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Abstract. Access Control Encryption (ACE) is a novel paradigm for
encryption which allows to control not only what users in the system are
allowed to read but also what they are allowed to write.
The original work of Damg̊ard et al. [DHO16] introducing this notion left
several open questions, in particular whether it is possible to construct
ACE schemes with polylogarithmic complexity (in the number of possible
identities in the system) from standard cryptographic assumptions.
In this work we answer the question in the affirmative by giving (efficient)
constructions of ACE for an interesting class of predicates which includes
equality, comparison, interval membership, and more.
We instantiate our constructions based both on standard pairing assump-
tions (SXDH) or more efficiently in the generic group model.

1 Introduction

Access Control Encryption (ACE) is a novel paradigm for encryption that was in-
troduced by Damg̊ard, Haagh and Orlandi [DHO16]. (A similar concept had pre-
viously been introduced in [IPV10].) The main difference between ACE and other
advanced encryption primitives (such as identity-based [Sha84, BF01, Sak00],
attribute-based [SW05] or functional encryption [BSW11]) is that while previous
concepts for encryption prevent parties from receiving messages (or functions
of these) that are not meant for them, ACE also prevents unauthorized parties
from sending messages to others they are not allowed to communicate with.

In a nutshell, ACE considers a set of senders {Si}i∈{0,1}n and a set of receivers
{Rj}j∈{0,1}n . An ACE scheme is parameterized by a predicate P and P (i, j) = 1
indicates that Si is allowed to communicate with Rj while P (i, j) = 0 means
that no communication should be possible. All communication is assumed to
be routed through a special party, called the sanitizer, which is assumed to be
semi-honest ; in particular, the sanitizer will follow the protocol specification but
might try to learn additional information by colluding with other parties in the
system.

During the key distribution phase each sender Si is given an encryption key
eki while each receiver is given a decryption key dkj . A sender can then create
a ciphertext c = Enc(eki,m) which is sent to the sanitizer. The sanitizer need
not know (nor does he learn) the message which is being transmitted nor the



Table 1. Comparison of the construction in this work and in [DHO16], for predicates
P : {0, 1}n × {0, 1}n → {0, 1}. The ciphertext size dominates the complexity in all
three constructions, and is therefore used as a metric for comparison.

Construction Predicate Ciphertext Size Assumption

[DHO16, Section 3] any O(2n) DDH or DCR

[DHO16, Section 4] any poly(n) iO

This work Peq,Pcomp, . . . O(n) SXDH

identity of the sender, but performs a simple sanitization of the ciphertext and
broadcasts the output c′ = San(pp, c) to all receivers. Correctness of the ACE
scheme guarantees that if P (i, j) = 1 then Dec(dkj , c) = m i.e., authorized
receivers should be able to recover the message.

ACE also imposes two security requirements: the first, called the no-read rule,
requires any set of unauthorized receivers (even colluding with the sanitizer) to
be unable to learn any information from ciphertexts that they are not allowed to
decrypt. The second (and more interesting) one is called the no-write rule and
guarantees that no set of corrupt senders {Si} can transfer any information to
any set of corrupt receivers {Rj} under the condition that P (i, j) = 0 for each
combination of sender-receiver pair.

In [DHO16] the authors present two ACE schemes which can implement any
predicate P : {0, 1}n×{0, 1}n → {0, 1}. However, both constructions have severe
limitations. The first construction can be instantiated under standard number-
theoretic assumptions, such as the decisional Diffie-Hellman (DDH) assumption
or the decisional composite residuosity (DCR) assumption underlying Paillier
encryption. However, its complexity, e.g. in terms of key and ciphertext size, is
exponential in n and can therefore only be used when the number of identities
in a system is very small. The second construction, whose complexity is poly-
nomial in n, relies on a special flavor of general-purpose functional encryption
(defined in [DHO16]) that, to the best of our knowledge, can only be instanti-
ated using indistinguishability obfuscation [GGH+13]; the scheme is therefore
not practically useful at this time.

The authors of [DHO16] left as an open question whether it is possible to
construct asymptotically efficient ACE schemes without obfuscation, even for
limited classes of predicates. In this work we answer this question in the affirma-
tive by showing asymptotically efficient constructions for interesting predicates
such as equality, comparison, and interval membership, as summarized in Table 1
which are based on standard pairing assumptions (SXDH). (The construction
can be instantiated even more efficiently in the generic group model, see Table 2
for the exact constants involved in the constructions).

Technical Overview of Our Contributions Our first technical contribution
is an ACE scheme for the equality predicate i.e.,

Peq(i, j) = 1⇔ i = j
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The scheme can be instantiated using generic assumptions (see Section 3.2)
and very efficiently using cryptographic pairings and in particular structure-
preserving signatures on equivalence classes [HS14] (see Section 3.3). We show
how to instantiate this construction based on standard pairing assumptions
(SDXH) or more efficiently in the generic group model. See Table 2 for a detailed
efficiency comparison.

We then show how to use the scheme for equality in a black-box way to
implement ACE for a predicate defined in the following way. Let S and R be two
efficient functions which map identities into sets of identities:

S : {0, 1}n → 2{0,1}
n

and R : {0, 1}n → 2{0,1}
n

under the constraint that maxi,j{|S(i)|, |R(j)|} = poly(n). Then we can construct
efficient ACE for the predicate defined by

Pdisj(i, j) = 1⇔ S(i) ∩ R(j) 6= ∅ .

We show that this class of predicates is quite rich (using results from [SBC+07]
and [GMW15]) and includes useful predicates such as comparison (i..e, the pred-
icate Pcomp(i, j) = 1⇔ i ≤ j) and interval membership (i.e., the predicate Prange

defined for all points z ∈ [N ] and intervals I ⊂ [N ] as Prange(z, I) = 1⇔ z ∈ I).
In a nutshell, the composed ACE scheme works as follows: assuming an ACE

for equality, sender i is given all the encryption keys corresponding to the iden-
tities contained in the set S(i) and receiver j is given all the decryption keys for
identities contained in the set R(j). To encrypt a message, the sender encrypts
it under all his encryption keys (padding to the size of the largest possible set).
Now if the intersection of S(i) and R(j) is not empty, the receiver can decrypt at
least one of the ciphertexts and therefore learn the message; the scheme thus sat-
isfies correctness. Intuitively, the scheme also satisfies the no-read and no-write
rule since Pdisj(i, j) = 0 ⇒ S(i) ∩ R(j) = ∅, which allows us to use the security
property of the underlying equality ACE scheme.

For correctness, the receiver must be able to tell when decryption of the un-
derlying ACE succeeds. This can be achieved using standard techniques, e.g., by
using a sparse message space. The trivial implementation of decryption, where
the receiver tries all keys on all ciphertexts, would lead to a decryption complex-
ity quadratic in the size of R(j). In Section 4 we overcome this shortcoming by
defining the overall predicate with disjunction of equalities instead of disjoint-
ness of sets.

We note that the linear construction from [DHO16] might at first glance look
similar to the one proposed here, with R(j) = {j} (each receiver is given a single
key) and S(i) = {j |P (i, j) = 1} (each sender is given a key for every receiver
she is allowed to talk to). Note however that the complexity of this construction
is inherently exponential, due to the way that ciphertexts are constructed and
sanitized: in the linear construction of [DHO16], ciphertexts contain one entry
for every possible receiver in the system (senders encrypt the message using the
keys of all the receivers they are allowed to talk to and add random ciphertexts
for the other receivers), and the sanitization process treats each component of
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the ciphertext differently (i.e., the sanitizer sanitizes each component of the
ciphertext using a receiver-dependent procedure). Our approach is to start with
an ACE for equality with the property that the sanitizer’s algorithm is oblivious
of the identity of the sender/receiver.

Finally, we note that all constructions in [DHO16] require the sanitizer to
store some secret information, the knowledge of which would allow the adversary
to break the no-write rule. In contrast, for the schemes presented in this paper,
the sanitizer does not need to store any secret information, thereby significantly
reducing the chances for an adversary to break the security of the system. In
particular, the adversary must perform an active corruption of the sanitizer in
order to break the no-write rule.

2 Defining ACE

ACE Notation. An access control encryption (ACE)4 scheme is defined by the
following PPT algorithms:

Setup: Setup is a randomized algorithm that on input the security parameter
κ and a policy P : {0, 1}n × {0, 1}n → {0, 1} outputs a master secret key
msk and public parameters pp (which include the message space M and
ciphertext spaces C, C′).

Key Generation: Gen is a deterministic algorithm5 that on input the master
secret key msk, a type t ∈ {sen, rec} and an identity i ∈ {0, 1}n, outputs a
key k. We use the following notation for the two kinds of keys in the system:
– eki ← Gen(msk, i, sen) and call it an encryption key for i ∈ {0, 1}n
– dkj ← Gen(msk, j, rec) and call it a decryption key for j ∈ {0, 1}n

We remark that, as opposed to [DHO16], there is no need for a private
sanitizer key in our schemes.

Encrypt: Enc is a randomized algorithm that, on input an encryption key eki
and a message m, outputs a ciphertext c.

Sanitizer: San is a randomized algorithm that using the public parameters pp
transforms an incoming ciphertext c ∈ C into a sanitized ciphertext c′ ∈ C′.

Decryption: Dec is a deterministic algorithm that recovers a message m′ ∈
M∪ {⊥} from a ciphertext c′ ∈ C′ using a decryption key dkj .

Definition 1 (Correctness). For all m ∈M, i, j ∈ {0, 1}n with P (i, j) = 1:

Pr [Dec (dkj ,San (pp,Enc (eki,m))) 6= m] ≤ negl (κ)

with (pp,msk) ← Setup(1κ, P ), eki ← Gen(msk, i, sen), dkj ← Gen(msk, j, rec),
and the probability is taken over the random coins of all algorithms.

Complementary to correctness, we require that it is detectable when decryp-
tion does not succeed, formalized as follows.

4 This section is taken almost verbatim from [DHO16].
5 This is without loss of generality, since we can always add a PRF key to msk and

derive the randomness for Gen from the PRF and the identity of the party.
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Definition 2 (Detectability). For all m ∈M, i, j ∈ {0, 1}n with P (i, j) = 0:

Pr [Dec (dkj ,San (pp,Enc (eki,m))) 6= ⊥] ≤ negl (κ)

with (pp,msk) ← Setup(1κ, P ), eki ← Gen(msk, i, sen), dkj ← Gen(msk, j, rec),
and the probability is taken over the random coins of all algorithms.

