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Abstract. In this work, we describe a new polynomial-time attack on the
multilinear maps of Coron, Lepoint, and Tibouchi (CLT13), when used in
candidate indistinguishability obfuscation (iO) schemes. More specifically,
we show that given the obfuscation of the simple branching program that
computes the always zero functionality previously considered by Miles,
Sahai and Zhandry (Crypto 2016), one can recover the secret parameters
of CLT13 in polynomial time via an extension of the zeroizing attack
of Coron et al. (Crypto 2015). Our attack is generalizable to arbitrary
oblivious branching programs for arbitrary functionality, and allows (1)
to recover the secret parameters of CLT13, and then (2) to recover the
randomized branching program entirely. Our analysis thus shows that
almost all single-input variants of iO over CLT13 are insecure.

1 Introduction

Since their introduction, all candidates for multilinear maps [GGH13a, CLT13,
GGH15] have been shown to suffer from zeroizing attacks [GGH13a, CHL+15,
GGH15], sometimes even when no low-level encoding of zero was made available
to the adversary [CGH+15]. However, the leading application of multilinear maps,
indistinguishability obfuscation, has until now remained little affected by this
kind of attacks. This resistance seemed to come from the fact that the particular
combinations enforced in indistinguishability obfuscation constructions did not
allow enough freedom to obtain a simple system of successful zero-tests that could
be solved using linear algebraic techniques; see the discussion on the limitations
of zeroizing attacks in [CGH+15, Section 1.2].

Attacks against iO (Related Work). Attacks against simplified variants
of certain obfuscation schemes instantiated over the Coron-Lepoint-Tibouchi
(CLT13) multilinear maps [CLT13] have been described in [CGH+15]. Firstly, the
GGHRSW branching-program (BP) obfuscation procedure from [GGH+13b] has
been shown to be broken for branching programs with a special “decomposable”
structure where the inputs bits can be partitioned in three sets, and so that one
set only affects the first steps of the BP, a second set the middle steps of the BP,



and the last set the final steps of the BP. Secondly, the simple variants of the
circuit obfuscation procedures from [Zim15, AB15] has been shown to be broken
for simple circuits, such as point functions.

Recently in [MSZ16], Miles, Sahai and Zhandry introduced annihilation attacks
against multilinear maps, and applied them to cryptanalyze in polynomial-time
several candidate iO schemes [BGK+14, MSW14, AGIS14, PST14, BMSZ16] over
the Garg-Gentry-Halevi (GGH13) multilinear maps [GGH13a]. The core idea of
the attack against to differentiate whether an obfuscated program O comes from a
branching program A or a branching program A′ is the following: evaluate specific
inputs xi’s that evaluate to 0 on A and A′, get the zero-tested values yi = O(xi),
and then evaluate an annihilating polynomial QA constructed from A over the
yi’s. When A was obfuscated, QA(y) belongs to an ideal I independent of y and
A; otherwise QA(y) 6∈ I with high probability. Annihilation polynomials can also
be used to attack the order revealing encryption scheme proposed in [BLR+15].
Concurrently to our work, Chen, Gentry and Halevi [CGH16] used annihilation
polynomials to attack the initial GGHRSW candidate iO scheme [GGH+13b] and
Apon et al. [ADGM16] introduced the notion of partially inequivalent branching
programs, shown to be sufficient for annihilation attacks.

Our contributions. In the remaining of the document, we cryptanalyze several
constructions of indistinguishability obfuscation [GGH+13b, MSW14, AGIS14,
PST14, BGK+14, BMSZ16] when instantiated over CLT13. More specifically, we
show the following theorem.

Theorem 1. Let O denote the single-input variant of the iO candidates in
[GGH+13b, MSW14, AGIS14, PST14, BGK+14, BMSZ16] (over CLT13 multi-
linear maps). There exists a branching program A such that, given O(A), one
can break the CLT13 multilinear maps in polynomial-time.

To show this, we use the branching program A that computes the always-zero
function previously considered in [MSZ16], in which every matrix is simply the
identity matrix. This branching program does not fit in the framework of the
zeroizing attacks proposed in [CGH+15], but we show that one can reconstruct the
three-ways structure required by the zeroizing attacks by using tensor products.
More precisely, consider a branching program evaluation on input x

A(x) = Â0 ×
2t∏
i=1

Âi,xinp(i)
× Â2t+1 × pzt mod x0 ,

where inp(i) = min(i, 2t + 1 − i) denotes the input bit used at the i-th step

of the computation and Â = {Â0, Â2t+1, Âi,b | i ∈ [2t], b ∈ {0, 1}} is the
obfuscated branching program. We show that A(x) can be rewritten as a product
of consecutive factors

A(x) = B(x)×C(x)×D(x)×C ′(x)×B′(x)× pzt mod x0

=
(
B′(x)

T ⊗B(x)
)
×
(
C ′(x)

T ⊗C(x)
)
× vec

(
D(x)

)
× pzt mod x0,
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where the factors B′(x)
T ⊗B(x),C ′(x)

T ⊗C(x) and D(x) that can be made
to vary independently, and vec(D) denotes the vector formed by stacking the
columns of the matrix D on top of each other. We then show how to extend the
zeroizing attack approach described in [CHL+15, CGH+15] to construct a block
diagonal matrix, and apply the Cayley-Hamilton theorem to recover all the secrets
embedded in the CLT13 public parameters. Once the multilinear map secret
parameters have been recovered, one can then recover the randomized branching
program Ã completely. Thus, one can distinguish between the obfuscation of two
branching programs whenever they are inequivalent under Kilian’s randomization.

