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Abstract. In this work we study the problem of private set-intersection in the
multi-party setting and design two protocols with the following improvements
compared to prior work. First, our protocols are designed in the so-called star net-
work topology, where a designated party communicates with everyone else, and
take a new approach of leveraging the 2PC protocol of [FNP04]. This approach
minimizes the usage of a broadcast channel, where our semi-honest protocol does
not make any use of such a channel and all communication is via point-to-point
channels. In addition, the communication complexity of our protocols scales with
the number of parties.
More concretely, (1) our first semi-honest secure protocol implies communication
complexity that is linear in the input sizes, namely O((

∑n
i=1 mi) · κ) bits of

communication where κ is the security parameter and mi is the size of Pi’s input
set, whereas overall computational overhead is quadratic in the input sizes only
for a designated party, and linear for the rest. We further reduce this overhead
by employing two types of hashing schemes. (2) Our second protocol is proven
secure in the malicious setting. This protocol induces communication complexity
O((n2 + nmMAX + nmMIN logmMAX)κ) bits of communication where mMIN

(resp. mMAX) is the minimum (resp. maximum) over all input sets sizes and n is
the number of parties.
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1 Introduction

Background on secure multi-party computation. Secure multi-party computation en-
ables a set of parties to mutually run a protocol that computes some function f on their
private inputs, while preserving a number of security properties. Two of the most im-
portant properties are privacy and correctness. The former implies data confidentiality,
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namely, nothing leaks by the protocol execution but the computed output. The latter
requirement implies that the protocol enforces the integrity of the computations made
by the parties, namely, honest parties learn the correct output. Feasibility results are
well established [Yao86,GMW87,MR91,Bea91], proving that any efficient function-
ality can be securely computed under full simulation-based definitions (following the
ideal/real paradigm). Security is typically proven with respect to two adversarial mod-
els: the semi-honest model (where the adversary follows the instructions of the protocol
but tries to learn more than it should from the protocol transcript), and the malicious
model (where the adversary follows an arbitrary polynomial-time strategy), and feasi-
bility holds in the presence of both types of attacks.

Following these works, many constructions focused on improving the efficiency of
the computational and communication costs. Conceptually, this line of works can be
split into two sub-lines: (1) Improved generic protocols that compute any boolean or
arithmetic circuit; see [IPS08,LOP11,BDOZ11,DPSZ12,LPSY15] for just a few exam-
ples. (2) Protocols for concrete functionalities. In the latter approach attention is given
to constructing efficient protocols for specific functions while exploiting their inter-
nal structure. While this approach has been proven useful for many different two-party
functions in both the semi-honest and malicious settings such as calculating the kth
ranked element [AMP04], pattern matching and related search problems [HT10,Ver11],
set-intersection [JL09,HN12], greedy optimizations [SV15] and oblivious pseudoran-
dom function (PRF) evaluation [FIPR05], only minor progress has been achieved for
concrete multi-party functions.

2PC private set-intersection. The set-intersection problem is a fundamental functional-
ity in secure computation and has been widely studied in the past decade. In this prob-
lem a set of parties P1, . . . , Pn, holding input sets X1, . . . , Xn of sizes m1, . . . ,mn,
respectively, wish to compute X1∩X2∩ . . .∩Xn. In the two-party setting this problem
has been intensively studied by researchers in the last few years mainly due to its poten-
tial applications for dating services, datamining, recommendation systems, law enforce-
ment and more, culminating with highly efficient protocols with practically linear over-
head in the set sizes; see for instance [FNP04,DSMRY09,JL09,HL10,HN12,Haz15].
For example, consider two security agencies that wish to compare their lists of suspects
without revealing their contents, or an airline company that would like to check its list
of passengers against the list of people that are not allowed to go abroad.

Two common approaches are known to concretely solve this problem securely in
the plain model for two parties: (1) oblivious polynomial evaluation (OPE) and (2)
committed oblivious PRF evaluation.

In the first approach based on OPE, one party, say P1, computes a polynomial Q(·)
such that Q(x) = 0 for all x ∈ X1. The set of coefficients of Q(·) are then encrypted
using a homomorphic encryption scheme and sent to the other party P2, who then com-
putes the encryption of rx′ · Q(x′) + x′ for all x′ ∈ X2 using fresh randomness rx′

via homomorphic evaluation. Finally, P1 decrypts these computed ciphertexts and out-
puts the intersection of its input set X1 and these plaintexts. This is the approach (and
variants thereof) taken by the works [FNP04,DSMRY09,HN12].

The second approach uses a secure implementation of oblivious PRF evaluation.
More precisely, in this approach, party P1 chooses a PRF key K and computes the
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set PRFX1 = {PRFK(x)}x∈X1 . The parties then execute an oblivious PRF protocol
where P1 inputs the key K and P2 inputs its private set X2. At the end of this proto-
col P2 learns the set PRFX2 = {PRFK(x′)}x′∈X2 . Finally, P1 sends the set PRFX1

to P2, and P2 computes S = PRFX1 ∩ PRFX2 and outputs the corresponding ele-
ments x′ ∈ X2 whose PRF values are in S as the actual intersection. This idea was
introduced in [FIPR05] and further used in [HL10,JL09,JL10]. Other solutions in the
random oracle model such as [CT10,CKT10,ACT11] take a different approach by ap-
plying the random oracle on (one of) the sets members, or apply oblivious transfer
extension [DCW13] to implement a garbled Bloom filter.

By now, major progress had already been achieved for general two-party protocols
[KSS12,FJN+13,GLNP15,Lin16]. Moreover, it has been surprisingly demonstrated that
general protocols can be more efficient than the concrete “custom-made” protocols for
set-intersection [HEK12].

MPC private set-intersection. While much progress has been made towards achiev-
ing practical protocols in the two-party setting to realize set-intersection, only few
works have considered so far the multi-party setting. Moreover, most of the previous
approaches fail to leverage the highly efficient techniques that were developed for the
two-party case with scalable efficiency. Specifically, while several recent works im-
prove the efficiency of generic multi-party protocols [LPSY15,LSS16,KOS16], they
still remain inefficient for concrete applications on big data.

The first concrete protocols that securely implemented the set-intersection function-
ality were designed by Kissner and Song [KS05]. The core technique underlying these
protocols is based on OPE and extends the [FNP04] approach, relying on expensive
generic zero-knowledge proofs to achieve correctness. Following that, Sang and Shen
introduced a new protocol with quadratic overhead in the size of the input sets [SS07],
which was followed by another protocol in the honest majority setting based on Bilin-
ear groups [SS08]. Cheon et al. improved the communication complexity of these works
by reducing the dependency on the input sets from quadratic to quasi linear [CJS12].
Nevertheless, each party still needs to broadcast O(mi) elements, where mi is the size
of its input set, implying that the overall communication complexity and group mul-
tiplications per player grow quadratically with the number of parties. In [DMRY11],
the authors considered a new approach based on multivariate polynomials achieving
broadcast communication complexity of O(n ·mMAX +mMAX · log2 mMAX) and com-
putational complexity O(n ·m2

MAX), where mMAX is the maximum over all input sets
sizes and n is the number of parties. Finally, in a recent work [MN15], Miyaji and
Nishida introduced a semi-honest secure protocol based on Bloom filters that achieves
communication complexity O(n ·mMAX) and computational complexity O(n ·mMAX)
for the designated party.

One can also consider using standard secure computation to securely realize set-
intersection. One popular approach for efficient protocols is [DPSZ12] protocol, dubbed
SPDZ, that describes a flavour of [GMW87] protocol for arithmetic circuits. This pro-
tocol consists of a preprocessing phase that uses somewhat homomorphic encryption
scheme to generate correlated randomness, that is later used in an information theoretic
online phase. The total overhead of this approach is O(n · s + n3) where s is the size
of the computed circuit. An alternative approach to compute the offline phase, avoiding
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these costly primitives, was recently introduced in [KOS16]. This protocol achieves a
significant improvement, and is only six times less efficient than a semi-honest version
of the protocol ((where their experiments were shown for up to five parties), yet its
cost still approaches O(n2) overhead per multiplication triple. Finally, we note that the
round complexity of this approach is proportional to the circuit’s multiplication depth.