Definition 3 (No-Read Rule). Consider the following game between a chal-
lenger C and a stateful adversary A:

No-Read Rule

Game Definition Oracle Definition

1. (pp,msk)← Setup(1κ, P );
2. (m0,m1, i0, i1)← AOG(·),OE(·)(pp);
3. b← {0, 1};
4. c← Enc(Gen(msk, ib, sen),mb);
5. b′ ← AOG(·),OE(·)(c);

OG(j, t):
1. Output k ← Gen(msk, j, t);

OE(i,m):
1. eki ← Gen(msk, i, sen);
2. Output c← Enc(eki,m);

We say that A wins the No-Read game if b = b′, |m0| = |m1|, i0, i1 ∈ {0, 1}n
and for all queries q to OG with q = (j, rec) it holds that

P (i0, j) = P (i1, j) = 0 .

We say an ACE scheme satisfies the No-Read rule if for all PPT A

advANo-Read(ACE) = Pr[A wins the No-Read game]− 1
2 ≤ negl(κ) .

Remark: The definition in [DHO16] requires 2 · |Pr[A wins the No-Read game]−
1
2 | ≤ negl(κ), which is unachievable, since any A whose output satisfies |m0| 6=
|m1| has advantage = 1 (the same also applies to their version of Definition 4).

Our definition of the no-read rule is also weaker in that it does not guarantee
anonymity of the sender against an adversary who can decrypt the ciphertext
(in the context of attribute-based encryption a similar property is called weak
attribute hiding [OT12]). However, none of the applications of ACE described
in [DHO16] require this property.

Definition 4 (No-Write Rule). Consider the following game between a chal-
lenger C and a stateful adversary A:

No-Write Rule

Game Definition Oracle Definition

1. (pp,msk)← Setup(1κ, P );
2. m′ ←M; b← {0, 1};
3. (c0, i

′)← AOE(·),OS(·)(pp);
4. c1 ← Enc(Gen(msk, i′, sen),m′);
5. b′ ← AOE(·),OR(·)(San(pp, cb));

OS(j, t) and OR(j, t):
1. Output k ← Gen(msk, j, t);

OE(i,m):
1. eki ← Gen(msk, i, sen);
2. Output c← San(pp,Enc(eki,m));
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Let QS (resp. Q) be the set of all queries q = (j, t) that A issues to OS (resp.
both OS and OR). Let IS be the set of all i ∈ {0, 1}n such that (i, sen) ∈ QS and
let J be the set of all j ∈ {0, 1}n such that (j, rec) ∈ Q. Then we say that A wins
the No-Write game if b′ = b and all of the following hold:

1. i′ ∈ IS ∪ {0};
2. ∀i ∈ IS , j ∈ J , P (i, j) = 0;
3. San(pp, c0) 6= ⊥.

We say an ACE scheme satisfies the No-Write rule if for all PPT A

advANo-Write(ACE) = Pr[A wins the No-Write game]− 1
2 ≤ negl(κ) .

Remark: Note that the no-write rule as defined in [DHO16] does not require the
third condition above, which essentially just requires the ciphertext output by the
adversary to be well-formed relative to the public parameters pp (which crucially
means that the adversary already knows if the ciphertext is well-formed or not).
The constructions in [DHO16] deal with this by letting the sanitizer output a
random encryption when running on an malformed ciphertext instead. We find
the notion presented here to be more natural.

3 ACE for Equality

Here, we show two how to build an ACE for the equality predicate defined by
Peq : {0, 1}n × {0, 1}n → {0, 1} and

Peq(x, y) = 1 ⇔ x = y .

We present two constructions, one based on generic assumptions and a second
(more efficient) one based on cryptographic pairings.

3.1 Generic Construction Preliminaries

We start with reviewing the notation we will use for standard cryptographic
building blocks and we refer to standard textbooks in cryptography (such as
[Gol09, KL14]), for formal definitions of security. For real functions f and g, we
write f(κ) ≈ g(κ) if |f(κ) − g(κ)| ≤ negl(κ), where negl is a negligible function
in κ.

Non-Interactive Zero-Knowledge Proofs. Let L be a language and R a
relation s.t. x ∈ L if and only if there exists a witness w such that (x,w) ∈ R.
A non-interactive proof system [BFM88] for a relation R is defined by the PPT
algorithms (NIZK.Gen,NIZK.Prove,NIZK.Ver) with crs← NIZK.Gen(1κ, L), π ←
NIZK.Prove(crs, x, w) and NIZK.Ver(crs, x, π) ∈ {0, 1}. We require correctness,
(perfect) soundness, knowledge extraction, and zero-knowledge.
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Correctness. For all PPT adversaries A:

Pr

 crs← NIZK.Gen(1κ, L);
(x,w)← A(crs);
π ← NIZK.Prove(crs, x, w)

: NIZK.Ver(crs, x, π) = 1 if (x,w) ∈ R

 ≈ 1 .

Soundness. For all PPT adversaries A:

Pr

[
crs← NIZK.Gen(1κ, L);
(x, π)← A(crs)

: NIZK.Ver(crs, x, π) = 0 if x 6∈ L
]
≈ 1 .

Knowledge Extraction. We say that a system (NIZK.Gen,NIZK.Prove,NIZK.Ver)
has knowledge-extraction security if there exists a knowledge extractor, which is
a pair of PPT algorithms (E1, E2) with the following two properties:

1. For all PPT adversaries A:

Pr[crs← NIZK.Gen(1κ, L) : A(crs) = 1]

≈ Pr[(crs, τ)← E1(1κ, L) : A(crs) = 1] .

2. For all PPT adversaries A:

Pr

 (crs, τ)← E1(1κ, L);
(x, π)← A(crs);
w ← E2(crs, τ, x, π)

: NIZK.Ver(crs, x, π) = 0 or (x,w) ∈ R

 ≈ 1 .

Zero-Knowledge. We say that proof system (NIZK.Gen,NIZK.Prove,NIZK.Ver)
has zero-knowledge security if there exists a simulator, which is a pair of PPT
algorithms (S1, S2) with the following property: For all PPT adversaries A:

Pr[crs← NIZK.Gen(1κ, L) : ANIZK.Prove(crs,·,·)(crs) = 1]

≈ Pr[(crs, τ)← S1(1κ, L) : AS
′(crs,τ,·,·)(crs) = 1] ,

where S′(crs, τ, x, w) = S2(crs, τ, x) if (x,w) ∈ R and outputs failure otherwise.

We speak of perfect correctness, perfect soundness, perfect knowledge ex-
traction, and perfect zero-knowledge if for sufficiently large security parameters,
and for all adversaries (unbounded, and not just PPT), we have equalities in the
respective definitions.

Digital Signatures. A signature scheme is a tuple of PPT algorithms (Sig.Gen,
Sig.Sig,Sig.Ver) with (sk, vk) ← Sig.Gen(1κ), σ = Sig.Sig(sk,m), and Sig.Ver(vk,
m, σ) ∈ {0, 1}. We require correctness and existential unforgeability under chosen-
message attacks. (Note that we defined the signature algorithm to be determin-
istic. Any randomized signature scheme can be de-randomized using a pseudo-
random tape generated with a PRF on the message).
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Anonymous and Weakly Sanitizable Public-Key Encryption. We use
a public-key encryption (PKE) scheme which must satisfy semantic security,
anonymity, and which must be weakly sanitizable. The syntax is as follows: pp←
PKE.Par(1κ) outputs public parameters, (ek, dk) ← PKE.Gen(pp) outputs an
encryption/decryption key pair, c ← PKE.Enc(ek,m) outputs an encryption of
m, c′ ← PKE.San(pp, c) outputs a sanitized version of c and m′ ← PKE.Dec(dk, c)
decrypts ciphertext c.

Anonymity can be formalized as in [BBDP01] via a game where the adversary
receives (pp, ek0, ek1), chooses a message m, receives c ← PKE.Enc(ekb,m) and
must guess b.

In [DHO16] the notion of sanitizable encryption is introduced as a relaxation
of rerandomizable encryption. Here we only require an even weaker property: we
define an encryption scheme to be weakly sanitizable if the adversary cannot win
a game where he is given (pp, ek), chooses (m0, r0), (m1, r1), receives

c′ = PKE.San(pp,PKE.Enc(ek,mb; rb); r
′)

with uniform randomness r′ and must guess b.
The weakening lies in the fact that sanitizations only have to be computation-

ally indistinguishable, whereas in the sanitizable PKE of [DHO16], sanitizations
of encryptions of the same message must be statistically indistinguishable.

An anonymous and weakly sanitizable scheme. An encryption scheme that sat-
isfies the above properties under the DDH assumption is the following sim-
ple variation of ElGamal [Gam85]. As for the original scheme, the parameters
pp = (G, p, g) consist of the description of a DDH-hard group G of order p gen-
erated by g; the decryption key is a random element dk ∈ Zp and the encryption
key is defined as ek = gdk. Encryption of a message m ∈ G is now defined as
picking random r ∈ Z∗p and s ∈ Zp and defining a ciphertext as

Enc(ek,m; (r, s)) = (d0, d1, c0, c1) = (gr, ekr, gs, eks ·m) .

A ciphertext (d0, d1, c0, c1) is sanitized by first checking if d0 = 1 or d1 = 1, in
which case the sanitizer outputs two random group elements; otherwise it picks
a random t ∈ Z∗p and returns (d t0 · c0, d t1 · c1) = (grt+s, ekrt+s · m), which is
(statistically close to) a fresh encryption of m.

This scheme can be made detectable (see Definition 2) using standard tech-

niques, e.g. by choosing a sparse message spaceM′, that is, with |M
′|

p ≤ negl(κ),

where p is the order of G. Decryption of a sanitized ciphertext (dt0c0, d
t
1c1) =

(grt+s, ekrt+s · m) with a different key dk′ 6= dk yields: (grt+s)−dk
′ · ekrt+s · m

= (gdk−dk
′
)rt+s · m, which is statistically close to a random element of G. If

|M′|
p ≤ negl(κ), the probability that this element is in M′ is negligible and so:

Pr
[
Dec

(
dk′,San (pp,Enc (ek,m))

)
6= ⊥

]
≤ negl (κ) ,

meeting our definition for detectability.
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Proposition 1. The above encryption scheme is anonymous and weakly sani-
tizable.

