
Very-efficient simulatable flipping of many coins into a well?
(and a new universally-composable commitment scheme)

Luís T. A. N. Brandão??

University of Lisbon and Carnegie Mellon University
luis.papers@gmail.com

Abstract. This paper presents new cryptographic protocols for a stand-
alone simulatable two-party parallel coin-flipping (into a well) and a
universally composable commitment scheme, with near optimal asymp-
totic communication rate, in the static and computational malicious
model. The approach, denoted expand-mask-hash, uses in both proto-
cols a pseudo-random generator (PRG) and a collision-resistant hash
function (CR-Hash) to combine separate extractable commitments and
equivocable commitments (associated with short bit-strings) into a uni-
fied extractable-and-equivocable property amplified to a larger target
length, amortizing the cost of base commitments. The new stand-alone
coin-flipping protocol is based on a simple augmentation of the traditional
coin-flipping template. To the knowledge of the author, it is the first
proposal simultaneously shown to be two-side-simulatable and having
an asymptotic (as the target length increases) communication rate con-
verging to two bits per flipped coin and computation rate per party
converging to that of PRG-generating and CR-hashing a bit-string with
the target length. The new universally composable commitment scheme
has efficiency comparable to very recent state-of-the-art constructions –
namely asymptotic communication rate as close to 1 as desired, for each
phase (commit and open) – while following a distinct design approach.
Notably it does not require explicit use of oblivious transfer and it uses
an erasure encoding instead of stronger error correction codes.

Keywords: coin-flipping, commitments, simulation, extractability, equiv-
ocability, rewinding, universal composability, cryptographic protocols.

1 Introduction

Secure two-party parallel coin-flipping is a probabilistic functionality that allows
two mutually distrustful parties to agree on a common random bit-string of a
certain target length. Using a coin-flipping protocol, both parties provide and
combine independent contributions so that the output bit-string of an honest
party is indistinguishable from random even if at most one party is malicious.
? Extended abstract – full version is at the Cryptology ePrint Archive, Report 2015/640.
?? The author was supported by the Fundação para a Ciência e a Tecnologia (Portuguese

Foundation for Science and Technology) through the Carnegie Mellon Portugal Program
under Grant SFRH/BD/33770/2009, as a Ph.D. student at FCUL-DI and CMU-ECE.

https://www.ulisboa.pt
https://www.cmu.edu
luis.papers@gmail.com
https://eprint.iacr.org/2015/640
https://ciencias.ulisboa.pt/di
https://www.cmu.edu/ece

2 Luís T. A. N. Brandão

The coin-flipping is denoted simulatable if it can be proven secure within the
ideal/real simulation paradigm, showing that it emulates a protocol in an ideal
world where an ideal functionality would decide and deliver the random bit-string
to the two parties. Achieving simulatability is useful for the design of larger
protocols, as it guarantees security under some type of composition operation,
e.g., non-concurrent modular self-composition [Can00] (a.k.a. the stand-alone
setting) or universal composability (UC) [Can01], depending on the type of
achievable simulation, namely with-rewinding or one-pass, respectively.

Motivation for this functionality can be found directly in the real-world
usefulness of “coin-flipping,” enabling parties to jointly make random decisions
(e.g., “who gets the car” [Blu83]). A more-technical motivation for simulatability
is the security enhancement of larger cryptographic protocols. An important
application is the joint decision of a large common reference string needed as
setup condition of one or several follow-up protocols [CR03]. It is also useful
for protocols whose probabilistic output needs to directly depend on random
bit-strings, such as in S2PC-with-commitments (e.g., [Bra13]), where both parties
may want to jointly generate many random commitments.

1.1 Coin-flipping and primitives

A protocol for two-party coin-flipping (“by telephone”) was early proposed by
Blum [Blu83]. It uses the fundamental notion of commitment scheme, allowing
one party (PA) to commit her own contribution before knowing anything about
the contribution of the other party (PB), but hiding it until the contribution of
PB is revealed, and binding PA to only being able to open the committed value.
The solution, emulating a coin-flipping into a well, sets the basis for what is
hereinafter denoted as the traditional template:

– Step 1. (Commit phase) PA commits to a contribution, hiding it from PB.
– Step 2. PB selects and sends his random contribution to PA.
– Step 3. (Open phase) PA opens her contribution to PB in a convincing way.
– Step 4. Each party outputs a combination of both random contributions.

The simulatability of a coin-flipping protocol within this template may depend
on the number of coins flipped in parallel, i.e., the length of the contributions,
and the type of commitment scheme. When flipping a single coin, any hiding and
binding commitment scheme is enough if rewinding is allowed in the simulation
[Gol04, §7.4.3.1]. Conversely, when doing parallel flipping of coins in number
at least linear in the security parameter, or when considering a setting without
rewinding, simulatability is facilitated by commitment (Com) schemes with
special extractable (Ext) and equivocable (Equiv) properties. In an Ext-Com
scheme [SCP00], a simulator is able to extract a contribution that has been
committed by another party, in apparent conflict with the hiding property. In
an Equiv-Com scheme [Bea96], a simulator is able to equivocate the opening to
any contribution, namely to a value different from what had been committed, in
apparent conflict with the binding property. The conflict is only apparent, as in

Very-efficient simulatable flipping of many coins into a well 3

comparison with a real party the simulator has extra power, such as capability
to rewind the other party in the simulated execution, and/or knowledge of secret
information (a trapdoor) obtained from some specially selected setup.

Traditionally, achieving simultaneous Ext and Equiv properties is costly as a
function of the target length. For example: in the plain model and when allowing
rewinding, by requiring zero-knowledge (ZK) proofs (or ZK proofs of knowledge)
about elements of size or in number linear with the target length [Lin03], or
cut-and-choose techniques with high communication cost [PW09]; or, in a model
with setup assumptions but not allowing rewinding, by requiring Com-schemes
based on computationally expensive operations (e.g., exponentiations) in number
or size dependent on the target length [CF01, BCPV13].

This paper explores efficiency improvements in two ways: (i) augmenting
the traditional template into a new structure that requires less sophisticated
commitments (i.e., not necessarily Ext&Equiv); (ii) devising a more efficient
Ext&Equiv-Com scheme that can be directly used within the traditional tem-
plate. Both cases benefit from a pseudo-random generator (PRG) (naturally
associated with the generation of bit-strings indistinguishable from random)
and a collision-resistant hash function (CR-Hash) (naturally associated with
compressing commitments). As the target length increases, the asymptotic com-
munication rate: converges to 1 for each contribution of a party in the stand-alone
coin-flipping; converges to a rate close to 1 (i.e., closer than any desired distance),
for each phase (commit and open) of the UC-Com scheme. The computational
complexity for each party approximates that of applying a PRG and a CR-Hash
to produce an output and hash an input, respectively, with length expansion rate
asymptotically as close as desired to 1. This is useful given the high efficiency of
standardized PRG [Nat14b] (e.g., based on block or stream ciphers) and CR-Hash
[Nat14a] constructions. In the UC-Com scheme each party also uses an erasure
code to encode a string of length approximately equal to the target length.

The initial (incomplete) intuition comes from the observation that: the Ext
of a large string can be reduced to the Ext of one short seed, whose PRG-
expansion is used to mask (with a one-time-pad) the large string; the Equiv of
a large string can be reduced to the Equiv of a short hash of whatever large
string (e.g., the mask) the simulator wants to equivocate. However, a simple
triplet composed of a masking of a string, an Ext-but-not-Equiv-Com of the seed
of the mask, and an Equiv-but-not-Ext-Com of a hash of the mask does not
result in an Ext&Equiv-Com of the string. For example, opening the Ext-Com
would disallow equivocability. This paper devises two ways in which to very-
efficiently and securely combine the two separate properties, associated with a
few commitments of short seeds and hashes (in number independent of the target
length), into a unified property extended to a much larger string.

Contributions. In summary, two novel constant-round protocols are devised
for two-party parallel coin-flipping (the second stemming from a new UC-Com
scheme). They are proven secure in a static, active and computational model;
i.e., at most one party is corrupted at the onset of the protocol execution, the
corrupted party may deviate from the protocol specification, and both parties

4 Luís T. A. N. Brandão

are limited to probabilistic polynomial time computations. For simplicity and
generality, the protocols and proofs are defined in a hybrid model with access to
ideal commitment functionalities FX and FQ, from each of which the simulator
only needs to use either the Ext or the Equiv property, respectively, but not
complementary property (Equiv or Ext, respectively).

1.2 Intuition and overview of Protocol #1

The first protocol (§4) is simulatable-with-rewinding. It augments the traditional
template with a simple preamble, in order to avoid a simulatability difficulty
(related with unknown adversarial probabilities of abort) found in the protocol
of Blum [Blu83], due to the use of an Equiv-but-not-Ext-Com scheme in the
traditional template. The new solution also avoids a full-fledged Ext&Equiv-Com
scheme, whose (older) constructions have a larger associated complexity: explicit
ZK proof/argument sub-protocols about a committed long-contribution, as re-
quired in Lindell’s protocol [Lin03]; a high communication cost, as incurred in
Pass and Wee protocol [PW09].

PA is still the first party to learn the final bit-string. However, the new
protocol starts with PB producing an Equiv-Com of his contribution and only
then proceeds to the traditional template. This allows the simulator in the role
of PA in the simulated execution to non-locally extract the contribution of a
malicious PB (i.e., upon rewinding beyond the respective commit phase), because
said value cannot change across rewinding attempts, namely because PB commits
to it before the contribution of PA is committed, and because the decision to open
it (vs. aborting) is done while the contribution of PA is still semantically hidden.
The significant benefit is that now the commitment by PA (part of the traditional
template) no longer needs to be Equiv, but rather only Ext. Correspondingly,
using the Ext property, the simulator in the role of PB in the simulated execution
can extract the contribution of a malicious PA, without PA opening it.