A different approach was taken in [BMR90], extending the celebrated garbled cir-
cuits technique of [Yao86] to the multi-party setting. This constant-round protocol, de-
veloped by Beaver, Micali and Rogaway, has proven secure in the presence of semi-
honest adversaries (and malicious adversaries in the honest majority setting). It is com-
prised of an offline phase for which the garbled circuit is created, and an online phase
for which the garbled circuit is evaluated. Recently, Lindell et al. [LPSY15] extended
the [BMR90] protocol to the malicious honest majority setting. For the offline phase the
authors presented an instantiation based on [DPSZ12]. In a more recent work, Lindell et
al. [LSS16] introduced a concretely efficient MPC protocol with malicious security, fo-
cusing on reducing the round complexity into 9 rounds. The efficiency of this approach
is dominated by the efficiency of the protocol that realizes the offline phase.

Our main motivation in this paper is to develop a new approach for securely realiz-
ing set-intersection in the multi-party setting. Concretely, we study whether the multi-
party variant of set-intersection can be reduced to the two-party case. Meaning, can
we securely realize private multi-party set-intersection using two-party set-intersection
protocols. Generally speaking, the paradigm of constructing multi-party protocols from
two-party protocols has several important advantages. First, it may require using a
broadcast channel fewer times than in the classic approach (where every party typi-
cally communicates with everyone else all the time). Moreover, it enables to leverage
the extensive knowledge and experience gained while studying the two-party variant in
order to achieve efficient multi-party protocols. Finally, the mere idea of working on
smaller pieces of the inputs/problems also implies that we can achieve better running
times and implementations. Our new approach has not been considered yet in the past,
specifically because it is quite challenging to use two-party protocols for intermediate
computations without violating the privacy of the multi-party construction, and required
pursuing a new approach.

In light of this overview we pose the following questions,

Can we securely realize the set-intersection functionality with linear commu-
nication complexity (and sub-quadratic computational complexity) in the input
sets sizes?

In particular, to what extent can multi-party set-intersection be reduced to its two-
party variant. Considering the set-intersection functionality, at first sight, it seems that
the answer to this question is negative as any 2PC protocol that operates only on two
input sets leaks information about the these intersections, which is more than what
should be leaked about the outputs by the protocol. One potential solution would be to
split the parties into pairs that repetitively compute their pairwise intersection. While it
is not clear how to prevent any leakage within iterations, we further note that the round
complexity induced by such an approach is O(log n) where n is the number of parties,
and that the number of 2PC invocations is quadratic. It is worth noting that [CKMZ14]
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also considered an approach of designing a three parties protocol by emulating a two-
party protocol, yet their techniques are quite different.

1.1 Our Results

In this paper we devise new protocols that securely compute the set-intersection func-
tionality in the multiparty setting while exploiting known techniques from the two-party
setting. In particular, we are able to save on quadratic overhead in pairwise communica-
tion that is incurred in typical multiparty protocols and obtain efficient protocols. More
specifically, we consider a different network topology than point-to-point fully con-
nected network for which a single designated party communicates with every party (i.e.
star topology). An added benefit of this topology is that not all parties must be online
at the same time. This topology has been recently considered in [HLP11] in a different
context. In this work we consider both the semi-honest and malicious settings.

The semi-honest setting. The main building block in our design is a threshold additively
homomorphic public-key encryption scheme (PKE). Our main observation is that one
can employ the 2-round semi-honest variant of the [FNP04] protocol, where a desig-
nated party P1 first interacts individually with every other party via a variant of this
protocol and learns the (encrypted) cross intersection with every other party. Then in a
second stage, P1 combines these results and computes the outcome. More specifically,
we leverage the following core insight, where any element in P1’s input that appears
in all other input sets is part of the set-intersection. On the other hand, if some element
from P1’s set does not appear in one of the other sets then surely this element is not
part of the set-intersection. Therefore, it is sufficient to only examine P1’s set against
the other sets rather than examine all pairwise sets, which is the common approach in
prior works. Note that our protocol is the first multi-party protocol for realizing private
set-intersection that does not need to employ any broadcast channel at any phase during
its execution, since all the communication is conducted directly between P1 and each
other party at a point-to-point level. More formally,

Theorem 11 (Informal) Assume the existence of a threshold additively homomorphic
encryption scheme. Then, there exists a protocol that securely realizes the private set-
intersection functionality in the presence of semi-honest adversaries with no use of a
broadcast channel and for n ≥ 2 parties.

Moreover, the communication complexity of our protocol is linear in the input sets
sizes, namely, O((

∑n
i=1 mi) · κ) bits of communication where κ is the security pa-

rameter, whereas the computational overhead is quadratic in the input sizes only the
designated party P1, namely O(m2

1) exponentiations (where the overhead of the rest
of the parties is a linear number of exponentiations in their input sets). Consequently,
the designated party can be set as the party with the smallest input set. Finally, by
employing hash functions techniques, as in [FNP04], we can further reduce P1’s over-
head by splitting the input elements into bins. We consider two hash schemes: simple
hashing and balanced allocation hashing. For simple hashing, this approach induces
O((n−1)·mMIN ·logmMAX) overhead where mMIN (resp. mMAX) is the minimum (resp.
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maximum) over all input sets sizes and n is the number of parties. Whereas for balanced
allocation hash functions this approach induces O((n− 1) ·mMIN · log logmMAX) over-
head. In both cases the communication complexity is O(B ·M · (n− 1)) where B is the
number of bins and M is the maximum bin size.

We note that the first variant based on simple hashing induces a simpler protocol
and the modification compared to the original protocol are minor. On the other hand,
the protocol based on balanced allocation hashing is slightly more complicated as this
hashing, that uses two hash functions, implies two oblivious polynomial evaluations per
elements from P1’s input. Consequently, P1 must somehow learn which of the evalua-
tions (if any) has evaluated to zero. We solve this issue in two ways: either the parties
communicate and compute the product of the two evaluations, or the underlying ad-
ditively homomorphic encryption scheme supports single multiplication as well (e.g.,
[BGN05]). Finally, we note that our approach is the first to employ these techniques
due to its internal design that heavily relies on a 2PC approach.

The malicious setting. Next, we extend our semi-honest approach for the malicious
setting. In this setting we need to work harder in order to ensure correctness since a cor-
rupted P1 can easily cheat, by using different input sets in the 2PC executions against
different parties. It is therefore crucial that P1 first broadcasts its committed input to the
rest of the parties. Where later, each 2PC protocol is carried out with respect to these
commitments. It turns out that even by adding this broadcast phase it is not enough to
boost the security of our semi-honest protocol since P1 may still abuse the security of
the [FNP04] protocol. Specifically, the main challenge is to prevent P1 from learning
additional information about the intersection with individual parties as a corrupted P1

may use ill formed ciphertexts or ciphertexts for which it does not know their corre-
sponding plaintexts, exploiting the honest parties as a decryption oracle.

We recall that the [FNP04] follows by having the parties send encryptions of poly-
nomials defined by their input sets (as explained above). Then, towards achieving ma-
licious security, we design a polynomial check that verifies that P1 indeed assembled
the encrypted polynomials correctly. This check follows by asking the parties to sam-
ple a random element u which they later evaluate their encrypted polynomials on and
then compare these outcomes against the evaluation of the combined protocol (which
is publicly known). To avoid malleability issues, we enforce correctness using a non-
malleable proof of knowledge that is provided by each party relative to its computation.
This crucial phase allows the simulator to extract the parties’ inputs by rewinding them
on distinct random values. Interestingly, this proof is only invoked once and thus in-
duces an overhead that is independent of the set sizes. We prove the following theorem.

Theorem 12 (Informal) Assume the existence of a threshold additively homomorphic
encryption scheme and simulation sound zero-knowledge proof of knowledge. Then,
there exists a protocol that securely realizes the private set-intersection functionality in
the presence of malicious adversaries and for n ≥ 2 parties.

The communication complexity of the maliciously secure protocol is bounded by
O((n2 + nmMAX + nmMIN · logmMAX)κ) bits of communication where mMIN (resp.
mMAX) is the minimum (resp. maximum) over all input sets sizes and n is the number of
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parties. The significant term in this complexity is O(n ·mMAX ·κ) and this is linearly de-
pendent on both the number of parties and the database size. In contrast, previous works
required higher complexity [DMRY11,CJS12]. In terms of of computational overhead,
except for party P1, the computational complexity of each party Pi is O(mMAX) expo-
nentiations plus O(mMIN · mMAX) groups multiplications, whereas party P1 needs to
perform O(m1 ·mMAX) exponentiations.

