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Abstract. We show that the recent structure-preserving signature (SPS)
scheme of Kiltz, Pan and Wee [CRYPTO 2015], provably secure under
the standard bilinear pairings group assumption SXDH, can be improved
to have one less group element and one less pairing product equation in
the signature verification step. Our improved SPS scheme only requires
six group elements (five in one group, and one in the other), and two
pairing product equations for verification. The number of pairing prod-
uct equations is optimal, as it matches a known lower bound of Abe et
al [CRYPTO 2011]. The number of group elements in the signature also
approaches the known lower bound of four for SXDH assumption. Fur-
ther, while the earlier scheme had a security reduction which incurred a
security loss that is quadratic in number of queries Q, our novel security
reduction incurs only a Q logQ factor loss in security.
Structure-preserving signatures are used pervasively in group signatures,
group encryptions, blind signatures, proxy signatures and many other
anonymous credential applications. Our work directly leads to improve-
ments in these schemes. Moreover, the improvements are usually of a
higher multiplicative factor order, as these constructions use Groth-Sahai
NIZK proofs for zero-knowledge verification of pairing-product equa-
tions.
We also give our construction under the more general and standard Dk-
MDDH (Matrix-DDH) assumption. The signature size in our scheme is
3k+ 2 elements in one group, and one element in the other. The number
of pairing product equations required for verification is only 2k, whereas
the earlier schemes required at least 2k + 1 equations.

Keywords: Structure preserving signatures, bilinear pairings, SXDH, Matrix-
DDH, Groth-Sahai, Cramer-Shoup, QA-NIZK

1 Introduction

The notion of structure-preserving signatures (SPS) was introduced in [AFG+10]
so that such signatures are compatible with the bilinear-pairings based efficient
non-interactive zero-knowledge (NIZK) proofs of Groth and Sahai [GS08]. The



messages, signatures, and verification keys are required to be elements of groups
that support efficient bilinear-pairings (bilinear groups), and the signature verifi-
cation consists of just evaluating one or more bilinear-pairing product equations.
With the structure of the signature preserved, one can then build many interest-
ing cryptographic primitives and protocols that require (hiding) commitments
to such messages and signatures and yet retain the ability to prove properties
about these using Groth-Sahai NIZK proofs (GS-NIZK proofs). To list a few,
SPS have been used to build blind signatures [AO09,AFG+10], group signa-
tures [AHO10], traceable signatures [ACHO11], group encryption [CLY09], and
delegatable credential systems [Fuc11].

The first SPS was introduced by Groth in 2006 even before GS-NIZK proofs
were introduced [Gro06]. In the same work Groth also introduced NIZK proofs
for algebraic equations over bilinear groups, but since this construction was
rather inefficient, it was best viewed as a feasibility study. A variation of the
Camenisch-Lysyanskaya signature scheme [CL04] was shown to be an SPS se-
cure against random message attacks [GH08]. Cathalo, Libert and Yung [CLY09]
and Fuchsbauer [Fuc09] gave schemes which are efficient when signing a single
group element, but their signature size increases linearly in the size of the mes-
sage. In [AHO10], the authors presented the first constant-size SPS consisting
of seven group elements, provable under a non-interactive but dynamic q-type
assumption. In [AGHO11], the authors show a three group element SPS scheme
provable in the generic asymmetric pairings group model. Interestingly, they
also showed that any SPS scheme in asymmetric bilinear groups must require at
least three group elements and two pairing product verification equations. They
also gave a four group element SPS scheme under a non-interactive but dy-
namic q-type assumption. In [AGO11], the authors show that any SPS scheme
proven secure by a black-box reduction of the standard SXDH assumption in
asymmetric bilinear groups must have four group elements.

Recently, Kiltz, Pan and Wee [KPW15] and Libert, Peters and Yung [LPY15]
gave efficient SPS schemes under standard bilinear assumptions such as SXDH
(Symmetric eXternal Diffie-Hellman assumption) or MDDH (Matrix-DDH as-
sumption). While the latter scheme required ten group elements, the former
was even shorter requiring only seven group elements (under SXDH). However,
both schemes required three pairing product equations for signature verifica-
tion, which is sub-optimal. Moreover, the security proofs given for both schemes
incurred a quadratic (in the number of signature queries) loss in security.

1.1 Our Contributions

In this work, we show that the scheme of Kiltz, Pan and Wee [KPW15] can be
modified to have a signature size of only six group elements. More importantly,
the number of pairing product equations required for signature verification is
reduced to two, which is optimal by the lower bound of [AGHO11]. Further,
we give a security proof that only has a Q logQ security loss in reduction from
standard SXDH or MDDH assumptions.
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The ramifications of these improvements are many-fold. First, note that since
SPS are used along with commitments, encryptions and GS-NIZK proofs, this
can lead to a multiplicative factor improvement in the final cryptographic ap-
plication. For example, every group element in the SPS that needs a Groth-
Sahai commitment leads to a factor two blowup. A CCA2-encryption such as
the Cramer-Shoup encryption [CS02] could lead to a factor four or five blowup.
Each pairing product equation can lead to up to eight extra group elements in
GS-NIZK proofs (under SXDH assumption), and indeed the type of extra pair-
ing product equation in [KPW15] does take eight extra group elements (four in
each of the two asymmetric bilinear groups).

Using the methodology of [AHO10,AFG+10], [LPY15] build a dynamic group
signature scheme with signature size of 30 group elements in G1, 14 group ele-
ments in G2 and an integer tag. The improvements presented in this work are
directly applicable and should lead to a reduction of at least ten group elements
in the size of the signature. Similar improvements are expected in blind signature
schemes and other anonymous credentials based schemes.

We also give constructions and security proofs under the more general k-
MDDH (matrix-DDH) assumption. Our results and comparison with previous
work is summarized in Fig. 1.

As for the improved security reduction, [KPW15] show that if an adaptive
chosen-message attack adversary makes at most Q signature queries, then its
success probability of forging a signature on a new message is bounded from
above by (roughly)

Q2 ·ADVddh +Q2/q

where q is the order of the cyclic groups, and ADVddh is the maximum advan-
tage an efficient adversary has in a (decisional Diffie-Hellman) DDH-challenge
game in either of the asymmetric bilinear groups. In this work, we show that the
success probability of forging a signature is at most (roughly)

Q · logQ ·ADVddh +Q2/q

Since, by Pollard’s Rho method [Pol78], ADVddh is at least 1/
√
q, the first

term in both of the above success probabilities is dominant. Thus, for the same
security guarantee, and for large number of signatures (which should be expected
for group signatures and other such anonymous credential applications), the
earlier schemes would require almost twice the number of bits in representation
of the group elements.

1.2 Our Techniques

The underlying idea in the SPS schemes of both [KPW15] and [LPY15], and
our scheme is to hide a secret using a CCA2 encryption scheme, and in particu-
lar the Cramer-Shoup encryption [CS02], and prove in zero-knowledge that the
signer knows the secret encrypted in the ciphertext. This methodology of build-
ing signature schemes was already described in [CCS09] (also, see a refinement
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Table 1. Comparison with existing unbounded security SPS schemes with table
adapted from [KPW15]. (n1, n2) denotes n1 G1 elements and n2 G2 elements. The
table gives message, signature and public key sizes and finally the number of pairing
product equations needed for verification. RE(Dk) is the number of group elements
needed for representing a sample from Dk; RE(Dk) is the same for all but the last row
of a sample. For k-Linear assumption these are k + 1 and k respectively.

