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Abstract. A chameleon-hash function is a hash function that involves a
trapdoor the knowledge of which allows one to find arbitrary collisions
in the domain of the function. In this paper, we introduce the notion of
chameleon-hash functions with ephemeral trapdoors. Such hash functions
feature additional, i.e., ephemeral, trapdoors which are chosen by the
party computing a hash value. The holder of the main trapdoor is then
unable to find a second pre-image of a hash value unless also provided
with the ephemeral trapdoor used to compute the hash value. We present
a formal security model for this new primitive as well as provably secure
instantiations. The first instantiation is a generic black-box construction
from any secure chameleon-hash function. We further provide three direct
constructions based on standard assumptions. Our new primitive has
some appealing use-cases, including a solution to the long-standing open
problem of invisible sanitizable signatures, which we also present.

1 Introduction

Chameleon-hash functions, also called trapdoor-hash functions, are hash functions
that feature a trapdoor that allows one to find arbitrary collisions in the domain
of the functions. However, chameleon-hash functions are collision resistant as
long as the corresponding trapdoor (or secret key) is not known. More precisely,
a party who is privy of the trapdoor is able to find arbitrary collisions in the
domain of the function. Example instantiations include trapdoor-commitment,
and equivocal commitment schemes.
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One prominent application of this primitive are chameleon signatures [47].
Here, the intended recipient—who knows the trapdoor—of a signature σ for
a message m can equivocate it to another message m′ of his choice. This, in
turn, means that a signature σ cannot be used to convince any other party of
the authenticity of m, as the intended recipient could have “signed” arbitrary
messages on its own. Many other applications appear in the literature, some of
which we discuss in the related work section. However, all current constructions
are “all-or-nothing” in that a party who computes a hash with respect to some
public key cannot prevent the trapdoor holder from finding collisions. This can
be too limiting for some use-cases.

Contribution. We introduce a new primitive dubbed chameleon-hash functions
with ephemeral trapdoors. In a nutshell, this primitive requires that a collision
in the hash function can be computed only when two secrets are known, i.e.,
the main trapdoor, and an ephemeral one. The main trapdoor is the secret
key corresponding to the chameleon-hash function public key, while the second,
ephemeral, trapdoor is generated by the party computing the hash value. The
latter party can then decide whether the holder of the long-term secret key
shall be able to equivocate the hash by providing or withholding the second
trapdoor information. We present a formal security model for this new primitive.
Furthermore, we present stronger definitions for existing chameleon-hash functions
not considered before, including the new notion of uniqueness, and show how to
construct chameleon-hash functions being secure in this stronger model. These
new notions may also be useful in other scenarios.

Additionally, we provide four provably secure constructions for chameleon-
hash functions with ephemeral trapdoors. The first is bootstrapped, while the
three direct constructions are built on RSA-like and the DL assumption. Our new
primitive has some interesting applications, including the first provably secure
instantiation of invisible sanitizable signatures, which we also present. Additional
applications of our new primitive may include revocable signatures [43], but also
simulatable equivocable commitments [34]. However, in contrast to equivocable
commitments, we want that parties can actually equivocate, not only a simulator.
Therefore, we chose to call this primitive a chameleon-hash function rather than
a commitment. Note, the primitive is different from “double-trapdoor chameleon-
hash functions” [13, 25, 49], where knowing one out of two secrets is enough to
produce collisions.

Related Work and State-of-the-Art. Chameleon-hash functions were intro-
duced by Krawczyk and Rabin [47], and are based on some first ideas given by
Brassard et al. [12]. Later, they have been ported to the identity-based setting
(ID-based chameleon-hash functions), where the holder of a master secret key
can extract new secret keys for each identity [6, 8, 26, 57, 60]. These were mainly
used to tackle the key-exposure problem [7, 47]. Key exposure means that seeing
a single collision in the hash allows to find further collisions by extracting the
corresponding trapdoor. This problem was then directly solved by the intro-



duction of “key-exposure free” chameleon-hash functions [7, 36, 37, 57], which
prohibit extracting the (master) secret key. This allows for the partial re-use of
generated key material. Brzuska et al. then proposed a formal framework for
tag-based chameleon-hashes secure under random-tagging attacks, i.e., random
identities [15].

Beside this “plain” usage of the aforementioned primitive, chameleon-hash
functions also proved useful in other areas such as on/offline signatures [27, 32, 58],
(tightly) secure signature schemes [11, 44, 52], but also sanitizable signature
schemes [4, 15, 41] and identity-based encryption schemes [61]. Moreover they
are useful in context of trapdoor-commitments, direct anonymous attestation,
Σ-protocols, and distributed hashing [3, 9, 12, 34].

Additional related work is discussed when presenting the application of our
new primitive.

2 Preliminaries

Let us give our notation, the required assumptions, building blocks, and the
extended framework for chameleon-hashes (without ephemeral trapdoors) first.

Notation. λ ∈ N denotes our security parameter. All algorithms implicitly take
1λ as an additional input. We write a ← A(x) if a is assigned the output of
algorithm A with input x. An algorithm is efficient if it runs in probabilistic
polynomial time (ppt) in the length of its input. For the remainder of this paper,
all algorithms are ppt if not explicitly mentioned otherwise. Most algorithms
may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. If S is a
set, we write a← S to denote that a is chosen uniformly at random from S. For
a message m = (m[1],m[2], . . . ,m[`]), we call m[i] a block, while ` ∈ N denotes
the number of blocks in a message m. For a list we require that we have an
injective, and efficiently reversible encoding, mapping the list to {0, 1}∗. In the
definitions we speak of a general message space M to be as generic as possible.
For our instantiations, however, we let the message spaceM be {0, 1}∗ to reduce
unhelpful boilerplate notation. A function ν : N→ R≥0 is negligible, if it vanishes
faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k,
∀n > n0. For certain security properties we require that values only have one
canonical representation, e.g., a “4” is not the same as a “04”, even if written as
elements of N for brevity. Finally, for a group G we use G∗ to denote G \ {1G}.

2.1 Assumptions

Discrete Logarithm Assumption. Let (G, g, q) ← GGen(1λ) be a group
generator for a multiplicatively written group G of prime-order q with log2 q = λ,
generated by g, i.e., 〈g〉 = G. The discrete-logarithm problem (DLP) associated
to GGen is to find x when given G, g, q, and gx with x← Zq. The DL assumption



now states that the DLP is hard, i.e., that for every ppt adversary A, there exists
a negligible function ν such that:

Pr[(G, g, q)← GGen(1λ), x← Zq, x′ ← A(G, g, q, gx) : x = x′] ≤ ν(λ).

We sometimes sample from Z∗q instead of Zq. This changes the view of an adversary
only negligibly, and is thus not made explicit.

2.2 Building Blocks

Collision-Resistant Hash Function Families. A family {HkR}k∈K of hash-
functions HkR : {0, 1}∗ → R indexed by key k ∈ K is collision-resistant if for any
ppt adversary A there exists a negligible function ν such that:

Pr[k ← K, (v, v′)← A(k) : HkR(v) = HkR(v′) ∧ v 6= v′] ≤ ν(λ).

Public-Key Encryption Schemes. Public-key encryption allows to encrypt
a message m using a given public key pk so that the resulting ciphertext can be
decrypted using the corresponding secret key sk. More formally:

Definition 1 (Public-Key Encryption Schemes). A public-key encryption
scheme Π is a triple (KGenenc,Enc,Dec) of ppt algorithms such that:

KGenenc. The algorithm KGenenc on input security parameter λ outputs the private
and public keys of the scheme: (skenc, pkenc)← KGenenc(1λ).

Enc. The algorithm Enc gets as input the public key pkenc, and the message
m ∈M and outputs a ciphertext c: c← Enc(pkenc,m).

Dec. The algorithm Dec on input a private key skenc and a ciphertext c outputs
a message m ∈M∪ {⊥}: m← Dec(skenc, c).

Definition 2 (Secure Public-Key Encryption Schemes). We call a public-
key encryption scheme Π IND-T secure, if it is correct, and IND-T-secure with
T ∈ {CPA,CCA2}.

The formal security definitions are given in the full version of this paper.

Non-Interactive Proof Systems. Let L be an NP-language with associated
witness relation R, i.e., L = {x | ∃w : R(x,w) = 1}. Throughout this paper,
we use the Camenisch-Stadler notation [20] to express the statements proven
in non-interactive, simulation-sound extractable, zero-knowledge (as defined
below). In particular, we write π ← NIZKPoK{(w) : R(x,w) = 1} to denote the
computation of a non-interactive, simulation-sound extractable, zero-knowledge
proof, where all values not in the parentheses are assumed to be public. For
example, let L be defined by the following NP-relation for a group (G, g, q)←
GGen(1λ):

((g, h, y, z), (a, b)) ∈ R ⇐⇒ y = ga ∧ z = gbha.



Then, we write π ← NIZKPoK{(a, b) : y = ga ∧ z = gbha} to denote the
corresponding proof of knowledge of witness (a, b) ∈ Z2

q with respect to the
statement (g, h, y, z) ∈ G4. Additionally, we use {false, true} ← Verify(x, π) to
denote the corresponding verification algorithm and crs← Gen(1λ) to denote the
crs generation algorithm. We do not make the crs explicit and, for proof systems
where a crs is required, we assume it to be an implicit input to all algorithms.

