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Abstract. Attribute-based encryption (ABE) enables encryption of
messages under access policies so that only users with attributes satisfy-
ing the policy can decrypt the ciphertext. In standard ABE, an arbitrary
number of colluding users, each without an authorized attribute set, can-
not decrypt the ciphertext. However, all existing ABE schemes rely on
concrete cryptographic assumptions such as the hardness of certain prob-
lems over bilinear maps or integer lattices. Furthermore, it is known that
ABE cannot be constructed from generic assumptions such as public-key
encryption using black-box techniques.

In this work, we revisit the problem of constructing ABE that toler-
ates collusions of arbitrary but a priori bounded size. We present two
ABE schemes secure against bounded collusions that require only se-
mantically secure public-key encryption. Our schemes achieve significant
improvement in the size of the public parameters, secret keys, and ci-
phertexts over the previous construction of bounded-collusion ABE from
minimal assumptions by Gorbunov et al. (CRYPTO 2012). In fact, in
our second scheme, the size of ABE secret keys does not grow at all with
the collusion bound. As a building block, we introduce a multidimen-
sional secret-sharing scheme that may be of independent interest. We
also obtain bounded-collusion symmetric-key ABE (which requires the
secret key for encryption) by replacing the public-key encryption with
symmetric-key encryption, which can be built from the minimal assump-
tion of one-way functions.

Keywords: attribute-based encryption, public-key encryption, bounded
collusion, secret sharing

1 Introduction

In traditional public-key encryption, data is encrypted for an individual user
whose public key is known at the time of encryption, and only the target user is
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able to decrypt the resulting ciphertext. However, many applications require en-
cryption with more expressive access control capabilities. For example, electronic
medical records contain a wealth of sensitive patient information that should be
accessible only to medical administrators (e.g., doctors, nurses, pharmacists, and
researchers) whose credentials satisfy complex access policies based on their roles
and relationships to the patient [2].

For these applications, straightforward encryption solutions are inadequate
for two reasons. First, the ciphertext must be decryptable by potentially many
users with distinct keys. The trivial solution of encrypting the data separately to
each user results in long ciphertexts. A long line of work on broadcast encryption
(e.g., [5,11,23]) aims to reduce the ciphertext size for this problem. Second, the
identities of the authorized users may not be known to the encryptor; instead
of encrypting to individual users we wish to encrypt to access policies so that
only users whose credentials satisfy the policy can decrypt. The trivial solution
of providing a separate key for each group of attributes results in long keys for
the recipients of messages.

Attribute-based encryption (ABE), introduced by Sahai and Waters [26],
addresses both of these issues. In ABE, each secret key corresponds to a predicate
f , and each ciphertext corresponds to a message and an index ind. Decryption
returns the message if and only if f(ind) = 1. Thus, ABE allows automatic
enforcement of any access policy that can be expressed as the evaluation of
f(ind). Two commonly considered special cases of ABE are ciphertext-policy
ABE (CP-ABE) [4], where the secret key predicate is a set of attributes and
the ciphertext index is an access policy over attributes, and key-policy ABE
(KP-ABE) [18], where the roles of the index and the predicate are reversed.

Since the introduction of ABE, many constructions and related primitives
have appeared in the literature (e.g., [4,12,16,18,22,24,28]). ABE has also been
implemented in some applications, including the protection of electronic medical
records [2]; we refer readers to [19, §3.2] for a longer overview of the history of
ABE.

However, all known constructions of ABE rely on concrete assumptions such
as the hardness of certain problems over bilinear maps or integer lattices rather
than generic assumptions such as the existence of CPA-secure public-key encryp-
tion. In fact, it is known that, when using black-box techniques, the security of
ABE cannot be based on such generic assumptions [6, 21].

The difficulty of building ABE from generic assumptions stems from its col-
lusion resistance requirement, which states that two or more users, neither of
whose attributes satisfy the policy embedded in a ciphertext, should not be able
to decrypt the message using their joint key material. Intuitively, for CP-ABE
this requires the secret key corresponding to a set of attributes to be “bound”
together so that the contribution that each attribute makes to the key cannot
be detached and re-purposed toward decrypting a message requiring a different
combination of attributes. ABE typically requires security against unbounded
collusion. That is, even if a very large and a priori unbounded number of users
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collude, they should fail to decrypt any ciphertexts that none of them can de-
crypt individually.

In this work, we consider a relaxation of the unbounded collusion requirement
and instead consider schemes that are secure against an a priori bounded number
of colluders. Positive results have recently been shown in constructing bounded-
collusion ABE (BC-ABE) schemes assuming only the existence of public-key
encryption [15, 25].1 We stress that this relaxation does not limit the number
of keys that may be issued, but rather only the number of colluders that the
scheme can withstand.

Such generic constructions of ABE based on public-key encryption have sev-
eral benefits. First, they can be instantiated from a number of standard cryp-
tographic hardness assumptions. Second, by replacing CPA-secure public-key
encryption with its symmetric-key counterpart, these schemes directly yield a
construction of symmetric-key ABE schemes that require the secret key for en-
cryption as well.2 In particular, this implies that bounded-collusion symmetric-
key ABE can be constructed from the minimal assumption of the existence of
one-way functions. By contrast, constructions of ABE based on specific assump-
tions lack a clear transformation into symmetric-key ABE without still relying
on “public-key” assumptions.

However, the only known constructions of BC-ABE from public-key encryp-
tion [15] require keys and ciphertexts that grow very quickly with the collusion
bound (see Table 1). Thus, it remains worthwhile to reduce the key and cipher-
text length in constructions of bounded-collusion ABE to understand what can
be achieved using these minimal assumptions.

1.1 Our Results

In this paper we address exactly this problem, showing two different construc-
tions of bounded-collusion ABE based only on the existence of public-key en-
cryption, achieving shorter key sizes, public parameters, and ciphertexts. We
adopt the two-step procedure taken by Gorbunov et al. [15]: first design an ABE
scheme that is secure against an adversary with only a single key (which we
call a 1-ABE scheme), and then design a bootstrapping procedure that yields a
BC-ABE scheme secure against a larger number of collusions q (which we call a
q-ABE scheme). Indeed, we retain the 1-ABE scheme of [15], which can be in-
stantiated based only on CPA-secure public-key encryption. Therefore, the focus
of our work is to reduce the dependence on q in the construction of q-ABE from
1-ABE. Specifically, we show a construction satisfying the following theorem:

1 These works actually build bounded-collusion functional encryption (FE), a stronger
primitive that implies ABE. The bounded-collusion FE construction [15] actually
requires an additional assumption of the existence of bounded-degree PRGs, but, as
the authors show, this assumption is not needed for bounded-collusion ABE. For the
purposes of this paper, we will only discuss the ABE constructions.