Assumption |m| |σ| |pk| #PPEs

[AGHO11] Interactive (Generic) (n1, n2) (2, 1) n1 + n2 + 2 2
[AGHO11] Non-interactive (Generic) (n1, n2) (3, 3) n1 + n2 + 2 2
[AGHO11] Non-Interactive (Generic) (n1, 0) (3, 1) n1 + 2 2

[ACD+12] SXDH, XDLIN (n1, 0) (7, 4) 20 + n1 4

[ACD+12] SXDH, XDLIN (n1, n2) (8, 6) 22 + n1 + n2 5

[ADK+13] 2-Lin (G1 = G2) n 14 22 + n 7

[AFG+10] q-SFP (n1, 0) (5, 2) 13 + n1 2
[LPY15] SXDH, XDLIN (n1, 0) (9, 1) 2n1 + 21 5
[KPW15] Dk − mddh (n1, n2) (4k + 3, k + 2) (n1 + n2 + 3k + 3)k + 2RE(Dk) 3k + 1

[KPW15] Dk − mddh (n1, 0) (3k + 3, 1) (n1 + 2k + 3)k + RE(Dk) 2k + 1

This paper Dk − mddh (n1, 0) (3k + 2, 1) (n1 + 2k + 3)k + RE(Dk) 2k

of this method in [JR13]). However, as is well-known, the Cramer-Shoup encryp-
tion scheme requires exponentiation with a tag which is computed from other
elements in the ciphertext in a 1-1 fashion. This enforces the tag to be different
if the ciphertext is changed in any way. However, this clearly is not structure-
preserving, as the 1-1 mapping is required to map from the group elements to
another group Zq, where q is the order of the bilinear groups.

In [KPW15] and [LPY15], the tag is instead chosen afresh at random (i.e.,
independent of other elements in the ciphertext), and its representation in the
bilinear group is given as part of the signature. The tag is also used in the
aforementioned exponentiation (in fact, more than one), and simple bilinear
tests can check that these values are consistent. To get a better understanding,
we now give some specific details. Let k be the secret of the signer. To create
the signature, it generates a Cramer-Shoup encryption, by picking r at random,
and setting

ρ = gr1, ρ̂ = (gb1)r, γ = gk1 · (gd1)r · (ge1)t·r

where t is the tag, and gb1, g
d
1 , g

e
1 are part of the public key. In SPS, since t is

chosen afresh, the signer also gives ψ = gt·r1 and τ = gt2. Note that τ is in group
G2, whereas all other elements are in group G2. The consistency of ρ, ψ and τ
is easily checked by a bilinear pairing product equation, i.e., e(ρ, τ) = e(ψ, g2).

If one were to follow the methodology of [CCS09], the signer also gives a
NIZK proof π that ρ, ρ̂, ψ and γ are consistent with the public key, and some
public information about k. However, with the quasi-adaptive computationally-
sound NIZK proofs (QA-NIZK) of [JR13], one can give a QA-NIZK proof that
these elements are in an affine span of the underlying linear subspace language,
with the verifier CRS independent of the affine component (i.e. gk1 ).

The scheme in [KPW15] (also [LPY15]) also gives an additional element

ψ̂ = (gb1)t·r, and the signature verification requires another consistency check, i.e.

e(ρ̂, τ) = e(ψ̂, g2). The main reason for this additional verification is that [KPW15]
does not follow the above methodology for the security proof, and instead uses

4



a core computational lemma which was used to give an unbounded-simulation
sound QA-NIZK scheme [KW15]. As mentioned earlier, it suffices to use a (non
simulation-sound) NIZK as long as one uses a CCA2 encryption like Cramer-
Shoup (which in itself is just a one-time simulation-sound method). Now, readers
familiar with Cramer-Shoup encryption will recall that the main idea there is the
ability for the simulator to use an alternate decryption. However, in signature
schemes, as opposed to Cramer-Shoup encryption, there is no real decryption,
but just a verification of the signature using private trapdoor keys. This can
also be done efficiently using the bilinear pairing available, and this is the reason
why a single additional test of the relationship between ψ, ρ and τ suffices. More
details can be found in Section 3.1.

1.3 Recursive Complexity-Leveraging for Improved Security
Reduction

For improving the security reduction, we first note that [KPW15] requires a
complexity-leveraging technique, because the simulator of the challenger in the
SPS security game must guess a query index (the one for which the adversary
may use the same tag), and then try to simulate signatures only for indices
other than this guess. However, since the adversary is adaptive, this guess is
only correct with probability 1/Q, where Q is the maximum number of queries
the adversary makes.

We follow a recursive approach, where the simulator goes through Q hybrid
games. In the first Q/2 hybrid games, the simulator guesses a set Z of size Q/2,
and then simulates queries outside this set. Now, the simulator’s correct guess
probability that the adversary’s tag will match a tag in query from set Z is much
higher, i.e., 1/2. From the Q/2-th hybrid onwards, we show that the simulator
can switch to another sequence of hybrid games, where now the simulator guesses
a set Z of sizeQ/4, and so forth inductively. The penalty in the security reduction
in this switch is only a factor of two. Note that we are paying a penalty of factor
2m for only the last Q/2m−1 hybrids, and this leads to a reduction with only
a Q logQ security loss. We expect our novel complexity-leveraging technique to
be more widely applicable, and of independent interest.

2 Preliminaries

We will consider cyclic groups G1,G2 and GT of prime order q, with an efficient
bilinear map e : G1×G2 → GT . Group elements g1 and g2 will typically denote
generators of the group G1 and G2 respectively. Following [EHK+13], we will use
the notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively
and use additive notations for group operations. When talking about a general
group G with generator g, we will just use the notation [a] to denote ag. The
notation generalizes to vectors and matrices in a natural component-wise way.

For two vector or matrices A and B, we will denote the product A>B as
A ·B. The pairing product e([A]1, [B]2) evaluates to the matrix product [AB]T
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in the target group with pairing as multiplication and target group operation as
addition.

We recall the Matrix Decisional Diffie-Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an effi-
ciently samplable distribution on Zl×kq which is full-ranked with overwhelming
probability. The Dl,k-MDDH assumption in group G states that with samples
A ← Dl,k, s ← Zkq and s′ ← Zlq, the tuple ([A], [As]) is computationally indis-
tinguishable from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by
Dk.

2.1 Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a word
and the second called a witness. Each witness relation R defines a corresponding
language L which is the set of all words x for which there exists a witness w,
such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distri-
bution D on a collection of (witness-) relations R = {Rρ} (with corresponding
languages Lρ). Recall that in a quasi-adaptive NIZK, the CRS can be set after
the language parameter has been chosen according to D. Please refer to [JR13]
for detailed definitions.

For our SPS construction we will also need a property called true-simulation-
soundness and an extension of QA-NIZKs called strong split-CRS QA-NIZK. We
also recall the definitions of these concepts below.

Definition 1 (QA-NIZK [JR13]). We call a tuple of efficient algorithms
(pargen, crsgen, prover, ver) a quasi-adaptive non-interactive zero- knowledge (QA-
NIZK) proof system for witness-relations Rλ = {Rρ} with parameters sampled
from a distribution D over associated parameter language Lpar, if there exist sim-
ulators crssim and sim such that for all non-uniform PPT adversaries A1,A2,A3,
we have (in all of the following probabilistic experiments, the experiment starts
by setting λ as λ← pargen(1m), and choosing ρ as ρ← Dλ):

Quasi-Adaptive Completeness:

Pr

CRS← crsgen(λ, ρ)
(x,w)← A1(CRS, ρ)
π ← prover(CRS, x, w)

:
ver(CRS, x, π) = 1 if

Rρ(x,w)

 = 1

Quasi-Adaptive Soundness:

Pr

[
CRS← crsgen(λ, ρ)
(x, π)← A2(CRS, ρ)

:
x /∈ Lρ and

ver(CRS, x, π) = 1]

]
≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr
[
CRS← crsgen(λ, ρ) : Aprover(CRS,·,·)

3 (CRS, ρ) = 1
]

≈
Pr
[
(CRS, trap)← crssim(λ, ρ) : Asim

∗
(CRS,trap,·,·)

3 (CRS, ρ) = 1
]
,
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where sim∗(CRS, trap, x, w) = sim(CRS, trap, x) for (x,w) ∈ Rρ and both oracles
(i.e. prover and sim∗) output failure if (x,w) 6∈ Rρ.