Our attack is applicable to the single-input version of the candidate obfus-
cators from [MSW14, AGIS14, PST14, BGK+14, BMSZ16], to the GGHRSW
obfuscator [GGH+13b] (as opposed to annihilations attacks).

Last, but not least, we then show how to generalize our attack to branching
programs with an essentially arbitrary structure, including oblivious branching
programs, and to programs achieving essentially arbitrary functionalities. This
shows that the previously mentioned single-input obfuscators should be considered
broken when instantiated with CLT13.

2 Preliminaries

Notation. We use [a]n or a mod n to denote a unique integer x ∈ (−n2 ,
n
2 ] which

is congruent to a modulo n. A set {1, 2, . . . , n} is denoted by [n]. Vectors and
matrices will be denoted by bold letters. The transpose of a matrix A is denoted
by AT .

2.1 Kronecker product of matrices

For any two matrices A ∈ Rm×n and B ∈ Rp×q, we define the Kronecker product
(or tensor product) of A and B as the block matrix A⊗B ∈ R(mp)×(nq) given
by:

A⊗B =

a11B · · · a1nB...
. . .

...
am1B · · · amnB

 , where A = (aij).

We will be using the following important property of the Kronecker product.
Consider a matrix C ∈ Rn×m and let ci ∈ Rn, i = 1, . . . ,m be its column vectors,
so that C =

[
c1, . . . , cm

]
. We denote by vec(C) the column vector of dimension

mn formed by stacking the columns ci of C on top of one another:

vec(C) =

 c1...
cm

 ∈ Rmn.
Now for any three matrices A, B, and C for which the matrix product A ·B ·C
is defined, the following property holds [Lau04, Ch. 13]:

vec(A ·B ·C) = (CT ⊗A) · vec(B)
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(this follows from the fact that vec(xyT ) = y ⊗ x for any two column vectors
x and y). Note that for any column vector c, vec(c) = c. This property has
concurrently and independently been used in the variant of annihilation attacks
introduced by Apon et al. [ADGM16].

2.2 CLT13 multilinear map

We briefly recall the asymmetric CLT13 scheme; we refer to [CLT13] for a full
description. The CLT13 scheme relies on the Chinese Remainder Theorem (CRT)
representation. For large secret primes pk’s, let x0 =

∏n
k=1 pk. We denote by

CRT(a1, a2, . . . , an) or CRT(ak)k the number a ∈ Zx0
such that a ≡ ak (mod pk)

for all k ∈ [n]. The plaintext space of CLT13 scheme is Zg1 × Zg2 × · · · × Zgn for
small secret integers gk’s. An encoding of a vector a = (a1, . . . , an) at level set
S = {i0} is an integer α ∈ Zx0

such that α = [CRT(a1+g1r1, . . . , an+gnrn)/zi0 ]x0

for small rk’s, and where zi0 is a secret mask in Zx0 uniformly chosen during the
parameters generation procedure of the multilinear map. To support a κ-level
multilinearity, κ distinct zi’s are used. We do not consider the straddling set
system [BGK+14] since it is not relevant to our attacks.

Additions between encodings in the same level set can be done by modular
additions in Zx0

. Multiplication between encodings can be done by modular
multiplication in Zx0 , only when those encodings are in disjoint level sets, and the
resulting encoding level set is the union of the input level sets. At the top level set
[κ], an encoding of zero can be tested by multiplying it by the zero-test parameter
pzt = [

∏κ
i=1 zi · CRT(p∗khkg

−1
k )k]x0

in Zx0
where p∗k = x0/pk, and comparing the

result to x0. If the result is small, then the encoding encodes a zero vector.4

2.3 Indistinguishability obfuscation

We borrow the definition of indistinguishability obfuscation from [GGH+13b],
where iO for circuits are defined.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for a circuit class {Cλ} if the
following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) PPT distinguisher D, there exists a neg-
ligible function α such that the following holds: For all security parameters
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x)
for all inputs x, then

|Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]| ≤ α(λ).

4 In this paper, for simplicity of notation, we only consider a single zero-testing element
instead of a vector thereof [CLT13].
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Circuits can be directly obfuscated using circuit obfuscators [Zim15, AB15,
DGG+16]. However, most of the iO candidate obfuscators (see [GGH+13b,
MSW14, AGIS14, PST14, BMSZ16, GMM+16]) first convert the circuits to
matrix branching programs, randomize them, and then obfuscated them using a
candidate multilinear maps scheme such as [GGH13a, CLT13, GGH15].