2 Symmetric-key ABE is useful for applications such as publish-subscribe allowing a
single publisher to disseminate information to subscribers based on their attributes
or interests.
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Theorem 1 (Informal). Suppose there exists a public-key (resp., symmetric-
key) 1-ABE scheme for a class of access policies. Then there exists a public-key
(resp., symmetric-key) BC-ABE scheme for the same class of access policies
tolerating collusions of size at most q with the following characteristics: public

parameters consisting of O( q2

log qλ) 1-ABE encryption keys, secret keys consisting

of O( 1
log qλ) 1-ABE keys, and ciphertexts consisting of O( q2

log qλ) 1-ABE cipher-
texts, where λ is the security parameter.

We formalize and prove this theorem in Section 5. We then instantiate the
1-ABE scheme with the construction of Sahai and Seyalioglu [25] (subsequently
improved to handle full, adaptive security by Gorbunov et al. [15]), which gives
1-ABE for the access policies expressed by arbitrary Boolean circuits from CPA-
secure encryption. This immediately yields the following result:

Corollary 1. If public-key (respectively, symmetric-key) encryption exists, then
there exist public-key (resp., symmetric-key) ABE schemes for access policies ex-
pressed by boolean circuits tolerating collusion of size at most q. The sizes of the
public parameters, secret keys, and ciphertexts in the resulting BC-ABE scheme
come from two sources: (1) the use of CPA-secure encryption to construct 1-ABE
(e.g., in [15, 25]) and (2) the use of 1-ABE to construct q-ABE in Theorem 1.
In particular, the only dependencies of these parameters on q come from The-
orem 1, since any 1-ABE construction from CPA-secure encryption is clearly
independent of q.

1.2 Comparison to Prior Work

We construct two schemes in this paper: a basic scheme in Section 4 that is easier
to analyze but whose bounds are slightly weaker than those in Theorem 1, and
then an improved scheme that fully meets the theorem. This section and Table 1
compare the parameters of our schemes with two related works: Dodis et al.’s
bounded-collusion identity-based encryption (IBE) scheme [10] and Gorbunov
et al.’s bounded-collusion ABE scheme [15].

Our basic scheme has asymptotic dependence on q that is roughly comparable
to the Dodis et al. [10] construction of bounded-collusion IBE, a weaker primitive
than ABE, from public-key encryption, while avoiding the need for cover-free sets
used by that construction. Specifically, our scheme has shorter secret keys but
larger ciphertexts; the asymptotic size of the public parameters is the same in
both constructions.

Our basic scheme is also a significant improvement over the bounded-collusion
ABE scheme of [15], in which both the public parameters and the ciphertext grow
as O(q4). Indeed, the secret key size in our basic scheme does not grow with the
collusion bound. This is a significant improvement allowing us to keep secret key
sizes short even when tolerating a high collusion bound. Also, the dependence
on q of the ciphertext size of our basic scheme matches that of the best known
constructions of bounded-collusion functional encryption (which implies ABE)
from lattice assumptions [1].
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DKXY [10] GVW [15] Basic scheme Improved scheme

Public Parameters O(q2λ) O(q4λ) O(q2λ) O
(

q2

log q
λ
)

Secret Keys O(qλ) O(q2λ) O(λ) O
(

1
log q

λ
)

Ciphertexts O(qλ) O(q4λ) O(q2λ) O
(

q2

log q
λ
)

Table 1. Comparison of bounded-collusion ABE schemes tolerating collusions of size
at most q (note: DKXY only provides IBE). Sizes are given in terms of number of
1-ABE keys or 1-ABE ciphertexts. Here λ is a security parameter.

Our improved scheme further reduces the size of public parameters, secret
keys, and ciphertexts each by a factor of log q. This leads to the somewhat
counterintuitive property that the size of secret keys decreases as the collusion
bound increases!

1.3 Our Techniques

Our main technique follows the same high-level approach taken by Gorbunov et
al. [15]. Specifically, during setup, N key pairs for a 1-ABE scheme are generated.
The secret keys become the master secret key of the BC-ABE scheme while
the public keys become the public parameters. Then, every BC-ABE secret key
consists of a subset of the secret keys. To encrypt a message m with an index
ind, the message is first secret-shared and then each share is encrypted under
ind using a different 1-ABE public key. To make this work, the subset of keys
included in a BC-ABE secret key and the secret sharing are chosen in such a way
that if f(ind) = 1 for the predicate f encoded in a secret key, then that key will
allow the recovery of sufficiently many shares of m so decryption will succeed.
However, any set of q keys not satisfying ind reveals no information about m.
In particular, such a set of keys cannot be combined to recover the appropriate
shares to reconstruct m.

In [15] this property is achieved by using a t-out-of-n secret sharing of the
message and then partitioning the secret keys in such a way that sets of keys
included in different BC-ABE secret keys have small pairwise intersections. Since
at least t key intersections are needed to recover the message (each intersection
allows the attacker to recover one share), this guarantees that a large number of
keys is needed.

Our basic scheme improves on this technique by (1) using an n-out-of-n secret
sharing of the message and encrypting each share under l independent 1-ABE
keys and then (2) for each BC-ABE secret key giving 1 out of the l possible
keys to recover each share to reduce the probability of key intersection. This
requires an adversary to be able to reconstruct all of the n top level shares by
getting enough intersections for each of them. We show that this approach allows
us to reduce the size of the public parameters and the ABE secret keys while
still guaranteeing resistance against q bounded-collusions with overwhelming
probability.
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Our improved scheme uses a multi-dimensional secret-sharing algorithm,
which has the properties that (1) there exist small sets of shares that suffice
to reconstruct the message and (2) such small sets of shares are rare, so for
shares chosen at random a large number of shares is needed to reconstruct the
message. By using multi-dimensional secret-sharing, the secret keys of our ABE
scheme only need to include keys allowing decryption of such a small set of
shares, whereas an adversary who only learns shares at random must recover a
large number of shares in order to reconstruct the message. This allows us to fur-
ther reduce the size of public parameters, keys, and ciphertexts by an additional
logarithmic factor in the collusion bound q.