Definition 3. We call a NIZKPoK secure, if it is complete, simulation-sound
extractable, and zero-knowledge.

The corresponding definitions can be found in the full version of this paper.

Chameleon-Hashes. Let us formally define a “standard” chameleon-hash. The
framework is based upon the work done by Ateniese et al. and Brzuska et al. [5, 15],
but adapted to fit our notation. Additionally, we provide some extended security
definitions.

Definition 4. A chameleon-hash CH consists of five algorithms (CParGen,CKGen,
CHash,CHashCheck,Adapt), such that:

CParGen. The algorithm CParGen on input security parameter λ outputs public
parameters of the scheme: ppch ← CParGen(1λ). For brevity, we assume that
ppch is implicit input to all other algorithms.

CKGen. The algorithm CKGen given the public parameters ppch outputs the private
and public keys of the scheme: (skch, pkch)← CKGen(ppch).

CHash. The algorithm CHash gets as input the public key pkch, and a mes-
sage m to hash. It outputs a hash h, and some randomness r: (h, r) ←
CHash(pkch,m).6

CHashCheck. The deterministic algorithm CHashCheck gets as input the pub-
lic key pkch, a message m, randomness r, and a hash h. It outputs a
decision d ∈ {false, true} indicating whether the hash h is valid: d ←
CHashCheck(pkch,m, r, h).

Adapt. The algorithm Adapt on input of secret key skch, the old message m, the
old randomness r, hash h, and a new message m′ outputs new randomness
r′: r′ ← Adapt(skch,m,m

′, r, h).

Correctness. For a CH we require the correctness property to hold. In par-
ticular, we require that for all λ ∈ N, for all ppch ← CParGen(1λ), for all
(skch, pkch) ← CKGen(ppch), for all m ∈ M, for all (h, r) ← CHash(pkch,m), for
all m′ ∈ M, we have for all for all r′ ← Adapt(skch,m,m

′, r, h), that true =
CHashCheck(pkch,m, r, h) = CHashCheck(pkch,m

′, r′, h). This definition captures
perfect correctness. The randomness is drawn by CHash, and not outside. This
was done to capture “private-coin” constructions [5].

6 The randomness r is also sometimes called “check value” [5].



Experiment IndistinguishabilityCH
A (λ)

ppch ← CParGen(1λ)
(skch, pkch)← CKGen(ppch)
b← {0, 1}
a← AHashOrAdapt(skch,·,·,·,b),Adapt(skch,·,·,·,·)(pkch)

where oracle HashOrAdapt on input skch,m,m
′, b:

(h, r)← CHash(pkch,m
′)

(h′, r′)← CHash(pkch,m)
r′′ ← Adapt(skch,m,m

′, r′, h′)
If r = ⊥ ∨ r′′ = ⊥, return ⊥
if b = 0:

return (h, r)
if b = 1:

return (h′, r′′)
return 1, if a = b
return 0

Fig. 1. Indistinguishability

Indistinguishability. Indistinguishability requires that the randomnesses r does
not reveal if it was obtained through CHash or Adapt. The messages are chosen by
the adversary. We relax the perfect indistinguishability definition of Brzuska et
al. [15] to a computational version, which is enough for most use-cases, including
ours.

Note that we need to return ⊥ in the HashOrAdapt oracle, as the adversary
may try to enter a message m /∈ M, even if M = {0, 1}∗, which makes the
algorithm output ⊥. If we would not do this, the adversary could trivially decide
indistinguishability. For similar reasons these checks are also included in other
definitions.

Definition 5 (Indistinguishability). A chameleon-hash CH is indistinguish-
able, if for any efficient adversary A there exists a negligible function ν such that∣∣∣Pr[IndistinguishabilityCH

A (λ) = 1]− 1
2

∣∣∣ ≤ ν(λ) . The corresponding experiment is
depicted in Fig. 1.

Collision Resistance. Collision resistance says, that even if an adversary has
access to an adapt oracle, it cannot find any collisions for messages other than the
ones queried to the adapt oracle. Note, this is an even stronger definition than
key-exposure freeness [7]: key-exposure freeness only requires that one cannot
find a collision for some new “tag”, i.e., for some auxiliary value for which the
adversary has never seen a collision.

Definition 6 (Collision-Resistance). A chameleon-hash CH is collision-res-
istant, if for any efficient adversary A there exists a negligible function ν such
that Pr[CollResCH

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in
Fig. 2.



Experiment CollResCH
A (λ)

ppch ← CParGen(1λ)
(skch, pkch)← CKGen(ppch)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)← AAdapt′(skch,·,·,·,·)(pkch)

where oracle Adapt′ on input skch,m,m
′, r, h:

Return ⊥, if CHashCheck(pkch,m, r, h) 6= true
r′ ← Adapt(skch,m,m

′, r, h)
If r′ = ⊥, return ⊥
Q ← Q∪ {m,m′}
return r′

return 1, if CHashCheck(pkch,m
∗, r∗, h∗) = CHashCheck(pkch,m

′∗, r′∗, h∗) = true ∧
m′∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 2. Collision Resistance

Experiment UniquenessCH
A (λ)

ppch ← CParGen(1λ)
(pk∗,m∗, r∗, r′∗, h∗)← A(ppch)
return 1, if CHashCheck(pk∗,m∗, r∗, h∗) = CHashCheck(pk∗,m∗, r′∗, h∗) = true
∧ r∗ 6= r′∗

return 0

Fig. 3. Uniqueness

Uniqueness. Uniqueness requires that it is hard to come up with two different
randomness values for the same message m∗ such that the hashes are equal, for
the same adversarially chosen pk∗.

Definition 7 (Uniqueness). A chameleon-hash CH is unique, if for any effi-
cient adversary A there exists a negligible function ν such that Pr[UniquenessCH

A (
1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in Fig. 3.

Definition 8 (Secure Chameleon-Hashes). We call a chameleon-hash CH
secure, if it is correct, indistinguishable, and collision-resistant.

We do not consider uniqueness as a fundamental security property, as it depends
on the concrete use-case whether this notion is required.

In the full version of this paper, we show how to construct a unique chameleon-
hash satisfying our strong notions, based on the ideas by Brzuska et al. [15].

3 Chameleon-Hashes with Ephemeral Trapdoors

As already mentioned, a chameleon-hash with ephemeral trapdoor (CHET) allows
to prevent the holder of the trapdoor skch from finding collisions, as long as no
additional ephemeral trapdoor etd is known. This additional ephemeral trapdoor
is chosen freshly for each new hash, and providing, or withholding, this trapdoor



thus allows to decide upon each hash computation if finding a collision is possible
for the holder of the long-term trapdoor. Hence, we need to introduce a new
framework given next, which is also accompanied by suitable security definitions.

Definition 9 (Chameleon-Hashes with Ephemeral Trapdoors). A cham-
eleon-hash with ephemeral trapdoors CHET is a tuple of five algorithms (CParGen,
CKGen,CHash,CHashCheck,Adapt), such that:

CParGen. The algorithm CParGen on input security parameter λ outputs the
public parameters: ppch ← CParGen(1λ). For simplicity, we assume that ppch
is an implicit input to all other algorithms.

CKGen. The algorithm CKGen given the public parameters ppch outputs the long-
term private and public keys of the scheme: (skch, pkch)← CKGen(ppch).

CHash. The algorithm CHash gets as input the public key pkch, and a message
m to hash. It outputs a hash h, randomness r, and the trapdoor information:
(h, r, etd)← CHash(pkch,m).

CHashCheck. The deterministic algorithm CHashCheck gets as input the public
key pkch, a message m, a hash h, and randomness r. It outputs a decision
bit d ∈ {false, true}, indicating whether the given hash is correct: d ←
CHashCheck(pkch,m, r

′, h).
Adapt. The algorithm Adapt gets as input skch, the old message m, the old

randomness r, the new message m′, the hash h, and the trapdoor information
etd and outputs new randomness r′: r′ ← Adapt(skch,m,m

′, r, h, etd).

Correctness. For each CHET we require the correctness properties to hold. In
particular, we require that for all security parameters λ ∈ N, for all ppch ←
CParGen(1λ), for all (skch, pkch) ← CKGen(ppch), for all m ∈ M, for all (h, r,
etd) ← CHash(pkch,m), we have CHashCheck(pkch,m, r, h) = true, and ad-
ditionally for all m′ ∈ M, for all r′ ← Adapt(skch,m,m

′, r, h, etd), we have
CHashCheck(pkch,m

′, r′, h) = true. This definition captures perfect correctness.
We also require some security guarantees, which we introduce next.

Indistinguishability. Indistinguishability requires that the randomnesses r does
not reveal if it was obtained through CHash or Adapt. In other words, an outsider
cannot decide whether a message is the original one or not.

Definition 10 (Indistinguishability). A chameleon-hash with ephemeral trap-
door CHET is indistinguishable, if for any efficient adversary A there exists a
negligible function ν such that

∣∣∣Pr[IndistinguishabilityCHET
A (λ) = 1]− 1

2

∣∣∣ ≤ ν(λ) .
The corresponding experiment is depicted in Fig. 4.