Obviously, for the converted branching program B, the iO obfuscator O
should preserve the functionality: B(x) = O(B)(x) for all x. Moreover, for
two functionally-equivalent branching programs B and B′, O(B) and O(B′)
should be computationally indistinguishable, unless they have different length or
types of matrices. The concrete instance of such branching programs and their
obfuscations are described in Section 3.1 and 3.2, respectively.

Note that, while the candidate multilinear maps [GGH13a, CLT13, GGH15]
have recently been found to fail to securely realize multi-party key exchanges
(see [HJ16, CHL+15, CLLT16a]), few weaknesses were found in the iO candidates
over CLT13 (and GGH15 [GGH15]), mainly due to the absence of the low-level
encodings of zeroes in the public domain. In [CGH+15], Coron et al. described
an attack against the circuit obfuscators for simple circuits, and the GGHRSW
obfuscator for branching programs with a special decomposable structure (but not
on oblivious branching programs). Annihilations attacks [MSZ16] were recently
introduced and allowed to break many iO candidates over GGH13; however, they
do not carry to obfuscators over CLT13 as far as we know.

3 Zeroizing attack on indistinguishability obfuscation of
simple branching programs

For simplicity, we describe our attack on the simple single input branching
program introduced in [MSZ16]. We will show how to generalize our attack to
oblivious branching programs with arbitrary functionalities in Section 4.

3.1 Target branching program

We consider the following branching program A that evaluates to zero for all
t-bit inputs. Let us first define the function which describes what input bit is
examined at the i-th step:

inp(i) = min(i, 2t+ 1− i) for i ∈ [2t] .

Now, the branching program is defined as follows:

A = {inp,A0,A2t+1,Ai,b | i ∈ [2t], b ∈ {0, 1}} ,

where

A0 = [0 1], A2t+1 = [1 0]T , Ai,0 = Ai,1 =

[
1 0
0 1

]
for i ∈ [2t].

It is evaluated in the usual way on x ∈ {0, 1}t:

A(x) := A0 ×
2t∏
i=1

Ai,xinp(i)
×A2t+1.
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3.2 Obfuscation of branching programs

To obfuscate a branching program, we follow the standard recipe of indistin-
guishability obfuscation constructions: use Kilian style randomization with extra
scalar multiplications by random numbers, and encode the resulting matrices
with the candidate multilinear maps.

Let us describe the obfuscation procedure of the branching program A from
Section 3.1, over the CLT13 multilinear map. Let

∏n
k=1 Zgk be the plaintext

space of the CLT13 map, and denote g =
∏n
k=1 gk. We first choose random invert-

ible matrices {Ri ∈ Z2×2
g }i∈[2t+1] and non-zero scalars {αi,b ∈ Zg}i∈[2t],b∈{0,1}.

Then the matrices in the branching program A are randomized using Kilian
randomization, and we define Ã the randomized branching program:

Ã = {inp, Ã0, Ã2t+1, Ãi,b | i ∈ [2t], b ∈ {0, 1}}

where

Ã0 = A0 ·R−11 , Ã2t+1 = R2t+1 ·A2t+1, Ãi,b = αi,b ·Ri ·Ai,b ·R−1i+1,

for i ∈ [2t], b ∈ {0, 1}.
Next, the randomized branching program Ã is encoded using the CLT13

scheme. In order to evaluate the randomized branching program, our multilinear
map must accommodate κ = 2t+ 2 products, i.e. the multilinearity level is set
to [κ]. Each element ã ∈ Zg of the matrices Ãi,b’s is considered as a vector
([ã]g1 , . . . , [ã]gn) ∈ Zg1×· · ·×Zgn , and encoded as an integer â ∈ Zx0

at level S =
{i}. In particular, we have that â = [CRT([ã]g1 + g1r1, . . . , [ã]gn + gnrn)/zi]x0

for

small random integers rk’s. The matrices Ã0 and Ã2t+1 are encoded analogously.
The resulting obfuscated branching program is

Â = {inp, Â0, Â2t+1, Âi,b | i ∈ [2t], b ∈ {0, 1}}

where Âi,b is an entry-wise encoding of Ãi,b. The obfuscated branching program

Â can be evaluated in the usual way: define A(x) be

A(x) := Â0 ×
2t∏
i=1

Âi,xinp(i)
× Â2t+1 × pzt mod x0.

Then Â(x) = 0 if and only if A(x) is small compared to x0.