1.4 Paper Organization

The rest of the paper is organized as follows. In Section 2, we provide more
details on related work. In Section 3, we give some necessary background and
define bounded-collusion ABE. In Section 4, we present our basic construction.
Then, in Section 5, we present our improved construction. Finally, in Section 6
we briefly discuss how to instantiate 1-ABE.

2 Related Work

Impossibility of unbounded collusion from generic assumptions.
Several prior works have aimed to understand the difficulty of building ABE
and related primitives from generic assumptions such as CPA-secure encryption.
Evidence that such constructions are unlikely was first given by Boneh et al. [6],
who showed that there is no black-box construction of IBE from CPA-secure
encryption or trapdoor permutations. This result was subsequently extended
by Katz and Yerukhimovich [21], who also ruled out constructions of ABE for
several classes of access policies. Finally, Goyal et al. [17] showed that for cer-
tain classes of access policies, ABE cannot be even constructed from the much
stronger assumption that IBE exists. Note that the latter two works prove im-
possibility of public-index predicate encryption, a construct that is equivalent to
ABE and that we will use in this paper as well (cf. Definition 3).

Bounded collusion constructions.
Our restriction to tolerating collusions of bounded size has been used before
to build ABE and related primitives from (somewhat) standard assumptions.
Early works [9, 10] showed how to construct bounded-collusion identity-based
encryption (IBE), a special case of ABE where the only formulas allowed are
equalities over the set of attributes, from standard public-key encryption. Later,
Goldwasser et al. [14] showed a more efficient construction of bounded-collusion
IBE if the underlying encryption scheme satisfied a key-homomorphism property
and had an associated hash-proof system. This latter requirement of hash-proof
systems was subsequently removed by Tessaro and Wilson [27].
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Going beyond IBE, Sahai and Seyalioglu [25] showed that standard public-
key secure encryption can be used to achieve 1-query security for functional
encryption, a powerful generalization of ABE. This construction was then lever-
aged and improved by Gorbunov et al. [15] to achieve bounded-collusion security
for functional encryption under the assumption that a low-depth pseudoran-
dom number generator exists. However, their construction can be used to realize
bounded-collusion ABE without this latter assumption.

Additionally, the bounded-collusion relaxation has also been used for sev-
eral constructions relying on stronger computational assumptions. For example,
Goldwasser et al. [13] show how to build a 1-key succinct functional encryption
scheme based on any fully-homomorphic encryption and attribute-based encryp-
tion for circuits, both of which can be realized from lattice assumptions. More
recently, Agrawal and Rosen [1] showed how to build a bounded-collusion func-
tional encryption scheme achieving online/offline encryption, allowing much of
the encryption procedure to be precomputed before the message is known, from a
specific lattice-based functional encryption scheme for inner product functions.

3 Definitions

In this section, we provide notation and definitions of the primitives we will use.

3.1 Preliminaries

For n ∈ N, we let [n] denote the set of integers {1, . . . , n}. Let negl denote a neg-
ligible function. Let ppt denote the class of algorithms that run in probabilistic
polynomial time. Additionally, we assume in this work that all sets are ordered.

We first define public- and symmetric-key encryption.

Definition 1 (Encryption scheme). A public-key (respectively, symmetric-
key) encryption scheme Σ for the message space M consist of three ppt algo-
rithms KeyGen, Enc, and Dec defined as follows.

– KeyGen(1λ) takes as input the unary representation of the security parameter
λ and outputs the public and private keys (pk, sk). (For a symmetric-key
encryption scheme, pk must be the empty string.)

– Enc(ek,m) takes as input an encryption key ek and a message m ∈ M and
outputs a ciphertext ct, where ek = pk (resp., ek = sk).

– Dec(sk, ct) takes as input the secret key sk and a ciphertext ct and outputs
either a message m ∈M or the distinguished symbol ⊥.

For correctness we require the following condition: for all λ and m ∈ M, if we
compute (pk, sk)← KeyGen(1λ) and ct← Enc(ek,m), then Dec(sk, ct) = m.

We use a standard notion of security against chosen plaintext attacks defined
in terms of a left-or-right oracle. For b ∈ {0, 1}, we define Encb(ek,m0,m1) =
Enc(ek,mb).
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Definition 2 (CPA-security for encryption). An encryption scheme Σ =
(KeyGen,Enc,Dec) is CPA-secure if for all valid ppt adversaries A,

|Pr[AEnc0(ek,·,·)(1λ, pk) = 1]− Pr[AEnc1(ek,·,·)(1λ, pk) = 1]| ≤ negl(λ),

where the probability is taken over the randomness of (pk, sk) ← KeyGen(1λ),
Enc, and A. An adversary A is valid if |m0| = |m1| for all Encb queries (m0,m1).

3.2 Attribute-Based Encryption with Bounded-Collusion Security

We now define attribute-based encryption (ABE) (also called predicate encryp-
tion with public index). This definition encompasses both ciphertext-policy ABE
and key-policy ABE.

Definition 3 (Attribute-based encryption scheme). A public-key, (respec-
tively, symmetric-key) attribute-based encryption scheme Π for a message space
M, an index space I, and a predicate space F consists of four ppt algorithms
(Setup,KeyGen,Enc,Dec) defined as follows.

– Setup(1λ, q) takes as input the unary representation of the security parameter
λ and (optionally) a collusion bound q, and outputs the master public and
secret keys (MPK,MSK). (For a symmetric-key attribute-based encryption
scheme, MPK must be the empty string.)

– KeyGen(MSK, f) takes as input the master secret key MSK and a predicate
f ∈ F , and outputs a secret key skf .

– Enc(EK,m, ind) takes as input an encryption key EK, a message m ∈ M,
and an index ind ∈ I, and outputs a ciphertext ct, where EK = MPK (resp.,
EK = MSK).

– Dec(skf , ct) takes as input a secret key skf and a ciphertext ct, and outputs
either a message m ∈M or the distinguished symbol ⊥.

For correctness we require the following: for all λ, q ∈ N, m ∈ M, ind ∈ I, and
f ∈ F such that f(ind) = 1, if we compute (MPK,MSK) ← Setup(1λ, q), skf ←
KeyGen(MSK, f), and ct← Enc(EK,m, ind), then we require Dec(skf , ct) = m.