Public Collision Resistance. Public collision resistance requires that, even if an
adversary has access to an Adapt oracle, it cannot find any collisions by itself.
Clearly, the collision must be fresh, i.e., must not be produced using the Adapt
oracle.



Experiment IndistinguishabilityCHET
A (λ)

ppch ← CParGen(1λ)
(skch, pkch)← CKGen(ppch)
b← {0, 1}
a← AHashOrAdapt(skch,·,·,b),Adapt(skch,·,·,·,·,·)(pkch)

where oracle HashOrAdapt on input skch,m,m
′, b:

let (h, r, etd)← CHash(pkch,m
′)

let (h′, r′, etd′)← CHash(pkch,m)
let r′′ ← Adapt(skch,m,m

′, r′, h′, etd′)
if r′′ = ⊥ ∨ r′ = ⊥, return ⊥
if b = 0:

return (h, r, etd)
if b = 1:

return (h′, r′′, etd′)
return 1, if a = b
return 0

Fig. 4. Indistinguishability

Experiment PublicCollResCHET
A (λ)

ppch ← CParGen(1λ)
(skch, pkch)← CKGen(ppch)
Q ← ∅
(m∗, r∗,m′∗, r′∗, h∗)← AAdapt′(skch,·,·,·,·,·)(pkch)

where oracle Adapt′ on input skch,m,m
′, r, etd, h:

return ⊥, if CHashCheck(pkch,m, r, h) = false
r′ ← Adapt(skch,m,m

′, r, h, etd)
If r′ = ⊥, return ⊥
Q ← Q∪ {m,m′}
return r′

return 1, if CHashCheck(pkch,m
∗, r∗, h∗) = true ∧

CHashCheck(pkch,m
′∗, r′∗, h∗) = true ∧

m′∗ /∈ Q ∧ m∗ 6= m′∗

return 0

Fig. 5. Public Collision-Resistance

Definition 11 (Public Collision-Resistance). A chameleon-hash with ephe-
meral trapdoor CHET is publicly collision-resistant, if for any efficient adversary A
there exists a negligible function ν such that Pr[PublicCollResCHET

A (1λ) = 1] ≤ ν(λ).
The corresponding experiment is depicted in Fig. 5.

Private Collision-Resistance. Private collision resistance requires that even the
holder of the secret key skch cannot find collisions as long as etd is unknown. This
is formalized by a honest hashing oracle which does not return etd. Hence, A’s
goal is to return an actual collision on a non-adversarially generated hash h, for
which it does not know etd.

Definition 12 (Private Collision-Resistance). A chameleon-hash with ephe-
meral trapdoor CHET is privately collision-resistant, if for any efficient adversary



Experiment PrivateCollResCHET
A (λ)

ppch ← CParGen(1λ)
Q ← ∅
(pk∗, state)← A(ppch)
(m∗, r∗,m′∗, r′∗, h∗)← ACHash′(pk∗,·)(state)

where oracle CHash′ on input pk∗,m:
(h, r, etd)← CHash(pk∗,m)
If h = ⊥, return ⊥
Q ← Q∪ {(h,m)}
return (h, r)

return 1, if CHashCheck(pk∗,m∗, r∗, h∗) = true ∧
CHashCheck(pk∗,m′∗, r′∗, h∗) = true ∧
(h∗,m∗) /∈ Q ∧ (h∗, ·) ∈ Q

return 0

Fig. 6. Private Collision-Resistance

Experiment UniquenessCHET
A (λ)

ppch ← CParGen(1λ)
(pk∗,m∗, r∗, r′∗, h∗)← A(ppch)
return 1, if CHashCheck(pk∗,m∗, r∗, h∗) = CHashCheck(pk∗,m∗, r′∗, h∗) = true ∧
r∗ 6= r′∗

return 0

Fig. 7. Uniqueness

A there exists a negligible function ν such that Pr[PrivateCollResCHET
A (1λ) = 1] ≤

ν(λ). The corresponding experiment is depicted in Fig. 6.

Uniqueness. Uniqueness requires that it is hard to come up with two different
randomness values for the same message m∗ and hash value h∗, where pk∗ is
adversarially chosen.

Definition 13 (Uniqueness). A chameleon-hash with ephemeral trapdoor CHET
is unique, if for any efficient adversary A there exists a negligible function ν
such that Pr[UniquenessCHET

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is
depicted in Fig. 7.

Definition 14 (Secure Chameleon-Hashes with Ephemeral Trapdoors).
We call a chameleon-hash with ephemeral trapdoor CHET secure, if it is correct,
indistinguishable, publicly collision-resistant, and privately collision-resistant.

Note, we do not require that a secure CHET is unique, as it depends on the
use-case whether this strong security notion is required.

4 Constructions

Regarding constructions of CHET schemes, we first ask the natural question
whether CHETs can be built from existing primitives in a black-box way. Interest-
ingly, we can show how to elegantly “bootstrap” a CHET scheme in a black-box



fashion from any existing secure (and unique) chameleon-hash. Since, however, a
secure chameleon-hash does not exist to date, we show how to construct it in
the full version of this paper, based on the ideas by Brzuska et al. [15]. If one
does not require uniqueness, one can, e.g., resort to the recent scheme given by
Ateniese et al. [5].

We then proceed in presenting three direct constructions, two based on the
DL assumption, and one based on an RSA-like assumption. While the DL-based
constructions are not unique, the construction from RSA-like assumptions even
achieves uniqueness. We however note that this strong security notion is not
required in all use-cases. For example, in our application scenario (cf. Section 5),
the CHETs do not need to be unique.

4.1 Black-Box Construction: Bootstrapping
We now present a black-box construction from any existing chameleon-hash.
Namely, we show how one can achieve our desired goals by combining two
instances of a secure chameleon-hash CH.

Construction 1 (Bootstrapped Construction) We omit obvious checks for
brevity. Let CHET be defined as:
CParGen. The algorithm CParGen does the following:

1. Return ppch ← CH.CParGen(1λ).
CKGen. The algorithm CKGen generates the key pair in the following way:

1. Return (sk1
ch, pk1

ch)← CH.CKGen(ppch).
CHash. To hash a message m, w.r.t. public key pk1

ch do:
1. Let (sk2

ch, pk2
ch)← CH.CKGen(ppch).

2. Let (h1, r1)← CH.CHash(pk1
ch,m).

3. Let (h2, r2)← CH.CHash(pk2
ch,m).

4. Return ((h1, h2, pk2
ch), (r1, r2), sk2

ch).
CHashCheck. To check whether a given hash h = (h1, h2, pk2

ch) is valid on input
pkch = pk1

ch, m, r = (r1, r2), do:
1. Let b1 ← CH.CHashCheck(pk1

ch,m, r1, h1).
2. Let b2 ← CH.CHashCheck(pk2

ch,m, r2, h2).
3. If b1 = false ∨ b2 = false, return false.
4. Return true.

Adapt. To find a collision w.r.t. m, m′, randomness r = (r1, r2), hash h =
(h1, h2, pk2

ch), etd = sk2
ch, and skch = sk1

ch do:
1. If false = CHashCheck(pkch,m, r, h), return ⊥.
2. Compute r′1 ← CH.Adapt(sk1

ch,m,m
′, r1, h1).

3. Compute r′2 ← CH.Adapt(sk2
ch,m,m

′, r2, h2).
4. Return (r′1, r′2).

The proof of the following theorem can be found in the full version of this paper.
Theorem 1. If CH is secure and unique, then the chameleon-hash with ephemeral
trapdoors CHET in Construction 1 is secure, and unique.
This construction is easy to understand and only uses standard primitives. The
question is now, if we can also directly construct CHET, which we answer to the
affirmative subsequently.



4.2 A First Direct Construction

We now present a direct construction in groups where the DLP is hard using
some ideas related to Pedersen commitments [53]. In a nutshell, the long-term
secret is the discrete logarithm x between two elements g and h (i.e., gx = h)
of the long-term public key, while the ephemeral trapdoor is the randomness
of the “commitment”. To prohibit that a seen collision allows to extract the
long-term secret key x, both trapdoors are hidden in a NIZKPoK. To make
the “commitment” equivocable, it is then again randomized. To avoid that the
holder of skch needs to store state, the randomness is encrypted to a public
key of a IND-CCA2 secure encryption scheme contained in pkch. Security then
directly follows from the DL assumption, IND-CCA2, the collision-resistance of
the used hash function, and the extractability property of the NIZKPoK system.
For brevity we assume that the NP-languages involved in the NIZKPoKs are
implicitly defined by the scheme. Note, this construction is not unique.

Construction 2 (CHET in Known-Order Groups) Let {HkZ∗q}k∈K denote a
family of collision-resistant hash functions HkZ∗q : {0, 1}∗ → Z∗q indexed by a key
k ∈ K and let CHET be as follows:

CParGen. The algorithm CParGen generates the public parameters in the following
way:
1. Let (G, g, p)← GGen(1λ).
2. Let k ← K for the hash function.
3. Let crs← Gen(1λ).7
4. Return ((G, g, q), k, crs).

