
Extended Tower Number Field Sieve with
Application to Finite Fields of Arbitrary

Composite Extension Degree

Taechan Kim1 and Jinhyuck Jeong2

1 NTT Secure Platform Laboratories, Tokyo, Japan
taechan.kim@lab.ntt.co.jp

2 Seoul National University, Seoul, Korea
wlsyrlekd@snu.ac.kr

Abstract. We propose a generalization of exTNFS algorithm recently
introduced by Kim and Barbulescu (CRYPTO 2016). The algorithm,
exTNFS, is a state-of-the-art algorithm for discrete logarithm in Fpn in
the medium prime case, but it only applies when n = ηκ is a composite
with nontrivial factors η and κ such that gcd(η, κ) = 1. Our generalization,
however, shows that exTNFS algorithm can be also adapted to the setting
with an arbitrary composite n maintaining its best asymptotic complexity.
We show that one can compute a discrete logarithm in medium case in
the running time of Lpn(1/3, 3

√
48/9) (resp. Lpn(1/3, 1.71) if multiple

number fields are used), where n is an arbitrary composite. This should be
compared with a recent variant by Sarkar and Singh (Asiacrypt 2016) that
has the fastest running time of Lpn(1/3, 3

√
64/9) (resp. Lpn(1/3, 1.88))

when n is a power of prime 2. When p is of special form, the complexity
is further reduced to Lpn(1/3, 3

√
32/9). On the practical side, we empha-

size that the keysize of pairing-based cryptosystems should be updated
following to our algorithm if the embedding degree n remains composite.

Keywords: Discrete Logarithm Problem; Number Field Sieve; Finite
Fields; Cryptanalysis

1 Introduction

Discrete logarithm problem (DLP) over a multiplicative subgroup of finite fields
FQ, Q = pn, gathers its particular interest due to its prime importance in pairing-
based cryptography. Over a generic group, the best known algorithm of the DLP
takes exponential running time in the bitsize of the group order. However, in
the case for the multiplicative group of finite fields one can exploit a special
algebraic structure of the group to design better algorithms, where the DLP can
be solved much more efficiently than in exponential time. For example, when
the characteristic p is small compared to the extension degree n, the best known
algorithms have quasi-polynomial time complexity [3,11].

Recall the usual LQ-notation,

LQ(`, c) = exp
(
(c+ o(1))(logQ)`(log logQ)1−`

)
,

for some constants 0 ≤ ` ≤ 1 and c > 0. We call the characteristic p = LQ(`p, cp)
medium when 1/3 < `p < 2/3 and large when 2/3 < `p ≤ 1. We say that a field
Fpn is in the boundary case when `p = 2/3.

For medium and large characteristic, all the best known attacks are variants
of the number field sieve (NFS) algorithm. Initially used for factoring, NFS was
rapidly introduced in DLP to target prime fields [10,23]. It was about a decade
later by Schirokauer [24] that NFS was adapted to target non-prime fields Fpn
with n > 1. This is known today as tower number field sieve (TNFS) [4]. On the
other hand, an approach by Joux et al. [14], which we denote by JLSV, was on a
main stream of recent improvements on DLP over medium and large characteristic
case. JLSV’s idea is similar to the variant used to target prime fields, except
the step called polynomial selection. This polynomial selection method was later
supplemented with generalized Joux-Lercier (GJL) method [18,2], Conjugation
(Conj) method [2], and Sarkar-Singh (SS) method [22] leading improvements
on the complexity of the NFS algorithm. However, in all these algorithms the
complexity for the medium prime case is slightly larger than that of large prime
case. Moreover there was an anomaly that the best complexity was obtained in
the boundary case, `p = 2/3.

Finally, in a recent breakthrough by Kim and Barbulescu [17], they obtained
an algorithm, called exTNFS, of better complexity for the medium prime case
than in the large prime case. Although this approach only applies to fields of
extension degree n where n = ηκ has factors η, κ > 1 such that gcd(η, κ) = 1,
it was enough to frighten pairing-based community since a number of popular
pairing-friendly curves, such as Barreto-Naehrig curve [7], are in the category
that exTNFS applies.

Then one might ask a question whether transitioning into pairing-friendly
curves with embedding degree n, a prime power, would be immune to this recent
attack by Kim and Barbulescu. In practice, pairings with embedding degree of a
prime power, such as Kachisa-Schafer-Scott curve with embedding degree 16 [16]
or Barreto-Lynn-Scott curve with embedding degree 27 [6], were considered to
be suitable for protocols in which products of pairings play a major part [25].
Unfortunately, our answer is also negative to use such pairings: we show that our
algorithm has the same complexity as exTNFS algorithm for any composite n, so
the keysize of the pairing-based cryptosystems should be also updated according
to our algorithm whenever the embedding degree is composite.

Related works When the extension degree n, which is composite, cannot
be factored into relatively prime factors (for example, n is a prime power),
the best known attacks for the medium prime case still had the complexity
LQ
(
1/3, 3

√
96/9

)
until Sarkar and Singh proposed an algorithm [20] of the best

complexity LQ
(
1/3, 3

√
64/9

)
. Note that, however, this is still slightly larger than

the best complexity of Kim-Barbulescu’s exTNFS. Recently, soon after a preprint
of our paper [13] has been published, Sarkar and Singh proposed an algorithm
called exTNFS-D [21]. Their algorithm has the best complexity as same as our
new algorithm, but it provides a wider range of finite fields for which the algorithm

2

Table 1: The complexity of each algorithm. Each cell in the second indicates c if
the complexity is LQ(1/3, (c/9)

1
3) when p = LQ(`p), 1/3 < `p < 2/3.

Method
complexity

in the medium case
conditions on n

NFS-(Conj and GJL) [2] 96 n: any integers
exTNFS-C [20] ≥ 641 n = 2i for some i > 1

exTNFS-KimBar [17] ≥ 481 n = ηκ (η, κ 6= 1), gcd(η, κ) = 1
exTNFS-D [21] ≥ 481 n: any composite

exTNFS-new (this article)
≥ 481

≤ 54.28
n: any composite

n = 2i for some i > 1

Table 2: The complexity of each algorithm using multiple number fields. Each
cell in the second column indicates an approximation of c if the complexity is
LQ(1/3, (c/9)

1
3) when p = LQ(`p), 1/3 < `p < 2/3.

Method
complexity

in the medium case
conditions on n

MNFS-(Conj and GJL) [19] 89.45 n: any integers
MexTNFS-C [20] ≥ 61.291 n = 2i for some i > 1

MexTNFS-KimBar [17] ≥ 45.001 n = ηκ (η, κ 6= 1), gcd(η, κ) = 1
MexTNFS-D [21] ≥ 45.001 n: any composite

MexTNFS-new (this article)
≥ 45.001

≤ 59.80
≤ 50.76

n: any composite
n = 2i3j for some i+ j > 1

n = 2i for some i > 1

achieves a lower complexity than the previous algorithms. One can see Table 1
for a comparison of these previous algorithms on the asymptotic complexity.