We stress that in the above definition Setup takes the query bound q as a
parameter; therefore, MPK and MSK may depend on q.

We now define bounded-collusion security for attribute-based encryption.
Our definitions follow the functional encryption definitions of Brakerski and
Segev [7]. We define security in terms of left-or-right indistinguishability. For
b ∈ {0, 1}, we define Encb(EK, (m0,m1), ind) = Enc(EK,mb, ind).

Definition 4 (q-query security for ABE). An attribute-based encryption
scheme Π = (Setup,KeyGen,Enc,Dec) is q-query secure if for all valid ppt
adversaries A making at most q key queries,

AdvΠ,A,q(λ) = |Pr[AKeyGen(MSK,·),Enc0(EK,·,·)(1λ, q,MPK) = 1]

− Pr[AKeyGen(MSK,·),Enc1(EK,·,·)(1λ, q,MPK) = 1]| ≤ negl(λ).
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In the definition of advantage, the probabilities are taken over the randomness
of (MPK,MSK) ← Setup(1λ, q), KeyGen, Enc, and A. An adversary A is valid
if for all Encb queries ((m0,m1), ind), |m0| = |m1|; furthermore, if there exists
any KeyGen query f such that f(ind) = 1, then m0 = m1.

4 Basic BC-ABE Construction

We now present our basic bounded-collusion construction that builds a q-query
secure attribute-based encryption scheme from a 1-query secure attribute-based
encryption scheme.

For intuition, consider an encryption algorithm that encrypts the message
with its associated index many times under independent instances of a 1-query
attribute-based encryption scheme. Let the secret key for a predicate be gener-
ated as the secret key for that predicate for one of the 1-query schemes, chosen
at random. Then an authorized user (a user with a predicate satisfied by the
index) can decrypt the message using the 1-query scheme for which she has a
key. If two unauthorized users collude, as long as their keys are from different
instances of the 1-query ABE scheme, the 1-query security property suffices to
ensure that they cannot learn anything about the message.

However, this simple parallel encryption approach does not scale well. If
the total number of users exceeds the number of 1-query ABE instances, there
will necessarily be two users with keys from the same instance, exceeding the
collusion bound for that instance.

Instead, in our construction, we first additively secret-share the message,
then perform parallel encryptions as described above on each additive share.
Each user is given for each additive share a key from a random 1-query ABE
instance. This approach allows us to make a combinatorial argument about the
number of unauthorized colluders necessary to reconstruct the message with
non-negligible probability.

Note, however, that unlike the message, the index is not secret shared and
is included in each of the 1-query ABE ciphertexts. For this reason our con-
struction cannot be used to achieve q-query security for the stronger primitive
of predicate encryption with private index, even if the 1-query scheme has this
stronger property. Specifically, the index will be revealed any time an adversary
receives two keys for any of the component 1-query schemes, thus breaking index
privacy.

4.1 Construction

Let 1-ABE be a 1-query secure attribute-based encryption scheme with message
space M, index space I, and predicate space F ; we require that M have the
property that the set of elements of each length form a finite group, so that we
may perform additive secret sharing. Additionally, let ` and w be integers; we
will explain later how to set these parameters based on the security parameter
λ and the collusion bound q. We define the scheme q-ABE for message spaceM,
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`



w︷ ︸︸ ︷
sk1,1 sk1,2 · · · sk1,w
sk2,1 sk2,2 · · · sk2,w

...
. . .

...
sk`,1 sk`,2 · · · sk`,w


↓ ↓ ↓
z1 z2 · · · zw

Fig. 1. Overview of our basic construction. A user with predicate f ∈ F receives w
1-ABE secret keys, one from each column, where ski,j ← 1-ABE.KeyGen(MSKi,j , f). A
ciphertext for a message m contains `·w 1-ABE ciphertexts, formed by using each of the
` keys in the jth column, individually, to encrypt secret share zj , where m =

∑w
j=1 zj .

One key from each column is required for decryption.

index space I, and predicate space F formally below; we also refer readers to
Figure 1 for an informal visual depiction.

Setup(1λ, q): For each row i ∈ [`] and column j ∈ [w], independently sample
(MPKi,j ,MSKi,j) ← 1-ABE.Setup(1λ). Output MPK = {MPKi,j}i∈[`],j∈[w]

and MSK = {MSKi,j}i∈[`],j∈[w].

KeyGen(MSK, f ∈ F): Choose one cell from each column uniformly at random;

formally, choose a set {r1, . . . , rw}
R← [`]w. Next, for each column j ∈ [w],

set skrj ,j ← 1-ABE.KeyGen(MSKrj ,j , f). Output skf = {rj , skrj ,j}j∈[w].

Enc(EK,m ∈M, ind ∈ I): Perform the following steps:

1. Perform a w-of-w secret sharing of m; formally, choose z1, . . . , zw
R←M

uniformly such that
∑w
j=1 zj = m. (Note that due to the finite group

requirement described above, |zj | = |m| for all j.)
2. Compute the set of ciphertexts cti,j ← 1-ABE.Enc(EKi,j , zj , ind) for each

row i ∈ [`] and column j ∈ [w],
3. Output the concatenation of ` · w ciphertexts ct = {cti,j}i∈[`],j∈[w].

Dec(skf , ct): Perform the following steps:
1. Parse skf as {rj , skrj ,j}j∈[w] and parse ct as {cti,j}i∈[`],j∈[w].
2. For each column j ∈ [w], let zj ← 1-ABE.Dec(skrj ,j , ctrj ,j).
3. If any zj = ⊥, then output ⊥. Otherwise, output m =

∑w
j=1 zj .

Correctness. Suppose that a user receives a ciphertext ct = Enc(EK,m, ind)
and she possesses a secret key sk← KeyGen(MSK, f) for a predicate f such that
f(ind) = 1. For each column j ∈ [w], the user possesses some secret key skrj ,j ; by
the correctness of the underlying 1-ABE scheme, this key suffices to decrypt the
message zj contained in the ciphertext 1-ABE.Enc(EKi,j , zj , ind). Finally, from
all of the secret shares, the user may recover the original message m =

∑w
j=1 zj .

As the scheme is written, repeated key queries would count as separate
queries towards the bound q. In order to avoid this, the values {r1, . . . , rw}
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in KeyGen can be chosen pseudorandomly based on the predicate f so that the
same key is issued for repeated key queries. This conversion is straightforward
and we omit the details.