CKGen. The algorithm CKGen generates the key pair in the following way:
1. Draw random x← Z∗q . Set h← gx.
2. Generate πpk ← NIZKPoK{(x) : h = gx}.
3. Let (skenc, pkenc)← Π.KGenenc(1λ).
4. Return ((x, skenc), (h, πpk, pkenc)).

CHash. To hash m w.r.t. pkch = (h, πpk, pkenc) do:
1. Return ⊥, if h /∈ G∗.
2. If πpk is not valid, return ⊥.
3. Draw random r ← Z∗q .
4. Draw random etd← Z∗q .
5. Let h′ ← getd.
6. Generate πt ← NIZKPoK{(etd) : h′ = getd)}.
7. Encrypt r, i.e., let C ← Π.Enc(pkenc, r).
8. Let a← HkZ∗q (m).
9. Let p← hr.

10. Generate πp ← NIZKPoK{(r) : p = hr}.
11. Let b← ph′a.
12. Return ((b, h′, πt), (p, C, πp), etd).

7 Actually we need one crs per language, but we do not make this explicit here.



CHashCheck. To check whether a given hash (b, h′, πt) is valid on input pkch =
(h, πpk, pkenc),m, r = (p, C, πp), do:
1. Return false, if p /∈ G∗ ∨ h′ /∈ G∗.
2. If either πp, πt, or πpk are not valid, return ⊥.
3. Let a← HkZ∗q (m).
4. Return true, if b = ph′a.
5. Return false.

Adapt. To find a collision w.r.t. m, m′, (b, h′, πt), randomness (p, C, πp), and
trapdoor information etd, and skch = (x, skenc) do:
1. If false = CHashCheck(pkch,m, (p, C, πp), (b, h′, πt)), return ⊥.
2. Decrypt C, i.e., r ← Π.Dec(skenc, C). If r = ⊥, return ⊥.
3. If h′ 6= getd, return ⊥.
4. Let a← HkZ∗q (m).
5. Let a′ ← HkZ∗q (m′).
6. If p 6= gxr, return ⊥.
7. If a = a′, return (p, C, πp).
8. Let r′ ← rx+a·etd−a′·etd

x .
9. Let p′ ← hr

′ .
10. Encrypt r′, i.e., let C ′ ← Π.Enc(pkenc, r

′).
11. Generate π′p ← NIZKPoK{(r′) : p′ = hr

′}.
12. Return (p′, C ′, π′p).

Some of the checks can already be done in advance, e.g., at a PKI, which only
generates certificates, if the restrictions on each public key are fulfilled.

The proof of the following Theorem is given in the full version of this paper.

Theorem 2. If the DL assumption in G holds, HkZ∗|G| is collision-resistant, Π
is IND-CCA2 secure, and NIZKPoK is secure, then the chameleon-hash with
ephemeral trapdoors CHET in Construction 2 is secure.

Two further constructions, one based on the DL assumption in gap-groups, and
one based on RSA-like assumptions (in the random oracle model, which is also
unique), are given in in the full version of this paper.

5 Application: Invisible Sanitizable Signatures

Informally, security of digital signatures requires that a signature σ on a message
m becomes invalid as soon as a single bit of m is altered [40]. However, there
are many real-life use-cases in which a subsequent change to signed data by a
semi-trusted party without invalidating the signature is desired. As a simplified
example, consider a patient record which is signed by a medical doctor. The
accountant, which charges the insurance company, only requires knowledge of
the treatments and the patient’s insurance number. This protects the patient’s
privacy. In this constellation, having the data re-signed by the M.D. whenever
subsets of the record need to be forwarded to some party induces too much



overhead to be practical in real scenarios or may even be impossible due to
availability constraints.

Sanitizable signature schemes (SSS) [4] address these shortcomings. They
allow the signer to determine which blocks m[i] of a given message m =
(m[1],m[2], . . . ,m[i], . . . ,m[`]) are admissible. Any such admissible block can
be changed to a different bitstring m[i]′ ∈ {0, 1}∗, where i ∈ {1, 2, . . . , `}, by
a semi-trusted party named the sanitizer. This party is identified by a pri-
vate/public key pair and the sanitization process described before requires the
private key. In a nutshell, sanitization of a message m results in an altered
message m′ = (m[1]′,m[2]′, . . . ,m[i]′, . . . ,m[`]′), where m[i] = m[i]′ for every
non-admissible block, and also a signature σ′, which verifies under the original
public key. Thus, authenticity of the message is still ensured. In the prior example,
for the server storing the data it is possible to already black-out the sensitive
parts of a signed document without any additional communication with the M.D.
and in particular without access to the signing key of the M.D.

Real-world applications of SSSs include the already mentioned privacy-
preserving handling of patient data, secure routing, privacy-preserving document
disclosure, credentials, and blank signatures [4, 17, 18, 19, 24, 30, 42].

Our Contribution. We introduce the notion of invisible SSSs. This strong
privacy notion requires that a third party not holding any secret keys cannot
decide whether a specific block is admissible, i.e., can be sanitized. This has already
been discussed by Ateniese et al. [4] in the first work on sanitizable signatures,
but they neither provide a formal framework nor a provably secure construction.
However, we identify some use-cases where such a notion is important, and
we close this gap by introducing a new framework for SSSs, along with an
extended security model. Moreover, we propose a construction being provably
secure in our framework. Our construction paradigm is based on IND-CPA
secure encryption schemes, standard, yet unique, chameleon-hashes, and strongly
unforgeable signature schemes. These can be considered standard tools nowadays.
We pair those with a chameleon-hash with ephemeral trapdoors.

Motivation. At PKC ’09, Brzuska et al. formalized the most common security
model of SSSs [15]. For our work, the most important property they are addressing
is “weak transparency”. It means that although a third party sees which blocks of
a message are admissible, it cannot decide whether some block has already been
sanitized by a sanitizer. More precisely, their formalization explicitly requires
that the third party is always able to decide whether a given block in a message
is admissible. However, as this may invade privacy, having a construction which
hides this additional information is useful as well. To address this problem the
notion of “strong transparency” has been informally proposed in the original
work by Ateniese et al. [4].

Examples. To make the usefulness of such a stronger privacy property more
visible, consider the following two application scenarios.



In the first scenario, we consider that a document is the output of a workflow
that requires several—potentially heavy—computations to become ready. We
assume that the output of each workflow step could be produced by one party
alone, but could also be outsourced. However, if the party decides to outsource the
production of certain parts of the document it wants the potential involvement of
other parties to stay hidden, e.g., the potential and actual outsourcing might be
considered a trade secret. In order to regain some control that all tasks are done
only by authorized subordinates, the document—containing template parts—is
signed with a sanitizable signature. Such an approach, i.e., to use SSS for workflow
control, was proposed in [29].

The second one is motivated by an ongoing legal debate in Germany.8 Consider
a school class where a pupil suffers from dyslexia9 and thus can apply for additional
help to compensate the illness. One way to compensate this is to consider spelling
mistakes less when giving grades. Assume that only the school’s principal shall
decide to what extent a certain grade shall be improved. Of course, this shall
only be possible for pupils who are actually handicapped. For the pupil with
dyslexia, e.g., known to the teacher of the class in question, the grade is marked
as sanitizable by the principal. The legal debate in Germany is about an outsider,
e.g., future employer, who should not be able to decide that grades had the
potential to be altered and of course also not see for which pupils the grades
have been altered to preserve their privacy. To achieve this, standard sanitizable
signature schemes are clearly not enough, as they do not guarantee that an
outsider cannot derive which blocks are potentially sanitizable, i.e., which pupil
is actually handicapped. We offer a solution to this problem, where an outsider
cannot decide which block is admissible, i.e., can be altered.

State-of-the-Art. SSSs have been introduced by Ateniese et al. [4]. Brzuska
et al. formalized most of the current security properties [15]. These have been
later extended for (strong) unlinkability [17, 19, 35] and non-interactive public
accountability [18, 19]. Some properties discussed by Brzuska et al. [15] have then
been refined by Gong et al. [41]. Namely, they also consider the admissible blocks
in the security games, while still requiring that these are visible to everyone.
Recently, Krenn et al. further refined the security properties to also account for
the signatures, not only the message [48].10 We use the aforementioned results as
our starting point for the extended definitions.

Also, several extensions such as limiting the sanitizer to signer-chosen val-
ues [21, 31, 46, 56], trapdoor SSSs (which allow to add new sanitizers after
signature generation by the signer) [23, 59], multi-sanitizer and -signer environ-
ments for SSSs [16, 19, 22], and sanitization of signed and encrypted data [33]
8 See for example the ruling from the German Federal Administrative Court (BVerwG)

29.07.2015, Az.: 6 C 33.14, 6 C 35.14.
9 A disorder involving difficulty in learning to read or interpret words, letters and other

symbols.
10 We want to stress that Krenn et al. [48] also introduce “strong transparency”, which

is not related to the definition given by Ateniese et al. [4].



have been considered. SSSs have also been used as a tool to make other primitives
accountable [55], and to build other primitives [10, 51]. Also, SSSs and data-
structures being more complex than lists have been considered [56]. Our results
carry over to the aforementioned extended settings with only minor additional
adjustments. Implementations of SSSs have also been presented [18, 19, 50, 54].