All currently known variants of NFS admit variants with multiple number
fields (MNFS) which have a slightly better asymptotic complexity. The complexity
of these variants is shown in Table 2.

When the characteristic p has a special form, as it is the case for fields in
pairing-based cryptosystems, one can further accelerate NFS algorithms using
variants called special number field sieve (SNFS). In Table 3 we list asymptotic
complexity of each algorithm. When n is a prime power, the algorithm suggested
by Joux and Pierrot had been the best algorithm before our algorithm.

1 The best complexity is obtained when n has a factor of the appropriate size (refer to
each paper for details).

3

Table 3: The complexity of each algorithm used when the characteristic has a
special form (SNFS). Each cell indicates an approximation of c if the complexity

is LQ(1/3, (c/9)
1
3) when p = LQ(`p), 1/3 < `p < 2/3.

Method
complexity

in the medium case
conditions on n

SNFS-JP [15] 64 n: any integers
SexTNFS-KimBar [17] 32 n = ηκ (η, κ 6= 1), gcd(η, κ) = 1

SexTNFS-new (this article) 32 n: any composite

Recently, Guillevic, Morain, and Thomé [12] observed that Kim-Barbulescu’s
technique can be adapted to target the fields of extension degree 4. However,
they did not pursue the idea to analyze further its complexity.

Our contributions We propose an algorithm that is a state-of-the-art algorithm
for the DLP over finite fields of composite extension degrees in the medium prime
case as far as we aware. We remark that our algorithm applies to target fields
of arbitrary composite extension degree n. If n can be written as n = ηκ for
some η and κ with gcd(η, κ) = 1, our algorithm has the same complexity as
Kim-Barbulescu’s exTNFS [17]. However, our algorithm allows to choose factors
η and κ freely from the co-primality condition, so we have more choices for the
pair (η, κ). This helps us to find a better (η, κ) that practically yields a better
performance, although the asymptotic complexity is unchanged.

If n is a prime power, the complexity of our algorithm is less than that of
Sarkar-Singh’s variant [20], a currently best-known algorithm for this case.

When n is a b-smooth integer for an integer b ≤ 4, we obtain an upper bound
for the asymptotic complexity of our algorithm. For example, when n is a power
of 2, our algorithm always has the asymptotic complexity less than LQ(1/3, 1.82).
If multiple NFS variants are used, the complexity can always be lowered to
LQ(1/3, c), c ≤ 1.88, when n is a 4-smooth composite integer, and LQ(1/3, c),
c ≤ 1.78, when n is a power of 2.

When p is of special form, pairings with embedding degree such as n = 4, 9, 16
was not affected by Kim-Barbulescu’s algorithm, however, due to our variant of
SNFS, the keysize of such pairings should be also updated following to our new
complexity.

Our main idea. Our main idea comes from a simple modification during the
polynomial selection in exTNFS algorithm. In exTNFS algorithm, for a field of a
composite extension degree, one represents it as Fpn = F(pη)κ , where Fpη = R/pR
and R = Z[t]/h(t) for an irreducible polynomial h of degree η, and selects
polynomials f and g such that they have a common irreducible factor k of degree
κ modulo p, where F(pη)κ = Fpη [x]/k(x).

4

In Kim-Barbulescu’s exTNFS, f and g are chosen so that they have coefficients
in Z, therefore k has its coefficients in Fp. Since any irreducible polynomial of
degree κ over Fp is still irreducible over Fpη if and only if η and κ are relatively
prime, Kim-Barbulescu’s algorithm only works under the prescribed condition.
Although they mentioned that drawing f and g from R[x] instead of Z[x] can
get rid of this condition, all known NFS algorithms only discuss the polynomial
selections with integer coefficients and the possibility of using polynomials in
R[x] in NFS algorirhtms has remained rather unclear.

In this work, we observe that the idea described above is actually well adapted
to the setting of exTNFS algorithm. Indeed, we simply modify most of known
polynomial selection methods described in [17] so that the coefficients of polyno-
mials are chosen from R and they can be used in exTNFS algorithm. Furthermore,
we show that the formula of the size of norms in number fields constructed by
those polynomials, which plays important role in the complexity analysis, has
the same bound as in Kim-Barbulescu’s exTNFS. Consequently, this leads us
to get an algorithm with the same complexity as Kim-Barbulescu’s algorithm
while our algorithm applies to fields of any composite extension degrees. Recently,
Sarkar-Singh’s algorithm [20] exploited a similar idea, but their polynomial selec-
tion methods are slightly different from ours and it has slightly larger complexity
than ours.

Organization We briefly recall exTNFS algorithm and introduce our algorithm
in Section 2. The complexity analysis is given in Section 3. The variants such
as multiple number field sieve and special number field sieve are discussed in
Section 4. In Section 5, we make a precise comparison to the state-of-the-art
algorithms at cryptographic sizes. We conclude with cryptographic implications
of our result in Section 6.

2 Extended TNFS

2.1 Setting

Throughout this paper, we target fields FQ with Q = pn where n = ηκ such that
η, κ 6= 1 and the characteristic p is medium or large, i.e. `p > 1/3.

We briefly review exTNFS algorithm and then explain our algorithm. Recall
the commutative diagram that is familiar in the context of NFS algorithm (Fig. 1).
First we select an irreducible polynomial h(t) ∈ Z[t] of degree η which is also
irreducible modulo p. We put R := Z[t]/h(t) = Z(ι) then R/pR ' Fpη . We select
two polynomials f and g with coefficients in R so that they have a common
factor k(x) of degree κ modulo p. We further require k to be irreducible over Fpη .
Note that the only difference of our algorithm from Kim-Barbulescu’s exTNFS is
that the coefficients of f and g are chosen from R instead of Z.

The conditions on f , g and h yield two ring homomorphisms from R[x]
to (R/pR)/k(x) = Fpηκ through R[x]/f(x) (or R[x]/g(x)). Thus one has the

5

R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

(R/pR)[x]/〈k(x)〉
mod p

mod k(x)

mod p

mod k(x)

Fig. 1: Commutative diagram of exTNFS. We can choose f and g to be irreducible
polynomials over R such that k = gcd(f, g) mod p is irreducible over R/pR = Fpη .

commutative diagram in Figure 1 which is a generalization of the classical diagram
of NFS.

After the polynomial selection, the exTNFS algorithm proceeds as all other
variants of NFS, following the same steps: relations collection, linear algebra and
individual logarithm. We skip the description on it and refer to [17] for further
details.

2.2 Detailed Descriptions

Polynomial Selection

Choice of h. We have to select a polynomial h(t) ∈ Z[t] of degree η which
is irreducible modulo p and whose coefficients are as small as possible. As in
TNFS [4] we try random polynomials h with small coefficients and factor them
in Fp[t] to test irreducibility. The ratio of irreducible polynomials over all monic
polynomials of degree η over Fp is close to 1/η, thus one succeeds after η trials
and since η ≤ 3η we expect to find h such that ‖h‖∞ = 1.

