
Fully Leakage-Resilient Codes

Antonio Faonio and Jesper Buus Nielsen

Aarhus University

Abstract. Leakage resilient codes (LRCs) are probabilistic encoding
schemes that guarantee message hiding even under some bounded leak-
age on the codeword. We introduce the notion of fully leakage resilient
codes (FLRCs), where the adversary can leak λ0 bits from the encod-
ing process, namely, the message and the randomness involved during
the encoding process. In addition the adversary can as usual leak from
the codeword. We give a simulation-based definition requiring that the
adversary’s leakage from the encoding process and the codeword can be
simulated given just λ0 bits of leakage from the message. We give a fairly
general impossibility result for FLRCs in the popular split-state model,
where the codeword is broken into independent parts and where the
leakage occurs independently on the parts. We then give two feasibility
results for weaker models. First, we show that for NC0-bounded leak-
age from the randomness and arbitrary poly-time leakage from the parts
of the codeword the inner-product construction proposed by Daví et al.
(SCN’10) and successively improved by Dziembowski and Faust (ASI-
ACRYPT’11) is a FLRC for the split-state model. Second, we provide a
compiler from any LRC to a FLRC in the common reference string model
where the leakage on the encoding comes from a fixed leakage family of
small cardinality. In particular, this compiler applies to the split-state
model but also to other models.

Acknowledgement. The authors acknowledge support by European Research Coun-
cil Starting Grant 279447. The authors acknowledge support from the Danish National
Research Foundation and The National Science Foundation of China (under the grant
61361136003) for the Sino-Danish Center for the Theory of Interactive Computation.

Keywords. leakage-resilient cryptography, impossibility, fully-leakage resilience,
simulation-based definition, feasibility results

1 Introduction

Leakage-resilient codes (LRCs) (also known as leakage-resilient storages) allow
to store safely a secret information in a physical memory that may leak some
side-channel information. Since their introduction (see Davì et al. [12]) they
have found many applications either by their own or as building blocks for
other leakage and tamper resilient primitives. To mention some, Dziembowski

and Faust [15] proposed an efficient and continuous leakage-resilient identifi-
cation scheme and a continuous leakage-resilient CCA2 cryptosystem, while
Andrychowicz et al. [5] proposed a practical leakage-resilient LPN-based ver-
sion of the Lapin protocol (see Heyse et al. [28]) both relying on LRCs based on
the inner-product extractor. LRC found many applications also in the context
of non-malleable codes (see Dziembowski et al. [17]), which, roughly speaking,
can be seen as their tamper-resilience counterpart. Faust et al. [23] showed a
non-malleable code based on LRC, Aggarwal et al. [1] proposed a construction
of leakage and tamper resilient code and Faust et al. [21] showed continuous
non-malleable codes based on LRC [21] (see also Jafargholi and Wichs [29]).

The security requirement of LRC states that given two encoded messages,
arbitrarily but bounded length leakage on the codeword is indistinguishable.
Ideally, a good LRC should be resilient to a leakage that can be much longer
than the size of the message protected, however, to get such strong guarantee
some restriction on the class of leakage allowed must be set. Intuitively, any
scheme where the adversary can even partially compute the decoding function
as leakage cannot be secure. A way to fix this problem is to consider randomly
chosen LRCs. As showed in [12], and successively improved in [23,29], for any
fixed set of leakage functions, there exists a family of efficiently computable
codes such that with high probability a code from this family is leakage resilient.
From a cryptographic perspective, the results known in this direction can be
interpreted as being in the “common reference string” model, where the leakage
class is set and, then, the LRC is sampled.

Another way, more relevant for our paper, is to consider the split-state model
[16,27] where the message is encoded in two (or more) codewords and the leakage
happens adaptively but independently from each codeword, thus the decoding
function cannot automatically be part of the allowed leakage, which opens the
possibility of constructing a LRC.

It is easy to see that the encoding algorithm must be randomized, otherwise
two fixed messages can be easily distinguished. However, the security of LRC
does not give any guarantee when there is leakage from the randomness used in
the encoding process. In other words, while the encoded message can be stored
in a leaky device the encoding process must be executed in a completely leak-
free environment. A stronger flavour of security where we allow leakage from the
encoding process is usually called fully leakage resilient.

Our Contributions. We generalize the notion of LRC to the setting of fully
leakage resilience. Roughly speaking, a fully leakage-resilient code (FLRC) hides
information about the secret message even when the adversary leaked informa-
tion during the encoding process. Our contributions are summarized as follow:

1. We provide a simulation-based definition of fully leakage-resilient codes. The
definition postulates that for any adversary leaking λ0 bits from the encod-
ing process and λ1 bits from the codewords there exists a simulator which
provides a view that is indistinguishable. Our definition is, in some sense,
the minimal one suitable for the fully leakage resilience setting. As a sanity

2

check, we show that our new notion is implied by the indistinguishability-
based definition of [12] for λ0 = 0.

2. We show that there does not exist an efficient coding scheme in the split-state
model that is a fully leakage resilient code if the leakage function is allowed
to be any poly-time function. Our result holds for coding schemes where
the length of the messages is at least linear in the security parameter and
under the sole assumption that collision-resistant hash functions exist. We
can generalize the impossibility result to the case of constant-length messages
under the much stronger assumption that differing-input obfuscation (diO)
exists (see [3,9]).

3. We provide two feasibility results for weaker models. We show that, if the
leakage from the randomness is computable by bounded-depth constant fan-
in circuits (i.e. NC0-computable leakage), the inner-product extractor LRC
of [12] is fully leakage resilient. We show a compiler from any LRC to a fully
leakage resilient code in the common reference string model for any fixed
leakage-from-the-encoding-process family of small cardinality.

Simulation-based Security. Consider the naive fully leakage-resilient extension of
the indistinguishability-based security definition of LRC. Roughly speaking, the
adversary plays against a challenger and it can leak λ0 > 0 bits from a random
string ω←$ {0, 1}∗, in a second phase, the adversary sends to the challenger
two messages m0,m1, the challenger chooses a random bit b and encodes the
message mb using the randomness ω. After this, the adversary gets access to
leakage from the codewords. We show an easy attack on this definition. The
attacker can compute, via one leakage function on the randomness, the encoding
of both m0 and m1 and find a coordinate in which the two codewords differ,
successively, by leaking from the codeword only one bit, it can check whether
m0 or m1 has been encoded.

The problem with the indistinguishability-based security definition sketched
above is that it concentrates on preserving, in the presence of leakage on the
randomness, the same security guarantees as the (standard) leakage resilient
definition. However, the ability of leaking before and after the challenge gener-
ation, as shown for many other cryptographic primitives, gives to the adversary
too much power.

Following the leakage-tolerant paradigm introduced by Bitansky et al. [7], we
instead consider a simulation-based notion of security. The definition postulates
that for any adversary leaking λ0 bits from the encoding process and λ1 bits from
the codeword there exists a simulator which provide a view that is indistinguish-
able. In particular, the adversary chooses one input message and forwards it to
the challenger of the security game. After that, the adversary can leak first from
the encoding process and then from the codeword. The job of the simulator is to
produce an indistinguishable view of the leakage oracles to the adversary given
only leakage oracle access to the message. It is not hard to see that, without the
help of leakage oracle on the message, the task would be impossible. In fact, the
adversary can leak bits of the input message, if the input message is randomly
chosen the simulator cannot provide an indistinguishable view. Therefore, the

3

simulator can leak up to λ0(1 +γ) bits from the message for a “slack parameter”
γ > 0. The idea is that some information about the message can unavoidably
leak from the encoding process, however the amount of information about the
message that the adversary gathers by jointly leaking from the encoding process
and from the codeword should not exceed by too much the the bound given by
the leakage on the encoding process. The slack parameter is often considered as
a reasonable weakening of the model in the context of fully leakage resilience (see
for example [26,19,27,39]), we include it in our model to make the impossibility
results stronger. For the feasibility results we will instead ignore it.

The impossibility results. We give an impossibility result for FLRCs in the split-
state model. Recall that, in the split state model, the codeword is divided in two
parts which are stored in two independent leaky devices. Each leakage query can
be any poly-time function of the data stored in one of the parts.