Definition 2 (True-Simulation-Sound [Har11]). A QA-NIZK is called true
-simulation-sound if the verifier is sound even when an adaptive adversary has
access to simulated proofs on language members. More precisely, for all PPT A,

Pr

[
(CRS, trap)← crssim(λ, ρ)

(x, π)← Asim(CRS,trap,·,·)(CRS, ρ)
:

x 6∈ Lρ and
ver(CRS, x, π) = 1

]
≈ 0,

where the experiment aborts if the oracle is called with some x 6∈ Lρ.

Definition 3 (Strong Split-CRS QA-NIZK [JR13]). We call a tuple of
efficient algorithms (pargen, crsgenv, crsgenp, prover, ver) a strong split-CRS
QA-NIZK proof system for an ensemble of distributions {Dλ} on collection of
witness-relations Rλ = {Rρ} with associated parameter language Lpar if there
exists probabilistic polynomial time simulators (crssimv, crssimp, sim), such that
for all non-uniform PPT adversaries A1,A2,A3, and λ← pargen(1m), we have:

Quasi-Adaptive Completeness:

Pr


(CRSv, st)← crsgenv(λ), ρ← Dλ
CRSp ← crsgenp(λ, ρ, st)
(x,w)← A1(λ,CRSv,CRSp, ρ)
π ← prover(CRSp, x, w)

:
ver(CRSv, x, π) = 1 if

Rρ(x,w)

 = 1

Quasi-Adaptive Soundness:

Pr

 (CRSv, st)← crsgenv(λ), ρ← Dλ
CRSp ← crsgenp(λ, ρ, st)
(x, π)← A2(λ,CRSv,CRSp, ρ)

:
ver(CRSv, x, π) = 1 and

not (∃w : Rρ(x,w))

 ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr

 (CRSv, st)← crsgenv(λ)
ρ← Dλ
CRSp ← crsgenp(λ, ρ, st)

: Aprover(CRSp,·,·)
3 (λ,CRSv,CRSp, ρ) = 1


≈

Pr

 (CRSv, trap, st)← crssimv(λ)
ρ← Dλ
CRSp ← crssimp(λ, ρ, st)

: Asim
∗
(trap,·,·)

3 (λ,CRSv,CRSp, ρ) = 1

 ,
where sim∗(trap, x, w) = sim(trap, x) for (x,w) ∈ Rρ and both oracles (i.e.
prover and sim∗) output failure if (x,w) 6∈ Rρ.

2.2 Strong Split-CRS QA-NIZK for Affine Languages

We now describe a strong split-CRS QA-NIZK (pargen, crsgenv, crsgenp, prover,
ver) for affine linear subspace languages {L

[M]1,[a]1
}, consisting of words of the
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form [Mx + a]1, with parameters sampled from a robust and efficiently witness-
samplable distribution D over the associated parameter language Lpar and with
soundness under a Dk-mddh assumption. Robustness means that the top square
matrix of M is full-ranked with overwhelming probability. The construction is
essentially the one of [JR13] adapted to the framework of [KW15].

Algorithm crsgenv: The algorithm crsgenv samples a matrix K ← Zn×kq , a

vector k ← Zkq and a matrix A(k+1)×k from the MDDH distribution Dk. Let Ā
be the top k × k square matrix of A. Then it computes:

CRSv :=
(
[C0]n×k2 = [KĀ]2, [C1]1×k2 = [k · Ā]2, [Ā]k×k2

)
and state st = (K, k).
Algorithm crsgenp: Let ρ = ([M]n×t1 , [a]n×11 ) be the language parameter sup-
plied to crsgenp and st = (K, k) be the state transmitted by crsgenv. Then it
computes:

CRSp :=
(

[P0]t×k1 = [M>K]1, [P1]1×k1 = [a ·K + k>]1

)
Prover prover: Given candidate y = [Mx + a]1 with witness vector xt×1, the
prover generates the following proof consisting of k elements in G1:

π := x · [P0]1 + [P1]1

Verifier ver: Given candidate y, and proof π, compute:

e(y>, [C0]2) + e([1]1, [C1]2)
?
= e(π, [Ā]2)

Simulators crssimv, crssimp and sim: The algorithms crssimv and crssimp are
identical to crsgenv and crsgenp respectively, except that crsgenv also outputs
trap := (K, [k]1). The proof simulator sim takes candidate y and trapdoor
(K, [k]1) and outputs:

π := y ·K + [k>]1

Theorem 1. The above algorithms (pargen, crsgenv, crsgenp, prover, ver) consti-
tute a true-simulation-sound strong split-CRS QA-NIZK proof system for affine
languages {L

[M]1,[a]1
} with parameters ([M]1, [a]1) sampled from a robust and

efficiently witness-samplable distribution D over the associated parameter lan-
guage Lpar, given any group generation algorithm for which the Dk-mddh as-
sumption holds for group G2.

2.3 Projective Hash Proof System.

For a language L, let X be a superset of L and let H = (Hk)k∈K be a collection
of (hash) functions indexed by K with domain X and range another set Π.
The hash function family is generalized to a notion of projective hash function
family if there is a set S of projection keys, and a projection map α : K → S,
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and further the action of Hk on subset L of X is completely determined by the
projection key α(k). Finally, the projective hash function family is defined to be
ε-universal2 if for all s ∈ S, x, x∗ ∈ X, and π, π∗ ∈ Π with x 6∈ L ∪ {x∗}, the
following holds:

Pr[Hk(x) = π | Hk(x∗) = π∗ ∧ α(k) = s] ≤ ε.

A projective hash function family is called ε-smooth if for all x ∈ X \ L, the
statistical difference between the following two distributions is ε: sample k uni-
formly from K and π′ uniformly from Π; the first distribution is given by the
pair (α(k), Hk(x)) and the second by the pair (α(k), π′). For languages defined
by a witness-relation R, the projective hash proof family constitutes a projective
hash proof system (PHPS) if α, Hk, and another public evaluation function Ĥ
that computes Hk on x ∈ L, given a witness of x and only the projection key
α(k), are all efficiently computable. An efficient algorithm for sampling the key
k ∈ K is also assumed.

The above notions can also incorporate labels. In an extended PHPS, the hash
functions take an additional input called label. The public evaluation algorithm
also takes this label. All the above notions are now required to hold for each
possible value of label. The extended PHPS is now defined to be ε-universal2
is for all s ∈ S, x, x∗ ∈ X, all labels l and l∗, and π, π∗ ∈ Π with x 6∈ L and
(x, l) 6= (x∗, l∗), the following holds:

Pr[Hk(x, l) = π | Hk(x∗, l∗) = π∗ ∧ α(k) = s] ≤ ε.

Since we are interested in distributions of languages, we extend the above def-
inition to distribution of languages. So consider a parametrized class of languages
{Lρ}ρ with the parameters coming from an associated parameter language Lpar.
Assume that all the languages in this collection are subsets of X. Let H as above
be a collection of hash functions from X to Π. We say that the hash family is
a projective hash family if for all Lρ, the action of Hk on Lρ is determined by
α(k). Similarly, the hash family is ε-universal2 (ε-smooth) for {Lρ}ρ if for all
languages Lρ the ε-universal2 (resp. ε-smooth) property holds.

2.4 Structure-Preserving Signatures

Definition 4 (Structure-preserving signature). A structure-preserving sig-
nature scheme SPS is defined as a triple of probabilistic polynomial time (PPT)
algorithms SPS = (Gen,Sign,Verify):

– The probabilistic key generation algorithm Gen(par) returns the public/secret
key (pk, sk), where pk ∈ Gnpk for some npk ∈ poly(λ). We assume that pk
implicitly defines a message space M := Gn for some n ∈ poly(λ).

– The probabilistic signing algorithm Sign(sk, [m]) returns a signature σ ∈ Gnσ
for nσ ∈ poly(λ).