3.3 Attack over CLT13 encoding

As in the previous zeroizing attacks [CHL+15, CGH+15] against the CLT13 graded
encoding scheme, our approach will be to decompose the zero-tested values A(x)
into a product of several factors that can be made to vary independently. We then
use those varying factors to construct a matrix that will reveal the factorization
of the modulus x0, and hence entirely break the security of the scheme.
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To obtain this decomposition, we will rely on the identity vec(ABC) =
(CT ⊗A) vec(B) (see Section 2.1). First, we define several matrices B(x), B′(x),
C(x), C ′(x), and D(x) as products of consecutive factors appearing in the
product A(x):

A(x) := Â0 ×
2t∏
i=1

Âi,xinp(i)
× Â2t+1 × pzt mod x0

= Â0 ·
s∏
i=1

Âi,xinp(i)︸ ︷︷ ︸
B(x)

× Âs+1,xinp(s+1)︸ ︷︷ ︸
C(x)

×
2t−s−1∏
i=s+2

Âi,xinp(i)︸ ︷︷ ︸
D(x)

× Â2t−s,xinp(2t−s)︸ ︷︷ ︸
C′(x)

×
2t∏

i=2t−s+1

Âi,xinp(i)
· Â2t+1︸ ︷︷ ︸

B′(x)

×pzt mod x0 (1)

for a specific s ∈ [1, t− 2]. Using the identity above, we can then rewrite A(x) as
follows:

A(x) = B(x)× (C(x)D(x)C ′(x))×B′(x)× pzt mod x0

= vec
(
B(x)×

(
C(x)D(x)C ′(x)

)
×B′(x)

)
× pzt mod x0

=
(
B′(x)

T ⊗B(x)
)
× vec

(
C(x)D(x)C ′(x)

)
× pzt mod x0

=
(
B′(x)

T ⊗B(x)
)
×
(
C ′(x)

T ⊗C(x)
)
× vec

(
D(x)

)
× pzt mod x0.

Note that in the above equation, B′(x)
T ⊗B(x) is a row vector of dimension 4,

C ′(x)
T⊗C(x) is a 4×4 matrix, and vec

(
D(x)

)
is a column vector of dimension 4.

Furthermore, recall that CRT values have the property that CRT(p∗k · uk)k =∑
k p
∗
k · uk mod x0 for any tuple (uk)k, and the relation holds over Z when the

uk’s are small compared to the pk’s. Now, for a multilinear encoding α with level
set S, denote by [α](k) its underlying CRT component modulo pk (and similarly
for vectors and matrices of encodings); in other words:

α = CRT
(
[α](1), . . . , [α](n)

)
·
∏
i∈S

z−1i mod x0.

With that notation and since pzt =
∏κ
i=1 zi ·

∑n
k=1 hkp

∗
kg
−1
k mod x0, where n is

the number of primes pk in x0, the expression of A(x) can be extended further
as:

A(x) =
[
. . .
[
B′(x)

T ⊗B(x)
](k)

. . .
]

×


. . .

p∗khkg
−1
k ·

[
C ′(x)

T ⊗C(x)
](k)

. . .

×


...[
vec(D(x))

](k)
...

 , (2)

7



where the three matrices are respectively of dimensions 1 × 4n, 4n × 4n and
4n × 1. For all x, the fact that the branching program evaluates to zero (and
hence A(x) is an encoding of zero) ensures that the relation holds over Q and not
just modulo x0: indeed, it guarantees that the factor that each p∗k gets multiplied
with is small modulo pk.

Now the key point of the attack is that the first matrix in the relation above
depends only on the first s bits of the input x, the second matrix only on the
(s+ 1)-st bit of x, and the third matrix on the remaining (t− s− 1) bits of x.
Given integers i, j, b with 0 ≤ i < 2s, 0 ≤ j < 2t−s−1 and b ∈ {0, 1}, denote by

W
(b)
ij the value A(x) ∈ Z corresponding to the input x whose first s bits are the

binary expansion of i, whose last (t− s− 1) bits are the binary expansion of j

and whose (s+ 1)-st bit is b. By the above, we can write W
(b)
ij in the form:

W
(b)
ij = Xi ·U (b) · Y j

where Xi is the row vector of size 4n, Y j the column vector of size 4n and U (b)

the square matrix of size 4n that appear in Equation (2).
Assuming that 2min(s,t−s−1) ≥ 4n (which can be achieved by taking s = bt/2c

as long as 2t/2 ≥ 8n), we can thus form two matrices W (0), W (1) with any
choice of 4n indices i and j, and those matrices satisfy a relation of the form
W (b) = X ·U (b) ·Y with X, Y square matrices of dimension 4n independent of
b. The attack strategy is then similar to [CGH+15]. With high probability on the
sets of indices i and j, these matrices will be invertible over Q, and we will have:

W (0)
(
W (1)

)−1
=
(
XU (0)Y

)
·
(
XU (1)Y

)−1
= X ·U (0)

(
U (1)

)−1 ·X−1.
In particular, the characteristic polynomials of the matrices W (0)

(
W (1)

)−1
and

U (0)
(
U (1)

)−1
are equal, and since we know the W (b), we can compute that

common polynomial P in polynomial time, together with its factorization. Now
the latter matrix is block diagonal, and satisfies:

U (0)
(
U (1)

)−1 ≡


. . .

