1k

)
takes security parameter λ, k ∈ Z. It chooses a group G of order

q, where q is a prime of length poly(λ), along with a generator g of G. Next,

it samples k random values αi
$← Zq, i ∈ [k]. Finally, it sets and outputs

pk =
(
G, g, q, {pki}

)
and sk =

(
{ski}

)
, where ski = αi and pki = gαi .

– Enc
(
{msgi}, pk

)
is a randomized algorithm which takes k messages msgi,

i ∈ [k] and the public key pk. It first chooses a random value r
$← Zq. It

outputs ct =
(
gr, {cti}

)
where cti = pkri g

msgi .

– Dec
(
ct, sk

)
takes a ciphertext ct =

(
gr, {cti}

)
and the secret key sk and

outputs {msgi} where for each i ∈ [k],

msgi = dLogg

(
cti

(gr)ski

)
where dLogg(·) denotes computing the discrete logarithm with respect to g.

– CTEval
(
{cti}, ϕ

)
takes a ciphertext ct =

(
gr, {cti}

)
and linear map ϕ :

Mk → M`. Let ϕ× denote the map which replaces addition in ϕ with
multiplication and multiplication in ϕ with exponentiation. More formally,
suppose

ϕ(x) =

∑
i∈[k]

ϕi,jxi


j∈[`]

Define

ϕ×(x) =

∏
i∈[k]

x
ϕi,j
i


j∈[`]

The algorithm outputs ct′ = gr, {ct′j}j∈[`] = ϕ×({cti}).
– KeyEval

(
{ski}, ϕ

)
takes the secret key sk, a linear map ϕ : Mk → M` and

outputs sk′ = {sk′j}j∈[`] = ϕ(sk).

xxvi



– EvalDec
(
ct′, sk′

)
takes an evaluated ciphertext ct′ = gr, {ct′j} and an evalu-

ated secret key sk′ = {sk′j} outputs {msg′j} where for each j ∈ [`],

msg′j = dLogg

(
ct′j

(gr)sk
′
j

)
where dLogg(·) denotes computing the discrete logarithm with respect to g.

Correctness and Soundness The scheme is perfectly correct and sound. For

any {msgi} ∈ Mk and (pk, sk)
$← Gen

(
1λ, 1k

)
,

Dec
(
Enc({msgi}, {pki}

)
, {ski}

)
=

{
dLogg

(
cti

(gr)ski

)}
=

{
dLogg

(
pkri g

msgi

(gski)r

)}
=
{

dLogg (gmsgi)
}

= {msgi}

For any ϕ :Mk →M`, (pk, sk)
$← Gen

(
1λ, 1k

)
and any (potentially malformed)

ciphertexts ct,

ϕ
(
Dec

(
{cti}, {ski}

))
=

∑
i∈[k]

ϕi,jdLogg

(
cti

(gr)ski

)
j∈[`]

=

dLogg

∏
i∈[k]

[
cti

(gr)ski

]ϕi,j
j∈[`]

=

dLogg




∏
i∈[k]

ct
ϕi,j
i

g
r

∑
i∈[k]

ϕi,jski




j∈[`]

=

{
dLogg

(
ct′j

(gr)sk
′
j

)}
j∈[`]

= EvalDec
(
Eval

(
ct, ϕ

)
,KeyEval

(
sk, ϕ

))
Security Security of the scheme is based on the security of the El-Gamal cryp-
tosystem and hence the Decisional Diffie-Hellman (DDH) assumption. We prove
here security for the case that k = 2 and ` = 1 and note that the proof induc-
tively generalizes for larger k and `.

Suppose there exists a PPT adversary A who can break the security of the
LA encryption scheme with k = 2 and ` = 1. We now construct a PPT adversary

xxvii



B who breaks the semantic security of the El-Gamal encryption scheme with the
same advantage. Since we know that under the DDH assumption, the latter
advantage is negligible, so is the former.
B runs using A as follows. Let C denote the challenger of the El-Gamal

encryption scheme. A sends (k = 2, ` = 1, ϕ) to B where ϕ : Mk → M` is a
linear map. Let ϕ = [ϕ1, ϕ2]. B also receives the public key pkEG =

(
G, g, q, h1

)
from C, where h = gα1 for some α1 ∈ Zq unknown to B. B then samples a

random α
$← Zq and computes

h2 =

(
gα

hφ1

1

)ϕ−1
2

Note that this implicitly sets h2 = gα2 , where φ([α1, α2]T ) = α. B sets pk =(
G, g, q, {pki}

)
and sk′ = α, where pki = hi, and sends

(
pk, sk′

)
to A. A chooses

{msg0i }, {msg1i } ∈ Mk such that ϕ
(
{msg0i }

)
= ϕ

(
{msg1i }

)
= M (say), and sends(

{msg0i }, {msg1i }
)

to B. B forwards the messages
(
msg01,msg11

)
to C. C draws

b ← {0, 1}, r $← Zq and computes ctEG =
(
gr, ct∗1 = hr1g

msgb1
)

and sends ctEG to
B. B constructs ct∗2 as follows. We have that

ϕ1msg01 + ϕ2msg02 = ϕ1msg11 + ϕ2msg12 = M

B computes

ct∗2 =

(
(gr)α · gM

(ct∗1)φ1

)ϕ−1
2

Note that this implicitly sets ct∗2 = hr2g
msgb2 . B then sends ct∗ =

(
gr, {ct∗i }

)
to

A. A sends a bit b′ ∈ {0, 1} to B which B forwards to C. Note that the implicit
bit chosen by B in the game against A is b and hence B succeeds with the same
probability as A. This completes the proof.

xxviii


	Chosen-Ciphertext Secure Fully Homomorphic Encryption