– The deterministic verification algorithm Verify(pk, [m], σ) only consists of
pairing product equations and returns 1 (accept) or 0 (reject).
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Perfect correctness holds if for all (pk, sk)← Gen(par) and all messages [m] ∈M
and all σ ← Sign(sk, [m]) we have Verify(pk, [m], σ) = 1.

Definition 5 (Unforgeability against chosen message attack). To an ad-
versary A and scheme SPS we associate the advantage function:

ADVCMA
SPS (A) := Pr

[
(pk, sk)← Gen(par)
([m∗], σ∗)← ASignO(·)(pk)

:
[m∗] /∈ Qmsg and

Verify(pk, [m∗], σ∗) = 1

]
where SignO([m]) runs σ ← Sign(sk, [m]), adds the vector [m] to Qmsg (initial-
ized with ∅) and returns σ to A. An SPS is said to be (unbounded) CMA-secure
if for all PPT adversaries A, ADVCMA

SPS (A) is negligible.

3 SPS Construction

Our SPS construction for a general Dk-mddh assumption is given in Figure 1.
We also give the instantiation of this SPS for the Symmetric eXternal Diffie-
Hellman Assumption (sxdh) assumption in Figure 2. The construction assumes
groups G1 and G2 and a target group GT with an efficient bilinear pairing e
from G1 ×G2 to GT .

3.1 Security of the SPS Scheme

In this section we state and prove the security of the scheme SPSmddh described
in Figure 1. The proof is similar to the proof of CCA2 secure encryption scheme
of Cramer and Shoup [CS02], where tag-based universal2 projective hash proofs
were introduced. The main difference is that the tag in structure preserving sig-
natures (SPS) cannot be generated by hashing some of the group elements. The
tag is therefore generated randomly and independently in SPS. The adversary
may then try to forge a signature by setting the tag to be the same as the tag
in one of the signatures it obtained earlier, and choosing other elements in the
forged signature by modifying and combining elements of various signatures it
obtained. In contrast, in Cramer-Shoup encryption, any change in other group
elements of a ciphertext forces the tag to be different from all earlier ciphertext
tags. To circumvent this problem in SPS, the tag t is provided as both [t]2 and
[tr]1, where [r]1 is randomness introduced as part of the signature. The validity
of this relation can be checked publicly and efficiently using asymmetric bilinear
pairing. Intuitively, this disallows the adversary to modify and combine elements
from various signatures. It is now forced to modify at most one signature, while
keeping the tag the same as in that signature. However, an affine secret com-
ponent [k0]1 in the SPS signature, which is issued encrypted under an CCA2
encryption scheme and verified using a publicly verifiable QA-NIZK for affine
languages, then disallows even this kind of forgery.
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Gen (q,G1,G2,GT , e, [1]1, [1]2, n,Dk) :

Let D be a distribution on (M̃, ã) defined as follows :

Sample B(k+1)×k ← Dk and (k0, k, d, e)← Zq × Zn
q × Zk

q × Zk
q .

Let M̃ :=


In×n 0n×k 0n×k

0(k+1)×n B 0(k+1)×k

0k×n 0k×k B

k> d · B e · B

 ∈ Z(n+2k+2)×(n+2k)
q

and ã :=

(
0(n+2k+1)×1

k0

)
∈ Zn+2k+2

q .

Let Π be a strong split-CRS QA-NIZK for

L ˜M,ã
= {[M̃x + ã]1 | x ∈ Zn+2k

q }, with (M̃, ã)← D

which is true-simulation-sound under the Dk-mddh assumption in G2.

Sample (CRSv, trap, st)← Π.crssimv and (M,a)← D
Let pk := CRSv and sk := (M, a, trap)

Return (pk, sk)

Sign (sk = (M,a, trap), µ ∈ Gn
1 ):

Sample r← Zk
q and tag← Zq

Let (µ,ρ, ρ̂,ψ, γ) := M

 µ
[r]1

[tag · r]1

+ [a]1 ∈ Gn
1 ×Gk

1 ×G1 ×Gk
1 ×G1

Let π := Π.sim(trap, (µ,ρ, ρ̂,ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂,ψ, γ, τ,π) ∈ Gk
1 ×G1 ×Gk

1 ×G1 ×G2 ×Gk
1

Verify (pk = CRSv, µ, σ = (ρ, ρ̂,ψ, γ, τ,π)) :

Return Π.ver(CRSv, (µ,ρ, ρ̂,ψ, γ), π) and e(ρ, τ)
?
= e(ψ, [1]2)

Fig. 1. Structure Preserving Signature SPSmddh

11



Gen (q,G1,G2,GT , e, [1]1, [1]2, n) : Sample b, k0, d and e uniformly from Zq and
k uniformly from Zn

q . Define the language L of tuples (µ, ρ, ρ̂, ψ, γ) ∈ Gn+4, such
that there exists (m, r, r′) ∈ Zn+2

q , such that:

µ = [m]1, ρ = [r]1, ρ̂ = [br]1, ψ = [r′]1, γ = [k0 + k ·m + dr + er′]1

Let Π be a strong split-CRS QA-NIZK for the affine language L, which is
true-simulation-sound under the ddh assumption in G2. Let the simulation
CRS generator Π.crssimv output (CRSv, trap, st). Set pk := CRSv and sk :=
(b, k0, k, d, e, trap), and return (pk, sk).

Sign (sk = (b, k0,k, d, e, trap), µ ∈ Gn
1 ): Sample r and tag uniformly from Zq.

Let:

ρ = [r]1, ρ̂ = [br]1, ψ = [tag · r]1, γ = k · µ+ [k0 + dr + tag · er]1

Let π := Π.sim(trap, (µ, ρ, ρ̂, ψ, γ)) and τ := [tag]2. Return:

σ := (ρ, ρ̂, ψ, γ, τ, π) ∈ G4
1 ×G2 ×G1.

Verify (pk = CRSv, µ, σ = (ρ, ρ̂, ψ, γ, τ, π)) : Return the boolean:

Π.ver(CRSv, (µ, ρ, ρ̂, ψ, γ), π) and e(ρ, τ)
?
= e(ψ, [1]2).

Fig. 2. Structure Preserving Signature SPSsxdh
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Theorem 2. For any efficient adversary A, which makes at most Q signature
queries before attempting a forgery, its probability of success in the EUF-CMA
game against the scheme SPSmddh is at most

ADVTSS
Π +Q2 ·

(
ADVDk-mddh +

3

2q

)
+
Q

q
+

1

q

Proof. We go through a sequence of Games G0 to G6 which are described below
and summarized in Figure 3. In the following, Probi[X] will denote probability
of predicate X holding in probability space defined in game Gi.

Game G0: Given setup parameters (q,G1,G2,GT , e, [1]1, [1]2, n,Dk), the chal-
lenger C initializes a list M to empty, generates (CRSv, trap, st) ← Π.crssimv,

and then samples B(k+1)×k ← Dk and (k0, k, d, e)← Zq × Znq × Zkq × Zkq .
Then it sends the setup parameters and CRSv to adversary A as public key.

For i ∈ [1..Q], A adaptively requests signature on µi (∈ Gn1 ). The challenger C
generates signature σi by first sampling (r,tag)← Zkq × Zq, and then setting:

σi :=

 ρ = [Br]1, ρ̂ = [Br]1, ψ = tag [Br]1,
γ = k · µi + [k0]1 + d · ρ+ e ·ψ, τ = [tag]2,

π = Π.sim(trap, (µi,ρ, ρ̂,ψ, γ))


It then sends σi toA, and adds µi to the listM. After it obtains Q signatures,

A responds with a message µ∗ and a claimed signature on it σ∗. Adversary wins
if µ∗ 6∈ M and (µ∗, σ∗) passes verify. Define:

WIN0
4
= (µ∗ 6∈ M) and (verify(CRSv,µ

∗, σ∗) = 1)

This game exactly replicates the real construction to the adversary. So the
adversary’s advantage in G0 is the EUF-CMA advantage we seek to bound.