Proof. For anonymity, notice that we can define a hybrid anonymity game where
the adversary is given an encryption of its message m under a new encryption
key ex = gx (where x is a random element of Zp) instead of ek0 or ek1 and move
from the game that uses ek0 to encrypt the challenge ciphertext to one that uses
ekx using DDH. Given a DDH challenge g, ga, gb, and gab+x where either x = 0
or x is a random element in Zp, one can play the game using ek0 = ga and create
the challenge ciphertext as ((gb)r̃, (gab+x)r̃, gb, gab+x ·m). If x = 0, then this is
distributed like the game that uses ek0 (where dk = a, r = br̃ and s = b). If x
is a random element of Zp, then this is distributed like the game that uses ekx.
(Moving from from ekx to ek1 follows symmetrically).

To see that the variant is weakly sanitizable, notice that we can similarly
define a hybrid sanitizability game where the adversary is given two random
group elements as its challenge sanitized ciphertext. In such a game, the challenge
sanitized ciphertext is independent of b, so the adversary cannot achieve any
advantage. We can move to this game using DDH. Given a DDH challenge
g, ga, gb, and gab+x where either x = 0 or x is a random element in Zp, one can
play the game using ek = ga and create the challenge sanitized ciphertext as
(gb, gab+x ·mb) (unless rb causes d0 or d1 to be the identity, in which case it uses
two random group elements). If x = 0, then this is distributed like the normal
game (a sanitized ciphertext (d t0 · c0, d t1 · c1) = (grt+s, ekrt+s ·mb) looks like an
ElGamal encryption of mb when d0 6= 1 and d1 6= 1). If x is a random element of
Zp, then the challenge sanitized ciphertext is distributed as two random group
elements.

3.2 Generic Construction

Construction 1 (ACE for Equality – Generic). We construct an ACE scheme
ACE = (Setup,Gen,Enc,San,Dec) defined by the following algorithms:

Setup: Compute pppke ← PKE.Par(1κ) and (vk, sk)← Sig.Gen(1κ).
Let L be the language defined by the following NP relation: for x = (vk, c)
and w = (pk, σ,m, r), define R(x,w) = 1 iff

Sig.Ver(vk, pk, σ) = 1 ∧ c = PKE.Enc(pk,m; r) .

Compute crs← NIZK.Gen(1κ, L). Pick a random PRF key K for a PRF F .
Output pp = (pppke, vk, crs) and msk = (sk,K).

Key Generation: Given the master secret key msk and an identity i, the en-
cryption and decryption keys are computed as follows: run

(pk, dk)← PKE.Gen(pppke;FK(i)) and σ = Sig.Sig(sk, pk)

and define
eki = (pk, σ) and dki = dk
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Encryption: On input a message m and an encryption key eki = (pk, σ) pick
encryption randomness r, compute c′ = PKE.Enc(pk,m; r), let x = (vk, c′),
w = (pk, σ,m, r) and compute π ← NIZK.Prove(crs, x, w). Output c = (c′, π).

Sanitizer: On input pp = (pppke, vk, crs) and a ciphertext c = (c′, π) the san-
itizer outputs ⊥ if NIZK.Ver(crs, x = (vk, c′), π) = 0; otherwise it returns
c′′ ← PKE.San(pp, c′).

Decryption: Given a ciphertext c′ and a decryption key dkj = dk output

m′ = PKE.Dec(dk, c′) .

Theorem 1. Construction 1 satisfies the No-Read Rule if the underlying PKE
scheme satisfies semantic security and anonymity, if the proof system is zero-
knowledge and the PRF is pseudorandom.

Proof. We assume that A makes queries OG(i0, sen) and OG(i1, sen) (this is
w.l.o.g., as any A can be transformed into such an adversary without affecting its
winning probability). We define a hybrid game which guesses A’s oracle queries
that lead to the creation of the encryption keys of users i0 and i1. If the guess was
wrong, the game outputs a random bit. (The differences to the original game are
items 0. and 6. below.) Let qmax be an upper bound on the number of OG(·, sen)
plus the number OE queries that A makes during the game. (The keys could
also be first created during an encryption query.) Since A is PPT, it is clear that
qmax is polynomial in κ.

Hybrid Game for No-Read Rule

Game Definition Oracle Definition

0. q0, q1 ← {1, . . . , qmax}; q̂ ← 1
1. (pp,msk)← Setup(1κ, P );
2. (m0,m1, i0, i1)← AOG(·),OE(·)(pp);
3. b← {0, 1};
4. c← Enc(Gen(msk, ib, sen),mb);
5. b′ ← AOG(·),OE(·)(c);
6. If Q[q0] = i0 and Q[q1] = i1

Return b′;
Else return b′ ← {0, 1};

OG(j, t):
0. If t = sen and Gen(msk, j, sen) has

not been called yet, then
Q[q̂] = j; q̂ = q̂ + 1;

1. Output ekj ← Gen(msk, j, t);

OE(i,m):
0. If t = sen and Gen(msk, i, sen) has

not been called yet, then
Q[q̂] = i; q̂ = q̂ + 1;

1. eki ← Gen(msk, i, sen);
2. Output c← Enc(eki,m);

Lemma 1. An adversary that wins the no-read game with non-negligible advan-
tage also wins the hybrid game with non-negligible advantage.

Proof. Assume an adversary breaks the no-read rule, that is, there exists c s.t.

advANo-Read(ACE) = Pr[b′ = b in the No-Read Game]− 1
2 ≥

1
κc

for infinitely many κ. Let E denote the event that in the hybrid game Q[q0] = i0
and Q[q1] = i1. Note that this event is independent of A’s view; moreover,
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conditioned on E occurring, the hybrid game and the original No-Read-Rule
game are equivalent; finally Pr[E] = q−2max. We thus have

advAhybrid(ACE) = Pr[b′ = b in the hybrid game]− 1
2

= Pr[b′ = b in hybrid |E] · Pr[E] + Pr[b′ = b in hybrid | ¬E] · Pr[¬E]− 1
2

= Pr[b′ = b in No-Read |E] · Pr[E] + 1
2 · Pr[¬E]− 1

2

= Pr[b′ = b in No-Read] · 1
q2max

+ 1
2 · (1−

1
q2max

)− 1
2

= 1
q2max

· advAhybrid(ACE) ≥ 1
q2max·κc

for infinitely many κ. Thus, advAhybrid(ACE) is not negligible in κ.

Assuming an arbitrary PPT A, we will now show that H0, the hybrid above
with b fixed to 0, is computationally indistinguishable from H1 (b fixed to 1). By
Lemma 1, A cannot have won the original game, thus proving the theorem. We
define a sequence of hybrid games between H0 and H1 and show that each one
is computationally indistinguishable from the previous one (i.e., the probability
that the hybrid game returns 1 only changes negligibly).

Game Hb,1 (for b ∈ {0, 1}) is defined as Hb, except we use a truly random
function instead of F to generate all secret keys.

Hb,0 ≈c Hb,1 (which we use as shorthand for Pr[AwinsHb,0] ≈ Pr[AwinsHb,1]):
Indistinguishability follows from PRF security (as K is never revealed to A).

Game Hb,2 is the same as Hb,1, except crs, contained in pp, and π in the chal-
lenge ciphertext c are simulated.

Hb,1 ≈c Hb,2: Indistinguishability follows from the zero-knowledge property of
the proof system.

Game H0,3 is the same as H0,2, except c is computed as encryption of m1

(instead of m0) under identity i0’s key.
H0,2 ≈c H0,3: Indistinguishability follows from semantic security of the encryp-

tion scheme: We construct a PPT reduction B that receives a challenge
pk and simulates game H0,2. When A makes the query that generates the
q0-th encryption key, B sets this key to pk. If A queries the correspond-
ing decryption key, B aborts (outputting a random bit). When A outputs
(m0,m1, i0, i1) and i0 is not the identity corresponding to the q0-th key, B
aborts. Otherwise, B submits (m0,m1) as challenge to receive c from its
challenger (which is either m0 or m1 encrypted under pk) and forwards c
to A together with a simulated proof π. Reduction B perfectly simulates
either H0,2 or H0,3, depending on its own challenge: if B guesses q0 and q1
correctly, it does not abort and otherwise it outputs a random bit anyway.

H0,3 ≈c H1,2: The two games differ in that m1 is encrypted under i0’s key in
H0,3 and i1’s key in H1,2. Indistinguishability follows from anonymity of the
encryption scheme: We construct a PPT reduction B, which receives pk0
and pk1 and simulates H1,2 for A, except that it sets the q0th key to pk0
and the q1th key to pk1. If A queries a corresponding decryption key or if
in A’s output (m0,m1, i0, i1), i0 does not correspond to the q0th key or i1
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does not correspond to the q1th key then B aborts. Otherwise, B submits
m1 as a challenge to receive c from its challenger (which is m1 encrypted
under pk0 or pk1), which it forwards to A together with a simulated proof π.
Depending on its own challenge, B perfectly simulates either H1,2 or H1,3:
if B guesses q0 and q1 correctly, it does not abort and otherwise it outputs
a random bit anyway.

We have thus shown H0 ≈c H0,1 ≈c H0,2 ≈c H0,3 ≈c H1,2 ≈c H1,1 ≈c H1, which
concludes the proof.

Theorem 2. Construction 1 satisfies the No-Write Rule if the underlying PKE
scheme is anonymous and weakly sanitizable, if the proof system is perfectly
sound and has knowledge extraction security, the signature scheme is unforgeable
and the PRF is pseudorandom.

Proof. Let H0 denote the No-Write-Rule game. W.l.o.g. we assume that A makes
a query OS(i′, sen) and that IS ∩ J = ∅ (i.e., A satisfies the 2nd item in the
winning condition in Definition 4). We start with defining two hybrid games
whose indistinguishability from H0 is immediate:

Game H1 is defined as H0, except we use a truly random function instead of
F to generate all secret keys.

H0 ≈c H1: Indistinguishability follows from PRF security.

Game H2 is the same as H1, except that crs is computed via the knowl-
edge extractor: (crs, τ) ← E1(1κ, L) (where τ is the extraction trapdoor).
When A outputs c0 = (c, π), we run the second part of the extractor:
w ← E2(crs, τ, x = (vk, c), π), where vk is contained in pp.

H1 ≈c H2: Indistinguishability follows from the first property of knowledge ex-
traction (i.e., a CRS output by E1 is indistinguishable from one output by
NIZK.Gen) of the proof system. (Running E2 has no effect on the outcome
of the game.)