Γ mod pk
. . .

 (mod x0)

where Γ =
(
C ′T0 ⊗ C0

)
·
(
C ′T1 ⊗ C1

)−1
(with obvious definitions for C0, C ′0,

C1, C ′1). Therefore, P decomposes as a product of factors Pk, k = 1, . . . , n,
such that Pk(Γ ) ≡ 0 (mod pk). Moreover, as characteristic polynomials over
Q are essentially random matrices, the polynomials Pk should heuristically be
irreducible with high probability, and hence occur directly in the factorization of
P (that assumption, which is well verified in practice, appears as Conjecture 1
in [CGH+15, Section 3.3]). This yields to the complete recovery of the pk’s as
pk = gcd

(
x0, Pk(Γ )

)
, where the Pk are the irreducible factors of P .

Clearly, once the pk’s are found, it is straightforward to break indistinguisha-
bility obfuscation. Indeed, given any two multilinear encodings at level {i},
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applying rational reconstruction to their ratio modulo pk reveals zi mod pk, and
hence the entire zi. Then, even if the gk’s are kept secret, rational reconstruction
again applied to pzt allows to recover them. This makes it possible to completely
“decrypt” multilinear encodings, and hence obtain the full original randomized
branching program Ã.

In particular, we can distinguish between the obfuscation of two branching
programs whenever they are inequivalent under Kilian’s randomization.

3.4 Implementation of the attack

Since the attack relies on some heuristic assumptions regarding e.g. the irreducibil-

ity of the factors of the characteristic polynomial of U (0)
(
U (1)

)−1
corresponding

to its block diagonal submatrices, we have written an implementation to check
that these assumptions were indeed satisfied in practice. The source code in
Sage [S+16] is provided in the full version [CLLT16b].

Running that implementation, we have verified that we could always recover
the full factorization of x0 efficiently.

4 Generality of our attack

In the previous section, we have described a zeroizing attack that breaks CLT13-
based indistinguishability obfuscation for a specific branching program (previously
considered in [MSZ16]) for which no previous attack was known in the CLT13
setting. In particular, that program does not have the decomposable structure
required to apply the attack of [CGH+15, Section 3.4]. In that sense, we do
extend the scope of zeroizing attacks beyond the setting of [CGH+15].

However, our attack setting may seem quite special at first glance. In particular,
the following aspects of our attack may seem to restrict its generality:

– we have described our attack against a somewhat simplified obfuscation
construction, that yields 2× 2 matrix encodings and does not include all the
countermeasures against potential attacks suggested in [GGH+13b] and later
papers;

– our attack appears to rely in a crucial way on the specific structure of the
branching program A (and its inp function in particular) in order to achieve
the partitioning necessary to apply zeroizing techniques;

– we only target a branching program for a very simple functionality (the
identically zero function).

In this section, we show that all of these limitations can be overcome, so that
our attack is in fact quite general:

– we can apply it to almost all proposed (single-input) iO candidates instan-
tiated over CLT13 multilinear maps, including the single-input variants of
[GGH+13b, MSW14, AGIS14, PST14, BGK+14, BMSZ16];

– we can extend it to branching programs with an essentially arbitrary structure,
including oblivious branching programs;

– we can mount it with programs achieving essentially arbitrary functionalities.
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4.1 Attacking other obfuscators

The attack of Section 3 targets a somewhat simplified obfuscator that takes a
branching program, randomizes it using Kilian-style random matrices together
with multiplicative bundling with random scalars αi,b, and outputs multilin-
ear encodings of the resulting randomized matrices directly. Actual candidate
constructions of indistinguishability obfuscation in the literature, on the other
hand, are usually more complicated, and typically involve extending the matrices
in the original branching program using diagonal blocks that get canceled out
when carrying out multilinear zero testing. The goal of these changes is usually
to protect against classes of attacks that could exploit the particular algebraic
structure of branching programs in undesirable ways—see e.g. [GMM+16] and
references therein.

However, for the most part, these additional security features have no incidence
on the applicability of our attack. This is because we only rely on the zero-testing
of top-level multilinear encodings of zero being small—the precise algebraic
structure of the matrices involved is essentially irrelevant for our purposes. This
is in contrast, in particular, with Miles et al.’s annihilation attacks [MSZ16],
which do exploit algebraic properties of the branching program matrices (such
as low-degree polynomial relations they satisfy), and hence get thwarted by the
submatrices used in [GGH+13b, GMM+16]. Recently, Chen, Gentry and Halevi
extended annihilation attacks to [GGH+13b] using the “multiplicative bundling”
scalars.