Game G1: The challenge-response in this game is the same as Game G0 except
that in each signature the value tag is chosen randomly but distinctly from all
the earlier tag’s. The winning condition remains the same, i.e. WIN0.

The statistical difference between the view of the adversary in G0 and G1

is the probability of collision in the choice of tag for the Q signature queries in
G0, which is at most Q2/(2 · q).

Game G2: The challenge-response in this game is the same as G1. The winning
condition is now defined as

WIN2
4
= WIN0 and (σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) s.t.

(γ∗ = k · µ∗ + [k0]1 + d · ρ∗ + e ·ψ∗)
and ((ρ∗, ρ̂∗) ∈ Span([B]1))

The difference in advantages of the adversary is upper bounded by the un-
bounded true-simulation-soundness of Π:

|Prob2[WIN2]− Prob1[WIN1]| ≤ ADVTSS
Π (1)
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Gen() : · · · Sample B(k+1)×k ← Dk

Let t = (B B
−1

)> ∈ Zk
q

Games 0-3 Sample (d, e)← Zk
q × Zk

q

Games 4-6 Sample (d1, d2, e1, e2)← Zk
q × Zq × Zk

q × Zq · · ·

Sign(sk, µj ∈ Gn
1 ) :

Sample (ρ, θ, φ)← Gk
1 ×G1 ×G1

Game 0 Sample tag← Zq

Games 1-6 Sample tag← Zq \ {tagl}l<j

Let ψ := tag ρ

Let (ρ̂, γ) :=

Game 0-3
(
t · ρ, k · µy + [k0]1 + d · ρ+ tag e · ρ

)
Game 4-5

(
t · ρ, k · µy + [k0]1 + (d1 + d2t) · ρ+ tag (e1 + e2t) · ρ

)
Game 6 (θ, φ)

Let π := Π.sim(trap, (µj ,ρ, ρ̂,ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂,ψ, γ, τ,π)

WIN
4
= (µ∗ 6∈ M) and Π.ver(CRSv, (µ

∗,ρ∗, ρ̂∗,ψ∗, γ∗), π∗) and e(ρ∗, τ∗)
?
= e(ψ∗, [1]2)

Games 2-6 and σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) :

Game 2 γ∗
?
= k · µ∗ + [k0]1 + d · ρ∗ + e ·ψ∗

Game 3 e(γ∗, [1]2)
?
= e(k · µ∗ + [k0]1 + d · ρ∗, [1]2) + e(e · ρ∗, τ∗)

Games 4-6 e(γ∗, [1]2)
?
= e(k · µ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂

∗, [1]2) + e(e1 · ρ∗ + e2ρ̂
∗, τ∗)

Games 0-4 and ρ̂∗
?
= t · ρ∗

Fig. 3. G Games and winning conditions
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Game G3: The challenge-response in this game is the same as G2. The winning
condition is now defined as

WIN3
4
= WIN0 and (σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) s.t.

(e(γ∗, [1]2) = e(k · µ∗ + [k0]1 + d · ρ∗, [1]2) + e(e · ρ∗, τ∗))
and ((ρ∗, ρ̂∗) ∈ Span([B]1))

Note that the predicate WIN3 is efficiently computable by the challenger C
as it generated B as part of the language parameters (M,a). As WIN0 implies
e(ψ∗, [1]2) = e(ρ∗, τ∗), the winning condition is unchanged from the previous
game and thus, Prob2[WIN2] is the same as Prob3[WIN3].

Game G4: Define tk×1
4
= (B B

−1
)>. Since B is overwhelmingly a full ranked

matrix, we observe that ρ can be just sampled uniformly randomly from Zkq and
ρ̂ can be set to t · ρ in the signature generation algorithm. Also in the winning

condition (ρ∗, ρ̂∗) ∈ Span([B]1) can be equivalently written as ρ̂∗
?
= t · ρ∗, with

no other constraints on ρ∗.
In Game G4, the challenger C picks (d1, d2, e1, e2) at random from Z2k+2

q ,
and sets d = d1 + d2t and e = e1 + e2t (i.e., instead of directly picking d and
e at random while defining Lpar). This has no statistical change in the view of
the adversary.

The winning condition is now defined and computed as:

WIN4
4
= WIN0 and (σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) s.t.

(e(γ∗, [1]2) = e(k · µ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂
∗, [1]2)

+ e(e1 · ρ∗ + e2ρ̂
∗, τ∗))

and (ρ̂∗
?
= t · ρ∗)

Since ρ̂∗ = t · ρ∗, it directly follows that (d1 + d2t) · ρ∗ is the same as
(d1 · ρ∗ + d2ρ̂

∗), and (e1 + e2t) · ρ∗ is the same as (e1 · ρ∗ + e2ρ̂
∗). Therefore

WIN4 ≡WIN3.

Game G5: In this game, we define WIN5 to be the same as WIN4, except that

it does not have the conjunct ρ̂∗
?
= t · ρ.

WIN5
4
= WIN0 and (σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) s.t.

(e(γ∗, [1]2) = e(k · µ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂
∗, [1]2)

+ e(e1 · ρ∗ + e2ρ̂
∗, τ∗))

We now prove that:

|Prob5[WIN5]− Prob4[WIN4]| ≤ 1/q (2)

Firstly, note that the probability spaces in G4 and G5 are identical. We will now
show that an adversary A in Game G4 has probability at most 1/q of forcing
WIN5 while not satisfying WIN4, i.e., forcing WIN5 and ρ̂∗ 6= t · ρ∗.
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The claim is an easy consequence of private hash on a non-Span([B]1) word
being random and independent of the public (projection) hash key [CS02]. Here,
the public hash key is [d1+d2t]1, with private hash key (d1, d2) (see Section 2.3).
The public hash key is given to the adversary as part of all the signatures issued
to the adversary. In particular it is used in computing γ component of the signa-
ture. The QA-NIZK proof is simulated, and the QA-NIZK simulator trapdoors
do not use (d1, d2). Further, (d1, d2) are not used anywhere else, including CRSv.

If (ρ∗, ρ̂∗) /∈ Span([B]1), then the right side of the pairing equation in WIN5

includes an additive component e(d1 · ρ∗ + d2ρ̂
∗, [1]2), which is the same as

e(P, [1]2) where P is the private hash of (ρ∗, ρ̂∗) using keys (d1, d2). Since, all
other additive terms on the right hand side of the pairing equation are inde-
pendent of this hash proof system, and the adversary A also supplies γ∗, the
probability of e(γ∗, [1]2) equaling the right hand side is at most 1/q. This finishes
the proof of the claim.

Game G6: In this game the challenger generates all signatures σi with ρ̂i and
γi set to uniformly and independently chosen random values. The computation
of ρ,ψ, τ and π and the winning condition remain the same as in G5.

We now claim that the difference between the advantage of the adversary in
Game G6 and Q times the advantage of the adversary in Game G5 is negligible
in Lemma 1 below, which is proved later:

Lemma 1.

|Prob5[WIN5]−Q · Prob6[WIN6]| ≤ Q2

(
ADVDk-mddh +

1

q

)
Now, in Game G6, all the signatures on the Q adversarial queries are gener-

ated without using k0. Since k0 is also not part of the public key (which includes
CRSv), the probability of adversary satisfying WIN6 is 1/q. Thus, probability of
WIN6 holding in Game G6 is at most 1/q:

Prob6[WIN6] ≤ 1/q

Thus the proof of Lemma 1 will conclude the proof, which we proceed to do
next.

Proof (of Lemma 1). To prove this lemma we consider several hybrid Games
G5,i, for i ∈ [0..Q], where G5,0 will turn out to be the same as G5, and G5,Q

will turn out to be the same as G6. The hybrid Games G5,i for i ∈ [0..Q] are
defined as follows.