Here we give the intuition behind the attacker. For simplicity let us set the
slack parameter γ equal to 0. In our attack we leak from the encoding process
a hash of each of the two parts of the codeword. The leakage function takes
the message and the randomness, runs the encoding algorithm to compute the
two parts L and R (the left part and the right part) and leaks two hash values
hl = h(L) and hr = h(R). Then we use a succinct argument of knowledge
system to leak an argument of knowledge of pre-images L and R of hl and
hr for which it holds that (L,R) decodes to m. Let λ0 be equal to the length
of the two hashed values and the transcript of the succinct argument. After
this the message can be encoded. The adversary uses its oracle access to L
to leak, in sequence, several succinct arguments of knowledge of L such that
hl = h(L). Similarly, the adversary uses its oracle access toR to leak, in sequence,
several succinct arguments of knowledge of R such that hr = h(R). By setting
λ1 � λ0 we can within the leakage bound λ1 on L and R leak 17λ0 succinct
arguments of knowledge of L and R. Suppose that the code is secure, then
there exists a simulator which can simulate the leakage of hl and hr and all
the arguments given at most λ0 bits of leakage on m. Since the arguments are
accepting in the real world and the simulator is assumed to be good it follows
that the simulated arguments are accepting with probability close to 1. Since
the simulator has access to only λ0 bits of leakage on m it follows that for one
of the 17λ0 simulated arguments produced by the simulator it uses the leakage
oracle on m with probability at most 1

4 . This means that with probability 3
4 the

simulator is not even using the leakage oracle to simulate this argument, so if we
remove the access to leakage from m the argument will still be acceptable with
probability close to 3

4 . Hence if the argument systems has knowledge error just
1
2 we can extract L from this argument with probability close to 1

4 . Similarly
we can extract from one of the arguments of knowledge of R the value R with
probability close to 1

4 . By collision resistance and soundness of the first argument
leaked from the encoding process it follows that (L,R) decodes tom. This means
that we can extract from the simulator the messagem with probability negligibly
close to 1

16 while using only λ0 bits of leakage on m. If m is uniformly random
and just λ0 + 6 bits long, this is a contradiction. In fact, the amount of min-

4

entropy of m after have leaked λ0 bits is λ0 + 6− λ0 = 6, therefore m cannot be
guessed with probability better than 2−6.

Similar proof techniques have been used already by Nielsen et al. [38] to
prove a connection between leakage resilience and adaptive security and recently
by Ostrovsky et al. [40] to prove an impossibility result for certain flavors of
leakage-resilient zero-knowledge proof systems. The way we apply this type of
argument here is novel. It is in particular a new idea to use many arguments of
knowledge in sequence to sufficient restrict the simulators ability to leak from
its leakage oracle in one of the proofs.

The definition of FLR makes sense only when the leakage parameter λ0 is
strictly smaller than the size of the message. The proposed attack needs to leak
at least a collision resistant hash function of the codeword, therefore the length
of the message needs to be super-logarithmic in the security parameter. Thus the
technique cannot be used to give an impossibility result for FLRC with message
space of constant length. We can overcome this problem relying on the concept of
Predictable ZAP (PZAP) recently proposed by Faonio et al. [20]. A PZAP is an
extremely succinct 2-message argument of knowledge where the prover can first
see the challenge from the verifier and then decide the instance. This allows the
attacker to implement the first check by just leaking a constant-length argument
that the hashed values of the two parts of the codeword are well formed (without
actually leaking the hashed values) and then, successively, leak the hashed val-
ues from the codeword and check the validity of the argument. PZAP are shown
to imply extractable witness encryption (see Boyle et al. [9]) and therefore the
“implausibility” result of Garg et al. [25] applies. We interpret our second impos-
sibility result as an evidence that constant-length FLRC are hard to construct as
such a code would not only make extractable witness encryption implausible, but
it would prove it impossible under the only assumption that collision-resistant
hash functions exists. We provide more details in the full version of the paper
[18].

The feasibility results. The ability to leak a collision resistant hash function of
the randomness is necessary for the impossibility result. Therefore, the natural
question is: If we restrict the leakage class so that collision resistant hash func-
tions cannot be computed as leakage on the randomness, can we find a coding
scheme that is fully leakage resilient? We answer this question affirmatively.

We consider the class NC0 of constant-depth constant fan-in circuits and we
show that the LRC based on the inner-product extractor (and more general
LRCs where there is an NC0 function that maps the randomness to the code-
word) are fully leakage resilient. The intuition is that NC0 leakage is not powerful
enough to break all the “independence” between the two parts of the codeword.
Technically, we are able to cast every leakage query on the randomness into two
slightly bigger and independent leakage queries on the two parts of the code-
word. Notice that collision resistant hash functions cannot be computed by NC0

circuits. This is necessary. In fact, proving a similar result for a bigger complex-
ity class automatically implies a lower bound on the complexity of computing
either collision resistant hash functions or arguments of knowledge. Intuitively,

5

this provides a strong evidence that is hard to construct FLRC even for bounded
classes of leakage.

Another important property that we exploit in the impossibility result is
that, given access to the leakage oracle on the randomness, we can compute the
codeword. A second path to avoid the impossibility results is to consider weaker
models of security where this is not permitted. We point out that the schemes
proposed by [12,23,29] in the common reference string model can be easily proved
to be fully leakage resilient. Inspired by the above results we provide a compiler
that maps any LRC to FLRC for any fixed leakage-from-the-encoding family F
of small cardinality. Notice that the bound is on the cardinality of the leakage
class and not on its complexity (in principle, the leakage class could contain
collision resistant hash functions).

We remark that the definition of FLRC already assumes a CRS (this to
include in our model the result of Liu and Lysyanskaya [34]). The key point is
that, by fixing F ahead (namely, before the common reference string is sampled)
and because of the small cardinality, the adversary cannot make the leakage on
the encoding “depends” from the common reference string, disabling therefore
the computation of the encoded word as leakage on the encoding process.

Technically, we use a result of Trevisan and Vadhan [43] which proves that
for any fixed leakage class F a t-wise independent hash function (the param-
eter t depends on the cardinality of F) is a deterministic extractor with high
probability. The proof mostly follows the template given in [23].

Related Work. Cryptographic schemes are designed under the assumption
that the adversary cannot learn any information about the secret key. How-
ever, side-channel attacks (see [32,33,42]) have showed that this assumption does
not always hold. These attacks have motivated the design of leakage-resilient
cryptosystems which remain secure even against adversaries that may obtain
partial information about the secret state. Starting from the groundbreaking
result of Micali and Reyzin [36], successively either gradually stronger or dif-
ferent models have been considered (see for example [2,16,24,37]). Fully leakage
resilient schemes are known for signatures [11,19,35], zero-knowledge proof sys-
tem [4,26,41] and multi-party computation protocols [8,10]. Similar concepts of
leakage resilient codes have been considered, Liu and Lysyanskaya [34] and suc-
cessively Aggarwal et al. [1] constructed leakage and tamper resilient codes while
Dodis et al. [13] constructed continual leakage resilient storage. Simulation-based
definitions in the context of leakage-resilient cryptography were also adopted in
the case of zero-knowledge proof (see [4,26,41]), public-key encryption (see [27])
and signature schemes (see [39]). As mentioned already, our proof technique for
the impossibility result is inspired by the works of Nielsen et al. [38] and Ostro-
vsky et al. [40], however, part of the analysis diverges, and instead resembles an
information theoretic argument already known in leakage-resilient cryptography
(see for example [2,19,30]).

In [22] the authors present a RAM model of computation where a CPU
is connected to some constant number of memories, paralleling the split-state

6

model that we use here. The memories and buses are assumed to be leaky,
but the CPU is assumed to be leakage free. Besides leakage, the paper also
shows how to handle tampering, like moving around codewords in the memories.
They show how to use a leakage-resilient and tamper-resilient code to securely
compute on this platform. In each step the CPU will read from the disks a
number of codewords, decode these, do a computation on the plaintext, re-encode
the results and write the codewords back in the memories. One should wonder
if it is possible to get a similar result for the more realistic model where there
is a little leakage from the CPU? It is clear that if the CPU can leak, then
it can also leak from the plaintexts it is working on. This can be handled by
having the computation that is done on the plaintexts being leakage resilient
in itself. The challenging part is then to show that the leakage from the CPU
during re-encoding of the results to be stored in the memories can be simulated
given just a little leakage on the results themeselves. This would in particular
require that the code is fully leakage-resilient in the sense we define in this paper.
Our negative results therefore do not bode well for this proof strategy. On the
other hand, our positive results open up the possibility of tolerating some simple
leakage from the CPU or getting a result for weaker models, like the random
oracle model. Note, however, that the code would have to be tamper-resilient
in addition to being fully leakage resilient, so there still seem to be significant
obstacles towards proving such a result.