To the knowledge of the author: this construction has not been analyzed before
(which is surprising given its simplicity), and in the mentioned simulatability
setting it allows, asymptotically, the most efficient instantiation to date of two-
side-simulatable coin-flipping in the plain model (assuming a PRG and CR-
Hash instantiation with computational cost linear in the target length). The
simulatability motivation to depart from the traditional template is subtle and
the analysis is challenging for the case of corrupted PB (the simulator is allowed
expected-polynomial time). Asymptotically, the protocol requires communication
of only two bits per flipped coin. Computationally, each party has to commit
and open a short value, and compute a PRG and a CR-Hash of a string with
the target length. Assuming intractability of the Decision Diffie-Hellman (DDH)
problem, an instantiation is possible with only five exponentiations per party in
a setup phase (allowing the simulator to extract a trapdoor), and four (or six)
exponentiations in the online phase. Exponentiations can be avoided altogether,
by using PRG-based commitments of short strings or even just bit-commitments
(e.g., as in [PW09] or others analyzed in the full version of this paper). In the
later example, the simulator exercises Ext and Equiv over the Ext-Com and the

Very-efficient simulatable flipping of many coins into a well 5

Equiv-Com, respectively, using rewinding, and the construction requires more
communication rounds and larger concrete communication complexity of the
short commitments but is still amortizable.

1.3 Intuition and overview of Protocol #2

The second protocol (§5) is a new UC-Com scheme (thus Ext&Equiv) for large
bit-strings, with asymptotic communication rate as close to 1 as desired, and
computational complexity linear in the string size. It is based on a cut-and-choose
method, where the size of each instance in the cut-and-choose is (approximately)
inversely proportional to the number of instances. Each instance is a triplet
containing: the Ext-Com of a seed; a masking of an “authenticated” fragment
(produced by an erasure code) of the string being committed; and an Equiv-
Com of the hash of the mask. This allows the simulator to anticipate (before
the actual open phase) whether each extracted fragment is correct or not, and
reconstruct the original message using only correct fragments. The fragments are
also equivocable because the respective pseudo-random masks are equivocable.

The ideal commitment functionalities used for separate Ext and Equiv simu-
latability properties can also be instantiated with a full-fledged Ext&Equiv-Com
functionality. Assuming the existence of a PRG and a CR-Hash, this repre-
sents a UC-Com length extension, where a few (commit and open) calls to an
Ext&Equiv-Com scheme for short bit-strings enable an Ext&Equiv-Com (commit
and open) of a polynomially larger size. At the cost of more interactivity, the
Equiv-Coms can be based on Ext-Coms.

Similar amortized asymptotic communication complexity is also achieved by
very recent UC-Com scheme proposals [GIKW14, DDGN14, CDD+15]. They
explicitly use oblivious transfer (OT), i.e., as an ideal functionality in a hybrid
model. In contrast, the protocol in this paper avoids explicit use of OT, and
instead uses base Ext-Com and Equiv-Com schemes (besides a PRG and a
CR-Hash). Also, [GIKW14, DDGN14] rely on secret sharing schemes with error-
correction or verifiability requirements ([CDD+15] works with any linear code),
whereas this paper uses a simpler erasure code, facilitated by the authenticator
mechanism, with corresponding benefits in terms of encoding parameters. A
comparison of tradeoffs allowed by each design is left for future work.

1.4 Roadmap

The paper proceeds as follows: Section 2 reviews related work; Section 3 mentions
background notions about the security model and ideal functionalities; Section 4
describes the new protocol for coin-flipping simulatable-with-rewinding; Section 5
specifies the new UC commitment scheme.

6 Luís T. A. N. Brandão

2 Related work

2.1 Basic primitives

One-way permutations or functions are enough in theory to achieve many useful
cryptographic primitives, such as PRGs [HILL99, VZ12], one-way hash functions
[NY89, Rom90], some types of commitment schemes [Nao91, DCO99] and ZK
proofs of knowledge (ZKPoK) [FS90]. CR-Hash functions can also be built from
other primitives [Sim98], such as claw-free sets of permutations [Dam88] or
pseudo-permutations [Rus95]. Based on such primitives, coin-flipping can be
achieved in different ways, e.g., based solely on one-way functions [Lin03, PW09]
(with rewinding). In different simulatability settings, coin-flipping can be more
directly based on higher level primitives, such as bit or multi-bit Ext&Equiv-Com
schemes (e.g., [CF01, DN02, Cre03]) and even from coin-flipping protocols with
weaker properties [HMQU06, LN11].

In the computational model (the one considered in this paper), there are
known theoretical feasibility results about coin-flipping, covering the stand-alone
and the UC security settings. For example, in the UC setting it is possible to
achieve coin-flipping extension, i.e., coin-flip a large bit-string when having as
basis a single invocation of an ideal functionality realizing coin-flipping of a
shorter length [HMQU06]. This paper shares the concern of achieving properties
in large strings based on functionalities associated with short strings, but focuses
on a base of a few short commitments (not needing to be simultaneously Ext
and Equiv) and has a motivation of improving efficiency. The paper does not
delve into analyzing implications between different primitives (e.g., see [DNO10]
for relations between OT and commitments, under several setup assumptions).

Only in very recent research works (including this one) have UC commitment
schemes been devised with an amortized communication cost, with asymptotic
communication rate close to 1. In contrast, similar attention has not been given
to coin-flipping in the stand-alone setting, where the most efficient protocols
known to be two-side simulatable would not be highly efficient for large strings.
While the new results for UC-com schemes are directly applicable to stand-alone
secure coin-flipping, with a corresponding asymptotic efficiency benefit (3 bits
per flipped coin), an yet different and more efficient approach (2 bits per flipped
coin) is herein devised for the stand-alone setting, without requiring an explicit
Ext&Equiv-Com scheme.

In spite of very-efficient realizations of OT-extension [ALSZ15] and free-XOR
techniques [KS08] for garbled circuits, a coin-flipping based on a direct (generic)
approach of S2PC of bit-wise-XOR would still induce, in communication and
computation, a multiplicative cost proportional to the security parameter, by
requiring one minicrypt block operation (e.g., block-cipher evaluation) per flipped
coin. In contrast, in the approach in this paper each block of bits (e.g., equal to
the security parameter) requires a unitary number of minicrypt block operations
(e.g, close to 1 block-cipher for the PRG and 1 CR-Hash).

The idea of combining commitments with a CR-Hash (hash then commit)
and commitments with a PRG for efficiency reasons is not new. The former

Very-efficient simulatable flipping of many coins into a well 7

resembles the hash then sign paradigm, and it also has applications to non-
malleable commitments [DCKOS01]. The later resembles hybrid encryption,
where a symmetric key (the analogous to the PRG seed) would be encrypted
with a public key system (the analogous to the commitment) and then the
message would be encrypted with a symmetric scheme (the analogous to the
one-time-pad masking using the PRG expansion). This paper explores ways of
combining both techniques, aimed at achieving simulatability in coin-flipping
and UC commitment schemes.

2.2 Parallel coin-flipping simulatable-with-rewinding

A parallel coin-flipping using the traditional template is simulatable if the base
commitment scheme is Ext&Equiv. Lindell achieved this (in two variant protocols
[Lin03, §5.3 & §6]) by augmenting the commit and open phases with ZK sub-
protocols that enable the respective Ext and Equiv properties: an Ext-commit
phase (step 1) is a regular commitment followed by a ZK argument of knowledge
of the committed value, from which the simulator in the role of receiver can
extract the value; an Equiv-open phase (step 3) consists on sending the intended
(equivocated) contribution of PA (which on its own cannot be verified against
the respective commitment) and giving a fake ZK argument that it was the
valid committed value. The solution provides a feasibility result for constant-
round simulatable parallel coin-flipping. However, for a general commitment
scheme applied to a long bit-string, either a ZK proof/argument of knowledge
for extraction or a ZK proof/argument for equivocation is typically expensive, if
not both. Note: it is worth noticing that the protocols by Lindell also address an
augmented version of coin-flipping into a well, where PA receives a random bit-
string and PB receives the result of applying a known function to such bit-string
– the case of the identity function is the one considered in this paper.

In a different approach, Pass and Wee [PW09] use a cut-and-choose approach
to achieve Ext and Equiv properties directly from regular commitment schemes
(and thus from one-way functions). They show simulatability of coin-flipping
in the traditional template, based on an Ext&Equiv-Com scheme constructed
from regular commitments in number proportional to the target length mul-
tiplied by the statistical parameter. In contrast with the two above referred
constructions, protocol #1 in this paper integrates the Ext and Equiv properties
in different commitments, in order to improve efficiency, amortizing the cost of
base commitment schemes to that of a PRG and CR-Hash.

Goldreich and Kahan [GK96] also joined two types of commitment schemes
in a protocol to achieve (what this paper calls) non-local extraction. Their
application is constant round ZK interactive proof systems, rather than coin-
flipping. They also augment the protocol by introducing an unconditional hiding
commitment as preamble, but their goal is achieving statistical soundness in an
interactive proof system, rather than providing local equivocability or achieving
a communication complexity amortization as in protocol #1 in this paper. They
define a simulator that estimates the probability of non-abort of the malicious
party, in order to dynamically determine an upper bound on the number of

8 Luís T. A. N. Brandão

rewindings that should be tried before giving up on obtaining a (second) non-
abort by the malicious party. The estimation works because the commitments
are used in a way that prevents the probability of abort from depending (i.e.,
up to a negligible variation) on the value committed by the honest party. This
simulation strategy was also used by [Lin03] and [PW09] for the simulation of
ZK sub-protocols, and can also be used to simulate the coin-flipping protocol #1
in this paper, with an expected polynomial number of rewindings. However, the
technique is not applicable in the coin-flipping protocol of Blum [Blu83], because
there the decision of abort by the party that produced the Equiv-Com (i.e., the
decision to open her contribution vs. to abort without opening) is made once
already knowing the contribution of the other party.