Game G5,i: The game differs from G5 as follows: After it has generated the
public key and sent it to A just as in G5, the challenger now picks a random
index z from [1..Q]. If i < Q, it picks i distinct indices randomly from [1..Q]\{z}.
Call this set of indices as S (note S is empty in Game G5,0). If i = Q, let S be
the full set [1..Q]. While generating a signature on a query with index j ∈ S, the
challenger generates the signature as in Game G6 (i.e. random γi and ρ̂i terms),
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and for a query with index outside S it generates the signature as in Game
G5. The winning predicate for the adversary remains the same, i.e., WIN5. As
the winning condition will remain the same till the end of proof, we just define
WIN ≡WIN5. The game is described in Figure 4.

Gen() : · · ·

Sample z ← [1..Q] and S ← 2[1..Q]\{z}, such that |S| = i

Sign(sk, µj ∈ Gn
1 ) :

Sample (ρ, θ, φ, tag)← Gk
1 ×G1 ×G1 × (Zq \ {tagl}l<j)

Let ψ := tag ρ

If (j /∈ S) let (ρ̂, γ) :=(
t · ρ, k · µj + [k0]1 + (d1 + d2t) · ρ+ tag (e1 + e2t) · ρ

)
Else if (j ∈ S) let (ρ̂, γ) :=

(θ, φ)

Let π := Π.sim(trap, (µj ,ρ, ρ̂,ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂,ψ, γ, τ,π)

WIN
4
= WIN0 and σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) :

e(γ∗, [1]2)
?
= e(k · µ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂

∗, [1]2) + e(e1 · ρ∗ + e2ρ̂
∗, τ∗)

Fig. 4. Games G5,i

Note that in Game G5,0, the probability of adversary winning, i.e. WIN
holding is the same as in Game G5, since the set S is empty, and hence z might
as well not be chosen.

To prove the requisite probability relations between the different games, con-
sider the following predicate GOOD, defined at the end of each game. We will
denote the components of the j-th signature σj by using subscript j.

GOOD
4
= ∀j ∈ [1..Q] \ {z} : (tag∗ 6= tagj)
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Lemma 2.
Prob5,0[WIN] ≤ Q · Prob5,0[WIN and GOOD]

Lemma 3. For i ∈ [1..Q− 1],∣∣∣∣Prob5,i−1[WIN and GOOD]
−Prob5,i[WIN and GOOD]

∣∣∣∣ ≤ ADVDk-mddh + 1/q

Lemma 4.

|Prob5,Q−1[WIN]− Prob5,Q[WIN]| ≤ ADVDk-mddh + 1/q

Fig. 5. Lemmas

Given the definitions of Games G5,i and GOOD above, we now prove the
lemma via the three lemmas given in Figure 5. Chaining Lemma 3 sequentially
(Q− 1) times, it follows that∣∣∣∣ Prob5,0[WIN and GOOD]−

Prob5,Q−1[WIN and GOOD ]

∣∣∣∣ ≤ (Q− 1) · (ADVDk-mddh + 1/q)

Now noting that Prob5,Q−1[WIN and GOOD ] ≤ Prob5,Q−1[WIN] and using
Lemma 4, we get:∣∣∣∣Prob5,0[WIN and GOOD]

− Prob5,Q[WIN]

∣∣∣∣ ≤ Q · (ADVDk-mddh + 1/q)

Now, using Lemma 2, we finally establish Lemma 1:

|Prob5,0[WIN]−Q · Prob5,Q[WIN]| ≤ Q2

(
ADVDk-mddh +

1

q

)
We proceed to prove Lemmas 2, 3 and 4 now.

Proof (of Lemma 2). We equivalently show that:

Prob5,0[GOOD | WIN] ≤ (1− 1/Q)

First note that in Game G5,0, the value z can be chosen after the adversary has
supplied its forged signature. Now, observe that:

Prob5,0[GOOD | WIN] ≤ Prob5,0[ tag∗ 6= tagz | WIN and ∃j : tag∗ = tagj ]

Since z is chosen after the adversary has replied with the forgery and given tag∗

equals some tagj , the probability of z = j is at least 1/Q (regardless of WIN
holding or not), and thus the probability of tag∗ equaling tagz is at least 1/Q.
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Discussion of Lemmas 3 and 4. From a formal proof perspective, one goes
through many hybrid games, where in each subsequent hybrid Game G5,i, the
signature of one more element is simulated without using the affine component
[k0]1. However, as is well known from proofs of Cramer-Shoup encryption, this
can only be done as long as the forgery uses a different tag from the signature
being simulated. Thus, the simulator instead guesses an index z, and picks the
additional signature to be simulated from a query index different from z. This is
always possible, as long as the simulator is in hybrid game G5,i, with i < Q− 1.
If the simulator’s guess turns out to be wrong, the adversary is declared out-
right winner. However, this gives the adversary only a Q factor advantage over
its success in an MDDH challenge game.

The other main difference from Cramer-Shoup encryption is that there is no
real decryption, but just a verification of the signature using private trapdoor
keys. This can also be done efficiently using the bilinear pairing available, and
this is the reason why a single additional test of the relationship between [t]2,
[tr]1 and [r]1 suffices.

The proof of Lemma 4, which handles the case i = Q − 1 is similar to (and
easier than) proof of Lemma 3 except that in game G5,Q−1, all but one signatures
are simulated without keys k0 and k. This makes the analysis similar to that of
a one-time signature scheme.

Proof (of Lemma 3). We will consider three hybrid games which are summarized
in Figure 6. Game H0 will be the same as game G5,i−1, and H2 the same as
G5,i.

Game H0: The challenger picks yet another index y at random from [1..Q] \
({z}∪S), and issues the signature on the y-th query in the same way as for other
indices not in S. The idea is that in these sequence of games we will convert the
signature generation on the y-th index to be same as for those indices in S. This
will effectively expand the set S by one element and thus enable us to transition
from Game G5,i−1 to G5,i, as long as i ≤ Q − 1. Games H0 and G5,i−1 are
semantically equivalent.

Game H1: In Game H1, the challenger issues the signature on the y-th query
as follows: it picks ρy, θ and tagy at random. It sets ρ̂y = θ, ψy = tagy ρy,
τy = [tagy]2 and γy = k ·µy + [k0]1 + (d1 ·ρy + d2ρ̂y) +tagy (e1 ·ρy + e2ρ̂y). It
computes a QA-NIZK πy, on the tuple (µj ,ρy, ρ̂y,ψy, γy) using the QA-NIZK
simulator crssim, just as in all previous games. It outputs as signature σy the
tuple (ρy, ρ̂y,ψy, γy, τy,πy). Rest of the game and the winning condition is the
same as H0. We now prove that:∣∣∣∣ProbH0 [WIN and GOOD] −

ProbH1
[WIN and GOOD]

∣∣∣∣ < ADVDk-mddh (3)

Let A be any efficient adversary playing against C in either game H0 or H1.
Using A and the challenger C we will build another adversary A′ that plays
against a Dk-mddh challenger. So, suppose the mddh challenger issues either
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Gen() : · · ·

Sample z ← [1..Q] and S ← 2[1..Q]\{z}, such that |S| = i

Sample y ← [1..Q] \ ({z} ∪ S)

Sign(sk, µj ∈ Gn
1 ) :

Sample (ρ, θ, φ, tag)← Gk
1 ×G1 ×G1 × (Zq \ {tagl}l<j)

Let ψ := tag ρ

If (j /∈ S ∪ {y}) let (ρ̂, γ) :=(
t · ρ, k · µj + [k0]1 + (d1 + d2t) · ρ+ tag (e1 + e2t) · ρ

)
Else if (j ∈ S) let (ρ̂, γ) :=

(θ, φ)

Else if (j = y) let (ρ̂, γ) :=

Game 0
(
t · ρ, k · µy + [k0]1 + (d1 + d2t) · ρ+ tag (e1 + e2t) · ρ

)
Game 1

(
θ, k · µy + [k0]1 + (d1 · ρ+ d2θ) + tag (e1 · ρ+ e2θ)