More precisely, the only difference between proposed obfuscators that matters
in our attack is the dimension of the matrix encodings involved. If the obfuscated
branching program Â consists of w × w matrices instead of 2× 2 matrices as in
Section 3, C ′(x)T ⊗C(x) is of dimension w2. As a result, we need to construct
matrices W (b) of dimension w2n, and in particular the number t of input bits
should satisfy 2t/2 ≥ 2w2n.

Note that this condition is never a restriction in non-trivial cases: this is
because 2t/2 < 2w2n implies that there is only a logarithmic number of input bits,
or in other words a polynomial-size domain. But indistinguishability obfuscation
for functions with a polynomial-size domain is trivial: it is equivalent to giving out
the graph of the function in full, since it is a canonical (hence indistinguishable)
representation, and anyone with access to an obfuscation can recover it in
polynomial time.

We finish this paragraph by reviewing several candidate iO constructions and
discussing how they fit within the argument above. This will prove Theorem 1,
which we now recall.

Theorem 1. Let O denote the single-input variant of the iO candidates in
[GGH+13b, MSW14, AGIS14, PST14, BGK+14, BMSZ16] (over CLT13 multi-
linear maps). There exists a branching program A such that, given O(A), one
can break the CLT13 multilinear maps in polynomial-time.

[AGIS14], [MSW14] and [BMSZ16]. The obfuscator described in Section 3.2
is essentially identical to the single-input versions of the constructions from
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[AGIS14], [MSW14] and [BMSZ16]. The only difference is that those papers do
not directly encode matrices at singleton multilinear levels {i}, but use a more
complicated level structure involving straddling sets. Since our attack relies on
the honest evaluation of the obfuscated branching program, it automatically
respects the multilinear level structure of any correct obfuscator. Therefore, it
applies to those schemes without any change.

[GGH+13b]. The main difference between the obfuscator described in Sec-
tion 3.2 and the one proposed in [GGH+13b] is that the latter extends the
original branching program matrices Ai,b by random diagonal matrices ∆i,b of
dimension d = 8t+ 10 before applying Kilian’s randomization and multilinear
encoding (and the matrices Ai,b themselves are assumed to be of dimension
5 instead of 2, to accommodate for the original formulation of Barrington’s
theorem). In other words, the randomized branching program Ã has the form:

Ãi,b = αi,bRi ·
[
Ai,b

∆i,b

]
·R−1i+1,

with the bookend matrices Ã0, Ã2t+1 adapted in such a way that the condition:

A(x) = 0 if and only if Ã0 ·
∏
i

Ãi,xinp(i)
· Ã2t+1 = 0

continues to hold. Because that condition holds, our attack applies in exactly
the same way, except again for the fact that the dimension of encoded matrices
Ãi,b increases from 2 to w = d+ 5 = 8t+ 15. This means that the condition on t
becomes 2t/2 ≥ 2(8t+ 15)2n, which is, again, not a meaningful restriction.

[PST14]. The situation for the obfuscator of [PST14] is similar. In that scheme,

the randomized branching program Ã takes the form:

Ãi,b = αi,bRi ·
[
Ai,b

I5

]
·R−1i+1,

where I5 is simply the 5× 5 identity matrix, and the original branching program
matrices are also assumed to be of dimension 5. Again, our attack extends to
that setting directly, the only difference being that the dimension of encoded
matrices Ãi,b increases from 2 to w = 10. The fact that the scheme from [PST14]
uses straddling sets has, again, no bearing on the applicability of our techniques.

[BGK+14]. In the [BGK+14] obfuscator, the shape of the obfuscated branching
program and the zero-testing condition look a bit different. More precisely, in
that scheme, the randomized branching program is basically the same as Ã
from Section 3.2 together with the values αi,b of the scalar randomizers except
that they use random vectors for A0 and A2t+1. And αi,b and A0 ·A2t+1 are
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also included in the randomized branching program. Moreover, the zero-testing
condition is modified: Ã(x) = 0 if and only if

Ã0 ·
∏
i

Ãi,xinp(i)
· Ã2t+1 = γ ·

∏
i

αi,xinp(i)
, (3)

where γ = A0 ·A2t+1. The output of the obfuscator is then essentially the same

obfuscated branching program Â from Section 3.2 together with encodings α̂i,b
of the values αi,b at the same multilinear level as Âi,b as well as the encoding γ̂
of γ. And the evaluation is carried out by applying zero-testing to Equation (3),

given multilinear encodings Â0, Â2t+1, Âi,b, α̂i,b, and γ̂.
Our attack can be adapted to this construction. Since multiplication between

scalars is commutative, the scalar values on the right-hand side of (3) can be
freely decomposed into several parts. In view of (1), let us decompose the set
[2t] into a partition: S1 = {1, . . . , s, 2t− s+ 1, . . . , 2t}, S2 = {s+ 1, 2t− s}, and
S3 = {s+ 2, . . . , 2t− s− 1}. Then we can decompose the above mentioned scalar
values into three parts:

γ
∏
i

αi,xinp(i)
= γ

∏
i∈S1

αi,xinp(i)
×
∏
i∈S2

αi,xinp(i)
×
∏
i∈S3

αi,xinp(i)
.