A similar subtle problem of simulatability derived from unknown probabilities
of abort has also been addressed by Rosen [Ros04]. With the goal of simplifying
the analysis of simulatability of ZK proofs, Rosen introduces a preamble stage
involving an unconditionally-hiding Ext-Com, allowing a prover in a ZK proof
system to initially (and locally) extract the challenge of the verifier. Such augmen-
tation is different from the one in this paper. First, the preamble commitment in
their ZK proof (Ext-)commits a value (the challenge) that does not influence the
actual honest output bit (accept vs. reject) of the ZK. Conversely, herein the value
(Equiv-)committed (by PB) in the preamble is a contribution with direct impact
in the bit-string outputted by the coin-flipping execution. Second, in their ZK
application the use of the preamble with the Ext-Com by one party (the verifier)
relieves the simulator in the role of the other party (the prover) from having to
do non-local equivocation in the subsequent part of the execution. Conversely,
herein the preamble (with an Equiv-Com by PB) does not relieve the simulator
in the role of the other party (PA) from having to non-locally equivocate the
contribution that it commits to in the remainder of the execution. Third, their
proposed Ext-Com scheme is unconditionally hiding, whereas the PRG-based
Ext-Com construction used in protocol #1 to commit the contribution of PA is
(motivated by efficiency) inherently non-unconditionally hiding.

2.3 UC commitment schemes

When rewinding simulations are not possible, the simulatability of flipping
even a single coin using the traditional template requires simultaneous Ext and
Equiv properties of the underlying commitment scheme [CR03]. Canetti and
Fischlin [CF01] developed non-interactive UC commitments, requiring a unitary
number of asymmetric operations per committed bit. The construction assumes
a CRS setup and is based on the equivocable bit-commitment from Crescenzo,
Ishai and Ostrovsky [DCIO98]. Canetti, Lindell, Ostrovsky, and Sahai [CLOS02]
proposed other non-interactive schemes from general primitives, with adaptive
security without erasures. Damgård and Nielsen [DN02] then improved with a
construction denoted mixed commitment scheme, that is able to commit a linear
number of bits using only a unitary number of asymmetric operations, and using
a linear number of communicated bits. For some keys they are unconditionally-
hiding and equivocable, whereas for other keys they are unconditionally-binding

Very-efficient simulatable flipping of many coins into a well 9

and extractable. Crescenzo [Cre03] devised two non-interactive Ext&Equiv-Com
schemes for individual bits, in the public random string model (suitable to
UC). One construction is based on Equiv-Com schemes and NIZKs, the other is
based on one Ext-Com and one Equiv-Com schemes. Damgård and Lunemann
[DL09] consider UC in a quantum setting and solve the problem of flipping
a single bit, based on UC-Coms from [CF01]. Lunemann and Nielsen [LN11]
consider also the quantum setting and achieve secure flipping of a bit-string based
on mixed commitments from [DN02]. They consider how to amplify security
from weaker security notions of coin-flipping (uncontrollable, random) up to full
simulatable (enforceable). The use of Ext-Com and Equiv-Com schemes, together
with a cut-and-choose and encoding scheme has been previously considered by
Damgård and Orlandi [DO10] to enable efficient constructions. They combine
these techniques to enhance security from the passive to the active model for
secure computation of arithmetic circuits, in a model where a trusted dealer is
able to generate correlated triplets. While they achieve efficient constructions for
multiparty computation (also including more than two parties), the efficiency is
not amortized to communication rate 1.

In another line of work, several more efficient commitment schemes have
been proposed for short strings, based on specific assumptions such as DDH
intractability, e.g., [Lin11, FLM11, BCPV13] achieving a low constant number
(but grater than one) of group elements of communication and of exponentiations
to commit to a group element. Still, the trivial extension of these protocols
for larger strings would imply a linear increase in said number of asymmetric
operations (modular exponentiations), without amortization. Some of the above
scheme achieve adaptive security (with erasures), whereas this paper considers
only static security.

In regard to the more recent independent works that also achieve asymp-
totic communicate rate 1: [GIKW14] additionally considers selective openings;
[DDGN14, CDD+15] additionally consider homomorphic properties and verifica-
tion of linear relations between committed values; [CDD+15] achieves, comparably
to this paper, linear computational complexity. All these protocols are based on
a hybrid model with an ideal OT functionality. In contrast to OT, the cut-and-
choose mechanism in protocol #2 in this paper does not hide from the sender the
partition of (check) instances. In practice, the authenticator mechanism allows the
simulator to recover the fragmented message using an erasure code, thus allowing
a cut-and-choose with less instances than what an error correction code would
imply (e.g., see Table 1). A more recent concurrent result [FJNT16] improves
the complexity of the OT-based protocols (also for additively homomorphic
commitments), using an additional consistency check mechanism to also allow a
simpler erasure code.

A concrete comparison between different methods – qualitative (e.g., im-
plications between primitives) and quantitative (actual instantiations and im-
plementations) – is left for future work. For example, [GIKW14]) reports 640
exponentiations for a concrete instantiation of the OT setup phase. A concrete
instantiation of Ext or Equiv commitments has not yet been explored herein,

10 Luís T. A. N. Brandão

though their complexity is naturally upper bounded by that of instantiations of
full-fledged UC-Coms for short strings, e.g., requiring less than a dozen group
elements per base commitment [BCPV13]. The overall number of commitments
of short strings will depend on the erasure code parameters, defined to meet the
goals of statistical security and communication rate.

In summary, this paper is focused on the design of protocols that explore
the duality between Ext and Equiv commitments, without considering OT as a
primitive. About OT only two notes are mentioned here from other work: it is
known that UC-OT implies UC-Coms in myriad setup models [DNO10, Fig. 1],
e.g., in the uniform, the chosen and the any common reference string models
(U/C/A-CRS), and in the chosen and any key registration authority models
(C/A-KRA), whereas the reverse implication is proven only in a narrower set
of models (e.g., U/A-CRS, A-KRA) [DNO10, Table 1]; while [GIKW14] shows
that “the existence of a semi-honest OT protocol is necessary (and sufficient) for
UC-Com length extension,” the UC scheme in this paper does not make explicit
use of OT and can also be seen as a UC-Com length extension (if replacing the
Ext-Com and Equiv-Com schemes with an Ext&Equiv-Com scheme) – these two
results do not superpose, since [GIKW14] only allows a single call to the ideal
Com-scheme, whereas the extension herein requires several calls.

3 Background notions

It is here assumed that the reader is familiar with the ideal/real simulation
paradigm, as developed in the work of Canetti on composability of protocols
[Can00, Can01]. Familiarity is also assumed with the standard ideal functionali-
ties of commitment schemes (FMCOM) and coin-flipping (FMCF), namely in the
UC framework. For example, instances can be found in [CF01, Fig. 3] (multiple
bit-commitments), [DN02, §4.2] (multiple message-commitments, there also con-
sidering homomorphic relations), [DL09, Fig. 2] (coin-flipping), [Lin03] (general
S2PC). A background review of these standard notions and specification of
ideal functionalities is given in full version of this paper. For convenience, this
section simply states notions underlying extractable [SCP00] and equivocable
commitments [Bea96].

Definition 1 (extractability). An extractable commitment (Ext-Com) scheme
is one whose commit phase in a simulated execution allows S in the role of
receiver, and indistinguishable from an honest receiver in the view of a possibly
malicious sender, to extract (i.e., learn) the committed value, with probability
equal to or larger than a value negligibly-close to the maximum probability with
which the (possibly malicious) sender is able to successfully open said value.

Definition 2 (equivocability). An equivocable commitment (Equiv-Com)
scheme is one whose open phase in a simulated execution allows S in the role
of sender, and indistinguishable from an honest sender in the view of a possibly
malicious receiver, to equivocate the opening to any intended value, in the domain
of committable values and possibly externally decided only after the commit phase.

Very-efficient simulatable flipping of many coins into a well 11

Definition 3 (locality of Ext and Equiv). Within a protocol using commit-
ments, namely with both commit and open phases, extraction is characterized as
local if S can extract the committed value within the respective commit phase,
i.e., without going beyond that phase in the protocol and without rewinding to
a step before that phase. Local equivocation is defined analogously in relation
to the open phase. The properties are characterized as non-local if they can be
achieved but not locally, i.e., involving rewinding beyond the respective phase.

The protocols hereinafter are described and proven secure in a hybrid model
with access to ideal commitment functionalities FX and FQ, with which S
respectively only needs to take advantage of Ext and Equiv, but not both.

4 A new coin-flipping protocol simulatable-with-rewinding

This section devises a new (constant round) parallel coin-flipping protocol,
simulatable-with-rewinding. The intuition has already been given (§1.2); a textual
description follows, along with a succinct specification in Fig. 1.

4.1 Description of protocol #1

As implicit parameters, the protocol depends on a computational security param-
eter (1) and a respectively secure PRG and CR-Hash function (2). The execution
starts when both parties are activated to initiate a coin-flipping of a certain target
length, with an appropriate execution context (3), which in particular encodes the
roles of the two parties – PA will be the first to learn the final outcome ((4)-(5))
– and the target length. After a possibly implicit setup phase (e.g., in the plain
model, to allow the simulator to obtain a trapdoor), PB selects his contribution
(6) with the target length, calculates its hash (7), and uses FQ to commit to
the hash ((8)-(9)). Then, PA selects a seed (10) and commits to it using FX
((11)-(12)). PA also selects a random bit-string (denoted contribution masking)
with the target length (13) and sends it to PB (14). Then, PB uses FQ to open
the committed hash to PA ((15)-(16)) and sends his contribution to PA (17). PA
checks that the hash of the contribution of PB is equal to the opened hash (18).
If not, it Aborts; otherwise it proceeds. Then, PA uses FX to open to PB the
committed seed ((19)-(20)). Finally, each party proceeds concurrently with local
computations: expanding the seed of PA into a bit-string of the target length
(21) (i.e., the mask); computing the bit-wise exclusive-OR (XOR) combination
of the mask and the contribution masking, thus determining the contribution
of PA (22); and locally computing the final outcome as the XOR of the two
contributions (23), and deciding that as the final output (24)-(25).