Choice of f and g. Next we select f and g in R[x] which have a common factor
k(x) modulo p of degree κ which remains irreducible over Fpη = R/pR. We
can adapt all the polynomial selection methods discussed in the previous NFS
algorithms, such as JLSV’s method [14], GJL and Conj [2] method, and so
on[22,15,5,19], except that one chooses the coefficients of f and g from R instead
of Z. To fix ideas, we describe polynomial selection methods based on JLSV2

method and Conjugation method. A similar idea also applies with GJL method,
but we skip the details.

Generalized JLSV2 method. We describe a generalized method of polynomial
selection based on JLSV2 method [14]. To emphasize that the coefficients of
polynomial are taken from a ring R = Z[ι] instead of a smaller ring Z, we call it
as generalized JLSV2 method (gJLSV2 method).

First, we select a bivariate polynomial g̃(t, x) ∈ Z[t, x] such that

g̃(t, x) = g0(t) + g1(t)x+ · · ·+ gκ−1(t)xκ−1 + xκ,

6

where gi(t) ∈ Z[t]’s are polynomials of degree less than η with small integer
coefficients. We also require g̃ mod (p, h(t)) to be irreducible in Fpη [x]. Set an
integer W ≈ p1/(d+1) where d is a parameter such that d ≥ κ (the parameter W
is chosen in the same way as the original JLSV2 method as if we are targeting
FPκ for some prime P instead of Fpn). Take g(t, x) := g̃(t, x+W) and consider
the lattice of dimension (d+ 1)η defined by the following matrix M :

M :=

vec(pt0x0 mod h)
...

vec(ptixj mod h)
...

vec(ptη−1xκ−1 mod h)

vec(g mod h)
...

vec(tixjg mod h)
...

vec(tη−1xd−κg mod h)

(1)

where, for all bivariate polynomial w(t, x) =
∑d
i=0 wj(t)x

j with wj(t) =
∑η−1
i=0 wj,it

i,
vec(w) = (w0,0, . . . , w0,η−1, . . . , wd,0, . . . , wd,η−1) of dimension (d + 1)η. For in-
stance, vec(ptixj) = (0, . . . , 0, p, 0, . . . , 0) where only (jη + i + 1)-th entry is
nonzero and vec(g) = (g0,0, . . . , g0,η−1, . . . , gκ−1,0, . . . , gκ−1,η−1, 1, 0, . . . , 0) for a
monic polynomial g of degree κ with respect to x. Note that the determinant of
M is |det(M)| = pκη.

Finally, take the coefficients of f(t, x) =
∑d
j=0 fj(t)x

j with fj(t) =
∑η−1
i=0 fj,it

i

as the shortest vector of an LLL-reduced basis of the lattice L and set k = g mod p.
Then by construction we have

– degx(f) = d ≥ κ and ‖f‖∞ := max{fi,j} = O
(
p

κη
(d+1)η

)
= O(p

κ
d+1);

– degx(g) = κ and ‖g‖∞ = max{gi,j} = O(p
κ
d+1).

Example 1. We target a field Fp4 for p ≡ 7 mod 8 prime. For example, we
take p = 1000010903. Set η = κ = 2 and d = 2 ≥ κ. Choose h(t) = t2 + 1
so that h mod p is irreducible over Fp. Consider R = Z(ι) = Z[t]/h(t) and
Fp2 = Fp(ι) = Fp[t]/h(t). Choose g̃ = x2 + (t+ 1)x+ 1 and W = 1001 ≥ p1/(d+1).
Then we set

g =
(
g̃(t, x+W) mod h

)
= x2 + (ι+ 2003)x+ 1001ι+ 1003003.

7

Construct a lattice of dimension 6 defined by the following matrix (blank entries
are filled with zeros)

p
p

p
p

1003003 1001 2003 1 1 0
−1001 1003003 −1 2003 0 1

 .

Run the LLL algorithm with this lattice and we obtain

f = (499ι− 499505)x2 + (499992ι− 498111)x+ 493992ι− 50611.

One can check that f, g, k = g mod p and h are suitable for exTNFS algorithm.
Note that ‖f‖∞ and ‖g‖∞ are of order p2/3.

Algorithm 1 Polynomial selection with the generalized JLSV2 method (gJLSV)

Input: p prime, n = ηκ integer such that η, κ > 1 and d ≥ κ integer
Output: f, g, k, h with h ∈ Z[t] irreducible of degree η, and f, g ∈ R[x] irreducible over

R = Z[t]/hZ[t], and k = gcd(f mod p, g mod p) in Fpη = Fp[t]/h(t) irreducible of
degree κ

1: Choose h ∈ Z[t] with small coefficients, irreducible of degree η such that p is inert
in Q[t]/h(t);

2: Choose a bivariate polynomial g̃(t, x) = xκ +
∑κ−1
i=0 gj(t)x

j with small coefficients;

3: Choose an integer W ≈ p1/(d+1) and set g = g̃(t, x+W) mod h;
4: Reduce the rows of the matrix L as defined in (1) using LLL, to get

LLL(M) =

f0,0 f0,1 · · · fd,η−1

∗

5: return (f =

∑
0≤i≤d,0≤j<η fi,jt

jxi, g, k = g mod p, h)

Generalized Conjugation method. We describe a polynomial selection method
based on Conjugation method [17,2]. Again, we call it as the generalized Conju-
gation method (gConj method).

First, one chooses two bivariate polynomials g(1)(t, x) and g(0)(t, x) in Z[t, x]
of form

g(1)(t, x) = g
(1)
0 (t) + g

(1)
1 (t)x+ · · ·+ g

(1)
κ−1(t)xκ−1

and

g(0)(t, x) = g
(0)
0 (t) + g

(0)
1 (t)x+ · · ·+ g(0)κ (t)xκ,

8

where g
(s)
i (t) ∈ Z[t] are polynomials with small coefficients in Z and of degree

less than or equal to η− 1. Then g(s) mod (p, h(t)) is a polynomial of degree ≤ κ
over Fpη = Fp(ι) for each s = 0, 1.

Next one chooses a quadratic, monic, irreducible polynomial µ(x) ∈ Z[x]
with small coefficients. If µ(x) has a root δ modulo p and g(0) + δg(1) mod (p, h)
is irreducible over Fpη , then set k(x) = g(0) + δg(1) mod (p, h). Otherwise, one
repeats the above steps until such g(1), g(0), and δ are found. Once it has been
done, find u and v such that δ ≡ u/v (mod p) and u, v ≤ O(

√
p) using rational

reconstruction. Finally, we set f = ResY (µ(Y), g(0)+Y g(1)) and g = vg(0)+ug(1).
By construction we have

– degx(f) = 2κ and ‖f‖∞ = max{fi,j} = O(1);

– degx(g) = κ and ‖g‖∞ = max{gi,j} = O(
√
p) = O(Q

1
2ηκ).

The bound on ‖f‖∞ depends on the number of polynomials g(0) + δg(1) tested
before we find one which is irreducible over Fpη . Heuristically this happens on
average after κ trials. Since there are 32ηκ > κ choices of g(0) and g(1) of norm 1
we have ‖f‖∞ = O(1). We give some examples in the followings.