Finally, we note that our building blocks can be instantiated based on the El Gamal
[Gam85] or Piallier [Pai99] public key encryptions schemes for the semi-honest proto-
col. In the malicious setting, we either consider the El Gamal scheme together with a
Σ-protocol zero-knowledge proof of knowledge, that can be made non-interactive us-
ing the FiatShamir heuristic [FS86] which is analyzed in the Random Oracle Model of
Bellare and Rogaway [BR93]. The analysis in this model implies the simulation sound-
ness property we need for non-malleability. A second instantiation can be shown based
on the [BBS04] public key encryption scheme and the simulation-sound non-interactive
zero-knowledge (NIZK) by Groth [Gro06].

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by κ. We say that a function µ : N→ N is negligible if
for every positive polynomial p(·) and all sufficiently large κ it holds that µ(κ) < 1

p(κ) .
We use the abbreviation PPT to denote probabilistic polynomial-time. We further denote
by a ← A the random sampling of a from a distribution A, by [d] the set of elements
(1, . . . , d) and by [0, d] the set of elements (0, . . . , d).

We now specify the definition of computationally indistinguishable.

Definition 21 Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be
two distribution ensembles. We say that X and Y are computationally indistinguish-
able, denoted X

c
≈ Y , if for every PPT machine D, every a ∈ {0, 1}∗, every positive

polynomial p(·) and all sufficiently large κ:

∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣ < 1

p(κ)
.

We define a d-degree polynomial Q(·) by its set of coefficients (q0, . . . , qd), or simply
write Q(x) = q0 + q1x+ . . . qdx

d. Typically, these coefficients will be picked from Zp

for a prime p. We further write gQ(·) to denote the coefficients of Q(·) in the exponent
of a generator g of a multiplicative group G of prime order p.

2.2 Hardness Assumptions

Let G be a group generation algorithm, which outputs (p,G,G1, e, g) given 1κ, where
G,G1 is the description of groups of prime order p, e is a bilinear mapping (see below)
and g is a generator of G.
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Definition 22 (DLIN) We say that the decisional linear problem is hard relative to G,
if for any PPT distinguisher D there exists a negligible function negl such that

(p,G,G1, e, g, g
x, gy, gxr, gys, gr+s) ≈c (p,G,G1, e, g, g

x, gy, gxr, gys, gd)

where (p,G,G1, e, g)← G(1κ) and x, y, r, s, d← Zp.

Definition 23 (DDH) We say that the decisional Diffie-Hellman (DDH) problem is
hard relative to G, if for any PPT distinguisher D there exists a negligible function
negl such that∣∣∣Pr [D(G, p, g, gx, gy, gz) = 1]− Pr [D(G, p, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(κ),

where (G, p, g)← G(1κ) and the probabilities are taken over the choices of x, y, z ←R

Zp.

Definition 24 (Bilinear pairing) Let G, GT be multiplicative cyclic groups of prime
order p and let g be a generator of G. A map e : G×G→ GT is a bilinear map for G
if it has the following properties:

1. Bi-linearity: ∀u, v ∈ G, ∀a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) generates GT .
3. e is efficiently computable.

We assume that the D-linear assumption holds in G.

2.3 Public Key Encryption Schemes (PKE)

We specify first the definitions of public key encryption and IND-CPA.

Definition 25 (PKE) We say that Π = (Gen,Enc,Dec) is a public key encryption
scheme if Gen,Enc,Dec are polynomial-time algorithms specified as follows:

– Gen, given a security parameter 1κ, outputs keys (PK, SK), where PK is a public
key and SK is a secret key. We denote this by (PK, SK)← Gen(1κ).

– Enc, given the public key PK and a plaintext message m, outputs a ciphertext c
encrypting m. We denote this by c ← EncPK(m); and when emphasizing the ran-
domness r used for encryption, we denote this by c← EncPK(m; r).

– Dec, given the public key PK, secret key SK and a ciphertext c, outputs a plaintext
message m s.t. there exists randomness r for which c = EncPK(m; r) (or ⊥ if no
such message exists). We denote this by m← DecPK,SK(c).

For a public key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform ad-
versary A = (A1,A2), we consider the following IND-CPA game:

(PK, SK)← Gen(1κ).

(m0,m1, history)← A1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b← {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

Denote by ADVΠ,A(κ) the probability that A wins the IND-CPA game.
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Definition 26 (IND-CPA) A public key encryption scheme Π = (Gen,Enc,Dec) has
indistinguishable encryptions under chosen plaintext attacks (IND-CPA), if for every
non-uniform adversary A = (A1,A2) there exists a negligible function negl such that
ADVΠ,A(κ) ≤ 1

2 + negl(κ).

Additively Homomorphic PKE A public key encryption scheme is additively ho-
momorphic if given two ciphertexts c1 = EncPK(m1; r1) and c2 = EncPK(m2; r2) it is
possible to efficiently compute EncPK(m1+m2; r) with independent r, and without the
knowledge of the secret key. Clearly, this assumes that the plaintext message space is a
group; we actually assume that both the plaintext and ciphertext spaces are groups (with
respective group operations + or ·). We abuse notation and use EncPK(m) to denote the
random variable induced by EncPK(m; r) where r is chosen uniformly at random. We
have the following formal definition,

Definition 27 (Homomorphic PKE) We say that a public key encryption scheme (Gen,
Enc,Dec) is homomorphic if for all k and all (PK, SK) output by Gen(1κ), it is possi-
ble to define groupsM, C such that:

– The plaintext space isM, and all ciphertexts output by EncPK(·) are elements of C.4

– For every m1,m2 ∈M it holds that

{PK, c1 = EncPK(m1), c1 · EncPK(m2)} ≡ {PK,EncPK(m1),EncPK(m1 +m2)}

where the group operations are carried out in C andM, respectively, and the ran-
domness for the distinct ciphertexts are independent.

Note that any such a scheme supports a multiplication of a plaintext by a scalar. We im-
plicitly assume that each homomorphic operation on a set of ciphertexts is concluded
with a refresh operation, where the party multiplies the result ciphertext with an inde-
pendently generated ciphertext that encrypts zero. This is required in order to ensure
that the randomness of the outcome ciphertext is not related to the randomness of the
original set of ciphertexts.

Threshold PKE In a distributed scheme, the parties hold shares of the secret key so
that the combined key remains a secret. In order to decrypt, each party uses its share to
generate an intermediate computation which are eventually combined into the decrypted
plaintext. To formalize this notion, we consider two multi-party functionalities: One for
securely generating a secret key while keeping it a secret from all parties, whereas the
second functionality jointly decrypts a given ciphertext. We denote the key generation
functionality by FGEN, which is defined as follows,

(1κ, . . . , 1κ) 7→
(
(PK, SK1), . . . , (PK, SKn)

)
where (PK, SK) ← Gen(1κ), and SK1 through SKn are random shares of SK. In
the simulation, the simulator obtains a public key P̃K, either from the trusted party or

4 The plaintext and ciphertext spaces may depend on PK; we leave this implicit.
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from the reduction, and enforces that outcome. Namely, that PK = P̃K. Moreover, the
decryption functionality FDEC is defined by,

(c, PK, . . . , PK) 7→
(
(m : c = EncPK(m)),−, . . . ,−

)
.

In the simulation, the simulator sends ciphertexts on behalf of the honest parties which
do not necessarily match the distribution of ciphertexts in the real execution (as it com-
putes these ciphertexts based on arbitrary inputs). Moreover, in the reduction the simu-
lator is given a ciphertext (or more) from an external source and must be able to decrypt
it, jointly with the rest of the corrupted parties, without knowing the secret key. We
therefore require that in the simulation, the simulator cheats in the decryption by bi-
asing the decrypted value into some predefined plaintext mS . It is required that the
corrupted parties’ view is computationally indistinguishable in both real and simulated
decryption protocols. One can view the pair of simulators (SGEN,SDEC) as a stateful
algorithm where SDEC obtains a state returned by SGEN which includes the public key
enforced by SGEN as well as the corrupted parties’ shares. For simplicity we leave this
state implicit. Finally, we consider a variation of FDEC, denoted by FDecZero, that allows
the parties to learn whether a ciphertext encrypts zero or not, but nothing more. Simi-
larly to SDEC we can define a simulator SDecZero that receives as output, either zero or
a random group element and enforces that value as the outcome plaintext. These func-
tionalities can be securely realized relative to the El Gamal and [BBS04], and Paillier
and [BGN05], PKEs as specified next. We denote the corresponding protocols that re-
spectively realize FGEN and FDEC in the semi-honest setting by πSH

GEN and πSH
DEC, and by

πML
GEN and πML

DEC their malicious variants.