Since the left hand side of (3) is the same as in Section 3.2, the expression in (2)
can be extended to the zero-testing of (3) as follows:

A(x) =
[
. . .
[
B′(x)

T ⊗B(x)
](k) [

δ1
](k)

. . .
]

×


. . .

p∗khkg
−1
k ·

[
C ′(x)

T ⊗C(x)
](k)

p∗khkg
−1
k ·

[
δ2
](k)

. . .



×


...[

vec(D(x))
](k)

−
[
δ3
](k)

...

 ,

where δ1 = γ̂
∏
i∈S1

α̂i,xinp(i)
, δ2 =

∏
i∈S2

α̂i,xinp(i)
, and δ3 =

∏
i∈S3

α̂i,xinp(i)
.

Here, the three matrices are respectively of dimensions 1× 5n, 5n× 5n and
5n× 1 when w = 2. And we can then complete the attack in a manner similar to
Section 3.3. The condition for this attack to succeed becomes: 2t/2 ≥ 2(w2 + 1)n.

4.2 Attacking branching programs with arbitrary structure

Another apparent limitation of our attack is related to the particular structure of
the branching program A, and in particular its inp function. Indeed, the key point
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of our attack is our ability to obtain a partitioning of the branching program,
i.e. express the associated zero-test value A(x) as a product of three successive
factors depending on disjoint subsets of input bits. We achieved this by observing
that A(x) can be put in the form:

A(x) = B(x) ·C(x) ·D(x) ·C ′(x) ·B′(x)× pzt mod x0

where B(x),B′(x) depend on one subset of input bits, C(x), C ′(x) a different,
disjoint subset, and D(x) on a third subset disjoint from the first two. We
then used the tensor product identity mentioned in Section 2.1 to reorder those
matrices so as to get a factor depending only on B(x) and B′(x) on the left,
another one depending only on C(x) and C ′(x) in the middle, and a last one
depending only on D(x) on the right:

A(x) =
(
B′(x)

T ⊗B(x)
)
×
(
C ′(x)

T ⊗C(x)
)
× vec

(
D(x)

)
× pzt mod x0.

This technique seems to rely in an essential way on the order in which input bits
are assigned to successive branching program layers, and although we did not
come up with the branching program A ourselves (as it was proposed earlier
in [MSZ16]), we have to admit that it is rather special.

Indeed, proposed candidate iO constructions are often supposed to operate
on oblivious branching programs, whose length is a multiple of the number t of
input bits and whose inp function is fixed to inp(i) = (i mod t) + 1 (i.e. the input
bits are associated to successive layers in cyclic order). This is natural, since all
branching programs can be trivially converted to that form, and a canonical inp
function is needed to ensure indistinguishability. However, the branching program
A above is not oblivious, and it is not immediately clear that our partitioning
technique based on tensor products extends to that case.

Fortunately, it turns out that our technique does extend to oblivious (and
hence to arbitrary) branching programs as well, at the cost of an increase in the
dimension of the matrix encodings involved. There is in fact a simple greedy
algorithm that will convert any scalar expression consisting of a product of three
types of matrices Bi, Ci, Di to an equal product of three factors, the first of
which involves only the Bi’s, the second only the Ci’s and the third only the
Di’s. Writing down a description of the algorithm would be somewhat tedious,
but it is easy to understand on an example.

If we consider for example an oblivious branching program A2 of length 2t
(i.e. with two groups of t layers associated with all successive input bits), the
corresponding zero-test value can be put in the form:

A(x) = B ·C ·D ·B′ ·C ′ ·D′ · pzt mod x0

where, again, B,B′ depend on one subset of input bits, C, C ′ a different, disjoint
subset, and D, D′ on a third subset disjoint from the first two (and we omit the
dependence of these matrices on x to simplify notations). The matrices all have
dimension w×w, except the first and the last, which are of dimension 1×w and
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w× 1 respectively. Denoting by Azt the value such that A(x) = Azt · pzt mod x0,
we can then put Azt in the desired partitioned form as follows:

Azt = BC · vec
(
D · (B′C ′) ·D′

)
= BC

(
D′T ⊗D

)
vec(IwB

′C ′)

= BC
(
D′T ⊗D

)(
C′T ⊗ Iw

)
vec(B′)

=
(
vec(B′)T ⊗B

)
· vec

(
C
(
D′T ⊗D

)(
C′T ⊗ Iw

))
=
(
vec(B′)T ⊗B

)
·
(
C′ ⊗ Iw ⊗C

)
· vec

(
D′T ⊗D

)
,

and clearly a similar procedure works for any number of layer groups, allowing
us to adapt the attack to oblivious branching programs in general.