Example 2. We target a field Fp4 for p ≡ 7 mod 8 prime. For example, we take
p = 1000010903. If we choose h(t) = t2 + 1 then h mod p is irreducible over
Fp. Consider R = Z(ι) = Z[t]/h(t) and Fp2 = Fp(ι) = Fp[t]/h(t). Choose an
irreducible polynomial µ(x) = x2 − 2 ∈ Z[x] with small coefficients. It has a root√

2 = 219983819 ∈ Fp modulo p. We take k(x) = (x2 + ι) +
√

2x ∈ Fp2 [x] and

f(x) = (x2 + ι +
√

2x)(x2 + ι −
√

2x) = x4 + (2ι − 2)x2 + 1 ∈ R[x]. Then we
find u, v ∈ Z such that u/v ≡

√
2 mod p where their orders are of

√
p. Now we

take g(x) = v(x2 + ι) + ux = 25834(x2 + ι) + 18297x ∈ R[x]. One easily checks
that f and g are irreducible over R and k is irreducible over Fp2 so that they are
suitable for exTNFS algorithm.

Example 3. Now we target a field Fp9 . Again, we take p = 1000010903 for example.
Choose h(t) = t3+t+1 ∈ Z[t] which remains irreducible modulo p. Let R = Z(ι) =
Z[t]/h(t) and Fp3 = Fp(ι) = Fp[t]/h(t). We set µ(x) = x2 − 3. Compute u and v

such that u/v ≡
√

3 mod p. Then the polynomials k(x) = (x3+ι)+
√

3x ∈ Fp3 [x],
f(x) = (x3 + ι)2 − 3x2 ∈ R[x] and g(x) = v(x3 + ι) + ux ∈ R[x] satisfy the
conditions of polynomial selection for exTNFS algorithm.

Relation Collection Recall the elements of R = Z[t]/h(t) can be represented
uniquely as polynomials of Z[t] of degree less than deg h = η. In the setting of
exTNFS, we sieve all the pairs (a, b) ∈ Z[t]2 of degree ≤ η − 1 such that ‖a‖∞,
‖b‖∞ ≤ A (a parameter A to be determined later) until we obtain a relation
satisyfing

Nf (a, b) := Rest(Resx(a(t)− b(t)x, f(x)), h(t)) and
Ng(a, b) := Rest(Resx(a(t)− b(t)x, g(x)), h(t))

are B-smooth for a parameter B to be determined (an integer is B-smooth if
all its prime factors are less than B). It is equivalent to say that the norm of

9

Algorithm 2 Polynomial selection with the generalized Conjugation
method (gConj)

Input: p prime and n = ηκ integer such that η, κ > 1
Output: f, g, k, h with h ∈ Z[t] irreducible of degree η, and f, g ∈ R[x] irreducible over

R = Z[t]/hZ[t], and k = gcd(f mod p, g mod p) in Fpη = Fp[t]/h(t) irreducible of
degree κ

1: Choose h ∈ Z[t], irreducible of degree η such that p is inert in Q[t]/h(t)
2: repeat
3: Select g

(0)
0 (t), . . . , g

(0)
κ−1(t), polynomials of degree ≤ η − 1 with small integer

coefficients;
4: Select g

(1)
0 (t), . . . , g

(1)

κ′−1(t), polynomials of degree ≤ η− 1, and g
(1)

κ′ (t), a constant
polynomial with small integer coefficients, for an integer κ′ < κ;

5: Set g(0)(t, x) = xκ +
∑κ−1
i=0 g

(0)
i (t)xi and g(1)(t, x) =

∑κ′

i=0 g
(1)
i (t)xi;

6: Select µ(x) a quadratic, monic, irreducible polynomial over Z with small coeffi-
cients;

7: until µ(x) has a root δ modulo p and k = g(0) + δg(1) mod (p, h) is irreducible over
Fpη ;

8: (u, v)← a rational reconstruction of δ;
9: f ← ResY (µ(Y), g0 + Y g1 mod h);

10: g ← vg0 + ug1 mod h;
11: return (f, g, k, h)

a(ι)− b(ι)αf and a(ι)− b(ι)αg are simultaneously B-smooth in Kf = Q(ι, αf)
and Kg = Q(ι, αg), respectively.

For each pair (a, b) one obtains a linear equation where the unknowns are
logarithms of elements of the factor base as in the classical variant of NFS
for discrete logarithms where the factor base is chosen as in [17]. Other than
the polynomial selection step, our algorithm follows basically the same as the
description of the exTNFS algorithm. For full description of the algorithm, refer
to [17].

3 Complexity

From now on, we often abuse the notation for a bivariate polynomial f(t, x) in
Z[t, x] and a polynomial f(x) = f(t, x) mod h = f(ι, x) in R[x]. Unless stated,
deg(f) denotes both the degree of f(x) ∈ R[x] and the degree of f(t, x) ∈ Z[t, x]
with respect to x. The norm of f(x) ∈ R[x], denoted by ‖f‖∞, is defined by the
maximum of the absolute value of the integer coefficients of f(t, x).

The complexity analysis of our algorithm basically follows that of all the other
NFS variants. Recall that in the algorithm we test the smoothness of the norm
of an element from the number field Kf and Kg. As a reminder to readers, we
quote the formula for the complexity of exTNFS algorithm [17]: For a smoothness
parameter B, the factor base has (2 + o(1))B/ logB elements, so the cost of
linear algebra is B2+o(1). Thus the complexity of exTNFS algorithm is given by

10

(up to an exponent 1 + o(1))

complexity(exTNFS) =
B

Prob(Nf , B)Prob(Ng, B)
+B2, (2)

where Nf denotes the norm of an element from Kf over Q, B is a smoothness
parameter, and Prob(x, y) denotes the probability that an integer less than x is
y-smooth.

It leads us to consider the estimation of the norm sizes. We need the following
lemma that can be found in [17, Lemma 2].

Lemma 1 ([17], Lemma 2.). Let h ∈ Z[t] be an irreducible polynomial of
degree η and f be an irreducible polynomial over R = Z[t]/h(t) of degree deg(f).
Let ι (resp. α) be a root of h (resp. f) in its number field and set Kf := Q(ι, α).
Let A > 0 be a real number and T an integer such that 2 ≤ T ≤ deg(f). For
each i = 0, . . . ,deg(f)− 1, let ai(t) ∈ Z[t] be polynomials of degree ≤ η − 1 with
‖ai‖∞ ≤ A.

1. We have

∣∣NKf/Q(T−1∑
i=0

ai(ι)α
i
)∣∣ < Aη deg(f)‖f‖(T−1)η∞ ‖h‖(T+deg(f)−1)(η−1)

∞ D(η,deg(f)),

where D(η, κ) =
(
(2κ− 1)(η − 1) + 1

)η/2
(η + 1)(2κ−1)(η−1)/2

(
(2κ− 1)!η2κ

)η
.