The El Gamal PKE A useful implementation of homomorphic PKE is the El Gamal
[Gam85] scheme that has two variations of additive and multiplicative definitions (where
the former is only useful for small domains plaintexts). In this paper we exploit the addi-
tive variation. Let G be a group of prime order p in which DDH is hard. Then the public
key is a tuple PK = ⟨G, p, g, h⟩ and the corresponding secret key is SK = s, s.t. gs = h.
Encryption is performed by choosing r ← Zp and computing EncPK(m; r) = ⟨gr, hr ·
gm⟩. Decryption of a ciphertext c = ⟨α, β⟩ is performed by computing gm = β · α−s

and then finding m by running an exhaustive search. Consequently, this variant is only
applicable for small plaintext domains, which is the case in our work.

Threshold El Gamal. In El Gamal the parties first agree on a group G of order p and
a generator g. Then, each party Pi picks si ← Zp and sends hi = gsi to the others.
Finally, the parties compute h =

∏n
i=1 hi and set PK = ⟨G, p, g, h⟩. Clearly, the secret

key s =
∑n

i=1 sn associated with this public key is correctly shared amongst the parties.
In order to ensure correct behavior, the parties must prove knowledge of their si by
running on (g, hi) the zero-knowledge proof πDL, specified in Section 2.6. To ensure
simulation based security, each party must commit to its share first and decommit this
commitment only after the commit phase is completed. Note that the simulator can
enforce the public key outcome by rewinding the corrupted parties after seeing their
decommitment information.
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Moreover, decryption of a ciphertext c = ⟨c1, c2⟩ follows by computing the product
c2 · (

∏n
i=1 c

si
1 )

−1, where each party sends c1 to the power of its share together with
a corresponding proof for proving a Diffie-Hellman relation. Here the simulator can
cheat in the proof and return a share of the form c2/(mS ·

(∏
i∈I csi1

)
where I is the

set of corrupted parties and mS is the message to be biased. Note that the simulated
share may not distribute as the real share (this happens in case mS is different than the
actual plaintext within c). Indistinguishability can be shown by a reduction to the DDH
hardness assumption.

The variation of FDEC allows the parties to learn whether a ciphertext c = ⟨α, β⟩
encrypts zero or not, but nothing more. This can be carried out as follows. Each party
first raises c to a random non-zero power and rerandomizes the result (proving correct-
ness using a zero-knowledge proof). The parties then decrypt the final ciphertext and
conclude that m = 0 if and only if the masked plaintext was 0.

2.4 The Paillier PKE

The Paillier encryption scheme [Pai99] is another example of a public-key encryption
scheme that meets Definition 27. We focus our attention on the following, widely used,
variant of Paillier due to Damgård and Jurik [DJ01]. Specifically, the key generation
algorithm chooses two equal length primes p and q and computes N = pq. It further
picks an element g ∈ Z∗

Ns+1 such that g = (1 + N)jrN mod Ns+1 for a known
j relatively prime to N and rN . Let λ be the least common multiple of p − 1 and
q − 1, then the algorithm chooses d such that d mod N ∈ Z∗

N and d = 0 mod λ. The
public key is N, g and the secret key is d. Next, encryption of a plaintext m ∈ ZNs is
computed by gmrN

s

mod Ns+1. Finally, decryption of a ciphertext c follows by first
computing cd mod Ns+1 which yields (1 + N)jmd mod Ns

, and then computing the
discrete logarithm of the result relative to (1 +N) which is an easy task.

In this work we consider a concrete case where s = 1. Thereby, encryption of a
plaintext m with randomness r ←R Z∗

N (ZN in practice) is computed by,

EncN (m, r) = (N + 1)m · rN mod N2.

Finally, decryption is performed by,

Decsk(c) =
[cϕ(N) mod N2]− 1

N
· ϕ(N)−1 mod N.

The security of Paillier is implied by the Decisional Composite Residuosity (DCR)
hardness assumption.

Threshold Paillier. The threshold variant of Paillier PKE in the semi-honest setting can
be found in [Gil99], where the parties mutually generate an RSA composite N . A ma-
licious variant realizing this functionality can be found in [HMRT12]. These protocols
are fully simulatable in the two-party setting, but can be naturally extended to the multi-
party setting (in fact, Hazay et al. also shows a variant that applies for any number of
parties). In addition to a key generation protocol, Hazay et al. also designed a threshold
decryption protocol which allows to bias the plaintext as required above.
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The [BBS04] PKE To setup the keys we choose at random x, y ← Z∗
p. The public

key is (f, h) where f = gx, h = gy , and the secret key is (x, y). To encrypt a message
m ∈ G we choose r, s ← Zp and let the ciphertext be (u, v, w) = (fr, hs, gr+s ·m).
To decrypt a ciphertext (u, v, w) ∈ G3 we compute m = Dec(u, v, w) = w/uxvy .
This homomorphic scheme is IND-CPA secure assuming the hardness of the DLIN
assumption and can be viewed as an extension of the El Gamal PKE. Specifically, the
protocols we discussed above with respect to El Gamal can be directly extended for this
PKE as well.

The [BGN05] PKE The public key is PK = (N,G,G1, e, g, h) where N = q1q2,
h = uq2 , g, u are random generators of G, and the secret key is SK = q1. To encrypt
a message m ∈ Zq2 we pick a random r ← [N − 1] and compute gmhr. To decrypt a
ciphertext c we observe that cq1 = (gmhr)q1 = (gq1)m. Security follows assuming the
subgroup decision problem. In a threshold variant, the parties first mutually generate a
product of two primes N , so that the factorization of N is shared amongst the parties. To
decrypt, each party raises the ciphertext to the power of its share. This scheme supports
multiplication in the exponent via the pairing operation, see Definition 24. Furthermore,
the scheme is additively homomorphic in both groups.

2.5 The Pedersen Commitment Scheme

The Pedersen commitment scheme [Ped91] is defined as follows. A key generation
algorithm (p, g, h,G)← G(1κ) for which the commitment key is |ck = (G, p, g, h). To
commit to a message m ∈ Zp the committer picks randomness r ← Zp and computes
ComCK(m; r) = gmhr. The Pedersen commitment scheme is computationally binding
under the discrete logarithm assumption, i.e., any two different openings of the same
commitment are reduced to computing logg h. Finally, it is perfectly hiding since a
commitment is uniformly distributed in G. Another appealing property of this scheme
is its additively homomorphism.

2.6 Zero-Knowledge Proofs

To prevent malicious behavior, the parties must demonstrate that they are well-behaved.
To achieve this, our protocols utilize zero-knowledge (ZK) proofs of knowledge. The
following proof πDL is required for proving consistency in our maliciously secure thresh-
old decryption protocol. Namely, πDL is employed for demonstrating the knowledge of
a solution x to a discrete logarithm problem [Sch89]. Formally stating,

RDL = {((G, g, h), x) | h = gx} .

2.7 Hash Functions

The main computational overhead of our basic semi-honest protocol is carried out by
P1, which essentially has to do m1 · mi comparisons for each i ∈ [2, n] in order to
compare each of its inputs to each of the other parties’ inputs. This overhead can be
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reduced using hashing, if both parties use the same hash scheme to map their respective
items into different B bins. In that case, the items mapped by some party to a certain
bin must only be compared to those mapped by P1 to the same bin. Thus the number of
comparisons can be reduced to be in the order of the number of P1’s inputs times the
maximum number of items mapped to a bin. (Of course, care must be taken to ensure
that the result of the hashing does not reveal information about the inputs.) In this work
we consider two hash schemes: simple hashing and balanced allocations hashing; see
[FHNP16] for a thorough discussion.