4.2 Concrete instantiations in the plain model

In the plain model, FX and FQ can be respectively replaced by actual Ext-Com
and Equiv-Com schemes. They can be agreed upon in a setup phase, with Ext-
Com being non-malleable with respect to opening of Equiv-Com. An intuition is
given here for possible concrete instantiations (more details in the full version).

12 Luís T. A. N. Brandão

Implicit parameters.
Security parameters: 1κ (1)
Primitives: (PRG, κPRG),CR-Hash (2)

0. Initial input.
ctx ≡ (sid, cfid,PA,PB) (3)
inputA → PA : (cf-start-1, ctx, `) (4)
inputB → PB : (cf-start-2, ctx, `) (5)

1. Commit contribution of PB.

PB : χB ←$ {0, 1}` (contribution of PB) (6)
PB : hB = CR-Hash(χB) (short hash) (7)
PB → FQ : (commit, (ctx,Q), hB) (8)
FQ → PA : (receipt, (ctx,Q), |hB |) (9)

2. Commit contribution of PA (extractable).

PA : sA ←$ {0, 1}κPRG (short seed) (10)
PA → FX : (commit, (ctx,X), sA) (11)
FX → PB : (receipt, (ctx,X), |sA|) (12)

PA : tA ←$ {0, 1}` (contribution masking) (13)
PA → PB : (cf-masking-1, ctx, tA) (14)

3. Open contribution of PB (equivocable).
PB → FQ : (open-ask, (ctx,Q)) (15)
FQ → PA : (open-send, (ctx,Q), hB) (16)
PB → PA : (cf-contrib-2, ctx, χB) (17)
PA : If CR-Hash(χB) 6= hB then Abort (18)

4. Open contribution of PA.
PA → FX : (open-ask, (ctx,X)) (19)
FX → PB : (open-send, (ctx,X), sA) (20)
PA,PB : s′A = PRG[sA](`) (seed expansion ≡ mask) (21)
PA,PB : χA = tA ⊕ s′A (contribution of PA) (22)

5. Final output (locally combine contributions).
PA,PB : χ = χA ⊕ χB (23)
PA → outputA : (cf-output-1, ctx, χ) (24)
PB → outputB : (cf-output-2, ctx, χ) (25)

Fig. 1. Protocol #1 (Parallel coin-flipping (simulatable-with-rewinding). Leg-
end: κ (cryptographic security parameter, e.g., 128 ≡ 1128); ` (target length, i.e., number
of bits to coin-flip in parallel, e.g., 106, satisfying ` ∈ O(poly(κ))); χp (contribution of
Pp, for p ∈ {A,B}); PRG[s](`) (expansion of seed s, using the PRG, into a bit-string of
length `); κPRG (length of PRG input-seed, consistent with κ); X, Q (indices denoting
extractable and equivocable); (ctx, x) (abbreviation for (sid, (cfid, x),PA,PB), where
x ∈ {X,Q} – by including X and Q in the context information exchanged with the
respective ideal Com functionalities (FX, FQ), it is syntactically easier to replace them
both by a single full-fledged ideal X&Q (multi-)Com functionality FX&Q.)

Based on DDH intractability assumption. For the Ext-Com scheme: PA
commits to the seed by sending a simple El-Gamal encryption [ElG85] of the
seed; the simulator can extract if it knows the encryption key (a discrete-log);
PA opens the seed by revealing the seed and the encryption randomness, thus
letting PB verify its correctness. For the Equiv-Com scheme: PA commits to
the hash by sending a simple Pedersen commitment [Ped92]; PB opens the hash
by revealing the hash and the commitment randomness. The simulator can
equivocate the opening if it knows the trapdoor (a discrete-log). Interestingly,
both Com-schemes can have the same trapdoor, because the seed extraction
and the hash equivocation are needed by the same simulator (in the role of PB,
when interacting with P∗A). The parameters can be agreed in a setup phase,
with P∗A proposing them (two generators in a multiplicative group where the
DDH assumption holds) and giving a ZKPoK of their relation (the discrete-log
between two generators). Basically, this can be a ZK adaptation of Schnorr’s
protocol [Sch91], e.g., as described in [LPS08, Fig. 3]. Overall, this requires only
9 exponentiations from each party (or 11, using more practical parameters), 5 of
which are in the setup phase (amortizable across several coin-flippings).

A concrete application example. The S2PC-with-BitComs protocol pre-
sented in [Bra13], simulatable-with-rewinding, requires a simulatable coin-flipping
to sample a random group element for each bit of input and output of the regular

Very-efficient simulatable flipping of many coins into a well 13

S2PC. (Improvements of the protocol can reduce the needed number and size of
said group-elements.) There, the benchmark evaluation of S2PC-with-BitComs of
AES-128 requires a simulatable flipping of about 1.18 million bits. As suggested
therein, using a DDH assumption in groups over elliptic curves, an instantiation
of the coin-flipping with the protocol of [Lin03] would require (for practical pa-
rameters) 7 exponentiations per party per block of 256 bits, and communication
of about 12 blocks per block, i.e., overall about 32 thousand exponentiations and
12 megabits. In contrast, applying the new coin-flipping devised herein would
overall require (with the instantiation suggested in the previous paragraph) less
than a dozen exponentiations per party and slightly more than 2 megabits of
communication, thus reducing the complexity of the coin-flipping sub-protocol by
more than 3,000 fold in number of exponentiations and 6 fold in communication.

Based on PRG-based commitments. It is possible to avoid exponentiations
by building Ext-Com and Equiv-Com schemes based on more basic primitives,
such as regular commitments (i.e., hiding and biding but possibly not Ext
and not Equiv). For example, Pass and Wee [PW09] analyze cut-and-choose
based constructions (the full version of this paper explores improvements, e.g.,
using a random-seed-checking type of technique [GMS08]). Comparatively, those
constructions require more concrete communication than the DDH based one,
but still amortizable because it only applies to two short elements (one seed and
one hash), and more online interactivity.

4.3 Security analysis

Proving security (i.e., simulatability) amounts to show a simulator (S) that, with
an expected number of rewindings at most polynomial in the security parameter,
induces in the ideal world a global output whose distribution is indistinguishable
from the one in the real world. In the role of each party in a simulation, S must
be able (with overwhelming probability) to learn the contribution of the other
possibly-malicious (black-box) party and still be in a position to open the needed
complementary contribution, as if it was honestly random, and at the same time
simulate the correct probability of early-abort.

Theorem 1 (security of protocol #1). Assuming a cryptographically se-
cure PRG and CR-Hash, protocol #1 securely-emulates (with computational
indistinguishability) the ideal functionality FMCF of long bit-string coin-flipping
between two-parties, in a stand-alone setting and in the (FX,FQ)-hybrid model,
in the presence of static and computationally active rewindable adversaries. For
each (polynomially arbitrarily-long) bit-string coin-flipping execution, each phase
(commit and open) of FX and FQ is invoked only once for a short string; sim-
ulation is possible: without rewinding in the case of a malicious P∗A; with an
expected polynomial number of rewindings in the case of a malicious P∗B.

One-pass simulation (i.e., without rewinding), for malicious P∗A. In
the simulated execution, S (in the role of PB) commits to a random hash value

par:protwithrewind:DDH-based-instantiation

14 Luís T. A. N. Brandão

(8). Then, S impersonates FX to extract from P∗A the seed that P∗A intended
to commit (11). S computes the PRG expansion of the seed (as in (21)). Then,
upon receiving the contribution masking of P∗A (14), S combines it with the PRG-
expansion of the extracted seed (as in (22)), in order to learn the contribution
of P∗A. Then, in the ideal world, S in the role of the ideal P̂

∗
A receives from the

ideal coin-flipping functionality FMCF the random target coin-flipping bit-string.
S then computes the needed complementary contribution of PB, as the XOR
between the target outcome and the contribution of P∗A. S computes the hash of
this complementary contribution (as in (7)) and in the role of FQ it equivocates
its opening to be such hash value (16). Finally, S also sends the complementary
contribution to P∗A (17). Since the ideal FX is impersonated by S (respectively,
in the plain model, since Equiv-Com is non-malleable with respect to opening
of Ext-Com), it follows that P∗A can only either open the contribution (19) that
has been extracted by S, or abort without successfully opening her contribution.
In case of abort by P∗A, S emulates an abort ; otherwise, S lets FMCF continue
the execution in the ideal world (i.e., send the bit-string to the ideal P̂B) and
S outputs in the ideal world what P∗A outputs in the simulation. (In the plain
model, equivocability and/or extractability of Ext-Com and/or Equiv-Com may
require either local rewinding or rewinding in a setup phase, but that is irrelevant
in the hybrid model.)

Simulation with explicit rewinding, for malicious P∗B.

– First iteration. In the simulated execution, S in the role of an honest PA
interacts until receiving the contribution of P∗B and verifying its hash against
the respective opening (18). If P∗B aborts until this step (including by an
invalid opening), then S emulates an abort, otherwise it proceeds.

– Get target outcome. S in the role of ideal P̂
∗
B receives from FMCF in

the ideal world the target outcome and uses it to compute the needed
complementary contribution of PA in the simulated execution, namely the
XOR between the target outcome and the contribution of P∗B.