Hybrid Game H2 for No-Write Rule
(Note that OE need not compute the proof as it is discarded by San anyway.)

Game Definition Oracle Definition

1. pppke ← PKE.Par(1κ);
(vk, sk)← Sig.Gen(1κ);
(crs, τ)← E1(1κ, L); pp = (pppke, vk, crs)

2. m∗ ←M; b← {0, 1};
3. ((c, π), i′)← AOE(·),OS(·)((pppke, vk, crs));

(pk, σ,m, r)← E2(crs, τ, x = (vk, c), π);
4. c0 := (c, π); c1 ← Enc(eki′ ,m

∗);
5. b′ ← AOE(·),OR(·)(San(pp, cb));
6. Return b′;

OS(j, t) and OR(j, t):
1. If pkj not yet defined, then

(pkj , dkj)← PKE.Gen(pppke);
σj = Sig.Sig(sk, pkj);

If t = rec then return dkj ;
Else return ekj = (pkj , σj);

OE(i,m):
1. If pki not yet defined, then

(pkj , dkj)← PKE.Gen(pppke);
2. c′ ← PKE.Enc(pk,m);

Return c′′ ← PKE.San(pp, c′);
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For a particular run of game H2 (which is determined by the coins used by
the adversary and the challenger when running the probabilistic algorithms), we
now differentiate four types. We let w = (pk, σ,m, r) denote the output of E2.

Type 1: A outputs c0 = (c, π) with NIZK.Ver(crs, (vk, c), π) = 0 (where crs, vk
come from the public parameters used in the game).

Type 2: A outputs c0 = (c, π) with NIZK.Ver(crs, (vk, c), π) = 1 but R((vk, c), w)
= 0, i.e. Sig.Ver(vk, pk, σ) 6= 1 or c 6= PKE.Enc(pk,m; r).

Type 3: A outputs c0 = (c, π) with NIZK.Ver(crs, (vk, c), π) = 1, we have

Sig.Ver(vk, pk, σ) = 1 ∧ c = PKE.Enc(pk,m; r) (1)

and pk was not issued in an oracle query by OS .
Type 4 is defined as Type 3 except pk was issued in an oracle query by OS .

The 4 types are a partitioning of the coin space of the experiment, which we
denote by T1, . . . , T4. Let W2 denote the event that A wins hybrid game H2.

Lemma 2. Pr[W2 ∧ T1] = 0.

Proof. T1 means A outputs c0 = (c, π) with NIZK.Ver(crs, (vk.c), π) = 0. In this
case, the San procedure aborts, and by definition A loses the game.

Lemma 3. Pr[T2] ≈ 0.

Proof. In case T2 occurs A broke property 2 of knowledge-extraction security
of the proof system: it output a valid proof π for statement x = (vk, c) but the
extractor E2 failed to extract a witness w with R(x,w) = 1.

Lemma 4. Pr[T3] ≈ 0.

Proof. T3 implies that A output (c, π) from which E2 extracted w = (pk, σ,m, r)
with Sig.Ver(vk, pk, σ) = 1 and pk was not issued in an oracle query.

If T3 occurred with non-negligible probability then we could construct a PPT
adversary B that achieves the same advantage in the signature forging game as
follows: B simulates H2 for A, creating a crs with an extraction trapdoor τ and
using its signature oracle to respond to send key queries, i.e., queries of the form
(·, sen) to OS . When A outputs c0 = (c, π), B runs (pk, σ,m, r) ← E2(crs, τ,
(vk, c), π) and returns (pk, σ). If T3 occurred then B did not query pk to its
signing oracle, meaning B output a valid forgery. Assuming our signature scheme
is unforgeable, this (and thus T3) can only occur with negligible probability.

Lemma 5.
∣∣Pr[W2 |T4]− 1

2

∣∣ ≈ 0.

Proof. T4 implies that A outputs c0 = (c, π) from which E2 extracted w = (pk, σ,
m, r) with c = PKE.Enc(pk,m; r) and pk was issued in an oracle query by OS .

Similarly to the proof of Theorem 1, we first define a hybrid game which
guesses A’s oracle queries that lead to the creation of the encryption keys of
users i′ (from A’s output (c0, i

′)) and i (the identity corresponding to pk ex-
tracted by E2). If the guess was wrong, the game outputs a random bit.

Let qmax be an upper bound on the number of OS(·, sen) plus the number of
OE queries that A makes during the game. Since A is PPT, qmax is polynomial
in κ. (The differences to the original game are items 0., 6., and 7. below.)
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Hybrid Game H3 for No-Write Rule

Game Definition Oracle Definition

0. q, q′ ← {1, . . . , qmax}; q̂ ← 1
1. pppke ← PKE.Par(1κ);

(vk, sk)← Sig.Gen(1κ);
(crs, τ)← E2(1κ, L); pp = (pppke, vk, crs)

2. m∗ ←M; b← {0, 1};
3. ((c, π), i′)← AOE(·),OS(·)((pppke, vk, crs));

(pk, σ,m, r)← E2(crs, τ, x = (vk, c), π);
4. c0 := (c, π); c1 ← Enc(eki′ ,m

∗);
5. b′ ← AOE(·),OR(·)(San(pp, cb));
6. Let i be s.t. pk = pki
7. If Q[q] = i and Q[q′] = i′

Return b′;
Else return b′ ← {0, 1};

OS(j, t) and OR(j, t):
1. If pkj not yet defined

(pkj , dkj)← PKE.Gen(pppke);
σj = Sig.Sig(sk, pkj);
Q[q̂] = j; q̂ = q̂ + 1;

If t = rec then return dkj ;
Return ekj = (pkj , σj);

OE(i,m):
1. If pki not yet defined, then

(pkj , dkj)← PKE.Gen(pppke);
Q[q̂] = i; q̂ = q̂ + 1;

2. c′ ← PKE.Enc(pk,m);
Return c′′ ← PKE.San(pppke, c′);

Following the argument from Lemma 1, we have that an adversary that wins
H2 with non-negligible advantage also wins H3 (event which we denote by W3)
with non-negligible advantage. Thus,∣∣Pr[W3 |T4]− 1

2

∣∣ ≈ 0 ⇒
∣∣Pr[W2 |T4]− 1

2

∣∣ ≈ 0 . (2)

Assuming an arbitrary PPT A we will now show that if T4 occurs then H
(0)
3 , the

hybrid H3 with b fixed to 0, is indistinguishable from H
(1)
3 (b fixed to 1). Thus

|Pr[W3 |T4]− 1
2 | ≈ 0 and the lemma follows via (2).

To show indistinguishability of H
(0)
3 and H

(1)
3 , we define an intermediate

hybrid game H4 and show that, conditioned on T4, it is computationally indis-

tinguishable from both H
(0)
3 and H

(1)
3 (i.e., the probability that the hybrid game

returns 1 only changes negligibly).

In H
(0)
3 , A is given the challenge ciphertext c′ ← San(pp, c0). If T4 occurs then

(cf. (1)) the ciphertext contained in c0 = (c, π) satisfies c = PKE.Enc(pk,m; r)
(with pk, m and r extracted by E2). Moreover, T4 implies that π is valid and A
thus receives c′ ← PKE.San(pp,PKE.Enc(pk,m; r)).

Game H4 is the same as H
(0)
3 , except that we define the ciphertext given to A

as c′ ← PKE.San(pp,PKE.Enc(pk,m∗, r∗)) where m∗, r∗ are random.

Pr[1← H
(0)
3 |T4] ≈ Pr[1← H4 |T4]: Indistinguishability follows from sanitizing

security of the encryption scheme: We construct a PPT reduction B that

receives a challenge pk and simulates game H
(0)
3 . When A makes the query

that generates the q-th encryption key, B sets this key to pk. If A queries
the corresponding decryption key, B aborts (outputting a random bit). Note
that B will never abort if it guesses q and q′ correctly, since a correct guess
means that pk will be given out as a call to O(i, sen), and the security game
then prohibits a request for the decryption key for i.
Upon receiving (c0 = (c, π), i′) from A, B runs (pk′, σ,m0, r0) ← E2(crs, τ,
(vk, c), π) (where T4 implies that pk′ was queried in an oracle call).
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If pk′ 6= pk or i′ 6= Q[q′] (B has not guessed q, q′ correctly), then B aborts.

Otherwise B submits (m0, r0,m
∗, r∗) for random m∗, r∗ and receives a san-

itized ciphertext c′, which it gives to A. The received c′ is a sanitization
of either A’s output c0 (for which we have c0 = PKE.Enc(pk,m0; r0)) or
of PKE.Enc(pk,m∗; r∗) (always assuming B’s guesses were correct). B can
answer decryption key oracle queries for all allowed queries.

Reduction B perfectly simulates either H
(0)
3 or H4, depending on its own

challenge: if B guesses q and q′ correctly, it does not abort and otherwise it
outputs a random bit anyway.

Pr[1← H4 |T4] ≈ Pr[1← H
(1)
3 |T4]: Letting ((c, π), i′) denote A’s output, the

two games differ in that m∗ is encrypted under pk in H4 (where pk is such

that c = PKE.Enc(pk,m; r)) and under i′’s key in H
(1)
3 . Indistinguishability

follows from anonymity of the encryption scheme: We construct a PPT B,

which receives pk0 and pk1, and simulates H
(1)
3 for A, except that it sets the

q-th and the q′-th created keys to pk0 and pk1, respectively. (If q = q′ then
it sets both to pk0.) If A queries a corresponding decryption key, B aborts.

Upon receiving (c0 = (c, π), i′) from A, B runs (pk, σ,m, r) ← E2(crs, τ,
(vk, c), π) and aborts if pk 6= pk0 or if i′ does not correspond to the q′th
key (B’s guess was wrong). If q 6= q′ then B submits a random m∗ as a
challenge to receive ĉ from its challenger (which is m∗ encrypted under pk0
or pk1); if q = q′ then B sets ĉ = PKE.Enc(pk0,m

∗, r∗). Next, B gives
c′ ← PKE.San(pp, ĉ) to A.

Reduction B perfectly simulates either H
(1)
3 or H4 (which are the same if

q = q′), depending on its own challenge: if B guesses q and q′ correctly, it
does not abort and otherwise it outputs a random bit anyway.