2. Assume in addition that ‖h‖∞ is bounded by an absolute constant H and
that p = LQ(`p, c) for some `p > 1/3 and c > 0. Then

Nf (a, b) ≤ Edeg(f)‖f‖η∞LQ(2/3, o(1)), (3)

where E = Aη

The above formula remains the same when we restrict the coefficients of f to be
integers.

Proof. The proof can be found in [17].

We summarize our results in the following theorem. The results are similar
to Theorem 1 in [17], however, we underline that in our algorithm n is any
composite. We also add the results on the upper bound of the complexity when
n is a b-smooth number for b ≤ 4.

Theorem 1. (under the classical NFS heuristics) If Q = pn is a prime power
such that p = LQ(`p, cp) with 1/3 < `p and n = ηκ is a composite such that
η, κ 6= 1, then the discrete logarithm over FQ can be solved in LQ(1/3, (C/9)1/3)
where C and the additional conditions are listed in Table 4.

For each polynomial selection, the degree and the norm of the polynomials
have the same formula as in [17]. Although in our case the polynomials f and
g have coefficients in R, the formula for the upper bound of the norm Nf (a, b)

11

remains the same as Kim-Barbulescu’s algorithm by Lemma 1. Finally, the
analysis is simply rephrasing of the previous results, so we simply omit the proof.
In the next subsection, we briefly explain how to obtain the upper bound of the
complexity when n has prime factors 2 or 3. The case is interesting since most
pairings use such fields to utilize tower extension field arithmetic for efficiency.

algorithm C conditions

exTNFS-gJLSV2 64 κ = o
(

(logQ
log logQ

)
1
3

)
exTNFS-gGJL 64 κ ≤ (8

3
)−

1
3 (logQ

log logQ
)
1
3

exTNFS-gConj
48 κ = 12−

1
3 (logQ

log logQ
)
1
3

≤ 54.28 n = 2i (i > 1)

MexTNFS-gJLSV2
92+26

√
13

3
κ = o

(
(logQ
log logQ

)
1
3

)
MexTNFS-gGJL 92+26

√
13

3 κ ≤ (7+2
√

13
6

)−1/3(logQ
log logQ

)
1
3

MexTNFS-gConj

(3+
√

33+12
√
6))3

14+6
√
6

κ = (56+24
√
6

12
)−1/3(logQ

log logQ
)
1
3

≤ 59.80 n = 2i3j (i+ j > 1)
≤ 50.76 n = 2i (i > 1)

SexTNFS-new 32
κ = o

(
(logQ
log logQ

)
1
3

)
p is d-SNFS with d = (2/3)

1
3 +o(1)
κ

(logQ
log logQ

)
1
3

Table 4: Complexity of exTNFS variants.

3.1 exTNFS when n = 2i

Recall that our algorithm with Conjugation method has the same expression for
the norms as in [2] replacing p with P = pη. Write P = LQ(2/3, cP) and denote
τ−1 by the degree of sieving polynomials. Then the complexity of exTNFS-gConj
is LQ(1/3, CNFS(τ, cP)) where

CNFS(τ, cP) =
2

cP τ
+

√
4

(cP τ)2
+

2

3
cP (τ − 1). (4)

Let k0 =
(

logQ
log logQ

)1/3
. When n = 2i for some i > 1, we can always find a factor

κ of n in the interval
[
k0
3.31 ,

k0
1.64

]
so that cP lies in the interval [1.64, 3.31] (observe

that the ratio (k0/1.64)/(k0/3.31) is larger than 2). Since C(τ, cP) is less than
1.82 when τ = 2 and 1.64 ≤ cP ≤ 3.31, the complexity of exTNFS is always less
than LQ(1/3, 1.82) in this case.

This result shows that the DLP over Fpn can always be solved in the running
time less than LQ(1/3, 1.82) when n is a power of 2. Compare that exTNFS-C [20]
has a larger asymptotic complexity of LQ(1/3, 1.92) and they even require the
specified condition on a factor of n.

12

4 Variants

4.1 The case when p has a special form (SexTNFS)

A generalized polynomial selection method also admits a variant when the
characteristic has a special form. It includes the case for the fields used in pairing-
based cryptosystems. The previous SexTNFS by Kim and Barbulescu cannot be
applied to pairing-friendly fields with prime power embedding degree, such as
Kachisa-Schaefer-Scott curve [16] p = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 +
625u2 + 2398u+ 3125)/980 of embedding degree 16.

For a given integer d, an integer p is d-SNFS if there exists an integer u and
a polynomial Π(x) with small integer coefficients (up to a small denominator) so
that

p = Π(u),

degΠ = d and ‖Π‖∞ is bounded by an absolute constant not depending on p.

We consider the case when n = ηκ (η, κ 6= 1) with κ = o

((
logQ

log logQ

)1/3)
and

p is d-SNFS. In this case our exTNFS selects h, f and g so that

– h is a polynomial over Z and irreducible modulo p, deg h = η and ‖h‖∞ =
O(1);

– f and g are two polynomials with coefficients from R = Z[ι], have a common
factor k(x) modulo p which is irreducible over R/pR = Fpη = F(ι) of degree κ.

We choose such polynomials using the method of Joux and Pierrot [15]. Find
a bivariate polynomial S of degree κ− 1 with respect to x such that

S(t, x) = S0(t) + S1(t)x+ · · ·+ Sκ−1(t)xκ−1 ∈ Z[t, x],

where Si(t)’s have their coefficients in {−1, 0, 1} and are of degree ≤ η − 1. We
further require that k = xκ +S(t, x)− u mod (p, h) is irreducible over Fpη . Since
the proportion of irreducible polynomials in Fq (q: a prime power) of degree κ is
1/κ and there are 3ηκ choices we expect this step to succeed. Then we set{

g = xκ + S(t, x)− u mod h
f = Π(xκ + S(t, x)) mod h.

If f is not irreducible over R[x], which happens with low probability, start over.
Note that g is irreducible modulo p and that f is a multiple of g modulo p.
More precisely, as in [15], we choose S(t, x) so that the number of its terms is
approximately O(log n). Since 3logn > κ, this allows us enough chance to get an
irreducible polynomial g. The size of the largest integer coefficient of f comes
from the part S(t, x)d and it is bounded by σd = O

(
(log n)d

)
, where σ denotes

the number of the terms in S(t, x). By construction we have:

– deg(g) = κ and ‖g‖∞ = u = O(p1/d);
– deg(f) = κd and ‖f‖∞ = O((log n)d).

We inject these values in Equations (1) and obtain the same formula as in
Kim-Barbulescu’s SexTNFS variant. Thus we obtain the same complexity as in
their paper. Again, we note that our polynomial selection applies to fields of
arbitrary composite extension degree n.