– Determine upper-bound of rewindings. S determines an upper bound
number of rewindings (#rw-bound) needed for the next simulation stage. This
can be based on the strategy of Goldreich and Kahan [GK96], which in this
case means rewinding, possibly a super-polynomial number of times, to repeat
committing a random contribution of PA ((11)-(14)). and expecting to obtain
an opening of the contribution of PB ((16)-(17)), until indeed obtaining a
successful opening (18) an adequate polynomial (e.g., quadratic) number of
times, and estimating therefrom an adequate probability of non-abort by PA,
and defining #rw-bound as the inverse of said estimate. An intuition for the
expected polynomial number of rewindings is that a negligible probability of
non-abort also implies a negligible probability that the simulation reaches this
estimation stage. (Using a more involved argument about the hiding property
of the PRG-based Ext-Com of the contribution of PA, the full version of the
paper explores the possibility of a different simulation strategy, with a static

Very-efficient simulatable flipping of many coins into a well 15

super-polynomial upper bound #rw-bound instead of one depending on a
dynamic estimation of the non-abort probability.)

– Induce target outcome. S rewinds and selects (10) and commits (11) to
a new random seed of PA. Then, S computes and sends to P∗B a contribution
masking of PA (14), computed as the XOR combination of the needed
complementary contribution and the PRG-expansion of the seed (instead
of a random contribution masking (13)). Since the Ext-Com+PRG-based
commitment of the contribution of PA is semantically hiding, the probability
of abort by P∗B changes at most by a negligible amount in comparison with
the previous stage. If P∗B subsequently opens his contribution successfully
((16)-(18)), then S continues the simulation until the end and outputs in the
ideal world whatever P∗B outputs in the real world, even if P∗B aborts before
receiving the opening of the seed of PA (20). Otherwise, if P∗B aborts without
successfully opening his contribution, S rewinds and replays again as just
described, again and again until either obtaining a successful opening of the
contribution of P∗B (equal to the one already known by S) and in that case
leading the simulation to an end, or until reaching the #rw-bound bound,
and in that case it emulates an abort in the ideal world.

5 A new UC commitment scheme

This section devises a new UC commitment scheme, i.e., one-pass-simulatable
and with local Ext and Equiv properties, usable in the traditional template of
coin-flipping to commit and open the contribution of PA.

5.1 More intuition

Besides the Ext-Com, Equiv-Com, PRG and CR-Hash, the new protocol embeds
three main ingredients, in a sequence of optimizations:

– a cut-and-choose: PA builds several instances of short commitments and
then PB checks the correctness of some (the check instances) to gain some
confidence that a majority of the others (the evaluation instances) are correct;

– authenticators: allows the simulator to anticipate whether individual in-
stances are good or bad, thus gaining assurance about correct extraction;

– an information dispersal algorithm (IDA): allows spliting the target
messagem into smaller fragments, and allows recovery) of the original message
from a sufficient portion of those fragments (essentially, based on a threshold
erasure code); using an IDA enables the size of each instance of the cut-and-
choose to be reduced proportionally to the number of instances.

5.1.1 Cut-and-choose warmup. A simple (yet innefficient) UC-com scheme:

– Commit phase. PA produces several seeds, builds an Ext-Com of each,
and also an Equiv-Com of a CR-Hash (hereafter denoted global hash) of the

16 Luís T. A. N. Brandão

sequence of PRG-expansions of all seeds. Then, PB cuts the set of instances
of seed-commitments into two random complementary subsets, and chooses
one for a check operation and the other for an evaluation operation. For each
evaluation instance, PA uses the respective PRG-expansion to XOR-mask
the target message, and sends the respective message masking to PB.

– Open phase. PA reveals the message m, letting PB compute all used masks,
one for each evaluation instance, namely the XOR of the message with each
respective masking. PA also opens all check seeds, letting PB compute the
respective PRG-expansions and verify that they are equal to the computed
masks. Finally, PA opens the committed global hash, letting PB verify that it
is equal to the one that can be obtained from all PRG-expansions. Otherwise,
if the global hash verification fails, PA rejects the opening of m.

This has the needed simulatability properties (though high communication
complexity: target length ` multiplied by number e of evaluation instances):

– Hiding. In the commit phase, the message is hidden from PB, by a one-time-
pad of PRG-expansions (the masks).

– Binding. In the open phase, PA is bound to open a single message: by
collision resistance of CR-Hash, PA can only know one mask per evaluation
instance that leads to the correct global hash; thus, PA can only successfully
open the message that for all evaluation instances is equal to the XOR of
such mask and the respective masking.

– Equivocation. In the open phase, the equivocator-simulator (SQ) in the role
of PA can open any desired fake message, by revealing the message, opening
the correct seeds of check instances and then equivocating the needed fake
global hash (without revealing the respective seeds of evaluation instances).

– Extractability. In the commit phase, the extractor-simulator (SX) in the
role of PB extracts the seed of each evaluation instance, then uses its PRG-
expansion to unmask the respective masking into a tentative message. If a
majority of the tentative messages are equal, then SX chooses their value as
the correct one. Otherwise SX guesses that PA will not be able to successfully
open any message in the later open phase. Conditioned on a future successful
verification of the global hash, the probability that the majority of the
extracted seeds are correct is, with adequate cut-and-choose parameters
[SS11, §A], overwhelming in the total number of instances. For example,
slightly more than 40 bits of statistical security, i.e., a probability of wrong
extraction less that two to the minus 40, is obtained using 123 instances, 74
of which for check and 49 of which for evaluation [Bra13, Table 2].

5.1.2 Authenticator aid. Statistical security can be improved by giving SX
the ability to decide whether isolated evaluation instances are good or bad. With
such capability, SX extracts an incorrect message only if all check instances are
good and all evaluation instances are bad, i.e., only if a malicious P∗A anticipates the
exact cut-and-choose partition. The new rationale about probabilities is similar to
that of the forge-and-lose type of technique recently devised for more general S2PC

Very-efficient simulatable flipping of many coins into a well 17

protocols based on a cut-and-choose of garbled-circuits [Bra13, Lin13, HKE13].
Essentially, the success criterion changes from “at least a majority of correct
instances” to “at least one correct instance.” For example, 40 bits of statistical
security can now be obtained with 41 or 123 instances, by respectively limiting
evaluation instances to be at most 20 or 8. Since only evaluation instances are
relevant in terms of communication, with 123 instances this corresponds to a
6-fold reduction in communication.

The intended verifiability is achieved by augmenting each evaluation instance
with a short authenticator that allows SX to verify whether or not each extracted
seed is consistent with each respective anticipated tentative message. Specifically,
when SX extracts a seed and uses its seed-expansion to unmask the respective
masking received from PA, only two things may happen: either (i) SX gets a
correctly authenticated message, which must be the only one that PA can later
successfully open, i.e., this is a good instance; or (ii) SX gets an incorrectly
authenticated message, implying that a successful opening by a malicious P∗A will
reveal a mask different from the seed-expansion, i.e., this is a bad instance.

The authenticator is implemented as a function that relates the message and
the nonce in a non-trivial way, to ensure that it is infeasible for P∗A to produce a
masking for which two different unmaskings yield authenticated messages. Also,
in order to allow equivocation by SQ (when in the role of PA), the authenticator
is masked by an equivocable mask. This means that the authenticator cannot
simply be a CR-Hash function (i.e., without an unpredictable input) of the
masked fragment, least P∗A would in that case (by maliciously using a mask
different from the seed-expansion) be able to induce a collision by crafting a
special mask different from the seed-expansion. Instead, the authenticator can be
achieved by means of a universal hash family, such that he probability of collision
is independent of the choices of P∗A. This can be implemented by introducing
a random unpredictable value (a nonce) that PB discloses to P∗A only after P∗A
becomes bound to her choices, e.g., after committing to the seeds and global hash.
This nonce acts like an identifier of the hash from the universal hash family.

In concrete, the authenticator can for example be an algebraic field-multipl-
ication between the nonce and a CR-hash of the message. If the image space
of the CR-Hash is the set of bit-strings of some fixed length (e.g, 256 bits), the
nonce can be uniformly selected from the non-null elements of a Galois field
with characteristic 2, modulo an irreducible polynomial of degree equal to the
hash length. This ensures that the authenticators of any two known messages
(which by assumption would necessarily have different CR-Hash) would have
an unpredictably offset. Conversely, a successful forgery by P∗A would require
guessing this offset, in order to make the real mask have such (bit-wise XOR)
offset with the seed-expansion. (Some optimizations are possible, requiring a more
involved explanation and/or correlation-robust type of assumptions – details in
the full version of the paper.)

5.1.3 IDA support Communication is drastically reduced by using a thresh-
old information dispersal algorithm (IDA) [Rab89]. The IDA enables splitting

18 Luís T. A. N. Brandão

(i.e., dispersing) the original message m into several (e) fragments, such that
m can be reconstructed from any subset with at least a threshold number t
of good fragments, each with a reduced length me/t. Essentially, any t-out-of-e
erasure-code can be used. based on XOR operations and with linear time encoding
and decoding. This IDA does not need to hide the original message, as would
a full-fledged secret-sharing scheme [Sha79, Kra94], because for each of the e
evaluation instances of the cut-and-choose, PB only receives a masked version of
the respective authenticated fragment, instead of several masked versions of the
same authenticated message. It also does not need to support error-correction
[RS60] (i.e., of semantic errors), because the authenticator mechanism already
gives SX (in the role of PB) the ability to detect errors and thus simply discard
badly-authenticated fragments. SX reconstructs m from any subset of at least t
well authenticated fragments. The communication complexity is thus proportional
to e/t. This can be made asymptotically close to 1 as desired, as ` increases.