4.2 Setting the Parameters

The following combinatorial lemma provides a good setting of the parameters `
and w. We first define two probabilistic events about any set of up to q key queries
made to the q-ABE scheme. Let Badj denote the event that there exists a row
i ∈ [`] such that the key query responses include two or more keys corresponding
to MSKi,j . Additionally, let Bad denote the event that Badj occurs for all columns
j ∈ [w].

Lemma 1. Let the q-ABE scheme be instantiated with ` = q2 and w = λ, and
suppose at most q KeyGen queries are made. Then Pr[Bad] ≤ negl(λ).

Proof. Consider a single column j ∈ [w]. Note that each skf contains exactly
one 1-ABE key skrj ,j for that value of j, where rj is chosen randomly. Thus, the
probability that q such values are all distinct is

1 ·
(

1− 1

`

)
·
(

1− 2

`

)
· . . . ·

(
1− q − 1

`

)
≥
(

1− q − 1

`

)q
.

Thus, for a given column j, the event Badj holds with probability at most (1−
(1− q−1

` )q). The probability of Badj is independent for each j, so the probability

that Badj holds for all w columns is at most (1 − (1 − q−1
` )q)w. Letting ` = q2

and w = λ, we find that Bad occurs with probability at most(
1−

(
1− q − 1

q2

)q)λ
=

(
1−

(
1− 1

q
+

1

q2

)q)λ
<
(
1− e−1

)λ ≤ negl(λ),

where the first inequality follows from the fact that (1− 1
x + 1

x2 )x > 1/e for all
x > 0.

Setting ` and w as indicated in Lemma 1, we arrive at the following perfor-
mance characteristics for our q-ABE construction.

– MPK and MSK consist of O(q2λ) 1-ABE keys.
– The ciphertext size is O(q2λ) 1-ABE ciphertexts.
– Each decryption key has O(λ) 1-ABE secret keys.

4.3 Security

We now prove that the q-ABE scheme defined in Section 4.1 is q-query secure if
the underlying 1-ABE scheme is 1-query secure.
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Theorem 2. Let 1-ABE be any public-key (respectively, symmetric-key) ABE
scheme that is 1-query secure. For any valid ppt ABE adversary A for the
resulting public-key (resp., symmetric-key) scheme q-ABE making at most q key
queries, there exists a valid ppt ABE adversary B for 1-ABE making at most 1
key query, with advantage Adv1-ABE,B,1(λ) ≥ 1

q2λAdvq-ABE,A,q(λ)− negl(λ).

Proof. Let A be an adversary against our q-ABE construction that makes at
most q key queries. We begin with the observation that the event Bad (and
also all Badj events) depends only on the randomness tape of q-ABE.KeyGen
(which chooses the random values rj), and not on the values fed in as input.
For the rest of this proof, we restrict KeyGen only to use randomness tapes that
will not lead to the event Bad within the first q key oracle queries, so that in
particular adversary A never causes the event Bad. Denote A’s advantage in this
modified security game as Adv′q-ABE,A,q. Since Pr[Bad] is negligible by Lemma 1,
our restriction causes at most negligible change to our distinguishing advantage
by a standard reasoning up to failure argument:

Adv′q-ABE,A,q(λ) ≥ Advq-ABE,A,q(λ)− 2 · Pr[Bad]. (1)

Given some column j∗ ∈ [w], we consider a series of hybrid experiments

Hj
∗

0 ,H
j∗

1 , . . . ,H
j∗

` . Each experiment Hj
∗

k is defined to use the same Setup and
KeyGen as the modified q-ABE game, but it responds to Encb oracle queries
((m0,m1), ind) by forming the ciphertext in a special way:

Choose zj uniformly at random for all j ∈ [w], j 6= j∗. Let zj∗,0 = m0 −∑
j 6=j∗ zj and zj∗,1 = m1 −

∑
j 6=j∗ zj .

– For j 6= j∗, for all i let cti,j ← 1-ABE.Enc(EKi,j , zj , ind).
– For i > k, let cti,j∗ ← 1-ABE.Enc(EKi,j∗ , zj∗,0, ind).
– For i ≤ k, let cti,j∗ ← 1-ABE.Enc(EKi,j∗ , zj∗,1, ind).

Finally, the modified Encb oracle outputs ct = {cti,j}i∈[`],j∈[w].

Note that for all j∗, Hj
∗

0 corresponds exactly to the modified ABE security

game with the encryption oracle being Enc0, and Hj
∗

` corresponds exactly to
the modified ABE security game with the encryption oracle being Enc1. Let
ε = Adv′q-ABE,A,q(λ), and let pk denote the probability that A outputs 1 in

experiment Hj
∗

k . Then ε = |p` − p0| ≤
∑`
k=1 |pk − pk−1|, so there must exist

some k such that |pk − pk−1| ≥ ε/`.
We now construct an adversary B for 1-ABE that breaks 1-query security. B

first samples j∗ ∈ [w] uniformly at random, and chooses row i∗ ∈ [`] such that
|pi∗ − pi∗−1| ≥ ε/` for the chosen j∗. B then plays its game and interacts with
A as follows.

Setup. B sets MPKi∗,j∗ as the public key it receives from its 1-ABE game. For all
i, j such that i 6= i∗ or j 6= j∗, B sets (MPKi,j ,MSKi,j)← 1-ABE.Setup(1λ).

Simulating the KeyGen oracle. When A makes a query to KeyGen for pred-
icate f , B honestly runs q-ABE.KeyGen, with two exceptions. First, if the
value rj∗ randomly chosen within q-ABE.KeyGen returns the value i∗, then
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B queries f to its 1-ABE KeyGen oracle and sets ski∗,j∗ to be the result.
Second, if the event Badj∗ occurs, then B aborts execution of A and outputs
a random guess in its game.