Simple Hashing Let h be a randomly chosen hash function mapping elements into
bins numbered 1, . . . ,B. It is well known that if the hash function h maps m items to
random bins, then, if m ≥ B logB, each bin contains with high probability at most

M = m
B +

√
m logB

B (see, e.g., [RS98,Wie07]). Setting B = m/ logm and applying
the Chernoff bound shows that M = O(logm) except with probability (m)−s, where
s is a constant that depends on the exact value of M .5

Balanced Allocation A different hash construction with better parameters is the bal-
anced allocation scheme of [ABKU99] where elements are inserted into B bins as fol-
lows. Let h0, h1 : {0, 1}p(n) → [B] be two randomly chosen hash functions mapping
elements from {0, 1}p(n) into bins 1, . . . ,B. An element x ∈ {0, 1}p(n) is inserted into
the less occupied bin from {h0(x), h1(x)}, where ties are broken arbitrarily. If m ele-
ments are inserted, then except with negligible probability over the choice of the hash
functions h0, h1, the maximum number of elements allocated to any single bin is at most
M = O(m/B + log logB). Setting B = m

log logm implies that M = O(log logm).6

3 The Semi-Honest Construction

We begin with a description of a private MPC protocol that securely realizes the fol-
lowing functionality in the presence of semi-honest adversaries. Specifically, the pri-
vate set-intersection functionality FPSI for n parties is defined by (X1, . . . , Xn) 7→
(X1 ∩ . . . ,∩Xn, λ, . . . , λ) where λ is the empty string. For simplicity we consider a
functionality where only the first party receives an output. Our protocol takes a new
approach where party P1 interacts with every party using a 2PC protocol that imple-
ments FPSI for two parties. At the end, P1 combines the results of all these protocols
and learns the intersection.

5 As stated in [FHNP16], by setting B = m log logm/ logm we can make the error probability
negligible in m. However, any actual implementation will have to examine the exact value of
B which results in a sufficiently small error probability for the input sizes that are expected.
As for theoretical analysis, the subsequent construction, based on balanced allocation hashing,
presents a negligible error probability.

6 A constant factor improvement is achieved using the Always Go Left scheme in [Vöc03] where
h0 : {0, 1}p(n) → [1, . . . , B

2
], h1 : {0, 1}p(n) → [ b

2
+ 1, . . . ,B]. An element x is inserted

into the less occupied bin from {h0(x), h1(x)}; in case of a tie x is inserted into h0(x).
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To be concrete, assume that P1 learns for each element xj
1 ∈ X1 whether it is in Xi

or not, for all j ∈ [m1] and i ∈ [2, n]. Then, P1 can conclude the overall intersection.
This is because an element from X1 that intersects with all other sets must be in the
overall intersection. On the other hand, any element that is joint for all sets must be
in X1 as well. Thus, we conclude that it is sufficient to individually compare X1 with
all other sets. This protocol, of course, is insecure as it leaks the pairwise intersections
(which is much more information than P1 should learn from a secure realization of
FPSI). In order to hide this leakage we suggest to use a subprotocol for which P1 learns
an encryption of zero in case the corresponding element is in the intersection, and an
encryption of a random element otherwise. If the encryption is additively homomorphic
then P1 can combine all the results with respect to each element xj

1 ∈ X1, so that xj
1 is

in the overall intersection if and only if the combined ciphertext encrypts the zero string.
We implement this subprotocol using a variant of the [FNP04] protocol; see below for
a complete description.

The [FNP04] protocol (the semi-honest variant). More concretely, the [FNP04] pro-
tocol is based on oblivious polynomial evaluation. The basic two-round semi-honest
protocol, executed between parties P̃1 and P̃2 on the respective inputs X1 and X2 of
sizes m1 and m2, works as follows:

1. Party P̃2 chooses encryption/decryption keys (PK, SK) ← Gen(1κ) for an addi-
tively homomorphic encryption scheme (Gen,Enc,Dec).
P̃2 further computes the coefficients of a polynomial Q(·) of degree m2, with roots
set to the m2 elements of X2, and sends the encrypted coefficients, as well as PK,
to P̃1.

2. For each element xj
1 ∈ X1 (in random order), party P̃1 chooses a random value

rj (taken from an appropriate set depending on the encryption scheme), and uses
the homomorphic properties of the encryption scheme to compute an encryption of
rj ·Q(xj

1) + xj
1. P̃1 sends the encrypted values to P̃2.

3. Upon receiving these ciphertexts, P̃2 extracts X1 ∩ X2 by decrypting each value
and then checking if the result is in X2. Note that if z ∈ X1 ∩ X2 then by the
construction of the polynomial Q(·) we get that r · Q(z) + z = r · 0 + z = z for
any r. Otherwise, r ·Q(z) + z is a random value that reveals no information about
z and (with high probability) is not in X2.

Towards realizing FPSI we slightly modify the [FNP04] protocol as follows. The role
of P̃2 remains almost the same and played by all parties Pi for i ∈ [2, n], except that
these parties do not generate a pair of keys but rather use a public key that was previ-
ously generated by the whole set of parties in a key generation phase. Whereas for each
element xj

1 ∈ X1 (picked in random order), P̃1 computes the encryption of rj ·Q(xj
1)

and keeps it for itself. This role is computed by party P1 that aggregates the polynomial
evaluations and concludes the intersection as explained in the beginning of this section.
We denote P̃τ ’s message sent within this modified protocol by πτ

FNP for τ ∈ {1, 2}.

Our complete protocol. Let (Gen,Enc,Dec) denote a threshold additively homomor-
phic cryptosystem with a public key generation and decryption protocols πSH

GEN and
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πSH
DEC, respectively (in fact, we will be using protocol πSH

DecZero; see Section 2.3). Then
our protocol can be described using three phases. In the first phase the parties run pro-
tocol πSH

GEN in order to agree on a public key without disclosing its corresponding secret
key to anyone. In the second 2PC phase P1 individually interacts with each party in
order to generate the set of ciphertexts as specified above (via the [FNP04] modified
protocol). Finally, in the last phase, the parties carry out protocol πSH

DecZero for which P1

concludes the overall intersection. More formally,

Protocol 1 (Protocol πPSI with semi-honest security)

– Input: Party Pi is given a set Xi of size mi for all i ∈ [n]. All parties are given a security
parameter 1κ and a description of a group G.

– The protocol:
• Key Generation. The parties mutually generate a public key PK and the corresponding

secret key shares (SK1, . . . , SKn) by running a semi-honestly secure protocol πSH
GEN

that realizes FGEN.
• The 2PC phase. Party P1 engages in an execution of protocol (π1

FNP, π
2
FNP) specified

above with each party Pi, for every i ∈ [2, n]. Let (ci1, . . . , c
i
m1

) denote the outcome of
party P1 from the (i−1)th execution of 2PC protocol. (Recall that P1 has m1 elements
in its set.)

• Concluding the intersection.
1. The parties mutually decrypt for P1 the set of ciphertexts

n∏
i=2

ci1, . . . ,
n∏

i=2

cim1

by engaging in a semi-honestly secure protocol πSH
DecZero that realizes FDecZero.

2. P1 outputs xj only if the decryption of
∏n

i=2 c
i
j equals zero.

We continue with the proof of the following theorem,

Theorem 31 Assume that (Gen,Enc,Dec) is IND-CPA secure threshold additively ho-
momorphic encryption scheme. Then, Protocol 1 securely realizes FPSI in the presence
of semi-honest adversaries in the {FGEN,FDecZero}-hybrid for n ≥ 2 parties.

Proof: We already argued for correctness, we thus directly continue with the privacy
proof. We consider two classes of adversaries. The first class involves adversaries that
corrupt a subset of parties that includes party P1, whereas the second class does not
involve the corruption of P1. We provide a separate simulation for each class.

Consider an adversary A that corrupts a strict subset I of parties from the set
{P1, . . . , Pn}, including P1. We define a simulator S as follows.

1. Given {Xi}i∈I and Z = ∩ni=1Xi, the simulator invokes the corrupted parties on
their corresponding inputs and randomness.

2. S generates (PK, SK) ← Gen(1κ) and invokes the simulator SGEN(PK) for πSH
GEN

in the key generation phase.
3. Next, S plays the role of the honest parties against P1 on arbitrary sets of inputs.