It is interesting to notice that parties only need to encode; only the simulator
needs to decode. A rateless code is also possible, with appropriate probabilistic
considerations – there are very efficient instantiations, e.g., [Lub02, Sho06].

The statistical security is again changed, with the new criterion for successful
extraction requiring a number of good evaluation instances at least as high as
the recovery threshold. Furthermore, the fragmentation also reduces the sum of
all PRG-expansion lengths, as well as the length of the sequence of masks whose
hash needs to be calculated. Concrete parameters are given in Table 1.

5.2 Description of protocol #2

The protocol is succinctly described in Fig. 2. For further intuition, a pictorial
sketch is provided in Fig. 3. The parties agree on security parameters (computa-
tional and statistic) and other consistent elements: the cut-and-choose parameters
(with a fixed number of check and evaluation instances) (26); a PRG and a CR-
Hash functions (27); the IDA scheme and parameters (28); and an authenticator
mode (29) (in Fig. 2, the strict mode corresponds to the description given
in §5.1.2) and respective parameters (30). The loose mode (discussed in the
full version of the paper) allows removing some steps of the protocol (namely
avoiding the Equiv-Com of the hash of the message being committed) but requires
a stronger assumption about the authenticator function.

5.2.1 X-commit phase (PA commits a message to PB)

– 1.a. Commit instances. Upon being initialized to commit m (31), PA
selects n random seeds (32) (e.g., 119) and uses FX to commit individually
to each of them ((33),(34)). PA uses the PRG to expand each seed sj into
a string s′j with a reduced-length (equal to the target length ` divided by
the IDA recovery-threshold t) extended by an authenticator-length `a (35).
PA calculates the global hash h as the CR-hash of the concatenation of all
seed-expansions (36). PA then uses FQ to commit to h ((37),(38)). If in the

Very-efficient simulatable flipping of many coins into a well 19

Implicit parameters.
Security parameters: 1κ, (1σ, n, v, e) (26)

Primitives: (PRG, κPRG),CR-Hash (27)

IDA: (t, IDA[t]split, IDA[t]recover) (28)
AuthMode ∈ {strict, loose} (29)
Authenticator parameters: {α, `a = |α|, `z} (30)

1. X-Commit phase.
inputA → PA : (commit, sid, cid,PA,PB,m) (31)
1.a. Commit instances. For j ∈ [n] :

PA : sj ←$ {0, 1}κPRG (seed) (32)
PA → FX : (commit, (ctx, (X, j)), sj) (33)
FX → PB : (receipt, (ctx, (X, j)), |sj |) (34)
PA : s′j = PRG[sj](d|m|/t+ `ae) (35)
PA : h = CR-Hash(||j∈[n]s

′
j) (global hash) (36)

PA → FQ : (commit, (ctx,Q), h) (37)
FQ → PB : (receipt, (ctx,Q), |h|) (38)

If AuthMode =? strict, then:
PA : η = CR-Hash (m) (hash of message) (39)

PA → FQ : (commit, (ctx, (Q,+)), η) (40)
FQ → PB : (receipt, (ctx, (Q,+)), |η|) (41)

1.b. Cut-and-choose. (n = e+ v)

PB : (JV , JE)←$ Partition[v, e](n) (42)

PB : z ←$ {0, 1}`z (nonce) (43)
PB → PA : (c&c, sid, cid,PB,PA, (JV , JE , z)) (44)

1.c. Message masking.
PA :

〈
m′j : j ∈ JE

〉
← IDA[t]split (m,JE) (45)

PA : aj = α(m′j , z) : j ∈ JE (authenticators) (46)
PA : tj =

(
m′j ||aj

)
⊕ s′j : j ∈ JE (maskings) (47)

PA → PB : (maskings, sid, cid,PA,PB, ||j∈JE tj) (48)

2. Q-Open phase.
inputA → PA : (open, sid, cid,PA,PB) (49)
2.a. Reveal message.
PA → PB : (reveal, sid, cid,PA,PB,m) (50)

If AuthMode =? strict, then:
PA → FQ : (open-ask, (ctx, (Q,+))) (51)
FQ → PB : (open-send, (ctx, (Q,+)), η) (52)
PB : If CR-Hash(m) 6= η then Abort (53)

2.b. Obtain evaluation maskings.
PB :

〈
m′j : j ∈ JE

〉
← IDA[t]split (m,JE) (54)

PB : aj = α
(
m′j , z

)
: j ∈ JE (authenticator) (55)

PB : s′j = tj ⊕
(
m′j ||aj

)
: j ∈ JE (tentative masks) (56)

2.b. Obtain check maskings.
PA → FX : (open-ask, (ctx, (X, j))) : j ∈ JV (57)
FX → PB : (open-send, (ctx, (X, j)), sj) : j ∈ JV (58)
PB : s′j = PRG[sj](d|m|/t+ `ae) : j ∈ JV (59)

2.d. Verify global hash.
PA → FQ : (open-ask, (ctx,Q)) (60)
FQ → PB : (open-send, (ctx,Q), h) (61)
PB : If CR-Hash(||j∈[n]s

′
j) 6= h then Abort (62)

PB → outputB : (accept, sid, cid,PA,PB,m) (63)

Fig. 2. Protocol #2 (UC commitment scheme). Legend: legend of Fig. 1 also
applies; σ (statistical security parameter, e.g., 40 ≡ 140); n, v, e (numbers of total
instances, check instances and evaluation instances); [n] (set of the first n positive
integers); Partition[v, e](n) (set of possible partitions of [n], into a pair of complementary
subsets, the first with v elements, and the second with the remaining e). IDA[t]
(information dispersal algorithm (erasure code) with recovery threshold of t fragments;
it has sub-algorithms split and recover ; if e and v are fixed in a setup phase they must
satisfy ((n− b)!e!) / ((e− b)s!) ≤ 2−σ, where b = e− t+1 is the number of bad instances
in an optimal attack); α (authenticator function); `z (length of nonce); `a (length of
authenticator output, e.g., 256 bits).

strict mode, PA also computes the hash of the message m (39) and then
uses FQ to commit to said hash ((40),(41)).

– 1.b. Cut-and-choose. PB decides a random cut-and-choose partition (42)
(e.g., identifying 73 instances for check and 46 for evaluation) and a random
nonce z (43) and sends them both to PA (44).

– 1.c. Message masking. PA uses the threshold IDA to split her message
into as many fragments as the number of evaluation instances (45), each
with a reduced length. Then, PA computes the authenticator aj of each

20 Luís T. A. N. Brandão

fragment m′j as an appropriate function α of the fragment and the nonce
(46); PA then uses the extended mask s′j to compute the masking tj of the
fragment concatenated with the authenticator (47). Finally, PA sends to PB
the maskings associated with all evaluation instances (48).

5.2.2 Q-open phase (PA opens a message to PB)

– 2.a. Reveal message. Upon being initialized to open the committed message
m (49), PA sends m to PB (50). If using the strict authenticator mode,
then PA also asks FQ to open to PB the hash of the message ((51),(52)). PB
then verifies that it is consistent with the hash of the received message (53).
If not, it Aborts; otherwise it proceeds.

– 2.b. Obtain evaluation masks. PB uses the IDA to obtain the same
fragments that an honest PA would (54). PB computes the authenticator of
the fragment in the same way that an honest PA would have, based on the
fragment and the nonce (55). Then, PB concatenates the tentative fragment
and the tentative authenticator, and computes the XOR combination of the
resulting string with the extended masking, thus obtaining the tentative
extended mask s′j , supposedly used by PA (56).

– 2.c. Obtain check masks. PA uses FX to open to PB the seeds of check
instances (but not those of evaluation instances) ((57),(58)). PB locally
computes the PRG-expansion (with the appropriate length) of each check
seed (59).

– 2.d. Verify global hash. PA uses FQ to open to PB the previously com-
mitted global hash ((60), (61)). Then, PB verifies that the global hash of
all concatenated masks is equal to the one just opened by PA (62). If some
verification has failed, then PB aborts, otherwise it accepts the message of
PA as a correct opening (63).

5.3 Concrete configurations

Table 1 shows optimal configurations of the cut-and-choose and IDA parameters
to achieve 40 bits of statistical security, for different goals of communication
rate. Asymptotically as ` increases, it is possible to configure the parameters to
yield arbitrary high levels of statistical security and at the same time reduce the
expansion-rate to values arbitrarily close to 1. With (n; e; t) = (119; 46; 23), the
scheme achieves 40 bits of statistical security and an asymptotic communication
expansion-rate r = 2 in the commit phase (the open phase always has an
asymptotic rate 1). With (n; e; t) = (775; 275; 250), the rate becomes r = 1.1,
with the computed PRG output and the hash input being r′ = 3.1 times the
message length. Both r and r′ can be brought arbitrarily close to 1. In comparison,
for a communication expansion rate of r = 1.1, the protocol from [GIKW14] would
require encoding m into 53,020 blocks, and using an error correcting code capable
of correcting more than 1198 semantic errors. Table 1 also describes parameters
for optimizations of [GIKW14], namely by using k-out-of-n OT instead of δ-Rabin
OT, reducing the number of instances by up to a factor slightly larger than two.

Very-efficient simulatable flipping of many coins into a well 21

C
O
M
M
I
T

PRGFCommit
X

PRG

PRG

PRG

PRG

FCommit
X

FCommit
X

FCommit
X

FCommit
X

1

2

3

4

5

CRH

1

3

5

auth

auth

auth

1 ∈ JE

2 ∈ JV

3 ∈ JE

4 ∈ JV

5 ∈ JE

FCommit
Q

sj s′j

h

m

m′j tj

h

sj sj m′j ||aj

IDASplit

PA PA → PB PA PA PA → PB PB → PA PA PA PA PA → PB

1.a. Commit instances 1.c. Message masking1.b.
C&C

O
P
E
N

1

3

5

auth

auth

auth

m

m′j s′jm′j ||aj

IDASplit

PA → PB PB PB PB

FOpen
X2

FOpen
X4

PRG

s′jsj

PRG

CRH

s′j

h

h

PB PA → PBPA → PB PB

FOpen
Q

1

2

3

4

5

2.b. Obtain evaluation masks 2.c. Obtain check masks 2.d. Verify global hash

=?

sj

PB

h

? ?