Roadmap. In Section 2 we introduce the necessary notation for probability
and cryptographic tools. In Section 3 we provide the simulation-based definition
for Fully Leakage-Resilient Codes. In Section 4 we state and prove the main
impossibility result for linear-size message spaces. In Section 5 we provide the
two feasibility results, specifically, in Section 5.1 we give a FLR code for the
class NC0 and in Section 5.2 we give a compiler from Leakage-Resilient Codes
to Fully Leakage-Resilient Codes for any fixed class of small cardinality.

2 Preliminaries

We let N denote the naturals and R denote the reals. For a, b ∈ R, we let
[a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N we let [a] = {1, 2, . . . , a}. If x is a
string, we denote its length by |x|; if X is a set, |X | represents the number of
elements in X . When x is chosen randomly in X , we write x←$ X . When A is
an algorithm, we write y ← A(x) to denote a run of A on input x and output
y; if A is randomized, then y is a random variable and A(x; r) denotes a run
of A on input x and randomness r. An algorithm A is probabilistic polynomial-
time (ppt) if A is allowed to use random choices and for any input x ∈ {0, 1}∗
and randomness r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most
poly(|x|) steps.

Let κ be a security parameter. A function negl is called negligible in κ (or
simply negligible) if it vanishes faster than the inverse of any polynomial in κ.

7

For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the language associated with R is LR =
{x : ∃w s.t. (x,w) ∈ R}.

For two ensembles X = {Xκ}κ∈N, Y = {Yκ}κ∈N, we write X
c
≈ε Y, meaning

that every probabilistic polynomial-time distinguisher D has ε(κ) advantage in
distinguishing X and Y, i.e., 1

2 |Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1]| ≤ ε(κ) for all
sufficiently large values of κ.

We simply write X
c
≈ Y when there exists a negligible function ε such that

X
c
≈ε Y. Similarly, we write X ≈ε Y (statistical indistinguishability), meaning

that every unbounded distinguisher has ε(κ) advantage in distinguishing X and
Y. Given two ensembles X and Y such that X ≈ε Y the following holds:

1

2

∑
z

∣∣Pr[Xκ = z]− Pr[Yκ = z]
∣∣ 6 ε(κ).

We recall the notion of (average) conditional min-entropy. We adopt the defi-
nition given in [2], where the authors generalize the notion of conditional min-
entropy to interactive predictors that participate in some randomized experiment
E. The conditional min-entropy of random variable X given any randomized ex-
periment E is defined as H̃∞ (X | E) = maxB

(
− log Pr[B()E = X]

)
, where the

maximum is taken over all predictors without any requirement on efficiency. Note
that w.l.o.g. the predictor B is deterministic, in fact, we can de-randomize B by
hardwiring the random coins that maximize its outcome. Sometimes we write
H̃∞(X|Y) for a random variable Y , in this case we mean the average conditional
min-entropy of X given the random experiment that gives Y as input to the
predictor. Given a string X ∈ {0, 1}∗ and a value λ ∈ N let the oracle OXλ (·) be
the leakage oracle that accepts as input functions f1, f2, . . . defined as circuits
and outputs f1(X), f2(X), . . . under the restriction that

∑
i |fi(X)| 6 λ.

We recall here a lemma of Alwen et al. [2] and a lemma from Bellare and
Rompel [6] that we make us of.

Lemma 1. For any random variable X and for any experiment E with ora-
cle access to OXλ (·), consider the experiment E′ which is the same as E except
that the predictor does not have oracle access to OXλ (·). Then H̃∞ (X | E) >
H̃∞ (X | E′)− λ.
Lemma 2. Let t > 4 be an even integer. Suppose X1, . . . , Xn are t-wise in-
dependent random variables taking values in [0, 1]. Let X :=

∑
iXi and define

µ := E[X] to be the expectation of the sum. Then, for any A > 0, Pr[|X − µ| >

A] 6 8
(
tµ+t2

A2

)t/2
.

2.1 Cryptographic Primitives

Arguments of Knowledge. Our results are based on the existence of round-
efficient interactive argument systems. We follow some of the notation of Wee
[44]. The knowledge soundness definition is taken from [40]. A public-coin argu-
ment system (P (w), V)(x) with round complexity ρ(κ) is fully described by the
tuple of ppt algorithms (Prove, Judge) where:

8

- V on input x samples uniformly random strings y1, . . . , yρ(κ)←$ {0, 1}κ, P
on inputs x,w samples uniformly random string rP ←$ {0, 1}κ.

- For any i ∈ [ρ(κ)], V sends the message yi and P replies with the message
xi := Prove(x,w, y1, . . . , yi; rP).

- The verifier V executes j := Judge
(
x, y1, . . . , yρ(κ), x1, . . . , xρ(κ)

)
and accepts

if j = 1.

Definition 1 (Argument of knowledge). An interactive protocol (P, V) is
an argument of knowledge for a language L if there is a relation R such that
L = LR := {x|∃w : (x,w) ∈ R}, and functions ν, s : N → [0, 1] such that
1− ν(κ) > s(κ) + 1/poly(κ) and the following conditions hold.

- (Efficiency): The length of all the exchanged messages is polynomially bound-
ed, and both P and V are computable in probabilistic polynomial time;

- (Completeness): If (x,w) ∈ R, then V accepts in (P (w), V)(x) with proba-
bility at least 1− ν(|x|).

- (Knowledge Soundness): For every ppt prover strategy P ∗, there exists an
expected polynomial-time algorithm K (called the knowledge extractor) such
that for every x, z, r ∈ {0, 1}∗ if we denote by p∗(x, z, r) the probability that
V accepts in (P (z; r), V)(x), then p∗(x, z, r) > s(|x|) implies that

Pr[K(P ∗, x, z, r) ∈ R(x)] > p∗(x, z, r)− s(|x|).

The value ν(·) is called the completeness error and the value s(·) is called the
knowledge error. We say (P, V) has perfect completeness if ν = 0. The commu-
nication complexity of the argument system is the total length of all messages
exchanged during an execution; the round complexity is the total number of ex-
changed messages. We write AoKν,s(ρ(κ), λ(κ)) to denote interactive argument
on knowledge systems with completeness error ν, knowledge error s, round-
complexity ρ(κ) and communication complexity λ(κ). Sometimes we also write
λ(κ) = λP (κ)+λV (κ) to differentiate between the communication complexity of
the prover and of the verifier. We say (P, V) is succinct if λ(κ) is poly-logarithmic
in the length of the witness and the statement being proven.

We remark that for our results interactive arguments are sufficient; in par-
ticular our theorems can be based on the assumption that collision-resistant
function ensembles exist [31].

Collision Resistant Hash Functions. Let (GenCRH,EvalCRH) be a tuple of ppt
algorithms such that upon input 1κ the algorithm Gen outputs an evaluation key
h and upon inputs h and a string x ∈ {0, 1}∗ the deterministic algorithm EvalCRH

outputs a string y ∈ {0, 1}`CRH(κ). We shorten the notation by writing h(x) for
EvalCRH(h, x).

Definition 2. A tuple (EvalCRH,GenCRH) is a collision-resistant hash function
(family) with output length `CRH(κ) if for all non-uniform polynomial time ad-
versary Bcoll there exists a negligible function negl such that the following holds:

Pr
h←$ GenCRH(1κ)

[
h(x0) = h(x1) ∧ x0 6= x1 | (x0, x1) := Bcoll(h)

]
< negl(κ).

9

For simplicity we consider the model of non-uniform polynomial time adversaries.
Note, however, that our results hold also if we consider the model ppt adversaries.

3 Definition

In this section we give the definition of Fully Leakage Resilient Codes. The def-
inition given is specialized for the 2-split-state model, we adopt this definition
instead of a more general one for simplicity. The results given in Section 4 can
be adapted to hold for the more general k-split model (see Remark 1). LRCs
of [12,21,29] in the common reference string model can be proved fully-leakage
resilience (see Section 5). Therefore the syntax given allows the scheme to de-
pends on a common reference string to include the scheme of [34].

An (α, β)-split-coding scheme is a tupleΣ = (Gen,Enc,Dec) of ppt algorithms
with the following syntax:

- Gen on input 1κ outputs a common reference string crs;
- Enc on inputs crs and a message m ∈Mκ outputs a tuple (L,R) ∈ Cκ × Cκ;
- Dec is a deterministic algorithm that on inputs crs and a codeword (L,R) ∈
Cκ × Cκ decodes to m′ ∈Mκ.