Namely, S sends ciphertexts encrypting the polynomials induced by these inputs.
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4. Finally, at the concluding phase the simulator completes the decryption protocol as
follows. For each xj

1 ∈ Z, S invokes SDecZero(0), forcing the decryption outcome to
be zero. Whereas for each xj

1 /∈ Z, the simulator invokes SDecZero(r) for a uniformly
distributed r ← G.

Note that the difference between the two views is with respect to the encrypted poly-
nomials sent by the simulator as opposed to the real parties. Then indistinguishability
follows from the privacy of πDecZero which boils down to the privacy of the threshold ho-
momorphic encryption scheme. This can be shown via a reduction to the indistinguisha-
bility of ciphertexts of the encryption scheme. More formally, assume by construction
the existence of an adversary A and a distinguisher D that distinguishes the real and
simulated executions with non-negligible probability. We construct an adversary AΠ

that distinguishes two sets of ciphertexts. Concretely, upon receiving a public key PK,
AΠ invokes the simulator SGEN(PK) as would the simulator S do. Next, it outputs two
sets of vectors. One corresponds to the set of polynomials computed from the honest
parties’ inputs. Whereas the other set is arbitrarily fixed as generated in the simulation.
Upon receiving the vector of ciphertexts c̃ from its oracle, AΠ sends c̃ to the corrupted
P1 and completes the reduction as in the simulation.

Note that if c̃ corresponds to encryptions of the honest parties’ inputs, then the
adversary’s view is distributed as in the real execution. In particular,AΠ always knows
the correct plaintext to be decrypted (which is either zero or a random value where this
randomness is also known in the semi-honest model). Therefore, the shares handed by
AΠ are as in the real execution. On the other hand, in case c̃ corresponds to the set of
arbitrary inputs, then the adversary’s view is distributed as in the simulation since the
decrypted plaintext is not correlated with the actual plaintext. This concludes the proof.

Next, we consider an adversary which does not corrupt P1. In this case the simulator
S is defined as follows.

1. Given {Xi}i∈I and Z = ∩ni=1Xi, the simulator invokes the corrupted parties on
their corresponding inputs and randomness.

2. S generates (PK, SK) ← Gen(1κ) and invokes the simulator SGEN(PK) for πGEN

in the key generation phase.
3. Next, S plays the role of P1 against the corrupted parties on an arbitrary set of

inputs and concludes the simulation by playing the role of P1 on these arbitrary
inputs. (Note that this corruption case is even simpler as only P1 learns the out-
put. In case all parties should learn the output then we apply the same simulation
technique as in the previous corruption case.)

Note that the difference is with respect to the polynomial evaluations made by the sim-
ulated P1 which uses an arbitrary input. Then the indistinguishability argument follows
similarly as above via a reduction to the privacy of the encryption scheme as only P1

receives an output.

3.1 Communication and Computation Complexities

Note that the complexity of the protocol is dominated by the overhead of the thresh-
old cryptosystem as well as the underlying 2PC protocol for implementing F2PC

PSI . We
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instantiate the latter using the [FNP04] and either the El Gamal PKE [Gam85] or the
Paillier PKE [Pai99] for the former. Note that the communication complexity of the
[FNP04] variant we consider here is linear in m2, as m2 + 1 encrypted values are
sent from P̃2 to P̃1 (these are the encrypted coefficients of Q(·)). However, the work
performed by P̃1 is high, as each of the m1 oblivious polynomial evaluations includes
performing O(m2) exponentiations, totaling in O(m1 · m2) exponentiations. To save
on computational work, Freedman et al. introduced hash functions into their schemes.
Below we consider two instantiations of simple hashing (cf. Section 2.7) and balanced
allocation hash function (cf. Section 2.7).

Furthermore, the underlying threshold additively homomorphic encryption scheme
can be instantiated using either the additive variant of the El Gamal PKE, for which the
public key can be generated using the Diffie-Hellman approach [DH76], or the Paillier
PKE for which the public key can be generated using [Gil99]. Finally, we note that our
protocol is constant round and does not need to use any broadcast channel.

Improved computation using simple hashing. In our protocol, the hash function h will
be picked by one of the parties (say P̃2) and known to both. Moreover, P̃2 defines a
polynomial of degree M for each bin by fixing its mapped elements to be the set of
roots. As some of the bins contain less than M elements, P̃2 pads each polynomial
with zero coefficients up to degree M , so that the total degree of the polynomial is M
(since P2 must hide the actual number of elements allocated to each bin). This results
in B polynomials, all of degree M , with exactly m2 non-zero roots. The rest of the
protocol remains unchanged. Now, P̃1 needs to first map each element xj

1 in its set
and then obliviously evaluate the polynomial that corresponds to that bin. Neglecting
small constant factors, the communication complexity is not affected as P̃i now sends
B · Mi = O(mi) encrypted values. There is, however, a dramatic reduction in the
work performed by P̃1 as each of the oblivious polynomial evaluations amounts now
to performing just O(Mi) exponentiations, and hence P̃1 performs O(m1 ·

∑
i Mi)

exponentiations overall, where Mi is a bin size for allocating Pi’s input.

Improved computation using balanced allocation hashing. Loosely speaking, they used
the balanced allocation scheme of [ABKU99] with B = m2

log logm2
bins, each of size

M = O(m2/B + log logB) = O(log logm2). Party P̃2 now uses the balanced alloca-
tion scheme to hash every x ∈ X into one of the B bins resulting (with high probability)
with each bin’s load being at most M . Instead of a single polynomial of degree m2 party
P̃2 now constructs a degree-M polynomial for each of the B bins, i.e., polynomials
Q1(·), . . . , QB(·) such that the roots of Qi(·) are the elements put in the ith bin. Upon
receiving the encrypted polynomials, party P̃1 obliviously evaluates the encryption of
rj0 ·Qh0(x1

j )
(x1

j ) and rj1 ·Qh1(x1
j )
(x1

j ) for each of the two bins h0(x
1
j ), h1(x

1
j ) in which

x1
j can be allocated, enabling P̃1 to extract X ∩ Y as above.

The communication and computational overheads are as above. Nevertheless, a sub-
tlety emerges in our semi-honest protocol that employs this tool, as P1 cannot tell which
of the two bins contains the particular element. Consequently, it cannot tell which of the
two associated polynomials is evaluated to zero, where this information is crucial in or-
der to conclude the intersection. We suggest two solutions in order to overcome this
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issue. Our first solution supports the El Gamal and Paillier PKEs but requires more
communication. Namely, the parties run a protocol to compute the encryption of the
product of plaintexts. This is easily done by having P̃1 additively mask the two evalu-
ations and then have P̃2 multiply the decrypted results and send the encrypted product
back to P̃1. At the end, P̃1 unmasks this cipehrtext and continues with the protocol
execution. Note that all the products can be computed in parallel.

Our second solution uses an encryption scheme that is additively homomorphic and
multiplicative with respect to a single plaintexts multiplication. In this case, it is possible
to multiply the two results of the polynomials evaluations, which will result zero if one
of the evaluations is zero. An additively homomorphic encryption scheme that supports
such a property is due to Boneh et al. [BGN05] (cf. Section 2.4).

4 The Malicious Construction

Towards designing a protocol with stronger security we need to handle new challenges
that emerge due to the fact that party P1 may behave maliciously. The main challenge is
to prevent P1 from learning additional information about the intersection with individ-
ual parties. To be concrete, we recall that our semi-honest protocol follows by having P1

individually interacting with each party via 2PC protocol, where this stage is followed
by decrypting the combined ciphertexts generated in these executions. Then upon cor-
rupting a subset of parties which includes P1, a malicious adversary may use ill formed
ciphertexts or ciphertexts for which it does not know their corresponding plaintext,
exploiting the honest parties as a decryption oracle. Towards dealing with malicious
attacks we modify Protocol 1 as follows (for simplicity we concretely consider the El
Gamal PKE and adapt our ZK proofs for this encryption scheme).

1. First, P1 broadcasts commitments to its input X1 together with a zero-knowledge
proof. This phase is required in order to ensure that P1 uses the same input against
every underlying 2PC evaluation with every other party. One particular instantiation
for this commitment scheme can be based in Pedersen’s scheme (cf. Section 2.5).
This scheme is consistent with El Gamal PKE (cf. 2.3) and the BBS PKE (cf. 2.4).
An alternative scheme, e.g. [DN02], can be considered when using the Paillier or
the BGN PKEs (cf. Sections 2.4 and 2.4, respectively); see below for more details.