Simulating the Encb oracle. B responds to any encryption oracle query by
A of the form ((m0,m1), ind) as follows. First, B chooses zj uniformly at
random for all j ∈ [w], j 6= j∗. Let zj∗,0 = m0 −

∑
j 6=j∗ zj and zj∗,1 =

m1 −
∑
j 6=j∗ zj . B constructs the oracle response as follows:

– For j 6= j∗, for all i let cti,j ← 1-ABE.Enc(EKi,j , zj , ind).
– For i > i∗, let cti,j∗ ← 1-ABE.Enc(EKi,j∗ , zj∗,0, ind).
– For i < i∗, let cti,j∗ ← 1-ABE.Enc(EKi,j∗ , zj∗,1, ind).
– Query ((zj∗,0, zj∗,1), ind) to the Encb oracle of the 1-ABE game, and set
cti∗,j∗ to be the result.
Output ct = {cti,j}i∈[`],j∈[w].

Guess. B outputs the same guess as A.

We argue that since A is a valid ABE adversary, B is also a valid ABE
adversary. Since A is valid, for all ((m0,m1), ind) queried to Encb and f queried
to KeyGen, we have that |m0| = |m1| and that if f(ind) = 1, then m0 = m1. It
follows that B is a valid ABE adversary: all shares are generated to be the same
length as the secret-shared message, so |zj∗,0| = |zj∗,1|. The same f and ind are
passed through to B’s game, so if f(ind) = 1 in B’s queries, then f(ind) = 1 in
A’s queries and m0 = m1, which means that the same shares are generated for
the two messages, i.e., zj∗,0 = zj∗,1. Furthermore, by construction, B queries its
1-ABE KeyGen oracle at most once.

Next, we return to the assumption from the beginning of this proof: by con-
struction of the KeyGen oracle, the event Bad cannot occur for A, i.e., there
exists at least one column that is not bad. As a result, with probability at least
1/w the event Badj∗ does not occur. Additionally, because the event Badj∗ is
independent of the specific calls made to KeyGen, it is equally likely to occur in

experiments Hj
∗

i∗−1 and Hj
∗

i∗ .
If the event Badj∗ occurs, then B has no distinguishing advantage in its

game by construction. Conversely, if the event Badj∗ does not occur, then B’s
simulation of all oracles is faithful since B does not abort. Furthermore, when

b = 0, B perfectly simulates Hj
∗

i∗−1, and when b = 1, B perfectly simulates Hj
∗

i∗ .
Putting everything together, we have

Adv1-ABE,B,1(λ) ≥ 1

w
· |pi∗ − pi∗−1| ≥

1

`w
Adv′q-ABE,A,q(λ),

which, combined with inequality (1) and using the values of ` and w from Lemma
1, completes the proof.

5 Improved BC-ABE Construction

We can improve the asymptotic parameters of the above construction by per-
forming another level of secret-sharing of each zj . Instead of simply performing
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` independent 1-ABE encryptions, we can reshare the zj values once more, and
then encrypt those shares using the 1-ABE scheme. If this new resharing were
a simple linear scheme it would be equivalent to the first construction; instead,
we will arrange these shares in a multidimensional structure.

This multidimensional secret-sharing will be created to satisfy the following
two properties. First, there exist small sets of shares that are able to reconstruct.
Second, such sets of shares are rare, such that any party who only possesses the
ability to obtain random shares will need to collect many shares to reconstruct.

When we use the multidimensional secret-sharing inside of our BC-ABE con-
struction, the small sets of shares will correspond to the secret keys, yielding very
short secret keys. Intuitively, security will be achieved by ensuring that the set of
shares revealed when the adversary exceeds the collusion bound of the underlying
1-ABE schemes is effectively distributed randomly.

5.1 Multidimensional Secret-Sharing

In this section, we provide a multidimensional secret-sharing system. While we
only use the scheme toward an improved BC-ABE construction, we codify it
separately in this section because it may be of independent interest.

Definition 5 (Multidimensional secret-sharing). Given a message y, we
construct a multidimensional secret sharing scheme MultiSSs,d(y) that outputs
sd shares σ[1,1,...,1], . . . , σ[s,s,...,s] produced as follows.

1. Choose s · d “intermediate” shares ρ1,1, . . . , ρd,s uniformly at random such
that

∑
h∈[d],i∈[s] ρh,i = y. That is, the ρ’s form a sd-of-sd secret sharing of

y.
2. For each v ∈ [s]d, form the share σv =

∑d
i=1 ρi,v[i].

We can visualize the sharing in terms of a d-dimensional hypercube of side
length s, where the shares σv are points whose coordinates are given by their sub-
script v. Each value ρh,i influences a (d−1)-dimensional slice of the hypercube—
namely, it is a summand in the computation of the σ values whose h-th coordi-
nate equals i. See Figure 2 for a graphical representation of a three-dimensional
secret-sharing scheme (i.e., d = 3).

We observe that a carefully-chosen set of s shares suffice to recover the orig-
inal message y.

Definition 6. Let V = {v1, . . . ,v|V |} be a set containing vectors in [s]d. We
call this set spanning if it has the property that for each dimension h ∈ [d], the
list (v1[h], . . . ,v|V |[h]) contains all elements in [s].

If |V | = s, then we call this set minimally spanning. In this case, the list
(v1[h], . . . ,v|V |[h]) is a permutation of [s].

Lemma 2 (Correctness of MultiSS). Let {σv}v∈[s]d ← MultiSSs,d(y) be a
multidimensional secret-sharing of y, and let V be any minimally spanning set.
Then, the message y may be recovered from the s shares {σv}v∈V .
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σ[1,s,s] σ[s,s,s]

ρ2,s σ[1,s,1] σ[s,s,1]

σ[1,1,s] σ[s,1,s] ρ3,s

ρ2,2 σ[1,2,1] σ[1,1,2] ρ3,2

ρ2,1 σ[1,1,1] σ[2,1,1] σ[s,1,1] ρ3,1

ρ1,1 ρ1,2 ρ1,s

Fig. 2. Visualization of a three-dimensional secret-sharing scheme MultiSSs,3(y). The
input value y is additively secret-shared into 3s values ρ1,1, . . . , ρ3,s. Each intermediate
value ρ contributes to a 2-dimensional planar face of the 3-dimensional cube in which
one of the dimensions is fixed to a given value (as specified by the indices to ρ).
Concretely, we construct each of the s3 shares as σ[t,u,v] = ρ1,t + ρ2,u + ρ3,v.

Proof. The sum
∑

v∈V σv includes each ρh,i term exactly once, so it sums to y.

Security provided by a multidimensional secret-sharing of y is captured in
the following lemma.