Of course, computing on signed messages is a broad field. We can therefore
only give a small overview. Decent and comprehensive overviews of other related
primitives, however, have already been published [2, 14, 28, 38, 39].

5.1 Additional Building Blocks

We assume that the reader is familiar with digital signatures, PRGs, and PRFs,
and only introduce the notation used in the following. A PRF consists of a
key generation algorithm KGenprf and an evaluation algorithm Evalprf ; similarly,
a PRG consists of an evaluation algorithm Evalprg. Finally, a digital signature
scheme Σ consists of a key generation algorithm KGensig, a signing algorithm Sign,
and a verification algorithm Verify. The formal definition and security notions
are given in the full version of this paper.

5.2 Our Framework for Sanitizable Signature Schemes

Subsequently, we introduce our framework for SSSs. Our definitions are based
on existing work [15, 18, 19, 41, 48]. However, due to our goals, we need to
modify the current framework to account for the fact that the admissible blocks
are only visible to the sanitizer. We do not consider “non-interactive public
accountability” [18, 19, 45], which allows a third party to decide which party is
accountable, as transparency is mutually exclusive to this property, but is very
easy to achieve, e.g., by signing the sanitizable signature again [18].

Before we present the formal definition, we settle some notation. The variable
ADM contains the set of indices of the modifiable blocks, as well as the number
` of blocks in a message m. We write ADM(m) = true, if ADM is valid w.r.t.
m, i.e., ADM contains the correct ` and all indices are in m. For example, let
ADM = ({1, 2, 4}, 4). Then, m must contain four blocks, while all but the third
will be admissible. If we write mi ∈ ADM, we mean that mi is admissible. MOD
is a set containing pairs (i,m[i]′) for those blocks that shall be modified, meaning
that m[i] is replaced with m[i]′. We write MOD(ADM) = true, if MOD is valid
w.r.t. ADM, meaning that the indices to be modified are contained in ADM. To
allow a compact presentation of our construction we write X̃n,m with n ≤ m for
the vector (Xn, Xn+1, Xn+2, . . . , Xm−1, Xm).

Definition 15 (Sanitizable Signatures). A sanitizable signature scheme SSS
consists of eight ppt algorithms (SSSParGen,KGensig,KGensan,Sign,Sanit,Verify,
Proof, Judge) such that

SSSParGen. The algorithm SSSParGen, on input security parameter λ, gener-
ates the public parameters: ppsss ← SSSParGen(1λ). We assume that ppsss is
implicitly input to all other algorithms.



KGensig. The algorithm KGensig takes the public parameters ppsss and returns
the signer’s private key and the corresponding public key: (pksig, sksig) ←
KGensig(ppsss).

KGensan. The algorithm KGensan takes the public parameters ppsss and returns
the sanitizer’s private key and the corresponding public key: (pksan, sksan)←
KGensan(ppsss).

Sign. The algorithm Sign takes as input a message m, sksig, pksan, as well as
a description ADM of the admissible blocks. If ADM(m) = false, this
algorithm returns ⊥. It outputs a signature σ ← Sign(m, sksig, pksan,ADM).

Sanit. The algorithm Sanit takes a message m, modification instruction MOD,
a signature σ, pksig, and sksan. It outputs m′ together with σ′: (m′, σ′) ←
Sanit(m,MOD, σ, pksig, sksan) where m′ ← MOD(m) is message m modified
according to the modification instruction MOD.

Verify. The algorithm Verify takes as input the signature σ for a message m w.r.t.
the public keys pksig and pksan and outputs a decision d ∈ {true, false}:
d← Verify(m,σ, pksig, pksan).

Proof. The algorithm Proof takes as input sksig, a message m, a signature σ,
a set of polynomially many additional message/signature pairs {(mi, σi)}
and pksan. It outputs a string π ∈ {0, 1}∗ which can be used by the Judge
to decide which party is accountable given a message/signature pair (m,σ):
π ← Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan).

Judge. The algorithm Judge takes as input a message m, a signature σ, pksig,
pksan, as well as a proof π. Note, this means that once a proof π is generated,
the accountable party can be derived by anyone for that message/signature
pair (m,σ). It outputs a decision d ∈ {Sig,San}, indicating whether the
message/signature pair has been created by the signer, or the sanitizer: d←
Judge(m,σ, pksig, pksan, π).

Correctness of Sanitizable Signature Schemes. We require the usual correctness
requirements to hold. In a nutshell, every signed and sanitized message/signature
pair should verify, while a honestly generated proof on a honestly generated
message/signature pair should point to the correct accountable party. We refer
to [15] for a formal definition, which straightforwardly extends to our framework.

5.3 Security of Sanitizable Signature Schemes

Next, we introduce our security model, where our definitions already incorporate
newer insights [15, 19, 41, 48]. In particular, we mostly consider the “strong”
definitions by Krenn et al. [48] as the new state-of-the-art. Due to our goals, we
also see the data-structure corresponding to the admissible blocks, i.e., ADM,
as an asset which needs protection, which addresses the work done by Gong et
al. [41]. All formal definitions can be found in the full version of this paper.

Unforgeability. No one should be able to generate any new signature not seen
before without having access to any private keys.



Immutability. Sanitizers must only be able to perform allowed modifications.
In particular, a sanitizer must not be able to modify non-admissible blocks.

Privacy. Similar to semantic security for encryption schemes, privacy captures
the inability of an attacker to derive any knowledge about sanitized parts.

Transparency. An attacker cannot tell whether a specific message/signature
pair has been sanitized or not.

Accountability. For signer-accountability, a signer should not be able to accuse
a sanitizer if the sanitizer is actually not responsible for a given message, and
vice versa for sanitizer-accountability.

5.4 Invisibility of SSSs

Next, we introduce the new property of invisibility. Basically, invisibility requires
that an outsider cannot decide which blocks of a given message are admissible.
With ADM0∩ADM1, we denote the intersection of the admissible blocks, ignoring
the length of the messages.

In a nutshell, the adversary can query an LoRADM oracle which either makes
ADM0 or ADM1 admissible in the final signature. Of course, the adversary
has to be restricted to ADM0 ∩ ADM1 for sanitization requests for signatures
originating from those created by LoRADM and their derivatives to avoid trivial
attacks. The sign oracle can be simulated by querying the LoRADM oracle with
ADM0 = ADM1. We stress that our invisibility definition is very strong, as it
also takes the signatures into account, much like the definitions given by Krenn
et al. [48]. One can easily alter our definition to only account for the messages
in question, e.g., if one wants to avoid strongly unforgeable signatures, or even
allow re-randomizable signatures. An adjustment is straightforward.

Definition 16 (Invisibility). An SSS is invisible, if for any efficient adversary
A there exists a negligible function ν such that

∣∣∣Pr[InvisibilitySSS
A (λ) = 1]− 1

2

∣∣∣ ≤
ν(λ) , where the corresponding experiment is defined in Fig. 8.

It is obvious that invisibility is not implied by any other property. In a nutshell,
taking any secure SSS, it is sufficient to non-malleably append ADM to each block
m[i] to prevent invisibility. Clearly, all other properties of such a construction
are still preserved.

Definition 17 (Secure SSS). We call an SSS secure, if it is correct, private,
unforgeable, immutable, sanitizer-accountable, signer-accountable, and invisible.

We do neither consider non-interactive public accountability nor unlinkability
nor transparency as essential security requirements, as it depends on the concrete
use-case whether these properties are required.

5.5 Construction

We now introduce our construction and use the construction paradigm of Ateniese
et al. [4], enriching it with several ideas of prior work [15, 41, 50]. The main idea



Experiment InvisibilitySSS
A (λ)

ppsss ← SSSParGen(1λ)
(pksig, sksig)← KGensig(ppsss)
(pksan, pksan)← KGensan(ppsss)
b← {0, 1}
Q ← ∅
a← ASanit′(·,·,·,·,sksan),Proof(sksig,·,·,·,·),LoRADM(·,·,·,sksig,b)(pksig, pksan)

where oracle LoRADM on input of m,ADM0,ADM1, sksig, b:
return ⊥, if ADM0(m) 6= ADM1(m)
let σ ← Sign(m, sksig, pksan,ADMb)
let Q ← Q∪ {(m,σ,ADM0 ∩ADM1)}
return σ

where oracle Sanit′ on input of m,MOD, σ, pk′sig, sksan:
return ⊥, if pk′sig = pksig ∧ @(m,σ,ADM) ∈ Q : MOD(ADM) = true
let (m′, σ′)← Sanit(m,MOD, σ, pk′sig, sksan)
if pk′sig = pksig ∧ ∃(m,σ,ADM′) ∈ Q : MOD(ADM′) = true,

let Q ← Q∪ {(m′, σ′,ADM′)}
return (m′, σ′)

return 1, if a = b
return 0

Fig. 8. Invisibility

is to hash each block using a chameleon-hash with ephemeral trapdoors, and
then sign the hashes. The main trick we introduce to limit the sanitizer is that
only those etdi are given to the sanitizer, for which the respective block m[i]
should be sanitizable. To hide whether a given block is sanitizable, each etdi is
encrypted; a sanitizable block contains the real etdi, while a non-admissible block
encrypts a 0, where 0 is assumed to be an invalid etd. For simplicity, we require
that the IND-CPA secure encryption scheme Π allows that each possible etd, as
well as 0, is in the message space M of Π, which can be achieved using standard
embedding and padding techniques, or using KEM/DEM combinations [1]. To
achieve accountability, we generate additional “tags” for a “standard” chameleon-
hash (which binds everything together) in a special way, namely we use PRFs and
PRGs, which borrows ideas from the construction given by Brzuska et al. [15].