Here Mκ = {0, 1}α(κ), Cκ = {0, 1}β(κ) and the randomness space of Enc is
Rk = {0, 1}p(κ) for a fixed polynomial p.

A split-coding scheme is correct if for any κ and any m ∈ Mκ we have
Prcrs,re [Dec(crs,Enc(crs,m; re)) = m] = 1. In what follows, whenever it is clear
from the context, we will omit the security parameter κ so we will write α, β
instead of α(κ), β(κ), etc.
Given an (α, β)-split-coding scheme Σ, for any A = (A0,A1) and any function
λ0, λ1 let Realλ0,λ1

A,Σ (κ) be the following experiment:

Sampling Phase. The experiment runs the adversaryA0 on input crs←$ Gen(1κ)
and randomness rA←$ {0, 1}p(κ) for a polynomial p that bounds the running
time of A0. The adversary outputs a message m ∈ Mκ and a state value st.
The experiment samples ω←$Rκ and instantiates a leakage oracle Oω‖mλ0

.
Encoding Phase. The experiment runs the adversary A1 on input st and crs.
Moreover, the experiment sets an index i := 0.
- Upon query (rand, f) from the adversary where f is the description of a
function with domain Rκ ×Mκ, the experiment sets i := i+ 1, computes
lkiω := Oω‖mλ0

(f) and returns the value to the adversary.
- Eventually, the adversary notifies the experiment by sending the message
encode.

The message is encoded, namely the experiment defines (L,R) := Enc(crs,m;ω)
and instantiates the oracles OLλ1

, ORλ1
. Moreover, the experiment sets two in-

dexes l := 0 and r := 0.
- Upon query (L, f) from the adversary where f is the description of a func-
tion with domain Cκ, the experiment sets l := l+1, computes lklL := OLλ1

(f)
and returns the value to the adversary.

10

- Upon query (R, f) from the adversary where f is the description of a func-
tion with domain Cκ, the experiment sets r := r + 1, computes lkrR :=
ORλ1

(f) and returns the value to the adversary.

By overloading the notation, we let Realλ0,λ1

A,Σ be also the tuple of random vari-
ables that describes the view of A in the experiment:

Realλ0,λ1

A,Σ :=

rA, crs,

lkω := (lk1
ω, lk

2
ω, . . . , lk

i
ω),

lkL := (lk1
L, lk

2
L, . . . , lk

l
L),

lkR := (lk1
R, lk

2
R, . . . , lk

r
R)

 ,

Given an adversary A = (A0,A1), a simulator S and a slack parameter γ(κ)

such that 0 6 γ(κ) < α(κ)
λ0(κ) − 1 let Idealλ0,λ1

A,S,γ(κ) be the following experiment:

Sampling Phase. The experiment runs the adversaryA0 on input crs←$ Gen(1κ)
and randomness rA←$ {0, 1}p(κ) for a polynomial p that bounds the running
time of A0. The adversary outputs a message m ∈ Mκ and a state value st.
The experiment instantiates an oracle Omλ0·(1+γ).

Encoding Phase. The experiment runs the adversary A1 on input st and crs,
and the simulator S on input crs.
- Upon query (X, f) from the adversary where X ∈ {rand, L, R} the exper-
iment forwards the query to the simulator S which returns an answer to
the adversary.

- Upon query (msg, f) from the simulator the experiment computes lkm :=
Omλ0·(1+γ)(f) and returns an answer to the simulator.

As we did with Realλ0,λ1

A,Σ we denote with Idealλ0,λ1

A,S,γ also the tuple of random
variables that describe the view of A in the experiment. To mark the distinction
between the real experiment and ideal experiment we upper script the “simu-
lated” components of the ideal experiment with a tilde, namely:

Idealλ0,λ1

A,S,γ =
(
rA, crs, l̃kω, l̃kL, l̃kR

)
Given a class of leakage functions Λ we say that an adversary is Λ-bounded if it
submits only queries (rand, f) where the function f ∈ Λ.
Definition 3 (Simulation-based Λ-fully leakage resilient code). An (α, β)-
split-coding scheme is said to be (Λ, λ0, λ1, ε)-FLR-sim-secure with slack param-
eter 0 6 γ < α/λ0 − 1 if for any ppt adversary A that is Λ-bounded there exists
a ppt simulator Ssuch that

{
Realλ0,λ1

A,Σ (κ)
}
κ∈N

c
≈ε
{
Idealλ0,λ1

A,S,γ(κ)
}
κ∈N

.

Let P/poly be the set of all polynomial-sized circuits.

Definition 4 (Simulation-based fully leakage resilient code). An (α, β)-
split-coding scheme is said to be (λ0, λ1, ε)-FLR-sim-secure with slack parameter
γ if it is (P/poly, λ0, λ1, ε)-FLR-sim-secure with slack parameter γ. We simply say
that a split-coding scheme is (λ0, λ1)-FLR-sim-secure if there exists a negligible
function negl and a constant γ < α/λ0−1 such that the scheme is (λ0, λ1, negl)-
FLR-sim-secure with slack parameter γ.

11

In the full version of the paper [18] we prove that the game-based definition
of [12] implies FLR-sim-security for λ0 = 0.

4 Impossibility Results

In this section we show the main result of this paper. Throughout the section
we let the class of leakage functions be Λ = P/poly. We prove that (α, β)-split-
coding schemes that are (λ0, λ1)-FLR-sim-secure don’t exist for many interesting
parameters of α, β, λ0 and λ1. We start with the case α(κ) = Ω(κ), the impos-
sibility results holds under the only assumption that collision resistant hash
functions exist. For the case α(κ) = O(1), the impossibility results holds under
the stronger assumption that adaptive-secure PAoK exists.

Theorem 1. If public-coin AoKnegl(κ),1/2(O(1), `AoK(κ)) for NP and collision-
resistant hash functions with output length `CRH(κ) exist then for any λ0 >
`AoK(κ) + 2 · `CRH(κ) for any γ > 0 and for any (α, β)-split-coding scheme Σ
with α(κ) > λ0(κ) · (1 +γ) + `CRH(κ) + 7 and if λ1(κ) > 17λ0(κ) · (1 +γ) · `AoK(κ)
then Σ is not (λ0, λ1)-FLR-sim-secure.

Proof. We first set some necessary notation. Given a random variable x we
use the notation x̄ to refer to a possible assignment of the random variable.
Let (GenCRH,EvalCRH) be a collision resistant hash function with output length
`CRH(κ).

Leakage-aided Prover. LetΠ = (Prove, Judge) be in AoK1/2,negl(κ)(O(1), `AoK(κ))
and a public-coin argument system for NP. For concreteness let ρ be the round
complexity of the Π. We say that an attacker leaks an argument of knowledge
for x ∈ LR from X ∈ {rand, L, R} if the attacker proceeds with the following
sequence of instructions and leakage-oracle queries:

– Let rp be a random string long enough to specify all random choices done
by the prover of Π. For j ∈ [ρ] do the following:
1. Sample a random string yj ←$ {0, 1}κ;
2. Send the query

(
X,Prove(x, ·, y1, . . . , yj ; rp)

)
and let zj be the answer to

such query.
– Let π := y1, . . . , yρ, z1, . . . , zρ be the leaked transcript, compute the value
j := Judge

(
x, π

))
, if j = 1 we say that the leaked argument of knowledge is

accepting.

Consider the adversary A′ = (A′0,A′1) that does the following:

1. Pick a collision resistant hash function h← GenCRH(1κ);
2. Pick m←$Mκ and send it to the challenger;
3. Compute h(m).

This ends the code of A′0, formally, A′0(1κ) outputs m that is forwarded to the
experiment which instantiates a leakage oracle Omλ0·(1+γ), also A

′
0(1κ) outputs

the state st := (h, h(m)). Here starts the code of A′1(h, h(m)):

12

4. Leak Hashed Values. Define the following function:

f0(ω‖m) := (h(L), h(R) where L,R = Enc(crs,m;ω)) ;

Send the query (rand, f0). Let (hl, hr) be the answer to the query.
5. Leak Argument of Knowledge of Consistency. Consider the following

relation:

Rst :=

(xcrs, xl, xr, xm), (wl, wr) :
h(wl) = xl
h(wr) = xr

h(Dec(xcrs, wl, wr)) = xm

Leak an argument of knowledge for (crs, hl, hr, h(m)) ∈ LRst from rand.
Notice that a witness for the instance can be defined as function of (ω‖m).
If the leaked argument is not accepting then abort. Let π0 be the leaked
transcript.