)
Game 2 (θ, φ)

Let π := Π.sim(trap, (µj ,ρ, ρ̂,ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂,ψ, γ, τ,π)

WIN
4
= WIN0 and σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) :

e(γ∗, [1]2)
?
= e(k · µ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂

∗, [1]2) + e(e1 · ρ∗ + e2ρ̂
∗, τ∗)

Fig. 6. H Games and winning condition
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a real tuple ([B]1, ζ = [Br]1) or a fake tuple ([B]1, ζ = [r′]1 ∈ Gk+1
1 ), with

B← Dk and (r, r′)← Zkq ×Zk+1
q . In the first case, we will say that A′ is in the

mddhreal game and in the latter case, we will say that A′ is in the mddhfake
game. A′ uses [B]1 to simulate C in building the language parameters Lpar by
choosing all other random values on its own. It then simulates C for the rest
of the game H0/H1, including interaction with A, till the point of issuing the
y-th signature. For the y-th signature, A′ sets (ρy, ρ̂y) := ζ, and picks tagy
at random, and sets ψy = tagy ρy. The values τy and γy and πy can then be
computed from values already obtained.

After A′ issues this signature to A, adversary A′ continues the simulation of
C, along with its interaction with A till the computation and output of winning
condition. A′ outputs 1 iff WIN and GOOD. Now, note that if A′ is in the
mddhreal game, then the view of the adversary A is identical to its view in
H0. And, if A′ is in the mddhfake game, then the view of the adversary A is
identical to its view in H1. Thus:

Prob[A′(mddhreal) = 1] = ProbH0
[WIN and GOOD]

Prob[A′(mddhfake) = 1] = ProbH1 [WIN and GOOD].

That completes the proof of the claim, as the maximum advantage any efficient
adversary has in winning an MDDH-challenge game is ADVDk-mddh.

Game H2: In Game H2, in the computation of the signature on y-th query, the
value γy is just sampled independently randomly from Zq. The winning condition
remains WIN. We now prove that the view of the adversary in Games H2 and
H1 is statistically indistinguishable. More precisely,

|ProbH2
[WIN and GOOD]− ProbH1

[WIN and GOOD]| ≤ 1/q

The claim is a consequence of private hash on a non-Span([B]1) word being
random and independent of the public universal2 projection hash key [CS02].
Here, the public universal2 projection hash key is the pair [d1 + d2t]1 and [e1 +
e2t]1, with private universal2 hash key (d1, d2, e1, e2). The public hash key is
given to the adversary as part of all the signatures issued to the adversary, with
the exception of the signature issued by C on query index y. In the y-th query, the
challenger discloses to the adversary one private hash on a non-Span([B]1) word.
In particular γy includes as an additive term (d1·ρy+d2ρ̂y)+tagy (e1·ρy+e2ρ̂y),
which is exactly the private universal2 hash on (ρy, ρ̂y) using tag ty. Now note
that GOOD and z 6= y implies tag∗ 6= tagy, as y was chosen distinct from z.
Thus, tag∗ is different from tagy used in the one private hash given to the
adversary on a non-Span([B]1) word.

Recall that the QA-NIZK proof is simulated, and the QA-NIZK simulator
trapdoors do not use (d1, d2, e1, e2). Further, (d1, d2, e1, e2) are not used any-
where else, including CRSv.

Thus the additive term (d1 ·ρy+d2ρ̂y)+tagy (e1 ·ρy+e2ρ̂y) in γy (in Game
H1) completely hides ([k0]1 + k · µy). Thus, γy can just as well be sampled
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independently randomly. This is the same as Game H2, and that proves the
claim.

Thus, collecting all the inequalities, between consecutive games from H0 to
H2, it follows that:∣∣∣∣Prob5,i−1[WIN and GOOD]

−Prob5,i[WIN and GOOD ]

∣∣∣∣ ≤ ADVDk-mddh + 1/q

Proof (of Lemma 4). The proof of this lemma is similar to proof of Lemma 3,
except that the predicate GOOD here is just defined to be true. The proof of
Lemma 3 goes through all the hybrid games with predicate GOOD defined as
true, except for the proof of

|ProbH2
[WIN and GOOD]− ProbH1

[WIN and GOOD]| ≤ 1/q.

This proof for Lemma 3 required the fact that GOOD implies that tag∗ 6= tagy,
where y was the query index being simulated with a fake MDDH tuple. Since,
here we have defined GOOD to be true, there is no such restriction on tag∗.

In case tag∗ 6= tagy, the proof continues to hold as before. If tag∗ = tagy,
we note that since we are in various hybrids of initial game H0 = G5,Q−1,
no signature generated by C (other than the y-th signature) uses k0 or k. The
trapdoors k0 and k are also not used in generation of public key. Thus, the
only information available to A about k0 and k is through the y-th signature
simulation, which includes k · µy + [k0]1 as an additive term. Thus, for WIN to
hold, A must produce γ∗ − (d1 · ρ∗ + d2ρ̂

∗) − tag∗ (e1 · ρ∗ + e2ρ̂
∗) equal to

k ·µ∗+[k0]1. By simple linear algebra, this latter quantity is random, even given
k · µy + [k0]1, for µ∗ 6= µy.

This linear algebra fact is most conveniently seen by the following information-

theoretic argument: Let α
4
= k · µy + [k0]1 and β

4
= k · µ∗ + [k0]1. Now sample

(k, k′)← Znq × Zq, and then set [k0]1 := [k′]1 − k · µy. Then we have α = [k′]1
and β = [k′]1 +k · (µ∗−µy). Thus α is uniformly random and independent of k,
while β has an independent uniformly random distribution due to the additional
term k · (µ∗ − µy), where k is uniformly random and (µ∗ − µy) is non-zero.

3.2 Improved Security Reduction for the SPS Scheme

Theorem 3. For any efficient adversary A, which makes at most Q signature
queries before attempting a forgery, its probability of success in the EUF-CMA
game against the SPS scheme is at most

ADVTSS
Π +Q · (2 + logQ) ·

(
ADVDk-mddh +

1

q

)
+
Q2

2q
+

1

q

Proof. In the proof of this theorem and related lemmas, without loss of gen-
erality, we will assume that the number of signature queries Q made by the
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adversary is a power of two. This can cause at most a factor of two difference in
the success probability of the adversary.

The Games G0 to G6 are same as in proof of Theorem 2. However, we now
obtain a better upper bound on the probability of event WIN holding in Game
G5, as opposed to the bound obtained in Lemma 1.

Lemma 5.

Prob5[WIN] ≤ Q · (2 + logQ) · (ADVDk-mddh + 1/q)

Proof. Again, to prove this lemma we consider several hybrid Games G5,i, for
i ∈ [0..Q], where G5,0 will turn out to be same as G5, and G5,Q will turn out
to be same as G6. The hybrid Games G5,i are defined slightly differently in this
proof as compared to the proof of Lemma 1. These are summarized in Figure 7
and explained below.

Game G5,i: For 0 ≤ i < Q, the game differs from G5 as follows: After it has
generated the public key and sent it to A just as in G5, the challenger now picks
a random set Z of size 2blog (Q−i)c of distinct indices from [1..Q]. It then picks i
distinct indices randomly from [1..Q] \Z. Call this set of indices as S (note that
S is empty in Game G5,0). If i = Q, let S be the full set [1..Q]. While generating
signatures on a query with index j ∈ S, the challenger generates the signature
as in Game G6 (i.e., samples γ and ρ̂ uniformly randomly), and for all other
queries it generates the signature as in Game G5. The winning predicate for the
adversary remains the same, i.e., WIN.