Construction 3 (Secure and Transparent SSS) The secure and transparent
SSS construction is as follows:

SSSParGen. To generate the public parameters, do the following steps:
1. Let ppch ← CHET.CParGen(1λ).
2. Let pp′ch ← CH.CParGen(1λ).
3. Return ppsss = (ppch, pp′ch).

KGensig. To generate the key pair for the signer, do the following steps:
1. Let (pks, sks)← Σ.KGensig(1λ).
2. Pick a key for a PRF, i.e., κ← PRF.KGenprf(1λ).
3. Return (pks, (κ, sks)).

KGensan. To generate the key pair for the sanitizer, do the following steps:
1. Let (pkch, skch)← CHET.CKGen(ppch).



2. Let (pk′ch, sk
′
ch)← CH.CKGen(pp′ch).

3. Let (pkenc, skenc)← Π.KGenenc(1λ).
4. Return ((pkch, pk′ch, pkenc), (skch, sk′ch, skenc)).

Sign. To generate a signature σ, on input of m = (m[1],m[2], . . . ,m[`]), sksig =
(κ, sks), pksan = (pkch, pk′ch, pkenc), and ADM do the following steps:
1. If ADM(m) 6= true, return ⊥.
2. Draw x0 ← {0, 1}λ.
3. Let x′0 ← PRF.Evalprf(κ, x0).
4. Let τ ← PRG.Evalprg(x′0).
5. For each i ∈ {1, 2, . . . , `} do:

(a) Set (hi, ri, etdi)← CHET.CHash(pkch, (i,m[i], pksig)).
(b) If block i is not admissible, let etdi ← 0.
(c) Compute ci ← Π.Enc(pkenc, etdi).

6. Set (h0, r0)← CH.CHash(pk′ch, (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig)).
7. Set σ′ ← Σ.Sign(sks, (x0, h̃0,`, c̃1,`, pksan, pksig, `)).
8. Return σ = (σ′, x0, r̃0,`, τ, c̃1,`, h̃0,`).

Verify. To verify a signature σ = (σ′, x0, r̃0,`, τ, c̃1,`, etd0, h̃0,`), on input of m =
(m[1],m[2], . . . ,m[`]), w.r.t. to pksig = pks and pksan = (pkch, pk′ch, pkenc), do:
1. For each i ∈ {1, 2, . . . , `} do:

(a) Set bi ← CHET.CHashCheck(pkch, (i,m[i], pksig), ri, hi). If any bi =
false, return false.

2. Let b0 ← CH.CHashCheck(pk′ch, (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig), r0, h0).
3. If b0 = false, return false.
4. Return d← Σ.Verify(pks, (x0, h̃0,`, c̃1,`, pksan, pksig, `), σ′).

Sanit. To sanitize a signature σ = (σ′, x0, r̃0,`, τ, c̃1,`, h̃0,`), on input of m =
(m[1],m[2], . . . ,m[`]), w.r.t. to pksig = pks, sksan = (skch, sk′ch, skenc), and
MOD do:
1. Verify the signature, i.e., run d ← SSS.Verify(m,σ, pksig, pksan). If d =

false, return ⊥.
2. Decrypt each ci for i ∈ {1, 2, . . . , `}, i.e., let etdi ← Π.Dec(skenc, ci). If

any decryption fails, return ⊥.
3. For each index i ∈ MOD check that etdi 6= 0. If not, return ⊥.
4. For each block m[i]′ ∈ MOD do:

(a) Let r′i ← CHET.Adapt(skch, (i,m[i], pksig), (i,m[i]′, pksig), ri, etdi).
(b) If r′i = ⊥, return ⊥.

5. For each block m[i]′ /∈ MOD do:
(a) Let r′i ← ri.

6. Let m′ ← MOD(m).
7. Draw τ ′ ← {0, 1}2λ.
8. Let r′0 ← CH.Adapt(sk′ch, (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig), (0,m′, τ ′, `, h̃1,`,

c̃1,`, r̃′1,`, pksig), r0, h0).
9. Return (m′, (σ′, x0, r̃′0,`, τ

′, c̃1,`, h̃0,`)).
Proof. To create a proof π, on input of m = (m[1],m[2], . . . ,m[`]), a signature

σ, w.r.t. to pksan and sksig, and {(mi, σi) | i ∈ N} do:
1. Return ⊥, if false = SSS.Verify(m,σ, pksig, pksan).



2. Verify each signature in the list, i.e., run di ← SSS.Verify(mi, σi, pksig,
pksan). If for any di = false, return ⊥.

3. Go through the list of (mi, σi) and find a (non-trivial) colliding tuple
of the chameleon-hash with (m,σ), i.e., h0 = h′0, where also true =
CH.CHashCheck(pk′ch, (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig), r0, h0), and true =
CH.CHashCheck(pk′ch, (0,m′, τ ′, `, h̃′1,`, c̃′1,`, r̃′1,`, pksig), r′0, h′0) for some
different tag τ ′ or message m′. Let this signature/message pair be (σ′,m′) ∈
{(mi, σi) | i ∈ N}.

4. Return π = ((σ′,m′),PRF.Evalprf(κ, x0)), where x0 is contained in (σ,m).
Judge. To find the accountable party on input of m = (m[1],m[2], . . . ,m[`]), a

valid signature σ, w.r.t. to pksan, pksig, and a proof π do:
1. Check if π is of the form ((σ′,m′), v) with v ∈ {0, 1}λ. If not, return Sig.
2. Also return ⊥, if false = SSS.Verify(m′, σ′, pksig, pksan), or false =

SSS.Verify(m,σ, pksig, pksan).
3. Let τ ′′ ← PRG.Evalprg(v).
4. If τ ′ 6= τ ′′, return Sig.
5. If we have h0 = h′0, true = CH.CHashCheck(pkch, (0,m, τ, `, h̃1,`, c̃1,`,

pksig), r0, pksig, h0) = CH.CHashCheck(pk′ch, (0,m′, τ ′, `′, h̃′1,`′ , c̃′1,`′ , pksig),
r′0, pksig, h

′
0), c̃1,` = c̃′1,`′ , x0 = x′0, ` = `′, and h̃0,` = h̃′0,`′ , return San.

6. Return Sig.

Theorem 3. If Π is IND-CPA secure, Σ, PRF, PRG, CHET are secure, CH is
secure and unique, Construction 3 is a secure and transparent SSS.

Note, CHET is not required to be unique. We prove each property on its own.

Proof. Correctness follows by inspection.

Unforgeability. To prove that our scheme is unforgeable, we use a sequence of
games:

Game 0: The original unforgeability game.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗)

with σ∗ = (σ′∗, x∗0, r̃∗0,`∗ , τ̃∗, c̃∗1,`∗ , h̃∗0,`∗), where (σ′∗, (x0, h̃0,`, c̃1,`, pksan, pksig,
`)) was never obtained from the sign or sanitizing oracle. Let this event be
E1.

Transition - Game 0 → Game 1: Clearly, if (σ′∗, (x0, h̃0,`, c̃1,`, pksan, pksig, `)) was
never obtained by the challenger, this tuple breaks the strong unforgeability
of the underlying signature scheme. The reduction works as follows. We
obtain a challenge public key pkc from a strong unforgeability challenger
and embed it as pksig. For every required “inner” signature σ′, we use the
signing oracle provided by the challenger. Now, whenever E1 happens, we
can output σ′∗ together with the message protected by σ′∗ as a forgery to
the challenger. That is, E1 happens with exactly the same probability as a
forgery. Further, both games proceed identically, unless E1 happens. Taking
everything together yields |Pr[S0]− Pr[S1]| ≤ νunf-cma(λ).



Game 2: Among others, we now have established that the adversary can no
longer win by modifying pksig, and pksan. We proceed as in Game 1, but abort
if the adversary outputs a forgery (m∗, σ∗), where message m∗ or any of the
other values protected by the outer chameleon-hash were never returned by
the signer or the sanitizer oracle. Let this event be E2.

Transition - Game 1 → Game 2: The probability of the abort event E2 to hap-
pen is exactly the probability of the adversary breaking collision freeness for
the outer chameleon-hash. Namely, we already established that the adversary
cannot tamper with the inner signature and therefore the hash value h∗0 must
be from a previous oracle query. Now, assume that we obtain pk′ch from a
collision freeness challenger. If E2 happens, there must be a previous oracle
query with associated values (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig) and r0 so that
h∗0 is a valid hash with respect to some those values and r0. Further, we
also have that (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig) 6= (0,m∗, τ∗, `∗, h̃∗1,`∗ , c̃∗1,`∗ , r̃∗1,`∗ ,
pksig), and can thus output ((0,m∗, τ∗, `∗, h̃∗1,`∗ , c̃∗1,`∗ , r̃∗1,`∗ , pksig), r∗0 , (0,m, τ,
`, h̃1,`, c̃1,`, r̃1,`, pksig), r0, h

∗
0) as the collision. Thus, the probability that E2

happens is exactly the probability of a collision for the chameleon-hash. Both
games proceed identically, unless E2 happens. |Pr[S1]−Pr[S2]| ≤ νch-coll-res(λ)
follows.