6. Send the message encode.
7. Leak Arguments of Knowledge of the Left part. Consider the following

relation:
Rhash :=

{
(y, x) : h(x) = y

}
Let τ := 17λ0 · (1 + γ), for all i ∈ [τ] leak an argument of knowledge for
hl ∈ LRhash from L. If the leaked argument is not accepting then abort. Let
πLi be the leaked transcript.

8. Leak Arguments of Knowledge of the Right part. For all i ∈ [τ] leak
an argument of knowledge for hr ∈ LRhash from R. If the leaked argument is
not accepting then abort. Let πRi be the leaked transcript.

Consider the following randomized experiment E:

– Pick uniformly randomm←$Mκ and h←$ GenCRH(1κ) and set st = (h, h(m))
and forward to the predictor the state st.

– Instantiate an oracle Omλ0·(1+γ) and give the predictor access to it.

Lemma 3. H̃∞(m | E) > α− `CRH − λ0 · (1 + γ).

Proof. Consider the experiment E′ which is the same as E except that the pre-
dictor’s input is h (instead of (h, h(m))). We apply Lemma 1:

H̃∞ (m | E) > H̃∞ (m | E′)− `CRH.

Consider the experiment E′′ which is the same as E′ except that the predictor’s
oracle access to Omλ0·(1+γ) is removed. We apply Lemma 1:

H̃∞ (m | E′) > H̃∞ (m | E′′)− λ0 · (1 + γ).

In the last experiment E′′ the predictor has no information about m and more-
over h is independently chosen with respect to m, therefore:

H̃∞ (m | E′′) = log |M| = α.

ut

13

Lemma 4. If Σ is (λ0, λ1)-FLR-sim-secure then H̃∞(m|E) 6 6.

Proof. Assume that Σ is an (λ0, λ1, ε)-FLR-sim-secure split-coding scheme for a
negligible function ε and a slack parameter γ. Since A′ is ppt there exists a ppt
simulator S ′ such that:

{Realλ0,λ1

A′,Σ (κ)}κ
c
≈ε(κ) {Idealλ0,λ1

A′,S′,γ(κ)}κ. (1)

For the sake of the proof we first build a predictor which tries to guess m.
We then use this predictor to prove the lemma. Let K be the extractor given by
the knowledge soundness property of the argument of knowledge for the relation
Rhash. Consider the following predictor B that takes as input (h, h(m)) and has
oracle access to Omλ0·(1+γ):

1. Pick two random tapes ra, rs for the adversary A′1 and the simulator S ′ and
run both of them (with the respective randomness ra, rs) forwarding all the
queries from A′1 to S ′ and from S ′ to Omλ0·(1+γ). (The adversary A

′
1 starts by

leaking the values hl, hr and an argument of knowledge for (hl, hr) ∈ LRst .
Eventually the adversary sends the message encode.)

2.L. Extract (hl, L
′) ∈ Rhash using the knowledge extractor K. For any

i ∈ [τ], let s̄tLi be the actual internal state of S ′ during the above run of S ′
and A′1 just before the i-th iteration of step 7 of A′1.
Let Pleak be a prover of Π for Rhash that upon input the instance hl, ran-
domness rp and auxiliary input s̄tLi does the following:
– Run a new instance S ′i of S ′ with the internal state set to s̄t

L
i .

– Upon message yj with j ∈ [ρ] from the verifier, send to S ′i the message
(L,Prove(hl, ·, y1, . . . , yj ; rp)).

– Upon message (msg, f ′) from the simulator S ′i reply ⊥ to S ′i.
Notice that Pleak makes no leakage oracle queries.
i) If the value L′ is unset, run the knowledge extractor K on the prover
Pleak on input hl and auxiliary input stLi and proper randomness1. The
knowledge extractor K outputs a value L′ or aborts. If hl = h(L′) then
set L′ otherwise we say that the i-th extraction aborts.

ii) Keep on running A′1 and S ′ as in the simulated experiment until reaching
the next iteration.

If all the extractions abort, the predictor aborts.
2.R. Extract (hr, R

′) ∈ Rhash using the knowledge extractor K. The proce-
dure is the same as step 2.L of the predictor, for notational completeness let
us denote with stRi the internal state of S ′ just before the i-th iteration of
step 8.

3. The predictor outputs m′ := Dec(L′, R′) as its own guess.

We compute the probability that B predicts m correctly. We set up some useful
notation:
1 The randomness for Pleak is implicitly defined in the random string ra.

14

– Let ExtL (resp. ExtR) be the event that K successfully extracts a value L′
(resp. R′).

– Let CohSt be the event {h(Dec(L′, R′)) = h(m)} .
– Let Coll be the event {h(Dec(L′, R′)) = h(m) ∧ Dec(L′, R′) 6= m}..

Recall that m′ := Dec(L′, R′) is the guess of B. We can easily derive that:

Pr
[
m′ = m

]
= Pr

[
ExtL ∧ ExtR ∧ CohSt ∧ ¬Coll

]
(2)

In fact, ExtL and ExtR imply that L′ and R′ are well defined and the event
(CohSt ∧ ¬Coll) implies that Dec(L′, R′) = m.

Claim 1 Pr[ExtL] > 1
4 − negl(κ).

Proof. Consider the execution of step 7 between the adversary and the simulator.
Let s̄t = s̄t

L
1 , . . . , s̄t

L
τ ∈ {0, 1}∗ be a fixed observed value of the states of S ′ in the

different rounds, i.e., s̄tLi is the observed state of S ′ just before the i-th iteration
in step 7.

We define a probability FreeL(s̄t
L
i) of the simulator not asking a leakage query

in round i, i.e., the probability that the simulator queries its leakage oracle if
run with fresh randomness starting in round i. We can assume without loss of
generality that the randomness rs of the simulator is part of s̄tLi . Therefore the
probability is taken over just the randomness ra of the adversary, m, h and the
challenges used in the proof in round i. Notice that even though it might be
fixed in s̄t = s̄t

L
1 , . . . , s̄t

L
τ whether or not the simulator leaked in round i (this

information might be contained in the final state s̄tLτ), the probability FreeL(s̄t
L
i)

might not be 0 or 1, as it is the probability that the simulator leaked in round
i if we would rerun round i with fresh randomness of the adversary consistent
with s̄tLi .

Recall that s̄t = s̄t
L
1 , . . . , s̄t

L
τ ∈ {0, 1}∗ is a fixed observed value of the states

of S ′ in the different rounds. Let Good(s̄t) be a function which is 1 if

∃i ∈ [τ] : FreeL(s̄t
L
i) >

3

4

and which is 0 otherwise.2 After having defined Good(s̄t) relative to a fixed
observed sequence of states, we apply it to the random variable st describing
the states of S ′ in a random run. When applied to st, we simply write Good.

We use the law of total probability to condition to the event {Good = 1}:

Pr[ExtL] > Pr[ExtL |Good = 1] · Pr[Good = 1] . (3)

We will now focus on bounding Pr[ExtL |Good = 1] · Pr[Good = 1]. We first
bound Pr[Good = 1] and then bound Pr[ExtL |Good = 1]. We first prove that

Pr[Good = 1] = 1− negl(κ) .

2 Intuitively, Good is an indicator for a good event, that, as we will show, has over-
whelming probability.

15

To see this notice that the simulator by the rules of the experiment never queries
its leakage oracle in more than λ0 · (1 + γ) rounds: it is not allowed to leak more
than λ0 · (1+γ) bits and each leakage query counts as at least one bit. Therefore
there are at least τ − λ0 · (1 + γ) rounds in which the simulator did not query
its oracle. If Good = 0, then in each of these rounds the probability of leaking,
before the round was executed, was at least 1

4 and hence the probability of not
leaking was at most 3

4 . Set λ
′ := λ · (1 + γ), we can use a union bound to bound

the probability of observing this event

Pr[Good = 0] ≤
(

τ

τ − λ′

)(
3

4

)τ−λ′
≤
(
τ

λ′

)
2log2(3/4)(τ−λ′) . (4)

We now use that τ = 17λ0 · (1 + γ) = 17λ′ and that it holds for any constant
c ∈ (0, 1) that limn→∞

(
n
cn

)
= 2H2(c)·n, where H2 is the binary entropy function.