2. To prevent P1 from cheating when assembling the encrypted polynomial, each
party chooses a random element λi ← G and encrypts the product of each co-
efficient of Qi(·) with λi. More specifically, Pi sends an encryption of polynomial
λi · Qi(·), where the underlying set of roots remains unchanged. This later allows
the other parties to verify the correctness of P1’s computation, which will allow to
claim that P1 can only learn a random group element upon deviating.

3. Next, the parties pick a random group element u ← G and compare the evalua-
tion of P1’s combined polynomial against the evaluations of their own individual
polynomials. Namely, each party broadcasts the value

∑
j(c

i
j)

uj

together with a
zero-knowledge proof of knowledge. If concluded correctly, this phase is followed
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by the parties verifying the equality of the following equation
mMAX∑
j=1

(cj)
xj

=
n∑

i=2

λ̃i

where mMAX is the maximum over all input sets sizes and n is the number of parties.
Note that equality is performed over the ciphertexts. For this reason we can only
work with additively homomorphic PKEs for which the homomorphic operation
does not add noise to the ciphertext. Our crucial observation here is that the simula-
tor can run the extractor of the proof of knowledge and obtain the polynomials eval-
uations. Now, if the adversary convinces the honest parties with a non-negligible
probability that it indeed knows the plaintext, then the simulator can rewind it suf-
ficiently many times in order to extract enough evaluation points for which it can
fully recover the corrupted parties’ polynomials, and hence their inputs.

4. Finally, P1 must prove that it correctly evaluated the combined polynomial on its
committed input X1 from Item 1. This phase is backed up with a ZK proof due to
Bayer and Groth [BG13], denoted by πEVAL, and formally stated in Section 2.6.

Building blocks. Our protocol uses the following sub-protocols.

1. A coin tossing protocol πCOIN employed in order to sample a random group element
u ← G. Our protocol employs πCOIN only once, where u is locally substituted by
the parties in their private polynomials. These values are then used by the parties to
verify the behaviour of P1. The overhead of πCOIN is O(n2) where n is the number
of parties.

2. A ZK proof of knowledge πEXP for demonstrating the knowledge of the message
with respect to an additively homomorphic commitment scheme. We employ this
proof in two distinct places in our protocol, and for two different purposes. First,
when P1 broadcasts its polynomial in Step 2 and proves the knowledge of these
coefficients and second, in Step 4c when each party sends its polynomial evaluation.
As we demonstrate below, for both instantiations we can use the same proof for
the two purposes. Importantly, since we are in the multi-party setting, where each
party uses a homomorphic encryption to encrypt its polynomial, we must avoid
the case for which an adversary may “reuse” one of the encrypted polynomials
as the polynomial of one of the corrupted parties. We will require the proof to be
simulation-extractable. We will ensure this by showing that our proofs are non-
malleable and straight-line extractable.

3. A ZK proof of knowledge πEVAL for demonstrating the correctness of a polyno-
mial evaluation for a secret committed value [BG13]. This proof is an argument
of knowledge such that given a polynomial P (·) = (p0, . . . , pd) and two commit-
ments com, com′, proves the knowledge of a pair v, u such that P (v) = u where
com = Com(u), com′ = Com(v) and Com(·) denotes an homomorphic commit-
ment scheme (as noted in [BG13] any homomorphic commitment can be used).
Moreover, the polynomial can be committed as well. Formally stating,

REVAL =

(
P (·) = (p0, . . . , pd), com, com′), (r, r′, u, v) | com = Com(u; r)

∧ com′ = Com(v; r′)
∧ P (u) = v

 .
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Importantly, the communication complexity of this proof is logarithmic in the de-
gree of the polynomial, whereas the computational overhead by the verifier is O(d)
multiplications.

We next formally describe our protocol.

Protocol 2 (Protocol πML with malicious security)

– Input: Party Pi is given a set Xi = {x1
i , . . . , x

mi
i } of size mi for all i ∈ [n]. All parties are

given a security parameter 1κ and a description of a group G.
– The protocol:

1. Key Generation. The parties mutually generate a public key PK and the corresponding
secret key shares (SK1, . . . , SKn) by running a maliciously secure protocol πML

GEN that
realizes FGEN.

2. The commitment phase. P1 creates commitments to its inputs {com1, . . . , comm1}
and broadcasts them to all parties and proves the knowledge of their decommitments
using threshold πEXP.

3. The 2PC phase. For all i ∈ [2, n], party Pi computes the coefficients of a polynomial
Qi(·) = (qi0, . . . , q

i
mi

) of degree mi, with roots set to the mi elements of Xi. In ad-
dition, Pi chooses a random element λi ← G and computes the product λi · qij for
every coefficient within Qi. Finally, Pi sends P1 the sets of ciphertexts

(
ci1, . . . , c

i
mi

)
,

encrypting the coefficients of λi ·Qi(·).
4. Concluding the intersection.

(a) Upon receiving the ciphertexts from all parties, party P1 combines the following
ciphertexts

c1 =

n∏
i=2

ci1, . . . , cmMAX =

n∏
i=2

cimMAX

where mMAX = max(m2, . . . ,mn). Note that P1 calculates the ciphertexts en-
crypting the coefficients of the combined polynomial λ2 ·Q2(·)+ · · ·+λn ·Qn(·).
P1 then broadcasts ciphertexts

(
c1, . . . , cmMAX

)
to all parties.

(b) Next, the parties verify the correctness of these ciphertexts. Specifically, the parties
first agree on a random element u from the appropriate plaintext domain using the
coin tossing protocol πCOIN.

(c) Then, each party broadcasts the ciphertext computed by
∑

j(c
i
j)

uj

, denoted by
λ̃i, together with a ZK proof of knowledge πEXP for proving the knowledge of the
plaintext.
If all the proofs are verified correctly, then the parties check that

∑mMAX
j=1 (cj)

xj

=∑n
i=2 λ̃i using the homomorphic property of the encryption scheme.

(d) If the verification phase is completed correctly, for every xj
1 ∈ X1, P1 evalu-

ates the polynomial that is induced by the coefficients encrypted within ciphertexts(
c1, . . . , cmMAX

)
on xj

1 and proves consistency with the commitments from Step 2
using the ZK proof πEVAL.

(e) Upon completing the evaluation, the parties decrypt the evaluation outcomes for
P1 using protocol πML

DecZero, who concludes the intersection.

We continue with the proof for this theorem,

Theorem 41 Assume that (Gen,Enc,Dec) is IND-CPA secure threshold additively ho-
momorphic encryption scheme, and that πCOIN, πEXP, πEVAL, πGEN and πDecZero are as
above. Then, Protocol 2 securely realizes FPSI in the presence of malicious adversaries
for n ≥ 2 parties.
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Proof: Intuitively, correctness follows easily due to a similar argument as in the semi-
honest case , where each element in P1’s set must zero all the other polynomials if it
belongs to the intersection. Next, we consider two classes of adversaries. The first class
involves adversaries that corrupt a subset of parties that includes party P1, whereas the
second class does not involve the corruption of P1. We provide a separate simulation
for each class.

Consider an adversary A that corrupts a strict subset I of parties from the set
{P1, . . . , Pn}, including P1. We define a simulator S as follows.

1. Given {Xi}i∈I the simulator invokes the corrupted parties on their corresponding
inputs and randomness.

2. S generates (PK, SK) ← Gen(1κ) and invokes the simulator SGEN(PK) for πML
GEN

in the key generation phase.
3. Next, S extracts the input X ′

1 of P1 by invoking the extractor of the proof of knowl-
edge πEXP.

4. S plays the role of the honest parties against P1 on arbitrary sets of inputs.
5. Finally, at the concluding phase the simulator completes the execution of the pro-

tocol as follows. S completes the verification phase as the honest parties would do.
If the verification phase fails S aborts, sending ⊥ to the trusted party.

6. Otherwise, S extracts the corrupted parties’ inputs (excluding party P1 for which
its input has already been extracted). More concretely, the simulator repetitively
rewinds the adversary to the beginning of Step 4b, where for every iteration the
parties evaluate their polynomial at a randomly chosen point u and the simulator
extracts the individual evaluations by running the extractor of the proof of knowl-
edge πEXP and records these values only if they pass the verification phase.
Upon recording d + 1 values for each corrupted party, the simulator reconstructs
their polynomials and calculates the set of roots Xi of each polynomial λi · Qi(·)
for i ∈ I. In case S fails to record this many values, it outputs ⊥.