13

4.2 The multiple polynomial variants (MexTNFS-gConj)

One can also accelerate the complexity of exTNFS with the generalized Conju-
gation method using multiple polynomial variants. The description is similar to
the previous multiple variant of NFS: choose an irreducible quadratic polynomial
µ(x) ∈ Z[x] such that it has small coefficients, and has a root δ modulo p. As
before, choose k = g0 + δg1 ∈ Fpη [x] and set f = ResY (µ(Y), g0 + Y g1) ∈ R[x],
where g0 and g1 are polynomials in R[x]. We find two pairs of integers (u, v) and
(u′, v′) using rational reconstrucion such that

δ ≡ u/v ≡ u′/v′ mod p,

where we require (u, v) and (u′, v′) are linearly independent over Q and the
integers u, v, u′, v′ are all of the size of

√
p.

Next we set f1 = f , f2 = vg0 + ug1 and f3 = v′g0 + u′g1 and select other
V − 3 irreducible polynomials fi := µif2 + νif3 where µi =

∑η−1
j=0 µi,jι

j and

νi =
∑η−1
j=0 νi,jι

j are elements of R such that ‖µi‖∞, ‖νi‖∞ ≤ V
1
2η where V =

LQ(1/3, cv) is a parameter which will be selected later. Denote αi a root of fi
for i = 1, 2, . . . , V .

By construction, we have:

– deg(f1) = 2κ and ‖f1‖∞ = O(1);

– deg(fi) = κ and ‖fi‖∞ = V
1
2η (pηκ)1/(2κ) for 2 ≤ i ≤ V .

As before, evaluating these values into Equation (1), we obtain:

|Nf1(a, b)| < E2κLQ(2/3, o(1))

|Nfi(a, b)| < Eκ(pκη)
1
2κLQ(2/3, o(1)) for 2 ≤ i ≤ V.

We emphasize that
(
V 1/(2η)

)η
= V 1/2 = LQ(2/3, o(1)).

Then, one can proceed the computation identical to [19]. When P = pη =

LQ(2/3, cP) such that cP > (7+2
√
13

6)1/3 and τ−1 is the degree of the enumerated
polynomials r, then the complexity obtained is LQ(1/3, CMNFS(τ, cP)) where

CMNFS(τ, cP) =
2

cP τ
+

√
20

9(cP τ)2
+

2

3
cP (τ − 1). (5)

The best case occurs when cP = (56+24
√
6

12)1/3 and τ = 2 (linear polynomials):

complexity(best case of MexTNFS-gConj) = LQ

1/3,
3 +

√
3(11 + 4

√
6)(

18(7 + 3
√

6)
)1/3

 .

MexTNFS when n = 2i3j We separate this case into following two cases.

14

Case 1: n = 2i3j for i + j > 1. In this case, we can always find a fac-

tor κ of n in the interval
[
k0
3.89 ,

k0
1.27

]
where k0 =

(
logQ

log logQ

)1/3
so that cP ,

where pη = LQ(1/3, cP), is in the interval [1.27, 3.89]. Observe that the ratio
(k0/1.27)/(k0/3.89) is larger than 3. Since CMNFS(τ, cP) in Equation (5) is less
than 1.88 when τ = 2 and 1.27 ≤ cP ≤ 3.89, we have a result that the complexity
of MexTNFS is always less than LQ(1/3, 1.88).

Case 2: n = 2i for some i > 1. If n is a power of 2 we get a better result than
Case 1. In this case we can always find a factor κ of n in the interval

[
k0
3.09 ,

k0
1.52

]
where k0 is the same as Case 1. Again we check that the ratio (k0/1.52)/(k0/3.09)
is larger than 2. Since CMNFS(τ, cP) ≤ 1.78 for τ = 2 and 1.52 ≤ cP ≤ 3.09, the
complexity of MexTNFS is always less than LQ(1/3, 1.78) in this case.

This result shows that, if multiple variants are used, the DLP over Fpn can
always be solved in the running time less than LQ(1/3, 1.88) when n is 4-smooth
or less than LQ(1/3, 1.78) when n is a power of 2 using MexTNFS algorithm.
Recall that MexTNFS-C [20] has the best asymptotic complexity LQ(1/3, 1.88)
only when n is a power of 2 and has a factor of the specified size.

5 Comparison and examples

In the context of NFS algorithm including its variants such as TNFS, exTNFS,
we compute a large number of integers that are usually given by the norms of
elements in number fields, and factor these numbers to test if they are B-smooth
for a parameter B. These B-smooth numbers are used to produce a linear relation
of the discrete logarithm of the factor base elements, and we solve a linear system
from those relations. Thus if we reduce the size of the norms computed in the
algorithm we reduce the work of finding B-smooth numbers, further it allows us
to improve the total complexity.

The term, the norm size, in this section is used for the bitsize of the product
of the norms |Nf (r mod f)Ng(r mod g)|, where r ∈ R[x] is a polynomial over R
of degree less than τ and f and g are polynomials selected by each polynomial
selection method. Each coefficient of r is considered as a polynomial in Z[x] of
degree less than η whose coefficients are bounded by a parameter A = E1/η.

As recent results [17,20] show, the exTNFS variants have a smaller size of the
norms than that in classical NFS. Thus, in this section, we mainly compare the
norm size with exTNFS variants.

5.1 A precise comparison when p is arbitrary

We present the norm sizes in Table 5 depending on each variant of polynomial
selection from exTNFS variants. Note that in our algorithm the extension degree
n can be any composite integer.

We remark that a recent variant by Sarkar and Singh, exTNFS-C [20], is
only interested in the case of λ = η where λ ≤ η denotes a parameter if

15

k = k0 + k1x + · · · + kκx
κ ∈ Fpη [x] such that ki ∈ Fpη ’s are represented as

polynomials over Fp of degree λ− 1. When λ = 1, all the coefficients of k are in
Fp. Then κ = deg(k) and η should be relatively prime so that k is irreducible
over Fpη . Thus this case is not interesting since the case is already covered by
Kim-Barbulescu’s exTNFS. We do not consider the case when 1 < λ < η as
mentioned in [20].

We extrapolate the parameter E using the formula E = cLQ(1/3, (8/9)1/3)
such that log2E = 30 when log2Q = 600 (chosen from the record by Bouvier et
al. [8]).

Method norms product conditions and parameters

exTNFS-JLSV2 [17] E
2(κ+d)
τ Q

τ−1
d+1

n = ηκ, gcd(η, κ) = 1,
d := deg(f) ≥ κ

exTNFS-GJL [17] E
2(2d+1)

τ Q
τ−1
d+1

n = ηκ, gcd(η, κ) = 1,
d ≥ κ

exTNFS-Conj [17] E
6κ
τ Q

(τ−1)
2κ n = ηκ, gcd(η, κ) = 1

exTNFS-C [20] E
2κ0(2K+1)

τ Q
(τ−1)(K(λ−1)+κ1)

κ(Kλ+1) n = ηκ = ηκ0κ1,K ≥ κ1, λ = η3

exTNFS-gJLSV2 (this) E
2(κ+d)
τ Q

τ−1
d+1 n = ηκ, d := deg(f) ≥ κ

exTNFS-gGJL (this) E
2(2d+1)

τ Q
τ−1
d+1 n = ηκ, d ≥ κ

exTNFS-gConj (this) E
6κ
τ Q

(τ−1)
2κ n = ηκ

Table 5: Comparison of norm sizes, where τ = deg r(x), d = deg(f) and K,λ are
integer parameters subject to the conditions in the last column.