The theorem now follows from Lemmas 2–5. Letting W0 denote the event that
A wins the No-Write game H0, we have

advANo-Write(ACE) = Pr[W0]− 1
2 ≈ Pr[W2]− 1

2

≤ Pr[W2 ∧ T1]︸ ︷︷ ︸
Lemma 2

= 0

+ Pr[T2]︸ ︷︷ ︸
Lemma 3
≈ 0

+ Pr[T3]︸ ︷︷ ︸
Lemma 4
≈ 0

+
(

Pr[W2 |T4]− 1
2︸ ︷︷ ︸

Lemma 5
≈ 0

)
Pr[T4] + 1

2 Pr[T4]− 1
2︸ ︷︷ ︸

≤0

≤ negl .

Here we show how to instantiate the generic construction, based on the SXDH
assumption (Corollary 1), or based on the generic group model (Corollary 2).
Both instantiation use structure-preserving signatures (SPS) [AFG+10], Groth-
Sahai proofs [GS08] and the weakly sanitizable version of ElGamal encryption
[Gam85] described in Section 3.3. In Corollary 1, we use the most efficient SPS
scheme from SXDH, namely the one from [KPW15]. In Corollary 2, we use the
most efficient SPS scheme with a security proof in the generic group model,
which is [AGHO11]. The exact efficiency of the resulting ACE schemes are given
in Table 2 on p. 23.
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Corollary 1. If the SXDH assumption holds, then by Theorems 1 and 2, Con-
struction 1 instantiated with the signature scheme from [KPW15], Groth-Sahai
proofs [GS08] and the weakly sanitizable version of ElGamal encryption [Gam85]
from Section 3.3 satisfies the No-Read and No-Write rules.

Corollary 2. Theorems 1 and 2 imply that Construction 1 instantiated with the
signature scheme from [AGHO11], Groth-Sahai proofs [GS08] and the weakly
sanitizable version of ElGamal encryption [Gam85] satisfies the No-Read and
No-Write rules in the generic group model.

3.3 A More Efficient Construction From Pairings

Our next construction is based on ElGamal encryption, which is anonymous and
re-randomizable; however, re-randomization of a ciphertext requires knowledge
of its public key, so the sanitizer, who will randomize ciphertexts before passing
them on, would be able to link ciphertexts to receivers.

Under a public key pk = gsk, a message m is encrypted as c0 = gr, c1 =
pkr ·m. In order to enable randomization without revealing the public key, the
sender will randomize the public key as d = (gs, pks) for some random s 6= 0.
Given c and d, the sanitizer now picks a random t and defines c′ := (c0 ·dt0, c1 ·dt1).
Since c′ = (gr+st, pkr+st ·m) is an ElGamal encryption of m under pk, the
receiver, who knows the corresponding secret key, can decrypt. On the other
hand, t randomizes the ciphertext, thus to someone computationally bounded
and not knowing sk, the pair looks random. This ensures anonymity towards the
sanitizer and thus the no-read rule.

However, the no-write rule can easily be violated: a sender could send ci-
phertexts under any key and since the key is hidden, this would even be hard
to detect. To enforce sending ciphertexts under legitimate keys, in the previous
construction keys were signed; but without again resorting to proofs, it seems
hard to verify that the key underlying the randomized key d was signed.

Fortunately, structure-preserving signatures on equivalence classes (SPS-EQ)
[HS14] achieve precisely what is needed here, so the sketched construction goes
through without including any proofs in the ciphertext. This primitives allows
signing of pairs (d0, d1) of group elements and adapting such signatures to mul-
tiples of the message. In particular, given a signature σ on (d0, d1), anyone can
adapt the signature to (ds0, d

s
1) for any s. On the other hand, unforgeability guar-

antees that these are the only transformations one can do. The signatures are
thus valid on all messages from the equivalence class

[(d0, d1)]R := {(m0,m1) | ∃s : m0 = ds0 ∧m1 = ds1} .

Adaptivity of SPS-EQ requires that signatures that were adapted to a multiple of
the original message are indistinguishable from a fresh signature on the multiple.

Enforcement of the no-read rule follows in a straightforward fashion from
DDH (the tuple (gr, pkr · m, gs, pks) is indistinguishable from random under
DDH and an instance can be embedded by using the adaptivity property of
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SPS-EQ). Enforcement of the no-write rule is harder to prove and relies on
unforgeability for SPS-EQ (which precludes the attack sketched above). The
latter ensures that the values (d0, d1) sent by the adversary must be multiples
of (g, pki) for some pki obtained from the key oracle.

The tricky part is that once the reduction embeds a DDH challenge, it can-
not find out which public key was used, and so cannot simulate the game. We
thus rely on the knowledge-of-exponent assumption which implies that for any
adversary that is given (g, pk) and returns (gs, pks) there exists an extractor that
extracts s from the adversary. Now the reduction can guess which public key pki
the adversary randomizes and efficiently check whether its guess was correct.
If it is not the case, the reduction can abort and output a random bit. (If the
reduction does not abort when its simulation is incorrect, we do not have any
guarantees as to the adversary’s behavior.)

Bilinear groups. A bilinear-group generator BG.Gen is a PPT algorithm that
takes input a security parameter 1κ and outputs a description BG of a bilinear
group (p,G1,G2,GT , e, g, ĝ), where p is a prime of length κ; G1, G2 and GT are
groups of order p; g generates G1, ĝ generates G2 and e : G1 × G2 → GT is a
bilinear map that is non-degenerate, i.e. e(g, ĝ) generates GT .

We say that the DDH assumption holds in G1 for BG.Gen if no PPT adversary
A, given (p,G1,G2,GT , e, g, ĝ) ← BG.Gen(1κ), and (S, T, U) with s, t, u ← Z∗p,
b← {0, 1} and S = gs, T = gt, U = g(1−b)u+bst, can decide b with non-negligible
advantage. It holds in G2 if the same is true when g is replaced by ĝ. We say
that SXDH holds for BG.Gen if DDH holds in both G1 and G2.

SPS-EQ. A structure-preserving signature scheme on equivalence classes [HS14,
FHS15] consists of the following PPT algorithms:

EQS.Gen, on input a bilinear group BG and a vector length ` > 1 (in unary)
outputs a key pair (sk, pk). EQS.Sig takes a secret key sk and a representative
M = (m1, . . . ,m`) ∈ (G∗1)` of class [M ]R and outputs a signature σ for the
equivalence class [M ]R. EQS.Adp, on input a representative M ∈ (G∗1)`, a signa-
ture σ for M , a scalar µ and a public key pk, returns an updated signature σ′ for
the new representative M ′ = Mµ := (mµ

1 , . . . ,m
µ
` ). EQS.Ver takes a representa-

tive M ∈ (G∗1)`, a signature σ and a public key pk and outputs 1 if σ is valid for
M under pk and 0 otherwise. EQS.VfK checks if a secret key sk corresponds to a
public key pk and if so returns 1 and 0 otherwise.

The scheme should satisfy correctness, existential unforgeability under chosen-
message attacks (EUF-CMA) and perfect signature adaptation. Let M ∈ G∗1,
µ ∈ Z∗p, and (sk, pk) be output by EQS.Gen; σ by EQS.Sig(sk,M); and σ′

by EQS.Adp(M,σ, µ, pk). Then the scheme is correct if EQS.VfK(sk, pk) = 1,
EQS.Ver(M,σ) = 1 and EQS.Ver(Mµ, σ′) = 1.

Unforgeability is defined w.r.t. equivalence classes, i.e., a forgery must be on
a message from an equivalence class for which the forger has not seen signatures.

Definition 5 (EUF-CMA). Consider the following game for an adversary A:
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EUF-CMA Game for SPS-EQ

Game Definition Oracle Definition

1. BG← BG.Gen(1κ);
2. (sk, pk)← EQS.Gen(BG, 1`);
3. (M∗, σ∗)← AO(·)(pk);

O(M):
1. Return EQS.Sig(sk,M);

Let Q be the set of all queries that A issues to O. Then we say that A wins the
EUF-CMA game if the following hold:

1. For all M ∈ Q: [M∗]R 6= [M ]R;
2. EQS.Ver(M∗, σ∗, pk) = 1

An SPS-EQ scheme is EUF-CMA if for all ` > 1 and all PPT algorithms A

advAEUF-CMA(SPS-EQ) = Pr[A wins the EUF-CMA game] ≤ negl(κ) .

The final property requires that signatures adapted by EQS.Adp are dis-
tributed like fresh signatures from EQS.Sig.

Definition 6 (Signature Adaptation). An SPS-EQ scheme perfectly adapts
signatures if for all tuples ` > 1, (sk, pk,M, σ, µ) with

EQS.VfK(sk, pk) = 1 EQS.Ver(M,σ, pk) = 1 M ∈ (G∗1)` µ ∈ Z∗p

EQS.Adp(M,σ, µ, pk) and EQS.Sig(sk,Mµ) are identically distributed.

The most efficient construction of SPS-EQ is the following from [FHS14]. It
has perfect signature adaptation and satisfies EUF-CMA in the generic group
model (GGM).

SPS-EQ Construction from [FHS14]

EQS.Gen(BG, 1`):
Choose (xi)i∈[`] ← (Z∗p)`;
sk← (xi)i∈[`]; pk← (ĝxi)i∈[`];
Return (sk, pk);

EQS.Sig((xi)i∈[`],M): //M ∈ (G∗1)`;
Choose y ← Z∗p;
Return σ =

(∏
mxiy
i , gy

−1

, ĝy
−1)

;

EQS.Adp(pk,M, σ=(Z, Y, Ŷ ), µ): //µ ∈ Z∗p
if EQS.Ver(pk,M, σ) = 0, return ⊥;
Choose ψ ← Z∗p;
Return σ′ = (Zψµ, Y ψ

−1

, Ŷ ψ
−1

);

EQS.Ver(pk,M, σ = (Z, Y, Ŷ ))
Return 1 if all of the following hold:
Y 6= 1;∏
i∈[`] e(Mi, X̂i) = e(Z, Ŷ );

e(Y, ĝ) = e(g, Ŷ );
Else return 0;

EQS.Ver(sk = (xi), pk = (X̂i)):
If for all i ∈ [`] : X̂i = ĝxi ;

then return 1;
Else return 0;

KEA. The knowledge of exponent assumption [BP04] for a bilinear group gen-
erator BG.Gen states that for every PPT algorithm A, which given the output
(p,G1,G2,GT , e, g, ĝ) of BG.Gen and a random h ← G1 as input outputs gs, hs
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for some s, there exists a PPT extractor which, when given the coins of A as
input, extracts s with non-negligible probability. Note that KEA trivially holds
in the GGM, and since for our most efficient construction we already work in
the GGM to use SPS-EQ, this is not an extra assumption.