Game 3: As Game 2, but we abort if the adversary outputs a forgery where only
the randomness r0 changed, i.e., we have previously generated a signature
with respect to r0 so that r0 6= r∗0 . Let this be event be E3.

Transition - Game 2 → Game 3: If the abort event E3 happens, the adversary
breaks uniqueness of the chameleon-hash. In particular we have values (0,
m∗, τ∗, `∗, h̃∗1,`∗ , c̃

∗
1,`∗ , r̃

∗
1,`∗ , pksig) in the forgery which also correspond to some

previous query, but r0 from the previous query is different from r∗0 . Obtaining
pp′ch from a uniqueness challenger thus shows that E3 happens with exactly
the same probability as the adversary breaks uniqueness of the chameleon
hash. Thus, we have that |Pr[S2]− Pr[S3]| ≤ νch-unique(λ).

In the last game, the adversary can no longer win the unforgeability game;
this game is computationally indistinguishable from the original game, which
concludes the proof.

Immutability. We prove immutability using a sequence of games.

Game 0: The immutability game.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗)

with σ∗ = (σ′∗, x∗0, r̃∗0,`∗ , τ̃∗, c̃∗1,`∗ , h̃∗0,`∗) where (σ′∗, (x0, h̃0,`, c̃1,`, pksan, pksig,
`)) was never obtained from the sign oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, if (σ′∗, (x0, h̃0,`, c̃1,`, pksan, pksig, `)) was never obtained by the chal-
lenger, this tuple breaks the strong unforgeability of the underlying signature
scheme. The reduction works as follows. We obtain a challenge public key
pkc from a strong unforgeability challenger and embed it as pksig. For every
required “inner” signature σ′, we use the signing oracle provided by the



challenger. Now, whenever E1 happens, we can output σ′∗ together with the
message protected by σ′∗ as a forgery to the challenger. That is, E1 happens
with exactly the same probability as a forgery of the underlying signature
scheme. Further, both games proceed identically, unless E1 happens. Taking
everything together yields |Pr[S0]− Pr[S1]| ≤ νunf-cma(λ).

Game 2: As Game 1, but the challenger aborts, if the message m∗ is not
derivable from any returned signature. Note, we already know that tampering
with the signatures is not possible, and thus pksig, and pksan, are fixed. The
same is true for deleting or appending blocks, as ` is signed in every case.
Let this event be denoted E2.

Transition - Game 1 → Game 2: Now assume that E2 is non-negligible. We can
then construct an adversary B which breaks the private collision-resistance
of the underlying chameleon-hash with ephemeral trapdoors. Let the sig-
nature returned be σ∗ = (σ′∗, x∗0, r̃∗0,`∗ , τ̃∗, c̃∗1,`∗ , h̃∗0,`∗), while A’s public key
is pk∗. Due to prior game hops, we know that A cannot tamper with the
“inner” signatures. Thus, there must exists another signature σ = (σ′∗, x∗0,
r̃′
∗
0,`∗ , τ̃

′∗, c̃∗1,`∗ , h̃
∗
0,`∗) returned by the signing oracle. This, however, also

implies that there must exists an index i ∈ {1, 2, . . . , `∗}, for which we
have CHET.CHashCheck(pkch, (i,m∗[i], pksig), r∗i , h∗i ) = CHET.CHashCheck(
pkch, (i,m′∗[i], pksig), r′∗i , h∗i ) = true, where m∗[i] 6= m′∗[i] by assumption.
B proceeds as follows. Let qh be the number of “inner hashes” created.
Draw an index i ← {1, 2, . . . , qh}. For a query i 6= j, proceed as in the
algorithms. If i = j, however, B returns the current public key pkc for the
chameleon-hash with ephemeral trapdoors. This key is contained in pk∗san. B
then receives back control, and queries its CHash oracle with (i,m[i], pksig),
where i is the current index of the message m to be signed. Then, if
((i,m∗[i], pksig), r∗i , (i,m′∗[i], pksig), r′∗i , h∗i ) is the collision w.r.t. pkc, it can
directly return it. |Pr[S1]− Pr[S2]| ≤ qhνpriv-coll(λ) follows, as B has to guess
where the collision will take place.

As each hop changes the view of the adversary only negligibly, immutability is
proven, as the adversary has no other way to break immutability in Game 2.

Privacy. We prove privacy; we use a sequence of games.

Game 0: The original privacy game.
Game 1: As Game 0, but we abort if the adversary queries a verifying message-

signature pair (m∗, σ∗) which was never returned by the signer or the sanitizer
oracle, and queries it to the sanitization or proof generation oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, whenever the adversary queries such a new pair, we can output
it to break the unforgeability of our scheme, as this tuple is fresh. However,
we have already proven that this can only happen with negligible probability.
|Pr[S0]− Pr[S1]| ≤ νsss-unf(λ) follows.

Game 2: As Game 1, but instead of hashing the blocks (i,mb[i], pksig) for the
inner chameleon-hashes using CHash, and then Adapt to (i,m[i], pksig), we
directly apply CHash to (i,m[i], pksig).



Transition - Game 1 → Game 2: Assume that the adversary can distinguish
this hop. We can then construct an B which wins the indistinguishability
game. B receives pkc as it’s own challenge, B embeds pkc as pkch, and
proceeds honestly with the exception that it uses the HashOrAdapt oracle to
generate the inner hashes. Then, whatever A outputs, is also output by B.
|Pr[S1]− Pr[S2]| ≤ νchet-ind(λ) follows.

Game 3: As Game 2, but instead of adapting (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig) to
the new values, directly use CHash.

Transition - Game 2 → Game 3: Assume that the adversary can distinguish
this hop. We can then construct an B which wins the indistinguishability
game. B receives pk′c as it’s own challenge, B embeds pk′c as pk′ch, and
proceeds honestly with the exception that it uses the HashOrAdapt oracle to
generate the outer hashes. Then, whatever A outputs, is also output by B.
|Pr[S2]− Pr[S3]| ≤ νch-ind(λ) follows.

Clearly, we are now independent of the bit b. As each hop changes the view of
the adversary only negligibly, privacy is proven.

Transparency. We prove transparency by showing that the distributions of
sanitized and fresh signatures are indistinguishable. Note, the adversary is not
allowed to query Proof for values generated by Sanit/Sign.

Game 0: The original transparency game, where b = 0.
Game 1: As Game 0, but we abort if the adversary queries a valid message-

signature pair (m∗, σ∗) which was never returned by any of the calls to the
sanitization or signature generation oracle. Let us use E1 to refer to the abort
event.

Transition - Game 0 → Game 1: Clearly, whenever the adversary queries such
a new pair, we can output it to break the unforgeability of our scheme, as
this tuple is fresh. A reduction is straightforward. Thus, we have |Pr[S0]−
Pr[S1]| ≤ νsss-unf(λ).

Game 2: As Game 1, but instead of computing x′0 ← PRF.Evalprf(λ, x0), we set
x′0 ← {0, 1}λ within every call to Sign in the Sanit/Sign oracle.

Transition - Game 1 → Game 2: A distinguisher between these two games str-
aightfowardly yields a distinguisher for the PRF. Thus, we have |Pr[S1] −
Pr[S2]| ≤ νind-prf(λ).

Game 3: As Game 2, but instead of computing τ ← PRG.Evalprg(x′0) , we set
τ ← {0, 1}2λ for every call to Sign within the Sanit/Sign oracle.

Transition - Game 2 → Game 3: A distinguisher between these two games yields
a distinguisher for the PRG using a standard hybrid argument. Thus, we have
|Pr[S2]− Pr[S3]| ≤ qsνind-prg(λ), where qs is the number of calls to the PRG.

Game 4: As Game 3, but we abort if a tag τ was drawn twice. Let this event
be E4.

Transition - Game 3 → Game 4: As the tags τ are drawn completely random,
event E4 only happens with probability q2

t

22λ , where qt is the number of drawn
tags. |Pr[S3]− Pr[S4]| ≤ q2

t

22λ follows.



Game 5: As Game 4, but instead of hash and then adapting the inner chameleon-
hashes, directly hash (i,m[i], pksig).

Transition - Game 4 → Game 5: Assume that the adversary can distinguish
this hop. We can then construct an B which wins the indistinguishability
game. In particular, the reduction works as follows. B receives pkc as it’s
own challenge, B embeds pkc as pkch, and proceeds honestly except that it
uses the HashOrAdapt oracle to generate the inner hashes. Then, whatever A
outputs, is also output by B. |Pr[S4]− Pr[S5]| ≤ νind-chet(λ) follows.

Game 6: As Game 5, but instead of hashing and then adapting the outer hash,
we directly hash the message, i.e., (0,m, τ, `, h̃1,`, c̃1,`, r̃1,`, pksig).