The case of fields Fp9 . One of the interesting cases is when the extension degree
n is a prime power, e.g. n = 4, 9, 16, 32 and so on. In this section, we particularly
focus on the case n = 9 although one can also carry out a similar analysis for
other cases.

In this case the previous best polynomial selection method is exTNFS-C [20],
so we compare our method with exTNFS-C. We apply the algorithms with η = 3
and κ = 3. In particular, we have the following choices:

– exTNFS-C with κ0 = 3, K = κ1 = 1 and λ = 3 has the optimal norm size of
E9Q1/4 when τ = 2.

– exTNFS-C with κ0 = 1, K = κ1 = 3 and λ = 3 has the optimal norm size of
E7Q3/10 when τ = 2.

– exTNFS-gJLSV2 has the optimal size of the norms E6Q1/4 when τ = 2.

– exTNFS-gGJL has the optimal size of the norms E7Q1/4 when τ = 2.

– exTNFS-gConj has the optimal size of the norms E9Q1/6 when τ = 2.

3 If λ = 1, exTNFS-C is only applicable when gcd(η, κ) = 1.

16

We plot the values of the norms in Figure 2. Note that exTNFS-gJLSV seems
to be the best choice when the bitsize of target fields is between 300 and 1800
bits, otherwise exTNFS-gConj seems to be the best choice as the size of fields
grows.

The case of fields Fp12 . When n is a composite that is not a prime power, such
as n = 6, 12, 18, and so on, one can always find factors η and κ such that n = ηκ
and gcd(η, κ) = 1. Thus it is possible to apply the polynomial selection as in Kim-
Barbulescu’s exTNFS that is already the best choice in the sense of asymptotic
complexity. However, from a practical perspective, one might have better choice
by allowing to choose η and κ that are not necessarily relatively prime. We plot
the case of n = 12 as an example. Note that exTNFS-gConj with κ = 2 seems to
be the best choice when the size of fields is small (say, less than 500 bits) and
exTNFS-gJLSV with κ = 2 seems to be the best choice as the size of fields grows
as shown in Figure 3. Remark that κ = 2 seems to be the best choice in both
cases. Note that this choice is not applicable with Kim-Barbulescu’s method
since η = 6 and κ = 2 are not relatively prime.

5.2 Precise comparison when p is a special prime

In Table 6, we provide precise norm sizes when p is a d-SNFS prime. Note that
our SexTNFS can be applied with arbitrary composite n maintaining the same
formula for the norm sizes as in [17].

To compare the precise norm sizes, we choose the parameter E using the
formula E = cLQ(1/3, (4/9)1/3) and the pair log2Q = 1039, log2E = 30.38 (due
to the records by Aoki et al. [1]).

We plot the norm sizes for each method in Figures 4 and 5. In our range of
interest, each of the norm sizes has the minimum value when τ = 2, i.e. sieving
only linear polynomials, so we only consider the case when τ = 2.

Method norms product conditions

STNFS [4] E
2(d+1)
τ Q

τ−1
d

SNFS-JP [15] E
2n(d+1)

τ Q
τ−1
nd

SexTNFS-KimBar [17] E
2κ(d+1)

τ Q
τ−1
κd

n = ηκ, gcd(κ, η) = 1
2 ≤ η < n

SexTNFS-new (this work) E
2κ(d+1)

τ Q
τ−1
κd n = ηκ, 2 ≤ η < n

Table 6: Comparison of norm sizes when p is d-SNFS prime.

The case of n = 12 and p is a 4-SNFS prime. This case is interesting due to
Barreto-Naehrig pairing construction [7]. We plot the norm size in Figure 4
corresponding to each polynomial selection method. Note that exTNFS-gConj

17

500 1,000 1,500 2,000 2,500 3,000
200

400

600

800

1,000

1,200

1,400

log2Q

lo
g
2
(n

o
rm

s)

exTNFS-C (κ0 = 1) [20]

exTNFS-C (κ0 = 3) [20]

exTNFS-gJLSV (this work)

exTNFS-gGJL (this work)

exTNFS-gConj (this work)

Fig. 2: Plot of the norms bitsize for several variants of NFS targeting FQ = Fp9
with η = κ = 3. Horizontal axis indicates the bitsize of pn while the vertical axis
the bitsize of the norms product.

300 400 500 600 700 800 900 1,000
200

300

400

500

600

log2Q

lo
g
2
(n

o
rm

s)

exTNFS-C (κ = 3) [20]

exTNFS-C (κ = 2) [20]

exTNFS-JLSV (κ = 3) [17]

exTNFS-gJLSV (κ = 2) (this work)

exTNFS-Conj (κ = 3) [17]

exTNFS-gConj (κ = 2) (this work)

Fig. 3: Plot of the norms bitsize for several variants of NFS targeting FQ = Fp12
with various choices for κ. Horizontal axis indicates the bitsize of pn while the
vertical axis the bitsize of the norms product.

18

with κ = 2 seems to be the best choice when the bitsize of fields is small (less
than about 1000 bits) and SexTNFS with κ = 2 seems to be the best choice as
the bitsize of fields grows. It should be remarked again that SexTNFS method
with κ = 2 is impossible to apply with Kim-Barbulescu’s method.

The case of n = 16 and p is a 10-SNFS prime. We consider another interest-
ing case that appears in pairing-friendly constructions, Kachisa-Schaefer-Scott
curve [16] with embedding degree 16.

We compare the precise norm sizes of our SexTNFS with exTNFS-(g)Conj
and exTNFS-C. As shown in Figure 5, we suggest to use exTNFS-gConj with
κ = 4 when the bitsize of target fields is small and to use SexTNFS with κ = 2
when the bitsize of target fields is large. The cross point appears when the bitsize
is around 8000 bits.

6 Conclusion

In this work, we show that the best complexity of Kim-Barbulescu’s exTNFS
algorithm is still valid for fields of any composite extension degree n. It asserts
that pairings with embedding degree of a prime power cannot be an alternative
to avoid the attack by Kim and Barbulescu and the keysize for such pairings also
needs to be updated following to our attack.

It is also interesting to remark that fields with extension degree of form
n = 2i3j tend to be vulnerable to our attack compared to fields of any other
extension degree. It is because when n is a smooth number it is more likely to
find a factor of n so that its size is close to the desired size to obtain the best
asymptotic complexity. Note that a large number of pairings have embedding
degree only divisible by 2 or 3 for an efficient field arithmetic.

From a practical point of view, our algorithm also performs better than
Kim-Barbulescu’s algorithm although the asymptotic complexity remains the
same. For example, when n = 12, the choice of (η, κ) = (6, 2) is better than
(η, κ) = (4, 3) in terms of the norm sizes where the former case can only be
covered by our algorithm.