Construction 2 (ACE for Equality – Pairing). We construct an ACE scheme
ACE = (Setup,Gen,Enc,San,Dec) defined by the following algorithms:

Setup: Given a bilinear group BG = (p,G1,G2,GT , g, ĝ, e), run (sk, vk) ←
EQS.Gen(BG), pick a PRF key K and return pp = (BG, vk) and msk =
(sk,K).

Key Generation: Define dki = FK(0||i) and pki = gdki , and compute σi =
EQS.Sig(sk, (g, pki);FK(1||i)); Return eki = (pki, σi) and dki.

Encryption: On input a message m and an encryption key eki = (pki, σi), pick
randomness r, s ← Z∗p and compute σ′ ← EQS.Adp(vk, (g, pki), σi, s) and
return

c0 = gr, c1 = pkri ·m, c2 = gs, c3 = pksi , σ′ .

Sanitizer: If EQS.Ver(vk, (c2, c3), σ′) = 0 then output ⊥. Else choose a random
t and return

c′0 = c0 · ct2 , c′1 = c1 · ct3 .

Decryption: Return m = c′1 · (c′0)−dkj .

Correctness follows by inspection, and detectability of the ACE follows from the
detectability of the underlying PKE we use, namely ElGamal. We will now show
that the scheme also satisfies the no-read and the no-write rule.

Theorem 3. Construction 2 satisfies the No-Read Rule if the PRF is pseudo-
random, the SPS-EQ scheme has perfect adaptivity and the DDH assumption
holds in G1.

Proof. Plugging Construction 2 into the security game yields the game in Fig-
ure 1 (where we replaced PRF values by consistent random values). The proof
is similar to that of Theorem 3 also proceeds by a series of hybrid games.

Game H: As the original game but at the beginning the challenger makes a
random guess q from {1, . . . , qmax} where qmax is a bound on the number of
OG(·, sen) queries plus the number of OE(·, ·) queries. Let (j∗, ·) be the qth
such query. If j∗ 6= ib, the challenger returns a random bit as the output of
the game.

No-Write Game → H: This results in a polynomial loss 1
qmax

in the adversary’s
winning probability, shown analogously to Lemma 1. If the latter was non-
negligible before, it is so afterwards.

Game Hb,1: As hybrid H with b fixed and the values of the PRF replaced with
(consistent) random values.

Hb ≈c Hb,1: The games are indistinguishable by PRF security.
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Game Definition Oracle Definition

// assume w.l.o.g. A queries (i0, sen)
and (i1, sen) to OG

1. (sk, vk)← EQS.Gen(BG);
pp = (BG, vk);

2. (m0,m1, i0, i1)← AOG(·),OE(·)(pp);
4. r, s← Z∗p;
σ′ ← EQS.Adp(vk, σib , s);
c = (gr, pkribmb, g

s, pksib , σ
′);

5. b′ ← AOG(·),OE(·)(c);

OG(j, t): // t = rec⇒ j /∈ {i0, i1}
1. If pkj not defined: dkj ← Zp; pkj = gdkj ;

If t = rec then return dkj ;
σj ← EQS.Sig(sk, (g, pkj));
Return ekj = (g, pkj , σj);

OE(i,m):
1. If pki not yet defined:

dki ← Zp; pki = gdki ;
σi ← EQS.Sig(sk, (g, pki));

2. r′, s′ ← Z∗p; σ′ ← EQS.Adp(vk, σi, s
′);

Return (gr
′
, pkr

′

i ·m, gs
′
, pks

′

i , σ
′);

Fig. 1. No-Read Rule for Constr. 2 for fixed b and PRF outputs replaced by random

Game Hb,2: As Hb,1, but instead of running EQS.Adp, σ′ is computed as a fresh
signature on (gs, pksib).

Hb,1 ≈c Hb,2: The two games are equally distributed by the perfect signature-
adaptation property of SPS-EQ.

Game Hb,3: Defined asHb,2, except c is replaced by c = (gr, pkribmb, g
s, pktib , σ

′),
that is, the 4th component is random.

Hb,2 ≈c Hb,3: Indistinguishable under DDH. Note that pkib is known in advance
(as ib is guessed as j∗) and that dki is not revealed and s is not used anywhere
else (since Hb,2). The reduction can thus replace the values (g, pkib , g

s, pksib)
with a DDH challenge.

Game Hb,4: Defined asHb,3, except c is replaced by c = (gr, pkuibmb, g
s, pktib , σ

′),
that is, the 2nd component is random.

Hb,3 ≈c Hb,4: Indistinguishable under DDH. The reduction replaces the values
(g, pkib , g

r, pkrib) with a DDH challenge.

Since H0,4 ≡ H1,4 (in both the adversary receives c which consists of 4 random
group elements and a signature on the last 2), we showed that H0 and H1

are indistinguishable, which contradicts the assumption that A distinguishes
them.

Theorem 4. Construction 2 satisfies the No-Write Rule if the PRF is pseudo-
random, the SPS-EQ scheme is unforgeable, and KEA and DDH hold in G1.

Proof. As it is straightforward to prove indistinguishability to the original game,
let us immediately assume that all calls to the PRF are replaced by (consistent)
random values, which yields the following game: (Note that in the definition of
OE , we need not generate σ in Gen, as it is then discarded by San anyway.)

We first distinguish between two types of PPT adversaries:

Type 1 returns c0, which contains an SPS-EQ forgery with non-negligible prob-
ability; that is, (c0,2, c0,3) is not a multiple of any (g, pki) where pki is the
key obtained from oracle call OG(i, sen).
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Game Definition Oracle Definition

// A queries (i′, sen) in step 3
// No queries (i, sen), (i, rec) for same i
// EQS.Ver(vk, (c0,2, c0,3), σ′) = 1

1. (sk, vk)← EQS.Gen(BG);
pp = (BG, vk);

2. r ←M; b← {0, 1};
3. (c0, i

′)← AOE(·),OS(·)(pp);
4. r, s← Z∗p;
σ′ ← EQS.Adp(vk, σi′ , s);
c1 = (gr, pkri′ ·mb, g

s, pksi′ , σ
′);

5. t← Z∗p; c′b,0 = cb,0 · ctb,2;
c′b,1 = cb,1 · ctb,3
b′ ← AOE(·),OR(·)(c′b);

OS(j, t) and OR(j, t):
1. If pkj not yet defined:

dkj ← Zp; pkj = gdkj ;
If t = rec then return dkj ;
If σj not yet defined:
σj ← EQS.Sig(sk, (g, pkj));

Return ekj = (g, pkj , σj);

OE(i,m):
1. If pki not yet defined:

dki ← Zp; pki = gdki ;
2. r′, s′, t′ ← Z∗p;

// c = (gr
′
, pkr

′

i ·m, gs
′
, pks

′

i , ·);
Return (gr

′+s′t′ , pkr
′+s′t′

i ·m);

Fig. 2. No-Write Rule for Constr. 2 and PRF outputs replaced by random

Type 2 returns such a forgery with negligible probability only.

Breaking EUF-CMA of SPS-EQ can be reduced to Type 1 forgeries in a straight-
forward fashion: the PPT reduction B simulates the no-write game using the
given vk and replacing all calls of EQS.Sig(sk, (g, pki)) by queries to its signa-
ture oracle; when A outputs c0 = (c0,0, c0,1, c0,2, c0,3, σ0) then B returns σ0 as a
forgery on M = (c0,2, c0,3). By assumption (Type 1), with non-negligible proba-
bility M is not a multiple of the messages (g, pki) queried to the signing oracle;
B thus breaks EUF-CMA.

We now show how to use Type 2 adversaries to break DDH assuming KEA. Let
qmax denote an upper bound on the number of A’s queries (·, sen) to OS and OR
plus the number of queries to OE .

We first construct a PPT algorithm B with input (g, h). B picks two uniform
values q0, q1 ← [qmax] and simulates the no-write game for A, except for the
following changes: when the q0th key pk is created during an oracle query (j0, ·),
B sets pkj0 = h. Let j1 be the index of the q1th key created. If A later queries
(j0, rec) or (j1, rec) to OS or OR then B aborts. When A outputs (c0, i

′) then B
stops and returns (c0,2, c0,3).

Let us analyze B’s behavior: Since A is of Type 2, we know that with over-
whelming (i.e. all except with negligible) probability, A outputs (c0, i

′) with
(c0,2, c0,c) = (ga, pkaj ), for some a and j s.t. (j, sen) was queried to OS or OR.

Now with probability 1
q2max

, we have j = j0 and i′ = j1. This event is independent

of A’s view and if it occurs then B’s simulation does not abort: by assumption
A makes queries (j, sen) and (i′, sen) and can therefore not make queries (j, rec)
and (i′, rec).

With probability at least 1
q2max
− negl(κ), B thus returns (ga, ha) for some a.

Assuming KEA there exists thus an extractor X that, given B’s coins, outputs a.
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We now consider the following hybrid H of the no-write-rule game: first
choose h← G1 and j0, j1 ← [qmax] then run the game setting pkj1 = h. On the
same coins as used to run the game run X and let a be its output. If A’s output
(c0, i

′) satisfies
(c0,2, c0,3) = (ga, pkaj0) (3)

and i′ = j1 then return A’s final output b′. Else return a random bit b′ ← {0, 1}
Since H, until the event that A outputs c0 is defined as B, X’s output a

satisfies (3) with non-negligible probability, as shown above. The probability
that hybrid game H outputs A’s bit b′ is thus non-negligible.

Further note that setting h = pkj0 is only a syntactical change, so H differs
from the original game only in the event that the latter aborts (outputting a
random bit). An analysis analogue to “0→ 1” in the proof of Theorem 3 shows
that if A wins the original game with non-negligible probability then it wins H
with non-negligible probability.

Define Hβ as H with b fixed to β. Our last step is now to show that under
DDH A cannot distinguish H0 from H1, which contradicts A winning H and
concludes the proof.

For this, we define another hybrid H ′β which modifies Hβ in that c′β is defined

as (cβ,0·ctβ,2, cβ,1·U), where U is a uniform group element. Thus, c′β is a uniformly
random pair and so the game H ′β is independent of β. Therefore H ′0 is distributed
as H ′1. What remains to show is that Hβ is indistinguishable from H ′β .