7. S sends {Xi}i∈I to the trusted party, receiving Z. S further verifies the πEVAL

proofs and aborts in case the verification fails.
8. Finally, for every xj

1 ∈ Z, S biases the decryption of the combined polynomials to
be zero. Whereas for each xj

1 /∈ Z, the simulator biases the decryption into a ran-
dom group element by running the simulator SML

DecZero on the appropriate plaintext.

We briefly discuss the running time of the simulator. Observe that its running time
is dominated by Step 6, when it repeatedly rewinds the adversary. Nevertheless, using a
standard analysis, the expected number of rewindings can be shown to be polynomial.
We next prove that the real and simulated executions are computationally indistinguish-
able. Note that the difference between the executions boils down to the privacy of the
encryption scheme. Namely, the simulator sends encryptions of polynomials that were
computed based on arbitrary inputs, as opposed to the honest parties’ real inputs. Our
proof follows via a sequence of hybrid games. We will begin with a scenario where
P1 is in the set of corrupted parties I. When P1 is honest, the proof is simpler and we
discuss this at the end.

Hybrid0: The first game is the real execution.
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Hybrid1: This hybrid is identical to the real world with the exception that the simulator
S1 in this experiment extracts the corrupted parties inputs as in the simulation. More
precisely, it extracts the inputs of all corrupted parties from πEXP and πEVAL, and aborts
if it fails to extract. Since the probability that the simulator fails to extract is negligible,
it follows that this hybrid is statistically close to the real world execution. Specifically,
consider two cases. If the adversary passes the verification check in Step 4b with non-
negligible probability, then using a standard argument the simulator will be able to
extract enough evaluation points. On the other hand, if the probability that the simulator
reaches the rewinding phase is negligible then indistinguishability will follow from the
aborting views output by the simulator.

Hybrid2: In this hybrid, the simulator extracts just as in Hybrid1 with the following
modifications. First, it invokes simulator SGEN for protocol πGEN in Step 1. In addition,
if the simulator does not abort when executing Step 4b, it computes the set-intersection
result Z based on the extracted inputs and the honest parties’ inputs (which it knows in
this hybrid). Next, it invokes simulator SDecZero of the decryption protocols that is in-
voked in Step 4e. Note that SDecZero is handed as plaintexts result of the set-intersection
and needs to bias the outcome towards these set of plaintexts. That is, for each element
z ∈ X1 substituted in the combined polynomial in Step 4d, the simulator enforces the
decryption to be zero, and a random element otherwise. Note that indistinguishability
follows from the properties of the threshold decryption. In particular, the adversary’s
view in the previous hybrid includes the real execution of protocols πGEN and πDEC,
whereas in the current hybrid the adversary’s view includes the simulated protocols ex-
ecutions. We further claim that the adversary’s set-intersection result is identical in both
executions condition on the even that extraction follows successfully. This is due to the
correctness enforced by the decryption protocol.

Hybrid3: In this hybrid, the simulator changes all the proofs given by the honest par-
ties in Step 4b to simulated ones. Moreover, recall that the simulator continues to extract
the inputs of the corrupted parties. Now, since the zero-knowledge proof we employ in
this step is simulation extractable, it follows that Hybrid2 and Hybrid3 are compu-
tationally indistinguishable. Namely, as we require this proof to be non-malleable and
straight-line extractable, indistinguishability follows by simply posting either the real
or the simulated proofs.

Hybrid4: In this hybrid, the simulator changes the inputs of the honest parties in the
2PC phase to random inputs. Namely, the simulator sends the encryptions of a ran-
dom polynomial on behalf of each honest party in Step 3. Then indistinguishability
of Hybrid3 and Hybrid4 follows from the IND-CPA security of the underlying en-
cryption scheme. Specifically, the simulator never needs to know the secret key of the
encryption scheme, so that the ciphertexts obtained from the encryption oracle in the
IND-CPA reduction can be directly plugged into the protocol. More concretely, a simple
reduction can follow by providing an adversary A′, who wishes to break the IND-CPA
security of the underlying PKE, a public-key PK and a sequence of ciphertexts that
either encrypt the real honest parties’ polynomials or a set of random polynomials. A′

emulates the simulator for this hybrid, with the exception that it plugs-in these cipher-
texts on behalf of the honest parties in Step 3. Note that the adversary’s view is either
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distributed according to the current or the prior hybrid execution, where the no infor-
mation about the polynomials is revealed in Step 4c due to the random λ masks that
yield random polynomials evaluations.

As Hybrid4 is identical to the real simulator, the proof of indistinguishabiliy fol-
lows via a standard hybrid argument.

Next, in the case that P1 is not corrupted, the simulator further plays the role of
this party in the simulation. In this case the proof follows almost as above with the
difference that now the simulator uses a fake input for P1 when emulating Step 4d. This
requires two extra hybrid games in the proof for which the simulator switches to P1’s
real input, reducing security to the privacy of the underlying encryption scheme and the
zero-knowledge property of πEVAL.

4.1 An Instantiation of πEXP Based on DDH and the Random Oracle

Our first instantiation uses the following building blocks. First, we use the El Gamal
PKE as the threshold additively homomorphic encryption scheme; we elaborate in Sec-
tion 2.3 regarding this scheme. We further consider Pedersen’s commitment scheme
[Ped91] for the commitment scheme made by P1 in Step 2 (see Section 2.5 for the de-
tails of this commitment scheme). Finally we realize πEXP using a standard Σ-protocol
for the following relation

REXP = {((G, g, h, h′), (m, r)) | h′ = gmhr} .

We invoke this proof in two places in our protocol. First, P1 proves the knowledge of
its committed input in Step 2. Next, the parties prove the knowledge of their evaluated
polynomial in Step 4b (where for any El Gamal type ciphertext ⟨c1, c2⟩ = ⟨gr, hr ·gm⟩ it
is sufficient to prove the knowledge with respect to the second group element c2, which
can be viewed as a Pedersen’s commitment). Importantly, as the latter proof must meet
the non-malleability property, we consider its non-interactive variant using the Fiat-
Shamir heuristic [FS86] which is analyzed in the Random Oracle Model of Bellare
and Rogaway [BR93]. Finally, we note that the overhead of this proof is constant. As
mentioned before, we need the proofs to satisfy the stronger simulation-extractability
property. If we assume the stronger programmability property of random oracles, we
can show that these proofs are non-malleable and straight-line extractable. For more
details, see [FKMV12].

4.2 An Instantiation of πEXP Based on the DLIN Hardness Assumption

Our second instantiation is based on the [BBS04] PKE that is based on the DLIN hard-
ness assumption and the simulation-sound NIZK by Groth [Gro06]. In this work, Groth
demonstrates NIZK proofs of knowledge for Pedersen’s commitment scheme, which
can be used by P1 in Step 2 as in the previous instantiation, and for a plaintext knowl-
edge relative to [BBS04] which can be used by the parties in Step 4b. To achieve non-
malleability we will require that an independent common reference string is sampled
between every pair of parties.
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4.3 Communication and Computation Complexities

Denoting by mMIN (resp. mMAX) the minimum (resp. maximum) over all input sets sizes
and n is the number of parties, we set m1 = mMIN. Next, note that the communication
complexity of Protocol 2 is dominated by the following factors: (1) First, O(n2) groups
elements in the threshold key generation phase in Step 1, in the coin tossing generation
phase in Step 4b and in Step 4c where the parties broadcast their polynomial evaluation.
(2) Second, the 2PC step for which each party Pi computes its own polynomial boils
down to O(

∑
i mi) and finally, (3) the broadcast of the combined protocol and the over-

head of the zero-knowledge proof πEVAL yield O(n ·mMAX +n ·mMIN · logmMAX). All
together this implies O((n2+n·mMAX+n·mMIN ·logmMAX)κ) bits of communication.

In addition to the above, except for party P1, the computational complexity of each
party Pi is O(mMAX) exponentiations plus O(mMIN · mMAX) groups multiplications,
whereas party P1 needs to perform O(m1 ·mMAX) exponentiations.
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