However, for an oblivious branching program of length mt (with m groups
of t layers), we can see that the dimension of the resulting square matrix in
the middle is given by w2m−1, and therefore, we need to have 2t/2 ≥ nw2m−1

to obtain sufficiently many zeros to apply the zeroizing technique. As a result,
we can attack oblivious branching programs only when the number m of layer
groups is not too large compared to the number t of input bits. In particular,
we cannot break the obfuscation of oblivious branching programs with length
greater than ω(t2) using that technique.

Thus, in principle, using oblivious branching programs whose length is quite
large compared to the number of inputs might be an effective countermeasure
against our attack. It remains to be seen whether further improvements could
yield to a successful attack against oblivious branching programs of length Ω(tc)
for c > 2.

On the flip side, we will see below that by adding “dummy” input bits, we can
pad essentially any oblivious branching program into another oblivious branching
program that computes the same functionality (ignoring the dummy input bits),
with the same number of layer groups, and whose obfuscation is broken using
our techniques.

4.3 Attacking arbitrary functionalities

The attack on Section 3 was described against a branching program for the
always-zero function. Since we do not use any property of the underlying matrices
other than the fact that the program evaluates to zero on many inputs, it is clear
that the attack should extend to branching programs for other functionalities
as well. Describing the class of functionalities we can capture in that way is not
easy, however.

If we take for example a branching program A′′ with the same input size,
the same length and the same inp function as A (and with encoding matrices of
dimension w, say), then a sufficient condition for the attack to apply to A′′ is
essentially that we can find sufficiently many “contiguous” inputs on which the
program evaluates to zero. More precisely, suppose that we can find a subset R
of the set [t] of input bit indices and an assignment (yr)r∈R ∈ {0, 1}R of these
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input bits such that A′′ evaluates to zero on all inputs x ∈ {0, 1}t that coincide
with (yr) on R. In other words:(

∀r ∈ R, xr = yr
)

=⇒ A′′(x) = 0.

Then we can break the obfuscation of A′′ using the obfuscator of Section 3.2 as
soon as 2(t−r)/2 ≥ 2w2n. The idea is simply to apply the attack in 3.3 with s
chosen in such a way that s+1 is exactly the (b(t−r)/2c+1)-st element of [t]\R
(in increasing order). Then, A(x) satisfies Equation (2) for all values of x with
xr = yr for r ∈ R. This provides at least 2(t−r)/2−1 choices for Xi, 2(t−r)/2−1 for
Y j and two choices for U (b), so we have enough zero values to apply the attack.

While the condition above is quite contrived, it should be satisfied by many
branching programs (especially as t−r can be chosen to be logarithmic: it follows
that almost all functionalities should satisfy the condition), including many
natural examples (a branching program whose underlying circuit is the nontrivial
conjunction of two sub-circuits, one of which depends only on t− r input bits
would be an example). But it gives little insight into the class of functionalities
we end up capturing.

A different angle of approach towards this problem is the padding technique
already considered in [MSZ16, Section 3.3]. Given a branching program A0

implementing any functionality and for which we can find an input where it
evaluates to zero, we can convert it into another branching program A∗0 with
slightly more input bits, that implements the same functionality (it simply
ignores the additional dummy input bits and evaluates to the same values as A0

everywhere), and whose obfuscation is broken using our attack.
This is in fact trivial: take the branching program A0, and append to it

(before the final bookend matrix) additional layers associated with the new input
bits consisting entirely of identity matrices, in the same order as the inp function
of the branching program A from Section 3.1. Since all the added layers contain
only identity matrices, they do not change the functionality at all. Then, if we
simply fix the non-dummy input bits to the value on which we know A0 vanishes,
we are exactly reduced to the setting of Section 3.3, and our attack applies
directly.

This may be a bit too trivial, however, since we could just as well append a
branching program with a “decomposable” structure in the sense of [CGH+15,
Section 3.4], and the corresponding attack would apply already.

A less trivial observation is that we can start from any oblivious branching
program A0 (for which we know an input evaluating to zero), and convert it
to another oblivious branching program A∗0 with more input bits but the same
number of layer groups, that implements the same functionality in the sense
above, and whose obfuscation is, again, broken using our attack.

The idea this time is to add layers associated with the dummy input bits with
all-identity matrices in each layer group. This does not change the functionality,
and once we fix the original input bits to the input evaluating to zero, we are
reduced to breaking an oblivious branching program for the always-zero function
with a fixed number m of layer groups and a number of input bits that we can
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choose. By the discussion of Section 4.2 above, if the matrix encodings are of
dimension w, it suffice to add t dummy inputs bits where 2t/2 ≥ nw2m−1, which
is always achievable.

5 Conclusion

Our attack shows that the single-input candidate iO constructions for branching
programs over the CLT13 multilinear map proposed in the literature should be
considered insecure. We leave as a challenging open problem how to extend our
attack to the dual-input iO schemes.
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Tibouchi. Zeroizing attacks on indistinguishability obfuscation over CLT13.
Cryptology ePrint Archive, Report 2016/1011, 2016. Available at https:

//eprint.iacr.org/2016/1011.
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