We first show that H0 is indistinguishable from H ′0. The games only differ
when X returns a satisfying (3) (otherwise both output a random bit). In this
case h = pkj0 . Consider a DDH adversary D0 that receives a challenge (P, T =
gt, U) where either U = P t or U is random. D0 simulates H0 setting h = P and
associating the values t from the challenge and the game: it sets ct0,2 = T a and
c0,3 = Ua. If U = P t then D0 simulates H0; otherwise it simulates H ′0.

Finally, H ′1 is shown indistinguishable from H1 by a similar reduction: on
input a DDH challenge (P, T, U), D1 simulates H1, except that it sets pkj1 = P
and ct1,2 = T s and c1,3 = Us. If U = P t then D1 simulates H1; otherwise it
simulates H ′1.

Using Theorem 3 and Theorem 4 with the SPS-EQ from [FHS14], which
has perfect signature adaptation and satisfies EUF-CMA in the generic group
model (GGM), we obtain the following corollary. The concrete efficiency of the
resulting scheme is given in Table 2.

Corollary 3. In the generic group model, Construction 2 instantiated with the
SPS-EQ from [FHS14] satisfies the No-Read and No-Write rules.

3.4 Comparing the Two Constructions

In Table 2 we compare the efficiency and the assumptions required for our con-
structions. The most efficient way to instantiate the generic construction from
Section 3.2 is via structure-preserving signatures (SPS) [AFG+16], Groth-Sahai
proofs [GS08] and the weakly sanitizable version of ElGamal encryption [Gam85]
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Table 2. Comparison of the constructions in Section 3.2 and 3.3. In all cases pp also
includes the description of the group. A ciphertext produced by Enc is denoted by c
while c′ denotes a sanitized ciphertext, output of San.

Construction pp ek dk c c′ Assumpt’n

Generic[·, ·] vk + crs 1G1 + sig 1Zp 4G1 + π 2G1

Generic[[KPW15],[GS12]] 4G1 + 11G2 7G1 + 1G2 1Zp 34G1 + 16G2 2G1 SXDH

Generic[[AGHO11],[GS12]] 5G1 + 7G2 3G1 + 1G2 1Zp 20G1 + 14G2 2G1 GGM

Construction 2 (Sect. 3.3) 2G2 3G1 + 1G2 1Zp 6G1 + 1G2 2G1 GGM

described in Section 3.3. The security of the latter two relies on the SXDH as-
sumption. The most efficient SPS scheme from SXDH is the one from [KPW15]
(signatures from G6

1 ×G2, public keys from G7
2). The most efficient SPS scheme

with a security proof in the generic group model (GGM) is from [AGHO11] (sig-
natures from G2

1×G2, public keys from G1×G3
2). See Corollaries 1 and 2. We also

include Construction 2 from Section 3.3, which does not require zero-knowledge
proofs, and which we proved secure in the GGM.

4 ACE for Disjunction of Equalities

In this section we show how to use the equality ACE scheme in a black-box
way to implement more interesting predicates. Intuitively, as stated in the intro-
duction, this is done by assigning sets of identities for the ACE scheme to each
sender and receiver, in such a way that the intersection between the set S(i) of
identities given to sender i and the set R(j) of identities given to receiver j is
non-empty if and only if P (i, j) = 1. Note however that in this case a receiver,
to be able to decrypt, would have to try each decryption key on each ciphertext,
thus resulting in quadratic complexity. To avoid this, we compose our scheme
using the following disjunction of equalities predicate instead: here each sender
is assigned a vector of identities x and each receiver a vector of identities y, and
the predicate is defined as Por-eq : D` ×D` → {0, 1}, and

Por-eq(x,y) = 1 ⇔
∨̀
i=1

(
xi = yi

)
.

We give a generic construction that relies on any ACE for equality, namely,
for the predicate Peq : (D × [`])× (D × [`])→ {0, 1}, defined by

Peq((x, i), (y, j)) = 1 ⇔ x = y and i = j ,

such as those of Section 3. 6

6 To use an ACE for predicate Peq : {0, 1}n × {0, 1}n → {0, 1}, such as those in Sec-
tion 3, one uses an injective hash function from D × [`] to {0, 1}n, which exists as
long as 2n ≥ |D| · [`].
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Construction 3 (ACE for Disjunction of Equality – Generic). We construct an
ACE scheme ACEor-eq for Por-eq from an ACE scheme ACEeq = (Setupeq,Geneq,
Enceq,Saneq,Deceq) for Peq. ACEor-eq is defined by the following algorithms:

Setup: Output (pp,msk)← Setupeq(1
κ).

Key Generation: Given the master secret key msk and vectors x,y ∈ D`, the
encryption and decryption keys are computed as follows:

ekx = (ek(x1,1), . . . , ek(x`,`)) with ek(xi,i) ← Geneq(msk, (xi, i), sen) for i ∈ [`];
dky = (dk(y1,1), . . . , dk(y`,`)) with dk(yi,i) ← Geneq(msk, (yi, i), rec) for i ∈ [`].

Encryption: On input a message m and an encryption key ekx = (ek(x1,1), . . . ,
ek(x`,`)) pick some independent randomness r1, . . . , r`, compute

ci = Enc(ek(xi,i),m; ri) ,

for i ∈ [`], and output c = (c1, . . . , c`).

Sanitizer: Given a ciphertext c = (c1, . . . , c`), apply Saneq component-wise.

Decryption: Given a ciphertext c = (c1, . . . , c`) and a decryption key dky =
(dk(y1,1), . . . , dk(y`,`)) for y ∈ D`, compute Dec(dk(yi,i), ci) for i ∈ [`]. Let
mi = Dec(dk(yi,i), ci), then output the first mi 6= ⊥ or ⊥ if there is no such
successful decryption.

Remark: Note that the complexity of the composed scheme, including the de-
cryption algorithm, is linear in `.

Lemma 6 (Correctness and Detectability). Construction 3 is correct, ac-
cording to Definition 1.

Proof. For all i ∈ [`] and xi, yi ∈ D such that xi = yi,

Pr[Deceq(dk(yi,i),Saneq(Enceq(ek(xi,i),m))) = m] ≥ 1− negl(κ) ,

by correctness of ACEeq. Moreover, by detectability of ACEeq, for all xi, yi ∈ D
such that xi 6= yi, we have:

Pr[Deceq(dk(yi,i),Saneq(Enceq(ek(xi,i),m))) = ⊥] ≥ 1− negl(κ) .

Therefore, by a union bound over the ` disjunctions, we obtain that for all
x,y ∈ D` such that Por-eq(x,y) = 1:

Pr[Dec(dkx,San(pp,Enc(ekx,m))) = m] ≥ 1− negl(κ) ,

that is, ACEor-eq is correct. A similar argument is used to show that ACEor-eq is
detectable.

Lemma 7 (No-Read-Rule). If the underlying ACEeq for Peq satisfies the No-
Read-Rule from Definition 3, then so does ACEor-eq from Construction 3. In
particular, for any PPT adversary A against the No-Read-Rule for ACEor-eq,
there exists a PPT adversary B such that

advANo-Read(ACEor-eq) ≤ ` · advBNo-Read(ACEeq) .
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Proof. We define `+ 1 hybrid games, where for all i ∈ [`+ 1], Hybrid i is defined
as in the table below.

Hybrid i Oracle Definition

1. (pp,msk)← Setup(1κ,Por-eq);
2. (m0,m1,x

(0),x(1))← AOG(·),OE(·)(pp);
3. For j ≤ i− 1: cj ← Enceq(ek(x(1)j ,j)

,m1).

For j ≥ i: cj ← Enceq(ek(x(0)j ,j)
,m0).

4. b′ ← AOG(·),OE(·)(c1, . . . , c`);

OG(j, t):
1. Output k ← Gen(msk, j, t);

OE(i,m):
1. eki ← Gen(msk, i, sen);
2. Output c← Enc(eki,m);

We say an adversary A wins hybrid i if it returns 1 and |m0| = |m1|, x(0),
x(1) ∈ D`, and for all queries q to OG with q = (y, rec) it holds that

Por-eq(x
(0),y) = Por-eq(x

(1),y) = 0 .

Note that for any PPT adversary A,

advANo-Read(ACEor-eq) ≤ 1
2 |Pr[A wins Hybrid `+ 1]− Pr[A wins Hybrid 1]| .

For all i ∈ [`], we build a PPT adversary Bi, such that:

|Pr[A wins Hybrid i+ 1]− Pr[A wins Hybrid i]| ≤ 2 · advBi

No-Read(ACEeq) ,

thereby proving the lemma. This comes from the facts that ACEeq satisfies the
No-Read Rule, and that for all y ∈ D`, Por-eq(x

(0),y) = Por-eq(x
(1),y) = 0

implies Peq((x
(0)
i , i), (yj , j)) = Peq((x

(1)
i , i), (yj , j)) = 0 for all i, j ∈ [`].

Lemma 8 (No-Write Rule). If the underlying ACEeq for Peq satisfies the No-
Write Rule from Definition 4 and the No-Read-Rule from Definition 3, then
ACEor-eq from Construction 3 satisfies the No-Write rule. In particular, for any
PPT adversary A against the No-Write Rule for ACEor-eq, there exist PPT ad-
versaries B1 and B2 such that

advANo-Write(ACEor-eq) ≤ ` · advB1

No-Write(ACEeq) + 2` · advB2

No-Read(ACEeq) .