2.a.
Reveal
message

E
X
T
R
A
C
T

FCommit
X

FCommit
X

FCommit
X

FCommit
X

FCommit
X

1

2

3

4

5

auth

auth

auth

1 ∈ JE

2 ∈ JV

3 ∈ JE

4 ∈ JV

5 ∈ JE

sj mm′jtjsj sj m′j ||aj

PA PA → SX SX SX

Extract seeds

PRG

PRG

PRG

s′jsj

SX

IDARecover

SX

=?

?

?

?

?

?

6=

=

m′j

SX

Recover message
Execute the X-Commit phase

Other values
Obtain tentative

authenticated fragments

PA → SX

Verify
authenticators

aj aj

&

&

&

&

&

SX

Fig. 3. Sketch of UC commitment scheme. Legend: (seed sj); (Ext-Com
sj – like a vault with a single opening); (seed expansion s′j – like a tree growing
from a seed); (global hash – like a smashed paper); (Equiv-Com h – like a vault
with several openings); (message m being committed – like a text file); (message
fragment m′j – can be combined with other fragments to recover the initial message);
(authenticator aj – vouches for the correctness of the respective fragment); (masking
tj – the chess pattern represents something that is masked); auth (authenticator
function); C&C (cut-and-choose); C (commitment scheme); CX (extractable C); CQ

(equivocable C); SX (simulator with extraction goal). This is a toy example with a
cut-and-choose with n = 5 instances, of which v = 2 are selected for check and e = 3
are selected for evaluation. In the extraction example, a malicious P∗A constructed one
bad instance (j = 3), selected for the check subset. SX detects the bad instance and
thus ignores it when using the IDA to reconstruct the message from only t = 2 (the
recovery threshold) fragments.

Remark (interactivity tradeoffs). The use of an Equiv-Com scheme with
PA as sender and PB as receiver can be replaced by an Ext-Com scheme with

22 Luís T. A. N. Brandão

Table 1. UC commitment scheme parameters for 40 bits of statistical security

A B C D E F

Maximum
allowed

expansion
rate

This work [GIKW14] (original) Variations of [GIKW14] 1

r = e/t ≤ rmax r
′ = n/t ≤ rmax

δ = t0/(2n
′)

r = n′/n
Optimal δ
r = n′/n

t0-out-of-n′ OT
r = n′/n

2

rmax ≤ 2

n = 119
v = 73
e = 46
t = 23
r′ ≈ 5.17
r = 2

n = 324
v = 87
e = 237
t = 162
r′ = 2
r ≈ 1.46

n = 826
n′ = 1652
t0 = 428

terror = b399/2c
δ = 107/826 ≈ 0.1295

r = 2

n = 577
n′ = 1154
t0 = 339

terror = b239/2c
δ ≈ 0.2064
r = 2

n = 352
n′ = 704
t0 = 186

terror = b167/2c
r = 2

3

rmax ≤ 3/2

n = 193
v = 121
e = 72
t = 48
r′ ≈ 4.02
r = 1.5

n = 822
v = 144
e = 678
t = 548
r′ = 1.5
r ≈ 1.237

n = 2540
n′ = 3810
t0 = 650

terror = b621/2c
δ = 65/762 ≈ 0.0853

r = 1.5

n = 1706
n′ = 2559
t0 = 481

terror = b373/2c
δ ≈ 0.1379
r = 1.5

n = 1152
n′ = 1728
t0 = 296

terror = b281/2c
r = 1.5

4

rmax ≤ 11/10

n = 775
v = 500
e = 275
t = 250
r′ = 3.1
r = 1.1

n = 12, 793
v = 598

e = 12, 195
t = 11, 630
r′ = 1.1
r ≈ 1.0489

n = 48, 200
n′ = 53, 020
t0 = 2424

terror = b2397/2c
δ = 303

13255
≈ 0.0229

r = 1.1

n = 28, 740
n′ = 31, 614
t0 = 1498

terror = b1377/2c
δ ≈ 0.03945
r = 1.1

n = 23, 530
n′ = 25, 883
t0 = 1185

terror = b1169/2c
r = 1.1

5

rmax ≤ 101/100

n = 7310
v = 4684
e = 2626
t = 2600
r′ = 2.81
r = 1.01

n = 1, 125, 645
v = 5631

e = 1, 120, 014
t = 1, 114, 500
r′ = 1.01
r ≈ 1.00495

n = 4, 474, 600
n′ = 4, 519, 346
t0 = 22, 388

terror = b22, 359/2c
δ = 5597

2,259,673
≈ 0.00248

r = 1.01

n = 2, 384, 200
n′ = 2, 408, 042
t0 = 12, 166

terror = b11, 677/2c
δ ≈ 0.004737
r = 1.01

n = 2, 231, 600
n′ = 2, 253, 916
t0 = 11, 166

terror = b11, 151/2c
r = 1.01

6

Common legend for columns B-F. r (communication expansion rate in the commit
phase, relative to the target length, i.e., to the length of the value being committed – it is
asymptotic in that it does not account with the base short commitments (columns B-C)
or the OT implementation (columns D-F).

Legend for columns B-C (“This work”). r′ (overall length of PRG output, divided
by the target length (at PA – it is smaller at PB, because PB does not evaluate the PRG
for evaluation instances); also the overall length of CR-Hash input, divided by the target
length); n (total number of instances in the cut-and-choose); e (number of evaluation
instances = number of fragments); t (recovery threshold = number of fragments necessary
to recover message). The parameters were chosen to minimize the total number of instances
n, while satisfying the maximum allowed rate (rmax, identified in column A), as follows: in
column B (“r = e/t ≤ rmax”), the communication expansion rate r is limited to rmax (in
this case the PRG and the CR-Hash can be applied to bigger lengths – see r′); in column C
(t = dn/re), the computation expansion rate r′ determined by the length of PRG output
and CR-Hash input are limited to rmax (and in this case the overall communication rate r
is smaller). After minimizing n, the remaining parameters were chosen to minimize e.

Legend for columns D-F (“[GIKW14]” and variations). n (number of blocks before
encoding, i.e., number of symbols in which the target message is partitioned); t0 (0-info
threshold (the original notation was t), i.e., number of blocks whose knowledge does
not reveal anything about the original message); terror (error-recovery threshold – the
original notation is ∆/2); δ (probability of message passing through the δ-Rabin-OT –
the original version uses t0 = 2δn′); n′ (total number of blocks after encoding, satisfying
n′ = t+ n+∆− 1). For each value r = n′/n, the values of other parameters were chosen
to minimize n. In column F, where the equivocator-simulator can always equivocate,
statistical security depends only on the probability that a malicious PA can guess terror +1
positions that PB will not select in the OT.

Very-efficient simulatable flipping of many coins into a well 23

PB as sender and PA as receiver, and a regular Com scheme (i.e., possibly
neither Ext nor Equiv) and further interaction. Once an Ext-Com scheme is
assumed available (either by an ideal functionality or by a trapdoor obtained
by the simulator in a setup phase, e.g., from a CRS), equivocation is possible
without rewinding, as follows. Basically, the Ext of a short bit-string committed
by P∗B with an Ext-Com scheme would allow S (in the role of PA in the simulated
execution) to decide (within the overall open phase of the UC scheme) any desired
outcome of a (single-side simulatable) short coin-flipping played between PA and
PB. Each bit of this short coin-flipping can be set to determine one-out-of-two
positions to open from each pair of (supposedly) copies of a committed bit (and
additional redundant checksum bits included to prevent malicious behavior).
This allows S to equivocate the short-bit string because it could undetectably
commit to two different bits in each position (instead of two copies of the same
bit) and then open only the convenient ones. In a direction of less interaction, it
is conceivably possibly to let the cut-and-choose partition and nonce values be
computed by PA non-interactively, if willing to accept an assumption of a non-
programmable random oracle model [Lin15]. This would make all interactivity of
the commit phase (commit and open) become implicit in the instantiations of
the base commitment schemes (Ext and Equiv). However, concrete instantiations
are not yet explored in this paper. Furthermore, the cut-and-choose and IDA
(erasure code) parameters would have to increase, letting the statistical security
parameter become equal to the cryptographic security parameter, to mitigate the
new possibility that PA could computationally try a brute-force trial-and-error
attempt to exploit the probability of error that would otherwise be negligible
only in a low statistical parameter.

5.4 Security analysis

Proving security amounts to show, without rewiding, that the new commitment
scheme is Ext&Equiv, i.e., the commit phase is Ext and the open phase is Equiv.
The analysis assumes that the PRG and CR-Hash are cryptographically secure
and that the underlying Ext-Com (CX) and Equiv-Com (CQ) are replaced (in a
hybrid model) by respective ideal functionalities (FX, FQ). The proof of security
is accomplished by defining respective simulators.

Theorem 2 (security of protocol #2). Assuming a cryptographically secure
PRG and CR-Hash, and an adequate authenticator, protocol #2 UC-realizes the
ideal functionality FMCOM of long bit-string commitments in the (FX,FQ)-hybrid
model, in the presence of static and computationally active adversaries. Each
phase of FQ and FX is invoked for short bit-strings only a number of times that
is independent of the polynomial target length.