Note that for hybrid Game G5,i, such that (Q − i) is a power of two, the
union of disjoint sets S and Z is the complete set of indices [1..Q]. However, in
the next hybrid Game G5,i+1, the set Z is cut by half in size, so that there is a
choice to pick S from [1..Q] \ Z. Thus, to relate such a hybrid Game G5,i (i.e.
when Q− i is a power of two) to the next hybrid Game G5,i+1, we introduce an
intermediate Game G′5,i.

For i, define Game G′5,i to be similar to Game G5,i except that the set of

random and distinct indices Z is chosen to be of size 2l−1. For S, we choose i
distinct indices from [1..Q] \Z, as before. The rest of the game and the winning
condition remains the same.

For each hybrid Game G5,i or G′5,i, define the following predicate

GOOD
4
= ∀j ∈ [1..Q] \ Z : (τ ∗ 6= τ j)

In Lemma 6 below, we show that for i = Q− 2l, the probability of WIN and
GOOD holding in Game G5,i is at most two times the probability of WIN and
GOOD holding in Game G′5,i. Note that, for i = 0 the predicate GOOD is equiv-
alent to true, as Z is the complete set. Thus, this implies that the probability
of WIN holding in Game G5 is at most two times the probability of WIN and
GOOD holding in Game G′5,0.
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Gen() : · · ·

Game G5,Q−2l−u Sample Z ← 2[1..Q], such that |Z| = 2l

Game G′5,Q−2l Sample Z ← 2[1..Q], such that |Z| = 2l/2

Sample S ← 2[1..Q]\Z , such that |S| = i

Sign(sk, µj ∈ Gn
1 ) :

Sample (ρ, θ, φ, tag)← Gk
1 ×G1 ×G1 × (Zq \ {tagl}l<j)

Let ψ := tag ρ

If (j /∈ S) let (ρ̂, γ) :=(
t · ρ, k · µj + [k0]1 + (d1 + d2t) · ρ+ tag (e1 + e2t) · ρ

)
Else if (j ∈ S) let (ρ̂, γ) :=

(θ, φ)

Let π := Π.sim(trap, (µj ,ρ, ρ̂,ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂,ψ, γ, τ,π)

WIN
4
= WIN0 and σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) :

e(γ∗, [1]2)
?
= e(k · µ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂

∗, [1]2)

+ e(e1 · ρ∗ + e2ρ̂
∗, τ∗)

Fig. 7. Modified Games G5,i. Above, logQ ≤ l ≤ 0 and 0 ≤ u ≤ 2l − 1.
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Using Lemmas 6 and 7 below, we now prove the recurrence relation that for
l ∈ [2.. logQ]:

ProbG′
5,Q−2l

[WIN and GOOD] ≤ 2l−1 · (ADVDk-mddh + 1/q)+

2 · ProbG′
5,Q−2l−1

[WIN and GOOD]

Also, as a base case we have (from Lemma 7),

ProbG′5,Q−2
[WIN and GOOD] ≤ 2 · (ADVDk-mddh + 1/q)+

ProbG5,Q
[WIN and GOOD ]

However, in the proof of Lemma 1, we established that in the last hybrid Game
G5,Q, the probability of WIN is at most 1/q. Thus,

ProbG′5,Q−2
[WIN and GOOD] ≤ 2 ·ADVDk-mddh + 3/q

Thus, by maintaining the induction hypothesis, for every l ∈ [1.. logQ]:

ProbG′
5,Q−2l

[WIN and GOOD] ≤ (2l−1l + 2l) · (ADVDk-mddh + 1/q)

we get by induction that

ProbG′5,0
[WIN and GOOD] ≤

(
Q

2
· logQ+Q

)
· (ADVDk-mddh + 1/q)

Lemma 6. For i ∈ [0..Q− 1], and i = Q− 2l,

ProbG5,i
[WIN and GOOD] ≤ 2 · ProbG′5,i

[WIN and GOOD]

Proof. For i, 0 ≤ i < Q, such that (Q− i) a power of two, note that the Game
G5,i can be defined by first picking a set S of i distinct and random indices
from [1..Q], and then setting Z = [1..Q] \ S. Similarly, the Game G′5,i can be
defined by first picking a set S of i distinct indices, and then picking a set Z ′

of (Q − i)/2 distinct and random indices from Z = [1..Q] \ S. This set can be
picked after the adversary has replied with its claimed forgery. In other words,
the probability of WIN and GOOD holding in G′5,i is same as probability of WIN
and GOOD′ holding in G5,i where GOOD′ is defined as

GOOD′
4
= ∀j ∈ [1..Q] \ Z ′ : (τ ∗ 6= τ j)

Letting DIST stand for the predicate ∀j ∈ [1..Q] : (τ ∗ 6= τ j), it follows that
GOOD′ and GOOD and ¬DIST is equivalent to GOOD′ and ¬DIST. Thus,

Pr[GOOD′ | ¬DIST and WIN] = Pr[GOOD′ | GOOD and ¬DIST and WIN]

·Pr[GOOD | ¬DIST and WIN]
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Now, Pr[GOOD′ | GOOD and ¬DIST and WIN] is exactly 1/2. Thus, noting that
GOOD is equivalent to DIST ∨ (GOOD and ¬DIST), and GOOD′ is equivalent
to DIST ∨ (GOOD′ and ¬DIST), it follows that

Pr[GOOD | WIN] = Pr[DIST | WIN]

+ Pr[GOOD | ¬DIST and WIN] · Pr[¬DIST | WIN] (4)

Pr[GOOD′ | WIN] = Pr[DIST | WIN]

+
1

2
Pr[GOOD | ¬DIST and WIN] · Pr[¬DIST | WIN] (5)

Now, this implies Pr[GOOD | WIN] ≤ 2 · Pr[GOOD′ | WIN], because otherwise
we obtain a contradiction that Pr[DIST | WIN] < 0. Thus,

Pr[WIN and GOOD] ≤ 2 · Pr[WIN and GOOD′]

Lemma 7. For i ∈ [1..Q], if (Q− i+ 1) is a power of two and i 6= Q, then∣∣∣∣ProbG′5,i−1
[WIN and GOOD]

−ProbG5,i
[WIN and GOOD ]

∣∣∣∣ ≤ ADVDk-mddh + 1/q

Otherwise (i.e., if (Q− i+ 1) is not a power of two or i = Q),∣∣∣∣ProbG5,i−1
[WIN and GOOD]

−ProbG5,i
[WIN and GOOD ]

∣∣∣∣ ≤ ADVDk-mddh + 1/q

The proof of Lemma 7 is same as that for the proof of Lemma 3 (except for
i equal to Q, when it is same as proof of Lemma 4). The only difference is in the
proof of

|ProbH2 [WIN and GOOD]− ProbH1 [WIN and GOOD]| ≤ 1/q

where we now argue that GOOD and y 6∈ Z implies t∗ 6= ty.

Alternate Improved Reduction. The above reduction makes discrete ‘big jumps’
when Q−i is a power of two and a series of smooth ‘short jumps’ in between these
big jumps. Instead, we can smoothen the entire jump sequence by shortening the
set Z by 1 at every i while going from a primed game to an unprimed game. In
an unprimed game, Z and S will partition the set [1..Q], while in a primed game
there will be Q− i choices for Z ′. This will result in the following modifications
of Lemmas 6 and 7 :

Lemma 8. For i ∈ [0..Q− 2],

ProbG5,i
[WIN and GOOD] ≤ Q− i

Q− i− 1
· ProbG′5,i

[WIN and GOOD]
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Lemma 9. For i ∈ [1..Q− 1],∣∣∣∣ProbG′5,i−1
[WIN and GOOD]

−ProbG5,i
[WIN and GOOD ]

∣∣∣∣ ≤ ADVDk-mddh + 1/q

and ∣∣∣∣ProbG5,Q−1
[WIN and GOOD]

−ProbG5,Q
[WIN and GOOD ]

∣∣∣∣ ≤ ADVDk-mddh + 1/q

However, this still results in a Q logQ loss in security.
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