Proof. As for the No-Read rule, we use a hybrid argument; for i ∈ [2`] Hybrid i
is defined in the tables below, where m0 ∈M is an arbitrary, fixed message:

Hybrid i, for i ∈ [`+ 1] Oracle Definition

1. (pp,msk)← Setup(1κ,Por-eq);

2. ((c
(0)
1 , . . . , c

(0)
` ),x′)← AOE(·),OS(·)(pp);

3. (c
(1)
1 , . . . , c

(1)
` )← Enc(Gen(msk,x′, sen),m0);

4. b′ ← AOE(·),OR(·)(San(pp, c
(1)
1 , . . . , c

(1)
i ,

c
(0)
i+1, . . . , c

(0)
` ));

OS(j, t) and OR(j, t):
1. Output k ← Gen(msk, j, t);

OE(i,m):
1. eki ← Gen(msk, i, sen);
2. Output San(pp,Enc(eki,m));
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Hybrid `+ i, for i ∈ [`+ 1] Oracle Definition

1. (pp,msk)← Setup(1κ,Por-eq);
2. m1 ←M
3. ((c

(0)
1 , . . . , c

(0)
` ),x′)← BOE(·),OS(·)(pp);

4. (c
(1)
1 , . . . , c

(1)
` )← Enc(Gen(msk,x′, sen),m0);

4. (c
(2)
1 , . . . , c

(2)
` )← Enc(Gen(msk,x′, sen),m1);

5. b′ ← BOE(·),OR(·)(San(pp, c
(2)
1 , . . . , c

(2)
i ,

c
(1)
i+1, . . . , c

(1)
` ));

OS(j, t) and OR(j, t):
1. Output k ← Gen(msk, j, t);

OE(i,m):
1. eki ← Gen(msk, i, sen);
2. Output San(pp,Enc(eki,m));

Let IS and J be defined as in the No-Write Rule game from Definition 4.
We say an adversary A wins Hybrid i, for i ∈ [2`], if it returns 1 and all of the
following hold:

1. x′ ∈ IS ∪ {0};
2. ∀x ∈ IS ,y ∈ J , Por-eq(x,y) = 0.

We denote by εi the probability that A wins Hybrid i, for i ∈ [2`]. Note that for
any PPT adversary A:

advANo-Write(ACEor-eq) ≤ 1
2 |ε2` − ε1| .

The proof proceeds in two steps:

First step: for all i ∈ [`], we build PPT adversaries B1.i and B2.i such that
|εi−1 − εi| ≤ 2 · advB1.i

No-Write(ACEeq) + 2 · advB2.i

No-Read(ACEeq).
First, the No-Write Rule allows to switch the sanitized ciphertext in Hybrid

i− 1 from

San(pp, c
(1)
1 , . . . , c

(1)
i−1, c

(0)
i , c

(0)
i+1, . . . , c

(0)
` ) to

San(pp, c
(1)
1 , . . . , c

(1)
i−1, c

(2)
i , c

(0)
i+1, . . . , c

(0)
` ) ,

where c
(2)
i := Enc(Gen(msk, (x′i, i), sen),m∗) and m∗ ←M.

Namely, adversary B1.i playing against the No-Write Rule for Peq, after re-
ceiving the public parameters pp, sends them to A and simulates all the queries
to OE(·) and OS(·) in the straightforward way: using its own oracles OE(·) and
OS(·) for Peq, coordinate-wise. Note that the restriction on A’s queries, namely
∀x ∈ IS ,y ∈ J , Por-eq(x,y) = 0, implies that Peq((xi, i), (yj , j)) = 0 for all
i, j ∈ [`]. Thus, B1.i can answer valid queries from A by valid queries to its own
oracles.

Then, B1.i receives the challenge ((c
(0)
1 , . . . , c

(0)
` ),x′) from A, and it sends

(c
(0)
i , (x′i, i)) to the challenger for Peq, to receive ctbi where b← {0, 1}, and

ct0i := San(pp, c
(0)
i ) and ct1i := San(pp,Enc(Gen(msk, (x′i, i), sen),m∗))

for m∗ ←M. Since B1.i knows m0 (here we crucially rely on the fact that m0 is
a fixed message, and not a random message as in the No-Write Rule experiment,
since it would be unknown to B1.i), it can compute

ctj := San(pp,Enc(Gen(msk, (x′j , j), sen),m0)) for j < i ,
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using its OE oracle on input ((x′j , j),m0). Finally, it sets ctj := c
(0)
j for j > i,

and sends the sanitized ciphertext (ct1, . . . , cti−1, ct
b
i , cti+1, . . . , ct`) to A, and

keeps simulating the oracles OE(·) and OR(·) as before.
Then, because ACEeq satisfies the No-Read Rule, and because for all y ∈ J ,

Por-eq(x
′,y) = 0, which implies Peq((x

′
i, i), (yj , j)) = 0 for all i, j ∈ [`], we can

switch a sanitized ciphertext from

San(pp, c
(1)
1 , . . . , c

(1)
i−1, c

(2)
i , c

(0)
i+1, . . . , c

(0)
` ) to

San(pp, c
(1)
1 , . . . , c

(1)
i−1, c

(1)
i , c

(0)
i+1, . . . , c

(0)
` ) ,

where c
(1)
i = Enc(Gen(msk, (x′j , j), sen),m0), as in Hybrid i. Namely, adversary

B2.i simulates pp, OE(·), OS(·), OR(·), and computes sanitized ciphertexts ctj
for j > i as described previously for B1.i. For the ciphertexts ctj for j < i, B2.i

uses its oracle OE , and then, applies San to obtain the sanitized ciphertexts.
It can do so since applying San only requires to know pp. Then, B2.i sends
(m0,m1, (x

′
i, i), (x

′
i, i)) to the No-Read Rule experiment, where m1 ← M, to

get back c ← Enc(Gen(msk, (x′i, i)),mb). It sets cti := San(pp, c), and sends the
sanitized (ct1, . . . , ct`) to A.

Second step: we build a PPT adversary B3.i such that |ε`+i−1 − ε`+i| ≤ 2 ·
advB3.i

No-Read(ACEeq).
We use the No-Read Rule as for the first step. Namely, B3.i simulates pp,

OE(·), OS(·), OR(·) as descried previously for B2.i. Then, B3.i ignores the chal-

lenge ((c
(0)
1 , . . . , c

(0)
` ),x′) sent by A, samples m1 ←M, computes

ctj := San(pp,Enc(Gen(msk, (x′j , j), sen),m1)) for j < i ,

ctj := San(pp,Enc(Gen(msk, (x′j , j), sen),m0)) for j > i ,

thanks to its oracle OE . Then, B3.i sends (m0,m1, (x
′
i, i), (x

′
i, i)) to the No-

Read Rule experiment, to get back c← Enc(Gen(msk, (x′i, i)),mb). It sets cti :=
San(pp, c), and sends the sanitized ciphertext (ct1, . . . , ct`) to A.

5 Predicates in Disjunction of Equalities

We show how to reduce the predicate Prange defined for all points z ∈ [N ] and
intervals I ⊂ [N ] as:

Prange(z, I) = 1⇔ z ∈ I
to Por-eq described in Section 4. This requires writing intervals I and points z as
vectors, using a standard tree structure [DVOS00].

Lemma 9 (Interval to Vector [DVOS00]). There is an efficient PPT algo-
rithm IntVec, that on input an interval I ⊂ [N ] outputs

(w1, w2, . . . , w2n) ∈
(
{0, 1}∗ ∪ {⊥}

)2n
,

where n := dlogNe, with the following properties:

27



– for each i = 1, . . . , n, we have w2i−1, w2i ∈ {0, 1}i ∪ {⊥};
– for all z ∈ [N ], we have z ∈ I iff one of w1, . . . , w2t is a prefix of z.

Here, ⊥ is special symbol such that ⊥ /∈
⋃n
i=1{0, 1}i.

For instance, IntVec([010, 110]) = (⊥,⊥, 01, 10, 110,⊥).

Remark 1 (Hashing bit strings into D). We want to use the ACE of Section 4,

which requires finding an injective map from
⋃n
i=1 {0, 1}

i ∪ {⊥} into D, where
n := [dlogNe]. Such map exists as long as |D| ≥ 2n+1 − 1.

Now we give the description of algorithm PtVec, used to map points to vectors.

PtVec: On input z ∈ [N ], output (v1, . . . , v2n), where

v2i−1 = v2i := i’th bit prefix of z, i = 1, . . . , n .

For instance, PtVec(011) = (0, 0, 01, 01, 011, 011).

Remark 2 (Duplicate Entries). Note that some strings appear more than once in
the vector. This is necessary since the predicate is a function of both the entries
in the vector and their positions.

Lemma 10. For any point z ∈ [N ] and any interval I ⊆ [N ],

z ∈ I iff Por-eq(PtVec(z), IntVec(I)) = 1 .

Lemma 10 follows readily from Lemma 9.

ε

0̂

00

000 001

0̂1

010 0̂11

1̃

10

100 101

1̃1

110 1̃11

Fig. 3. Tree structure [DVOS00] for interval [010, 110] (bar nodes), point 011 (hat
nodes) and point 111 (tilde nodes). The common node 01 allows to decrypt for 011 ∈
[010, 110]. No such node exists for 111 /∈ [010, 110], which prevents decryption.
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GMW15. Romain Gay, Pierrick Méaux, and Hoeteck Wee. Predicate encryption for
multi-dimensional range queries from lattices. In Public-Key Cryptography
- PKC 2015, Proceedings, pages 752–776, 2015.

Gol09. Oded Goldreich. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2009.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilin-
ear groups. In Advances in Cryptology - EUROCRYPT 2008, Proceedings,
pages 415–432, 2008.

GS12. Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bi-
linear groups. SIAM J. Comput., 41(5):1193–1232, 2012.

HS14. Christian Hanser and Daniel Slamanig. Structure-preserving signatures on
equivalence classes and their application to anonymous credentials. In Ad-
vances in Cryptology - ASIACRYPT 2014, Proceedings, Part I, pages 491–
511, 2014.

IPV10. Malika Izabachène, David Pointcheval, and Damien Vergnaud. Mediated
traceable anonymous encryption. In Michel Abdalla and Paulo S. L. M.
Barreto, editors, Progress in Cryptology - LATINCRYPT 2010, Proceedings,
volume 6212 of LNCS, pages 40–60. Springer, 2010.

KL14. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC press, 2014.

KPW15. Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. Structure-preserving signatures
from standard assumptions, revisited. In Advances in Cryptology - CRYPTO
2015, Part II, pages 275–295, 2015.

OT12. Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding
(hierarchical) inner product encryption. In Advances in Cryptology - EU-
ROCRYPT 2012, pages 591–608, 2012.

Sak00. Ryuichi Sakai. Cryptosystems based on pairings. In Symposium on Cryp-
tography and Information Security 2000, SCIS2000, 2000.

SBC+07. Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song,
and Adrian Perrig. Multi-dimensional range query over encrypted data. In
2007 IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May
2007, Oakland, California, USA, pages 350–364, 2007.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In Ad-
vances in Cryptology, Proceedings of CRYPTO ’84, pages 47–53, 1984.

SW05. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances
in Cryptology - EUROCRYPT 2005, pages 457–473, 2005.

30


	Access Control Encryption  for Equality, Comparison, and More