We get that

Pr[Good = 0] ≤ 2H2(1/17)17λ′2log2(3/4)16λ′ = (2H2(1/17)17+log2(3/4)16)λ
′
< 2−λ0 .

We now bound Pr[ExtL |Good = 1]. Let ExtL(i) be the event that K successfully
extracts the value L′ at the i-th iteration of the step 7 of the adversary A′. Let
AcceptL(i) be the event that Pleak on input hl and auxiliary input stLi gives an
accepting proof. It follows from knowledge soundness of Π that

Pr
[
ExtL(i)|Good = 1

]
> Pr

[
AcceptL(i)|Good = 1]− 1

2 .

Let LeakL(i) be the event that the simulator queries its leakage oracle in round
i. It holds for all i that

Pr
[
AcceptL(i)|Good = 1] ≥ 1− Pr

[
LeakL(i)|Good = 1

]
− negl(κ) .

To see this assume that Pleak upon message (msg, f ′) from S ′i would send to
the simulator f ′(ω‖m) instead of ⊥. In that case it gives an acceptable proof
with probability 1 − negl(κ) as the adversary leaks an acceptable proof in the
real world and the simulator simulates the real world up to negligible difference.
Furthermore, sending ⊥ when the simulator queries its oracle can only make
a difference when it actually sends a query, which happens with probability
Pr[LeakL(i)]. Combining the above inequalities we get that

Pr
[
ExtL(i)|Good = 1

]
> 1− Pr

[
LeakL(i)

∣∣Good = 1]− negl(κ)− 1
2 .

When Good = 1 there exists some round i∗ such that FreeL(s̄t
L
i∗) > 3

4 , which
implies that Pr

[
ExtL(i∗)|Good = 1

]
> 3

4 − negl(κ)− 1
2 . Clearly ExtL(i∗) implies

ExtL, so we conclude that Pr
[
ExtL|Good = 1

]
> 1

4 − negl(κ).

Claim 2 Pr[ExtR|ExtL] > 1
4 − negl(κ).

The proof proceeds similar to the proof of Claim 1, therefore it is omitted. The
reason why the condition ExtL does not matter is that the proof exploits only
the knowledge soundness of the proof system. Whether the extraction of the left
part succeeded or not does not remove the knowledge soundness of the proofs
for the right part, as they are done after the proofs for the left part.

16

Claim 3 Pr[CohSt |ExtL ∧ ExtR] > 1
2 − negl(κ).

Proof. We reduce to the collision resistance property of h and the knowledge
soundness of the argument system Π. Suppose that

Pr[h(Dec(L′, R′)) 6= h(m) |ExtL ∧ ExtR] > 1/poly(κ)

Consider the following collision finder adversary Bcoll(h):

1. Sample uniformly random m←$M and random h←$ GenCRH(1κ);
2. Run an instance of the predictor BO

m
λ0·(1+γ)(h, h(m)). The predictor needs

oracle access to Omλ0·(1+γ) which can be simulated by Bcoll(h).
3. Let L′, R′ be defined as by the execution of the predictor B and let ra, rs

be the same randomness used by B in its step 1. Simulate an execution of
A′1(h, h(m); ra) and S ′(1κ; rs) and break them just before the adversary leaks
an argument of knowledge for Rst. Let st′ be the internal state of S ′(1κ; rs).
Let P ′leak be a prover for Π for the relation Rst that upon input the instance
(crs, h(L′), h(R′), h(m)) and auxiliary input z := (st′,m) does the following:
– Run an S ′ with the internal state set to st′. Sample a random string rp

long enough to specify all random choices done by the prover of Π.
– Upon message yj with j ∈ [ρ] from the verifier, send to S ′ the message

(rand,Prove((crs, h(L′), h(R′), h(m)),Enc(crs, · ; ·), y1, . . . , yj ; rp)). (The
next-message function of the prover of Π that uses as input the witness
Enc(crs,m;ω) and the internal randomness set to rp.)

– Upon message (msg, f ′) from the simulator S ′ reply forwarding f ′(m).
4. Run Kst on the prover P ′leak on input (crs, h(L′), h(R′), h(m)) and auxiliary

input z. Let L′′, R′′ be the witness output by the extractor.
5. If L′ 6= L′′ output (L′, L′′) else (R′, R′′).

It is easy to check that Bcoll simulates perfectly the randomized experiment E.
Therefore:

Pr[h(Dec(L′, R′)) 6= h(m)] > (5)
> Pr[h(Dec(L′, R′)) 6= h(m) |ExtL ∧ ExtR] Pr[ExtL ∧ ExtR] >

> 1/poly(κ) · (1
16 − negl(κ))

On the other hand, the extractor Kst succeeds with probability at least 1 −
negl(κ)− 1

2 . Therefore, L
′′ and R′′ are such that h(L′′) = h(L′), h(R′′) = h(R′)

and h(Dec(L′′, R′′)) = h(m).
Combining the latter and the statement of the event in Eq. (5), we have

h(Dec(L′, R′)) 6= h(m) = h(Dec(L′′, R′′)) which implies that either L′′ 6= L′ or
R′′ 6= R′. Lastly, notice that Bcoll is an expected polynomial time algorithm.
However we can make it polynomial time by aborting if the number of step
exceeds some fixed polynomial. By setting the polynomial big enough the prob-
ability of Bcoll finding a collision is still noticeable.

Claim 4 Pr
[
Coll |CohSt ∧ ExtL ∧ ExtR

]
6 negl(κ).

17

Recall that Coll is the event that h(m) = h(m′) but m 6= m′. It can be easily
verified that under collision resistance of h the claim holds, therefore the proof
is omitted. Summarizing, we have:

Pr[m′ = m] = Pr
[
ExtL ∧ ExtR ∧ CohSt ∧ ¬Coll

]
>

> (1
16 − negl(κ)) · (1

2 − negl(κ)) · (1− negl(κ)) > 1
64 .

which implies the statement of the lemma.

We conclude the proof of the theorem noticing that, if Σ is (λ0, λ1)-FLR-sim-
secure split-coding scheme by the parameter given in the statement of the the-
orem we have that Lemma 3 and Lemma 4 are in contraction. ut

Remark 1. The result can be generalized for a weaker version of the split-state
model where the codeword is split in many parts. The probability that the
predictor in Lemma 4 guesses the message m degrades exponentially in the
number of splits (the adversary needs to leak one hash for each split and then
executes step 7 for any split). Therefore, the impossibility holds when the number
of splits is o((α− λ0(1 + γ))/`CRH). We present the theorem, as stated here, for
sake of simplicity.

The case of constant-size message. For space reason we defer the impossi-
bility result for the case of constant-size message fully leakage resilient codes the
full version of the paper [18]

5 Feasibility Results

In this section we give two feasibility results for weaker models of security.

5.1 The Inner-Product Extractor is a NC0-Fully LR Code

We start by giving a well-known characterization of the class NC0.

Lemma 5. Let f ∈ NC0 where f :=
(
fn : {0, 1}n → {0, 1}m(n)

)
n∈N for a func-

tion m. For any n there exists a value c = O(m), a set {i1, . . . , ic} ⊆ [n] of in-
dexes and a function g such that for any x ∈ {0, 1}n, f(x) = g(xi1 , xi2 , . . . , xic).

The lemma above shows that any function in NC0 with output length m such
thatm(n)/n = o(1) cannot be collision resistant, because an adversary can guess
an index i /∈ {i1, . . . , ic} and output 0n, (0i−1‖1‖0n−i) as collision.

Let F be a finite field and let ΦnF = (Enc,Dec) be as follows:

- Enc on input m ∈ F picks uniformly random L,R←$ Fn under the condition
that 〈L,R〉 = m.

- Dec on input L,R outputs 〈L,R〉.

18

Theorem 2 (from [15]). The encoding scheme ΦnF as defined above for |F| =
Ω(κ) is a (0, 0.3 · n log |F||)-FLR-SIM-secure for n > 20.

We will show now that the scheme is also fully leakage resilient for NC0-bounded
adversaries.

Theorem 3. For any n ∈ N and n > 20 there exists a positive constant δ ∈ R
such that, for any λ0, λ1 such that δ · λ0 + λ1 < 0.3 · |Fn| the encoding scheme
ΦnF is (NC0, λ0, λ1)-FLR-SIM-secure.