Transition - Game 5 → Game 6: Assume that the adversary can distinguish this
hop. We can then construct an B which wins the indistinguishability game. In
particular, the reduction works as follows. B receives pk′c as it’s own challenge,
embeds pk′c as pk′ch, and proceeds honestly with the exception that it uses the
HashOrAdapt oracle to generate the outer hashes. Then, whatever A outputs,
is also output by B. |Pr[S5]− Pr[S6]| ≤ νind-ch(λ) follows.

We are now in the case b = 1, while each hop changes the view of the adversary
only negligibly. This concludes the proof.

Signer-Accountability. We prove that our construction is signer-accountable by a
sequence of games.

Game 0: The original signer-accountability game.
Game 1: As Game 0, but we abort if the sanitization oracle draws a tag τ ′

which is in the range of the PRG. Let this event be E1.
Transition - Game 0 → Game 1: This hop is indistinguishable by a standard

statistical argument: at most 2λ values lie in the range of the PRG. |Pr[S0]−
Pr[S1]| ≤ qs2λ

22λ = qs
2λ follows, where qs is the number of sanitizing requests.

Note, this also means, that there exists no valid pre-image x0.
Game 2: As Game 1, but we now abort, if a tag was drawn twice by the

sanitization oracles. Let this event be E2.
Transition - Game 1 → Game 2: As the tags are drawn uniformly from {0, 1}2λ,

this case only happens with negligible probability. |Pr[S1] − Pr[S2]| ≤ q2
s

22λ

follows, where qs is the number of sanitization oracle queries.
Game 3: As Game 2, but we now abort, if the adversary was able to find

(pk∗, π∗,m∗, σ∗) for some message m∗ with a τ∗ which was never returned
by the sanitization oracle. Let this event be E3.

Transition - Game 2 → Game 3: In the previous games we have already estab-
lished that the sanitizer oracle will never return a signature with respect
to a tag τ in the range of the PRG. Thus, if event E3 happens, we know
by the condition checked in step 4 of Judge that at least one of the tags
(either τ∗ in σ∗, or τπ in π∗) was chosen by the adversary, which, in further
consequence, implies a collision for CH. Namely, assume that E3 happens
with non-negligible probability. Then we embed the challenge public key pkc



in pk′ch, and use the provided adaption oracle to simulate the sanitizer ora-
cle. If E3 happens we can output ((0,m∗, τ∗, `∗, h̃∗1,`∗ , c̃∗1,`∗ , r̃∗1,`∗ , pk∗), r∗0 , (0,
m′∗, τ ′∗, `∗, h̃∗1,`∗ , c̃1,`, r̃

∗
1,`∗ , pk∗), r′∗0 , h∗0), as a valid collision. These values can

simply be compiled using π∗, m∗, and σ∗. |Pr[S2] − Pr[S3]| ≤ νch-coll-res(λ)
follows.

Game 4: As Game 3, but we now abort, if the adversary was able to find
(pk∗, π∗,m∗, σ∗) for a new message m∗ which was never returned by the
sanitization oracle. Let this event be E4.

Transition - Game 3 → Game 4: Assume that E4 happens with non-negligible
probability. In the previous games we have already established that the only
remaining possibility for the adversary is to re-use tags τ∗, τπ corresponding to
some query/response to the sanitizer oracle. Then, m∗ must be fresh, as it was
never returned by the sanitization oracle by assumption. Thus, ((0,m∗, τ∗,
`∗, h̃∗1,`∗ , c̃

∗
1,`∗ , r̃

∗
1,`∗ , pk∗), r∗0 , (0,m′∗, τ ′∗, `∗, h̃∗1,`∗ , c̃1,`, r̃

∗
1,`∗ , pk∗), r′∗0 , h∗0), is a

valid collision. These values can simply be compiled using π∗, m∗, and σ∗.
|Pr[S3]− Pr[S4]| ≤ νch-coll-res(λ) follows.

In the last game the adversary can no longer win; each hop only changes the
view negligibly. This concludes the proof.

Sanitizer-Accountability. We prove that our construction is sanitizer-accountable
by a sequence of games.

Game 0: The original sanitizer-accountability definition.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗,

pk∗) with σ∗ = (σ′∗, x∗0, r̃∗0,`∗ , τ̃∗, c̃∗1,`∗ , h̃∗0,`∗) where (σ′∗, (x0, h̃0,`, c̃1,`, pk∗,
pksig, `)) was never obtained from the signing oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, if (σ′∗, (x0, h̃0,`, c̃1,`, pk∗, pksig, `)) was never obtained by the chal-
lenger, this tuple breaks the strong unforgeability of the underlying signature
scheme. The reduction works as follows. We obtain a challenge public key
pkc from a strong unforgeability challenger and embed it as pksig. For every
required “inner” signature σ′, we use the signing oracle provided by the
challenger. Now, whenever E1 happens, we can output σ′∗ together with
the message protected by σ′∗ as a forgery to the challenger. That is, E1
happens with exactly the same probability as a forgery. Further, both games
proceed identically, unless E1 happens. Taking everything together yields
|Pr[S0]− Pr[S1]| ≤ νunf-cma(λ).

Game 2: As Game 1, but we abort if the adversary outputs a forgery where only
the randomness r0 changed, i.e., we have previously generated a signature
with respect to r0 so that r0 6= r∗0 . Let this event be E2.

Transition - Game 1 → Game 2: If the abort event E2 happens, the adversary
breaks uniqueness of the chameleon-hash. In particular we have values (0,
m∗, τ∗, `∗, h̃∗1,`∗ , c̃

∗
1,`∗ , r̃

∗
1,`∗ , pksig) in the forgery which also correspond to some

previous query, but r0 from the previous query is different from r∗0 . Obtaining
pp′ch from a uniqueness challenger thus shows that E2 happens with exactly



the same probability as the adversary breaks uniqueness of the chameleon
hash and we have that |Pr[S1]− Pr[S2]| ≤ νch-unique(λ).

In Game 2 the forgery is different from any query/answer tuple obtained using Sign
by definition. Due to the previous hops, the only remaining possibility is a collision
in the outer chameleon-hash, i.e., for h∗0 = h′∗0 we have CH.CHashCheck(pk′∗, (0,
m∗, τ∗, `∗, h̃∗1,`∗ , c̃

∗
1,`∗ , r̃

∗
1,`∗ , pksig), r∗0 , h∗0) = CH.CHashCheck(pk′∗, (0,m′∗, τ ′∗, `′∗,

h̃′∗1,`′∗ , c̃
′∗
1,`′∗ , r̃

′∗
1,`′∗ , pksig), r′∗0 , h′∗0 ) = true. In this case the Judge algorithm returns

San and Pr[S2] = 0 which concludes the proof.

Invisibility. We prove that our construction is invisible by a sequence of games.
The idea is to show that we can simulate the view of the adversary without giving
out any useful information at all.

Game 0: The original invisibility game, i.e., the challenger runs the experiment
as defined.

Game 1: As Game 0, but we abort if the adversary queries a valid message-
signature pair (m∗, σ∗) which was never returned by the signer or the sanitizer
oracle to the sanitization or proof generation oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, whenever the adversary outputs such a new pair, we can output it
to break unforgeability of our scheme, as this tuple is fresh. However, we
have already proven that this can only happen with negligible probability.
|Pr[S0]− Pr[S1]| ≤ νsss-unf(λ) follows.

Game 2: As Game 1, but we internally keep all etdi.
Transition - Game 1 → Game 2: This is only a conceptual change. |Pr[S1] −

Pr[S2]| = 0 follows.
Game 3: As Game 2, but we encrypt only zeroes instead of the real etdi in

LoRADM independent of whether block are admissible or not. Note, the
challenger still knows all etdi, and can thus still sanitize correctly.

Transition - Game 2 → Game 3: A standard reduction, using hybrids, shows
that this hop is indistinguishable by the IND-CPA security of the encryption
scheme used. |Pr[S2]−Pr[S3]| ≤ qhνind-cpa(λ) follows, where qh is the number
of generated ciphertexts by LoRADM.11

At this point, the distribution is independent of the LoRADM oracle. Note, the
sanitization, and proof oracles, can be still be simulated without any restrictions,
as each etdi is known to the challenger. Thus, the view the adversary receives is
now completely independent of the bit b used in the invisibility definition. As
each hop only changes the view of the adversary negligibly, our construction is
thus proven to be invisible. ut
11 We note that IND-CPA security of the encryption scheme Π is sufficient, as the

abort in Game 1 ensures that the adversary can only submit queries with respect
to ciphertexts which were previously generated in the reduction, i.e., where we can
simply look up the respective values etdi instead of decryption.
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14. Brzuska, C., Busch, H., Dagdelen, Ö., Fischlin, M., Franz, M., Katzenbeisser,
S., Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable
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45. Höhne, F., Pöhls, H.C., Samelin, K.: Rechtsfolgen editierbarer signaturen. Daten-
schutz und Datensicherheit 36(7), 485–491 (2012)

46. Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: ICISC. pp. 343–355
(2006)

47. Krawczyk, H., Rabin, T.: Chameleon Hashing and Signatures. In: NDSS. pp. 143–154
(2000)

48. Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures.
In: DPM. pp. 100–117 (2015)

49. Lai, R.W.F., Zhang, T., Chow, S.S.M., Schröder, D.: Efficient sanitizable signatures
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