Lemma 3 (Security of MultiSS). Let {σv}v∈[s]d ← MultiSSs,d(y) be a multi-

dimensional secret-sharing of y, and let V ∗ ⊆ [s]d be any set of vectors that is
not spanning. Then, the set of shares {σv∗ : v∗ ∈ V ∗} information-theoretically
reveals no information about y.

Proof. Because v∗ is not spanning, there exist a dimension h ∈ [d] and value
i ∈ [s] such that v∗[h] 6= i for all vectors v∗ ∈ V ∗. Thus, none of the shares
{σv∗ : v∗ ∈ V ∗} depend on the “intermediate” share ρh,i, implying that {σv∗}
reveals no information about y.

5.2 Construction

This construction uses similar ideas to the basic construction, with the addition
of multidimensional secret-sharing. Essentially,

– The message m is additively secret-shared into m =
∑
j zj , as before.

– Each of the shares zj is multidimensionally secret-shared to form a series of
sd shares denoted by σjv for v ∈ [s]d.
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– Each σjv share is encrypted using a 1-query ABE scheme in a black-box
manner, producing a total of sdw resulting 1-ABE ciphertexts.

Users are given a set of keys that enable them to recover a specifically-crafted
subset of the shares. If the predicate is satisfied by the index, that subset will be
sufficient to reconstruct the original value at each stage of the sharing, ultimately
recovering the message. On the other hand, the multidimensional sharing step
ensures that a random subset of the shares will likely need to be very large in
order to recover the message. We thus gain additional collusion resistance, since
the locations where collisions occur are effectively random.

Formally, let 1-ABE be a 1-query ABE scheme whose message space M is a
finite group represented additively; we again require that M have the property
that the set of elements of each length form a finite group. Our improved q-
query secure CP-ABE scheme q-ABE∗ is defined below; it uses sdw independent
instances of the 1-ABE scheme, where s(λ), d(λ), and w(λ) are parameters that
are specified later in Section 5.3.

Setup(1λ, q): For v ∈ [s]d and j ∈ [w], let (MPKjv,MSKjv)← 1-ABE.Setup(1λ).

Output MPK = {MPKjv}v∈[s]d,j∈[w] and MSK = {MSKjv}v∈[s]d,j∈[w].

KeyGen(MSK, f ∈ F): For each j ∈ [w], choose a set of d permutations of [s]
uniformly at random. Transpose them to produce a minimally spanning set
of s vectors V j . Sample a 1-ABE key skjv ← 1-ABE.KeyGen(MSKjv, f) for
each j ∈ [w] and v ∈ V j . Finally, output skf = {V j , {skjv}v∈V j}j∈[w].

Enc(EK,m ∈M, ind ∈ I): Perform the following steps:

1. Perform a w-of-w additive secret-sharing of m to get shares z1, . . . , zw
such that

∑
j∈[w] zj = m.

2. Multidimensionally secret-share each zj with d dimensions and s values
in each dimension to create sd shares {σjv}v∈[s]d ← MultiSSs,d(zj).

3. For each v ∈ [s]d, j ∈ [w], set ctjv ← 1-ABE.Enc(EKjv, σ
j
v, ind).

4. Output ct = {ctjv}v∈[s]d,j∈[w].

Dec(skf , ct): Perform the following steps:

1. Parse skf as {V j , {skjv}v∈V j}j∈[w] and parse ct as {ctjv}v∈[s]d,j∈[w].

2. For each j ∈ [w] and each v ∈ V j , let σjv ← 1-ABE.Dec(skjv, ct
j
v).

3. Output m =
∑
j∈[w],v∈V j σjv.

Correctness. Suppose that a user receives a ciphertext ct = Enc(EK,m, ind) and
she possesses a secret key sk ← KeyGen(MSK, f) for a predicate f such that
f(ind) = 1. By the correctness of the underlying 1-ABE scheme, each 1-ABE.Dec
in step 2 of q-ABE∗.Dec successfully returns σjv. For each j ∈ [w], we may
reconstruct zj =

∑
v∈V j σv since KeyGen produces a minimally spanning set V j

(cf. Lemma 2), and the sum of all zj ’s equals the original message m due to the
w-of-w additive secret sharing.
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5.3 Setting the Parameters

The combinatorial lemma in this section provides a good setting of the param-
eters s, d, and w. Recall that each key query yields 1-ABE keys for a minimally
spanning set of vectors in each coordinate j ∈ [w]. Intuitively, we must choose s
and d to be large enough that there are several minimally spanning sets, so that
KeyGen rarely chooses the same vector twice. Specifically, the set of replicated
vectors across q key queries must not be spanning.

Formally, fix some index j ∈ [w] and consider A’s ability to learn the jth

secret share zj =
∑
h∈[d],i∈[s] ρ

j
h,i. The adversary Amakes up to q queries, each of

which returns s keys skjv for vectors v in a randomly-chosen minimally spanning
set V j (independent of the index queried). If A ever receives two keys for the
same v, then we no longer have any security against σv, and therefore we assume
the worst-case outcome that all of the shares ρjh,i with v[h] = i have been

compromised. Let V̄ j denote the set of all vectors that are returned in two or
more key queries.

Let Goodj denote the event that there exists some ρjh,i that remains uncom-

promised after A’s queries. Observe that this is precisely the event that V̄ j is
not spanning! In this case, the additive secret sharing protects zj and thus m as
well. Finally, let Good denote the event that there exists some j ∈ [w] for which
Goodj holds.

Lemma 4. Let s be any constant, and instantiate the q-ABE∗ scheme with d =
d2 logs q+ 1e and w = d λd·se. For any adversary A who makes at most q KeyGen
queries, the event Good holds with overwhelming probability in λ.

Proof. First, consider a fixed h ∈ [d], i ∈ [s], and j ∈ [w]. We consider A’s
ability to learn ρjh,i. By construction, each of A’s key queries yields exactly

one 1-ABE key skjv where v is randomly chosen subject to the constraint that
v[h] = i. The probability that all of these vectors v are distinct (and thus ρjh,i
is uncompromised) is therefore

1×
(

1− 1

sd−1

)
×
(

1− 2

sd−1

)
× · · · ×

(
1− q − 1

sd−1

)
≥
(

1− q − 1

sd−1

)q
.