We reduce an adversary A for the (NC0, λ0, λ1)-FLR-SIM game (with λ0 > 0)
to an adversary for the (0, δ · λ0 + λ1)-FLR-SIM game. Given Lemma 5 and the
structure of ΦnF , the task is very easy. In fact, the randomness ω picked by
Enc can be parsed as (L0, . . . , Ln−1, R0, . . . , Rn−2). Whenever the adversary A
queries the oracle Oωλ0

the reduction splits the leakage function in two pieces and
leak from OL and OR the relative piece of information necessary to compute
the leakage function. Because of Lemma 5 we know that for each function the
amount of leakage done on the two states is bounded by a constant δ.

Proof. Given a vector X ∈ Fn let bit(X)i be the i-th bit of a canonical bit-
representation of X. Given A = (A0,A1) we define a new adversary A′ that
works as follows:

0. Instantiate an execution of (m, st)←$A0(1κ);
1. Execute A1(st) and reply to the leakage oracle queries it makes as follow:

- Upon message (rand, f) from A1, let I be the set of indexes such that f
depends on I only. Define IL := I ∩ [qn] and IR := I ∩ [qn+ 1, 2qn].
Define the functions:

fL(L) := (bit(L)i for i ∈ IL) and fR(R) := (bit(R)i for i ∈ IR).

Send the queries (L, fL) and (R, fR) and let lkL and lkR be the answers
to the queries. Hardwire such values and evaluate the function f on
input m. Namely, compute lkf := f(fL(L), fR(R),m) and send it back
to A1(st).

- Upon message (X, f) where X ∈ {L, R} from A1 forward the message.

W.l.o.g. assume that every leakage query to Oω‖mλ0
has output length 1 and that

the adversary makes exactly λ0 queries. By Lemma 5 there exists a constant
δ ∈ N such that for the i-th leakage query made by A1 to Oω‖mλ0

the adversary
A′ leaks δ bits from OL

λ1
,OR

λ1
. By construction:

{Realλ0,λ1

A,ΦnF
(κ)}κ∈N ≡ {Real0,λ1+δ·λ0

A′,ΦnF
(κ)}κ∈N .

Let S ′ be the simulator for the adversary A′ as provided by Theorem 2, thus:

{Real0,λ1+δ·λ0

A′,ΦnF
(κ)}κ∈N ≈negl(κ) {Ideal0,λ1+δ·λ0

A′,S′ (κ)}κ∈N.

19

Let S be defined as the machine that runs the adversary A′ interacting with the
simulator S ′. Notice that:

{Ideal0,λ1+δ·λ0

A′,S′ (κ)}κ∈N ≡ {Idealλ0,λ1

A,S (κ)}κ∈N.

This conclude the proof of the theorem. ut

The proof exploits only marginally the structure of ΦnF . It is not hard to see that
the theorem can be generalized for any coding scheme (Gen,Enc,Dec) where
for any message m ∈ M and any crs the function Enc(crs,m; ·) is invertible
in NC0. We present the theorem, as stated here, only for sake of concreteness.
Moreover, the construction is secure under the slightly stronger definition where
the adversary does not lose access toOω‖mλ0

after having sent the message encode.

5.2 A Compiler from LRC to FLRC

Given a (α, β)-split-coding scheme Σ = (Gen,Enc,Dec) with randomness space
R, let Hr,t denote a family of efficiently computable t-wise independent hash
function with domain {0, 1}r and co-domain R. We define Σ′ = (Gen′,Enc′,Dec′

:= Dec):

– Gen′ on input 1κ executes crs←$ Gen(1κ) and samples a function h←$Hr,t.
It outputs crs′ = (h, crs).

– Enc′ on input a messagem ∈M and (h, crs) picks a random string ω←$ {0, 1}r
and returns as output Enc(crs,m;h(ω)).

Theorem 4. For any encoding scheme Σ and any leakage class F , if Σ is
(0, λ1, ε)-FLR-SIM-secure then Σ′ is (F , λ0, λ1, 3ε)-FLR-SIM-secure for any 0 6
λ0 < α whenever:

r > λ0 + λ1 + 2 log(1/ε) + log(t) + 3,

t > λ0 · log |F|+ α+ λ0 + λ1 + 2 log(1/ε).

We leverage on the fact that with overwhelming probability a t-wise independent
hash function (where t is set as in the statement of the theorem) is a deterministic
strong randomness extractor for the class of of sources defined by adaptively
leaking from the randomness using functions from F . We can, therefore, reduce
an adversary for the (F , λ0, λ1)-FLR-SIM game to an adversary for the (0, λ1)-
FLR-SIM game. The reduction samples a uniformly random string ω′←$ {0, 1}r
and replies all the leakage oracle queries on the randomness by applying the
the leakage function on ω′. By the property of the randomness extractor, this
leakage is indistinguishable from to the leakage on the real randomness. It is not
hard to see that the above result can be generalized to every class of leakage that
allows an efficient average-case strong randomness extractor [14]. We present the
result, as stated here, only for sake of concreteness.

20

Proof. Given an adversaryA′ againstΣ′, we define a ppt adversaryA = (A0,A1)
against Σ as follow:

- Adversary A0: On input crs, it picks at random h←$Hr,t, a random string
ω←$ {0, 1}r and a random string r←$ {0, 1}p(κ) for a polynomial p that
bounds the running time of A′ and runs A′0(1κ; r). Upon leakage oracle query
f to Oωλ0

from A′0, it replies f(ω). Eventually, the adversary A′0 outputs a a
message m ∈M and a state value st, A0 outputs m and st′ = (st, h).

- Adversary A1: On inputs st′ = (st, h) and crs, it runs A′1(st, (h, crs)) and
forwards all the queries made by A′1.

W.l.o.g. the adversaryA0 makes the sequence (rand, f1), (rand, f2), . . . , (rand, fλ0)
of queries. Let f := (f1, . . . , fλ0) ∈ Fλ0 , therefore view of A′ in the real experi-
ment is:

Realλ0,λ1

A′,Σ′(κ) =
(
r, (h, crs),f(ω), lkL, lkR

)
On the other hand, by definition of the adversary A, the view provided to A′ is:

Hyb(κ) =
(
r,f(ω), (h, crs), lkL′ , lkR′

)
,

where L′, R′ = Enc(crs,m;ω′) and ω←$ {0, 1}r and ω′←$R.

Claim 5
{
Realλ0,λ1

A′,Σ′(κ)
}
κ∈N ≈2ε(κ)

{
Hyb(κ)

}
κ∈N.

Before proceeding with the proof of the claim we show how the theorem follows.
Let S be the simulator for the adversary A as given by the hypothesis of the
theorem:

{Real0,λ1

A,Σ(κ)}κ∈N
c
≈ε(κ) {Ideal0,λ1

A,S (κ)}κ∈N. (6)

Let S ′ be defined as the adversary A interacting with the simulator S. There-
fore, if we consider Ideal0,λ1

A,S (κ) =
(
(r, h, ω), crs, l̃kL, l̃kR

)
, it holds that:

Idealλ0,λ1

A′,S′(κ) =
(
r, (h, crs),f(ω), l̃kL, l̃kR

)
.

It follows from a simple reduction to Eq. (6) that:{
Hyb(κ)

}
κ∈N

c
≈ε(κ) {Idealλ0,λ1

A′,S′(κ)}κ∈N.

We conclude by applying Claim 5 to equation above. ut

Proof (of the claim). Since we are proving statistical closeness we can de-
randomize the adversary A′ by setting the random string that maximize the
distinguishability of the two random variables. Similarly we can de-randomize
the common reference string generation algorithm Gen. Therefore, w.l.o.g., we
can consider them fixed in the views.

Recall that the adversary A defines for A′ a hybrid environment where the
leakage on the randomness is on ω←$ {0, 1}r but the codeword is instantiated
using fresh randomness ω′←$R. We prove the stronger statement that the two

21

views are statistical close with high probability over the choice of the t-wise hash
function h. For convenience, we define two tuples of random variables:

Realh :=
(
f(ω), lkL, lkR

∣∣(L,R) = Enc
(
crs,m; h(ω)

))
Hybh :=

(
f(ω), lkL′ , lkR′

∣∣(L′, R′) = Enc
(
crs,m; ω′

))

Notice that in both distributions above the function f are random variable. For
any fixed sequence of functions f = f0, . . . , fλ0 , let Realh,f (resp. Hybh,f) be the
distribution Realh (resp. Hybh) where the leakage functions are set. We prove
that

Pr[Hybh ≈ε Realh] > 1− ε ,

where the probability is over the choice of h←$Hr,t. Let Bad be the event
{Hybh 6≈ε Realh}.