Precise evaluation of the keysize for pairing-based cryptosystems should
be further studied. It would be also an interesting question to find efficient
alternatives for Barreto-Naehrig curve that are not affected by our attack. Such
curves potentially have a large embedding degree or a prime embedding degree.
Pairings of embedding degree one might be also alternatives as considered in [9].
Nevertheless, such pairings might be very slow and still need to be further
improved for cryptographers to use them.

Acknowledgement. The authors would like to thank Razvan Barbulescu for his
fruitful comments on an early draft of this paper.

19

500 1,000 1,500 2,000 2,500 3,000
200

400

600

800

1,000

1,200

1,400

log2Q

lo
g
2
(n

o
rm

s)

SexTNFS-KimBar(κ = 3) [17]

SexTNFS-new(κ = 2) (this work)

exTNFS-Conj(κ = 3) [17]

exTNFS-gConj(κ = 2) (this work)

min(exTNFS-C(κ = 3)) [20]

min(exTNFS-C(κ = 2)) [20]

Fig. 4: Comparison when n = 12 and p is a 4-SNFS for 300 ≤ log2Q ≤ 3000.
Horizontal axis indicates the bitsize of Q = pn while the vertical axis the bitsize
of the norms product.

0.2 0.4 0.6 0.8 1 1.2 1.4

·104

1,000

2,000

3,000

4,000

log2Q

lo
g
2
(n

o
rm

s)

SexTNFS-new(κ = 4) (this work)

SexTNFS-new(κ = 2) (this work)

exTNFS-gConj(κ = 4) (this work)

exTNFS-gConj(κ = 2) (this work)

min(exTNFS-C(κ = 4)) [20]

min(exTNFS-C(κ = 2)) [20]

Fig. 5: Comparison when n = 16 and p is a d = 10-SNFS prime. Horizontal axis
indicates the bitsize of pn while the vertical axis the bitsize of the norms product.

20

References

1. K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra, and D. A. Osvik. A kilobit special
number field sieve factorization. In Advances in Cryptology – ASIACRYPT 2007,
volume 4833 of Lecture Notes in Comput. Sci., pages 1–12, 2007.

2. R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain. Improving NFS for the
discrete logarithm problem in non-prime finite fields. In Advances in Cryptology -
EUROCRYPT 2015, volume 9056 of Lecture Notes in Comput. Sci., pages 129–155,
2015.

3. R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In Advances
in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture Notes in Comput. Sci.,
pages 1–16, 2014.

4. R. Barbulescu, P. Gaudry, and T. Kleinjung. The Towed Number Field Sieve. In
Advances in Cryptology – ASIACRYPT 2015, volume 9453 of Lecture Notes in
Comput. Sci., pages 31–55, 2015.

5. R. Barbulescu and C. Pierrot. The multiple number field sieve for medium- and
high-characteristic finite fields. LMS Journal of Computation and Mathematics,
17:230–246, 2014. The published version contains an error which is corrected in
version 2 available at https://hal.inria.fr/hal-00952610.

6. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with
prescribed embedding degrees. In Security in Communication Networks, Third
International Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised
Papers, pages 257–267, 2002.

7. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In Selected Areas in Cryptography – SAC 2005, volume 9566 of Lecture Notes in
Comput. Sci., pages 319–331, 2005.

8. C. Bouvier, P. Gaudry, L. Imbert, H. Jeljeli, and E. Thom. Discrete logarithms in
GF(p) — 180 digits, 2014. Announcement available at the NMBRTHRY archives,
item 004703.

9. S. Chatterjee, A. Menezes, and F. Rodriguez-Henriquez. On implementing pairing-
based protocols with elliptic curves of embedding degree one. Cryptology ePrint
Archive, Report 2016/403, 2016. http://eprint.iacr.org/2016/403.

10. D. M. Gordon. Discrete logarithms in GF (p) using the number field sieve. SIAM
J. Discret. Math., 6(1):124–138, Feb. 1993.

11. R. Granger, T. Kleinjung, and J. Zumbrägel. On the powers of 2. Cryptology
ePrint Archive, Report 2014/300, 2014. http://eprint.iacr.org/.

12. A. Guillevic, F. Morain, and E. Thomé. Solving discrete logarithms on a 170-bit
MNT curve by pairing reduction. In Selected Areas in Cryptography – SAC 2016,
2016.

13. J. Jeong and T. Kim. Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree. IACR Cryptology ePrint Archive,
2016:526, 2016.

14. A. Joux, R. Lercier, N. P. Smart, and F. Vercauteren. The number field sieve in
the medium prime case. In Advances in Cryptology - CRYPTO 2006, volume 4117
of Lecture Notes in Comput. Sci., pages 326–344, 2006.

15. A. Joux and C. Pierrot. The special number field sieve in Fpn – application to
pairing-friendly constructions. In Pairing-Based Cryptography - Pairing 2013,
volume 8365 of Lecture Notes in Comput. Sci., pages 45–61, 2013.

21

https://hal.inria.fr/hal-00952610
http://eprint.iacr.org/2016/403
http://eprint.iacr.org/

16. E. J. Kachisa, E. F. Schaefer, and M. Scott. Constructing brezing-weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In Pairing-Based
Cryptography - Pairing 2008, Second International Conference, Egham, UK, Septem-
ber 1-3, 2008. Proceedings, pages 126–135, 2008.

17. T. Kim and R. Barbulescu. Extended Tower Number Field Sieve: A New Complexity
for Medium Prime Case. In Advances in Cryptology – CRYPTO 2016.

18. D. V. Matyukhin. Effective version of the number field sieve for discrete logarithm
in a field GF (pk). Trudy po Diskretnoi Matematike, 9:121–151, 2006.

19. C. Pierrot. The multiple number field sieve with conjugation and generalized
Joux-Lercier methods. In Advances in Cryptology - EUROCRYPT 2015, volume
9056 of Lecture Notes in Comput. Sci., pages 156–170, 2015.

20. P. Sarkar and S. Singh. A general polynomial selection method and new asymptotic
complexities for the tower number field sieve algorithm. IACR Cryptology ePrint
Archive, 2016:485, 2016.

21. P. Sarkar and S. Singh. A generalisation of the conjugation method for polynomial
selection for the extended tower number field sieve algorithm. IACR Cryptology
ePrint Archive, 2016:537, 2016.

22. P. Sarkar and S. Singh. New complexity trade-offs for the (multiple) number field
sieve algorithm in non-prime fields. In Advances in Cryptology – EUROCRYPT
2016, volume 9665 of Lecture Notes in Comput. Sci., 2016.

23. O. Schirokauer. Discrete logarithms and local units. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
345(1676):409–423, 1993.

24. O. Schirokauer. Using number fields to compute logarithms in finite fields. Math.
Comput., 69(231):1267–1283, 2000.

25. X. Zhang and D. Lin. Analysis of optimum pairing products at high security levels.
In Progress in Cryptology - INDOCRYPT 2012, 13th International Conference
on Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings, pages
412–430, 2012.

22

	Extended Tower Number Field Sieve with Application to Finite Fields of Arbitrary Composite Extension Degree