This probability holds independently for all h ∈ [d], i ∈ [s], and j ∈ [w]. Hence,
Pr[Good] ≥ 1− [1− (1− q−1

sd−1 )q]sdw.
Next, if we instantiate s, d, and w with the values provided in the lemma,

we find that 1− Pr[Good] is negligible:[
1−

(
1− q − 1

sd−1

)q]sdw
≤
[
1−

(
1− q − 1

q2

)q]λ
< (1− e−1)λ = negl(λ).

We list below the key and ciphertext lengths produced by our construction,
when instantiated with the parameters specified in Lemma 4.

– The MPK and MSK consist of sd · w = O( q
2λ

log q ) 1-ABE public keys.

– A secret key consists of s · w = O( λ
log q ) 1-ABE keys.

– A single ciphertext consists of sd · w = O( q
2λ

log q ) 1-ABE ciphertexts.
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5.4 Security

We now prove that the q-ABE∗ scheme defined above is q-query secure if the
underlying 1-ABE scheme is 1-query secure.

Theorem 1 (Formal). Let 1-ABE be any public-key (respectively, symmetric-
key) ABE scheme that is 1-query secure. For any valid ppt adversary A for
the resulting public-key (resp., symmetric-key) q-ABE∗ construction instanti-
ated with the parameters given in Lemma 4, there exists a valid ppt adversary
B for 1-ABE making at most 1 key query, with advantage Adv1-ABE,B,1(λ) ≥
1
q2λAdvq-ABE∗,A,q(λ)− negl(λ).

Proof (sketch). Here, we provide a high-level description of the reduction to the
security of 1-ABE. The details mostly follow the same pattern as the proof of
Theorem 2, so here we highlight the differences. Lemma 4 provides the reasoning
up to failure argument analogous to that of Lemma 1.

Recall that in the proof of Theorem 2 we change a valid encryption of m0 into
a valid encryption of m1 by changing one of the additive shares (zj values) of the
final message. Since this value is encrypted using the underlying 1-ABE scheme `
times, we perform this change via a sequence of hybrids. Our reduction decreases
the advantage of the 1-ABE adversary by a factor of ` due to the selection of a
hybrid step and a factor of w due to the selection of a secret share zj∗ to target.

In the q-ABE∗ construction, note that the message is effectively additively
shared among sdw different values ρjh,i. We can thus change an encryption of

m0 into an encryption of m1 by changing a single one of the ρjh,i values. In this

case, this value is a summand in sd−1 of the σ values that are encrypted using
the underlying 1-ABE scheme (specifically, σjv where v[h] = i).

We thus require a hybrid step to change each of these encryptions to an
encryption of a new value reflecting the changed ρjh,i; the proof is otherwise the

same. The advantage of the 1-ABE adversary decreases by a factor of sd−1 due
to the selection of a hybrid step and a factor of sdw due to the selection of ρjh,i;

we omit the details. Thus, Adv1-ABE,B,1(λ) ≥ 1
sddw

Adv∗q-ABE∗,A,q(λ) − negl(λ),
and instantiating this formula with the parameters from Lemma 4 completes
the proof.

6 Instantiating 1-ABE

Thus far, we have presented two schemes for transforming any 1-ABE scheme
into a q-ABE scheme. To obtain a construction of bounded-collusion ABE from
CPA-secure encryption, we need to instantiate 1-ABE from CPA-secure encryp-
tion. To do so, we can use the construction of Gorbunov et al. [15] and Sahai-
Seyalioglu [25] for 1-query-secure functional encryption, restricting its function-
ality to that of attribute-based encryption.

In this section, we briefly sketch the resulting 1-ABE scheme. We assume
that it has predicates describable using n bits, that is F ⊆ {0, 1}n. Note that



19

the 1-FE from Gorbunov et al. [15] and Sahai-Seyalioglu [25] uses randomized
encodings [3,20], which can be instantiated using garbled circuits. For simplicity,
we will use the language of garbled circuits in this section. Given a CPA-secure
encryption scheme Σ, the 1-ABE scheme operates as follows.

Setup(1λ): Generate 2n key pairs for the public-key encryption scheme Σ to get
(pki,0, ski,0) and (pki,1, ski,1) for i ∈ [n]. Output MPK ← {pki,b}i∈[n],b∈{0,1}
and MSK← {ski,b}i∈[n],b∈{0,1}

KeyGen(MSK, f): Let f [i] denote the i-th bit of f for i ∈ [n]. Output skf ←
{ski,f [i]}i∈[n].

Enc(MPK,M, ind): Let UM,ind(f) be a universal circuit that takes a predicate
f ∈ {0, 1}n and outputs M if f(ind) = 1 and 0 otherwise. Build a garbled
circuit for UM,ind. Encrypt the two labels for each wire corresponding to
the predicate f : for the i-th bit of f , encrypt the 0-label under pki,0 and
the 1-label under pki,1. Output the garbled circuit and the encrypted wire
labels.

Dec(skf , ct): Use skf to decrypt the wire labels corresponding to f . Evaluate
the garbled circuit and output the result.

As Sahai and Seyalioglu [25] show, the above scheme achieves selective se-
curity for one query. Gorbunov et al. [15] show how to modify this scheme to
achieve adaptive security by using a variant of non-committing encryption [8].
This increases the number of underlying PKE components of the public parame-
ters, keys, and the label encryptions by a factor of O(λ) due to having to encrypt
λ-bit long messages.

Thus, for a predicate description of size n and using a universal circuit U ,
the 1-ABE scheme has the following parameters:

– The public parameters consist of O(nλ) PKE public keys.
– Secret keys consist of O(nλ) PKE secret keys.
– Ciphertexts consist of O(|U |λ) bits for the garbled gates and O(nλ) PKE

ciphertexts for the encrypted wire labels.

Putting this construction together with the parameters of our improved
transformation from any 1-ABE scheme to a q-ABE scheme, we arrive at the
following result that crystallizes Corollary 1.

Corollary 2. If public-key (respectively, symmetric-key) CPA-secure encryp-
tion exists, then there exists a public-key (resp., symmetric-key) q-query secure
ABE scheme for predicates that are expressible using n bits and can be evalu-
ated by a universal circuit U with the following characteristics: public parameters

(resp., MSK) consisting of O( q2

log qnλ
2) PKE public keys (resp., secret keys), se-

cret keys consisting of O( n
log qλ

2) PKE secret keys, and ciphertexts consisting of

O( q2

log q |U |λ
2) bits plus O( q2

log qnλ
2) PKE ciphertexts.
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