Pr[Bad] ≤ Pr
h←$Hr,t

[
∃f1, . . . , fλ0

∈ F ,m ∈M : Realh,f 6≈ε Hybh,f
]

6
∑

f∈Fλ0

∑
m∈M

Pr
h←$Hr,t

[∑
v

∣∣Pr
ω

[Realh,f = v]− Pr
ω,ω′

[Hybh,f = v]
∣∣ > 2ε

]

Let λ := λ0 + λ1 and let pv := Prω,ω′ [Hybh,f = v]. Define p̃v := max{pv, 2−λ}.
Note that:

∑
v∈{0,1}λ

p̃v 6
∑
v

pv +
∑
v

2−λ 6 2

Define the indicator random variable Yω̄,v for the event {Realh,f = v |ω = ω̄},
where the randomness is over the choice of h←$Hr,t.

For any view v, the random variables {Yω̄,v}ω̄∈{0,1}r are t-wise independent.

Moreover, E[
∑
ω̄∈{0,1}r Yω̄,v] = 2rpv. In fact, for any h̄ ∈ H, any ω̄ ∈ {0, 1}r and

any v ∈ {0, 1}λ it holds that Prh[Realh,f = v |ω = ω̄] = Prω′ [Hybh,f = v |ω =

22

ω̄, h = h̄]. It follows that

Pr
h←$Hr,t

[∑
v

∣∣Pr
ω

[Realh,f = v]− pv
∣∣ > 2ε

]
6 Pr
h←$Hr,t

[
∃v :

∣∣Pr
ω

[Realh,f = v]− pv
∣∣ > ε · p̃v

]
6

∑
v∈{0,1}λ

Pr
h←$Hr,t

[∣∣Pr
ω

[Realh,f = v]− pv
∣∣ > ε · p̃v

]
6

∑
v∈{0,1}λ

Pr
h←$Hr,t

[∣∣∑
ω̄

Yω̄,v − 2rpv
∣∣ > 2rε · p̃v

]

6
∑

v∈{0,1}λ
8

(
t · 2rpv + t2

(2rε · p̃v)2

)t/2
(7)

6
∑

v∈{0,1}λ
8

(
2t · 2rp̃v

(2rε · p̃v)2

)t/2
(8)

6 2λ · 8
(

2t

2r−λ · ε2

)t/2
(9)

where Eq. (7) follows by Lemma 2 and Eq. (8) and Eq. (9) follow because
2r · p̃v > 2r−λ > t. Combining all together we have:

Pr[Bad] 6 |F|λ0 · |M| · 2λ0+λ1 · 8
(

2t

2r−λ0−λ1 · ε2

)t/2
.

To make the above negligible we can set:

r > λ0 + λ1 + 2 log(1/ε) + log(t) + 3,

t > λ0 · log |F|+ α+ λ0 + λ1 + 2 log 1/ε.

6 Conclusion and Open Problems

We defined the notion of Fully Leakage Resilient Codes. Although natural, our
definition is too strong to be met in the popular split-state model. Fortunately,
by restricting the class of leakage from the randomness we were able to achieve
two different feasibility results.

There is still a gap between our impossibility result and the possibility results.
As we showed, in the plain model the problem of finding a FLR Code in the
split-state model is strictly connected to the complexity of computing the next-
message function of a prover of a succinct argument of knowledge and to the
complexity of computing an collision resistant hash function. A construction of
FLR code for, let say, the class NC provides, therefore, a complexity lower bound
for at least one of the two mentioned tasks and it would be a very surprising
result. An interesting open problem is to show FLR codes for AC0.

23

Our definition restricts the simulator to be efficient, this seems a natural
restriction and it is necessary for our impossibility result. It would be interesting
to show either a FLR code with unbounded-time simulator or to generalize our
impossibility result in this setting.

References

1. Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski.
Leakage-resilient non-malleable codes. In TCC, Part I, pages 398–426, 2015.

2. J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In CRYPTO, pages 36–54, 2009.

3. Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013. http://ia.cr/2013/689.

4. Prabhanjan Ananth, Vipul Goyal, and Omkant Pandey. Interactive proofs under
continual memory leakage. In CRYPTO, pages 164–182, 2014.

5. Marcin Andrychowicz, Daniel Masny, and Edoardo Persichetti. Leakage-resilient
cryptography over large finite fields: Theory and practice. In ACNS, 2015.

6. Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In
FOCS, pages 276–287, 1994.

7. Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols.
In TCC, pages 266–284, 2012.

8. Nir Bitansky, Dana Dachman-Soled, and Huijia Lin. Leakage-tolerant computation
with input-independent preprocessing. In CRYPTO, pages 146–163, 2014.

9. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
TCC, pages 52–73, 2014.

10. Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai. Leakage-resilient coin
tossing. Distributed Computing, 27(3):147–164, 2014.

11. Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. J.
Cryptology, 26(3):513–558, 2013.

12. Francesco Davì, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient stor-
age. In SCN, pages 121–137, 2010.

13. Yevgeniy Dodis, Allison B. Lewko, Brent Waters, and Daniel Wichs. Storing secrets
on continually leaky devices. In FOCS, pages 688–697, 2011.

14. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy data.
SIAM J. Comput., 38(1):97–139, 2008.

15. Stefan Dziembowski and Sebastian Faust. Leakage-resilient cryptography from the
inner-product extractor. In ASIACRYPT, pages 702–721, 2011.

16. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In
FOCS, pages 293–302, 2008.

17. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
In ICS, pages 434–452, 2010.

18. Antonio Faonio and Jesper Buus Nielsen. Fully leakage-resilient codes. IACR
Cryptology ePrint Archive, 2015:1151, 2015.

19. Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Mind your coins: Fully
leakage-resilient signatures with graceful degradation. IACR Cryptology ePrint
Archive, 2014:913, 2014.

24

http://ia.cr/2013/689

20. Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable arguments
of knowledge. 2015. http://ia.cr/2015/740.

21. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi.
Continuous non-malleable codes. In TCC, pages 465–488, 2014.

22. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A
tamper and leakage resilient von neumann architecture. In PKC, pages 579–603,
2015.

23. Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Effi-
cient non-malleable codes and key-derivation for poly-size tampering circuits. In
EUROCRYPT, pages 111–128, 2014.

24. Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikun-
tanathan. Protecting circuits from leakage: the computationally-bounded and noisy
cases. In EUROCRYPT, pages 135–156, 2010.

25. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility
of differing-inputs obfuscation and extractable witness encryption with auxiliary
input. In CRYPTO, pages 518–535, 2014.

26. Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge.
In CRYPTO, pages 297–315, 2011.

27. Shai Halevi and Huijia Lin. After-the-fact leakage in public-key encryption. In
TCC, pages 107–124, 2011.

28. Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof
Pietrzak. Lapin: An efficient authentication protocol based on ring-lpn. In FSE,
pages 346–365, 2012.

29. Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-
malleable codes. In TCC, Part I, pages 451–480, 2015.

30. Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leak-
age resilience. In ASIACRYPT, pages 703–720, 2009.

31. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In STOC, pages 723–732, 1992.

32. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In CRYPTO, pages 104–113, 1996.

33. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, pages 388–397, 1999.

34. Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-
state model. In CRYPTO, pages 517–532, 2012.

35. Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis, and Moti Yung. Signatures resilient
to continual leakage on memory and computation. In TCC, pages 89–106, 2011.

36. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended
abstract). In TCC, pages 278–296, 2004.

37. Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. IACR
Cryptology ePrint Archive, 2009:105, 2009.

38. Jesper Buus Nielsen, Daniele Venturi, and Angela Zottarel. On the connection
between leakage tolerance and adaptive security. In PKC, pages 497–515, 2013.

39. Jesper Buus Nielsen, Daniele Venturi, and Angela Zottarel. Leakage-resilient sig-
natures with graceful degradation. In Public Key Cryptography, pages 362–379,
2014.

40. Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti. Impossibility of black-box
simulation against leakage attacks. In CRYPTO, pages 130–149, 2015.

41. Omkant Pandey. Achieving constant round leakage-resilient zero-knowledge. In
TCC, pages 146–166, 2014.

25

http://ia.cr/2015/740

42. Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In E-smart, pages 200–210, 2001.

43. Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distri-
butions. In FOCS, pages 32–42, 2000.

44. Hoeteck Wee. On round-efficient argument systems. In ICALP, pages 140–152,
2005.

26

	Fully Leakage-Resilient Codes