5.4.1 Extractability – simulatability with corrupted P∗
A. The extractor-

simulator SX initiates a simulation, with black-box access to A, letting it believes
that it is in the real world controlling P∗A.

24 Luís T. A. N. Brandão

Simulation of the commit phase. Once the protocol starts, SX (in the role
of honest PB and also in the role of FX in the simulated execution) extracts
the seeds committed by P∗A (33) and later receives from P∗A the maskings of
authenticated fragments of the message being committed (48). SX then unmasks
each masking, using the PRG-expansion of the respective extracted seed, obtaining
from each a respective tentative authenticated fragment. SX verifies whether the
authentication is correct or not, thus identifying which instances are good. (The
security of the described authenticator is statistically derived from the properties
of a universal hash family.) If the number of good fragments is at least t (the
recovery threshold) then SX uses the IDA recovery algorithm to reconstruct the
message from t (the recovery threshold) good fragments. Otherwise, if there are
less than t good fragments, then SX realizes that it cannot extract the message
from P∗A, but it does not complain. Instead, SX computes a random message as
the assumed extracted message, and in addition it memorizes that the extracted
message is corrupted. Finally (in either of the two above cases), in the ideal
world, SX (in the role of the ideal P̂

∗
A) sends the extracted message to the ideal

functionality FMCOM, thus committing to it.

Simulation of the open phase. Once P∗A opens the message to PB in the sim-
ulated execution, SX checks that the opening is successful and that it corresponds
to the previously extracted message. If the opening is unsuccessful, e.g., if the
global hash verification fails (62), then SX emulates an abort, leading FMCOM
to halt the execution associated with this commitment, consequently leading the
ideal party P̂B to never receive any opening. If (with negligible probability) the
opening is successful but different from the value previously extracted from SX ,
then SX outputs Fail (i.e., in this case the simulation fails). Otherwise, if the
opening of the expected message is done successfully, then S asks FMCOM in the
ideal world to open the committed message.

Analysis of the simulation (statistical security). In the commit phase, S
makes a perfect emulation of the abort distribution, since it only aborts early
if and only if P∗A also aborts. Thus, distinguishability (by the environment)
between real and simulated executions can only happen if P∗A is able (with
non-negligible probability) to successfully open a message different from the
one SX has extracted. However, this is not possible. Based on the (described)
authenticator mechanism security (derived directly from the collision-resistance
of a CR-Hash, and the statistical properties of a universal hash family), P∗A
cannot forge a bad authentication, i.e., lead SX to believe that a bad fragment
is actually good. Also, based on the default binding property of all underlying
commitments, P∗A is not able to equivocate any of the Ext-Com or Equiv-Com. It
can thus be assumed impossible for S to unknowingly mark as good an evaluation
fragment (i.e., the result upon unmasking) that is actually bad. Now, a malicious
successful opening by P∗A requires that all check instances are good selected and
at least n− t+ 1 evaluation instances are bad. However, the probability of this
event can be made negligible for appropriate cut-and-choose and IDA parameters
(see Table 1). As an example, in the trivial case where P∗A would build all check

Very-efficient simulatable flipping of many coins into a well 25

and evaluation instances as bad, SX in the ideal world would still commit to
a random valid value, but later in the open phase it would never let the ideal
functionality open the value to the honest PB.

Remark. There is an interesting subtle difference between two types of real
UC-Com schemes. There are Com-schemes where the receiver is ensured that
the committer is technically able to open the commitment (if it “wants” to). For
example, this is the case of schemes that contain in the commit phase a ZKPoK
of the committed value. There are other schemes where the commit phase is not
enough to let the receiver know about the actual ability of the committer to later
open a value. It is possible that a maliciously played commit phase prevents the
sender (P∗A) in advance from being able to later open the commitment accepted by
the receiver (PB). Protocol #2 is of this second kind, i.e., S (who can nonetheless
extract the contribution timely) needs to wait for the open phase before aborting.
The protocol can be easily changed to become of the first type (if desired), at the
cost of increasing the calls to the Equiv-Com functionality, namely in number
equal to the cut-and-choose instances, while nonetheless retaining an amortized
communication complexity. The idea is simple: instead of just producing one
Equiv-Com of the global hash, P∗A would produce one Equiv-Com for each mask
of a fragment; then, after the cut-and-choose partition is determined, but still
within the overall commit phase, P∗A would open the check seeds and the check
hashes. In this way, S immediately knows whether some bad check instance was
bad. If any bad check instance is detected, then S can immediately emulate an
abort (assuming an appropriate ideal functionality contemplating such abort in
the commit phase); otherwise, S can now base its final choice on the verification of
the authentication of extracted evaluation masks and the associated anticipated
fragments. In this construction there is a negligible probability that the number
of good instances is less than the recovery threshold.

5.4.2 Equivocability – simulatability with corrupted P∗
B. The equivocator-

simulator SQ initiates a simulation, with black-box access to A, letting it believe
that it is in the real world controlling P∗B.

Simulation of the commit phase. In the ideal world, SQ in the role of P̂
∗
B,

waits to receive from FMCOM a receipt of commitment done by the ideal P̂A.
Then, in the role of PA in the simulated execution, SQ plays the whole commit
phase to commit a random message to P∗B. This involves keeping state about the
seeds (32) and their Ext-Coms (33), about the Equiv-Com of the global hash of
masks (38), possibly about the Equiv-Com of the hash of the random message
(41) (i.e., if in the Strict mode), about the cut-and-choose partition and the
nounce, and about the maskings of authenticated fragments (48). If P∗B aborts at
any point before the end of the overall commit phase, then SQ emulates an abort,
i.e., in the role of P̂

∗
B in the ideal world sends abort to FMCOM, thus making it

ignore further actions related with this commitment sub-session.

26 References

Simulation of the open phase. SQ waits in the ideal world to receive from
FMCOM the opening of the target message (i.e., the one initially committed
by the ideal P̂A). Then, SQ, in the role of PA and also in the role of FQ in
the simulated execution, sends to P∗B the target message (50), instead of the
previously committed random message. If in the strict mode, then SQ in the
role of FQ equivocates the opening of the needed hash of the message (52). Then,
SQ computes what are the alternative masks s′j needed to unmask (the maskings
tj previously sent) into the target message received from FMCOM. This is done in
the exact same way that PB does as receiver: SQ computes the message fragments
(54), then their authenticators (55), and then takes the XOR with the maskings tj
(56) that were transmitted in the commit phase. Finally, SQ computes the global
hash (as in (36), but now using the updated masks), and then impersonates FQ
and equivocates the opening of said global hash (61). This allows P∗B to perform
all verifications as if SQ was in fact an honest PA. Finally, SQ outputs in the
ideal world whatever P∗B outputs in the simulated execution (63).

Analysis of the simulation. The only difference between a real protocol
execution and the simulated execution is that SQ commits to a random message
and later equivocates it. However, detection by P∗B of equivocation would require
differentiating the random masks from seed-expansions, which is contrary to the
pseudo-randomness assumption of the PRG. Thus, in case of corrupted P∗B the
distributions between real and ideal world are computationally indistinguishable.

Remark. The cut-and-choose partition does not need to be decided via a
simulatable coin-flipping, because equivocation is directly based on the assumed
ability to equivocate the global hash (committed with an Equiv-Com), which
directly allows equivocation of the masks of all evaluation instances. Thus, to P∗B,
the actions of SQ “appear” as correct independently of the partition. SQ simply
produces all commitments of seeds and all maskings correctly (for a random
value), so that later all check instances are consistent.

Acknowledgments. The author would like to thank the anonymous referees
for their useful reviewing comments.

References

[ALSZ15] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More Efficient
Oblivious Transfer Extensions with Security for Malicious Adversaries. In
E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, vol. 9056 of LNCS,
pages 673–701. Springer Berlin Heidelberg, 2015. Also at ia.cr/2015/061.
(p. 6.)

[BCPV13] O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. Analysis and
Improvement of Lindell’s UC-Secure Commitment Schemes. In M. Jacob-
son, M. Locasto, P. Mohassel, and R. Safavi-Naini, editors, ACNS 2013,
vol. 7954 of LNCS, pages 534–551. Springer, Berlin Heidelberg, 2013. Also
at ia.cr/2013/123. (pp. 3, 9, and 10.)

https://dx.doi.org/10.1007/978-3-662-46800-5_26
https://dx.doi.org/10.1007/978-3-662-46800-5_26
https://eprint.iacr.org/2015/061
https://dx.doi.org/10.1007/978-3-642-38980-1_34
https://dx.doi.org/10.1007/978-3-642-38980-1_34
https://eprint.iacr.org/2013/123

References 27

[Bea96] D. Beaver. Adaptive Zero Knowledge and Computational Equivocation
(Extended Abstract). In STOC 1996, pages 629–638. ACM, New York
USA, 1996. (pp. 2 and 10.)

[Blu83] M. Blum. Coin flipping by telephone – a protocol for solving impossible
problems. SIGACT News, 15:23–27, 1983. Appeared also at CRYPTO
1981. (pp. 2, 4, and 8.)

[Bra13] L. T. A. N. Brandão. Secure Two-Party Computation with Reusable Bit-
Commitments, via a Cut-and-Choose with Forge-and-Lose Technique.
In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, vol. 8270 of
LNCS, pages 441–463. Springer-Verlag, Berlin Heidelberg, 2013. Also
at ia.cr/2013/577. (pp. 2, 12, 16, and 17.)

[Can00] R. Canetti. Security and Composition of Multiparty Cryptographic Pro-
tocols. J. Cryptology, 13:143–202, 2000. Also at ia.cr/1998/018. (pp. 2
and 10.)

[Can01] R. Canetti. Universally composable security: a new paradigm for cryp-
tographic protocols. In FOCS 2001, pages 136–145, 2001. Also at
ia.cr/2000/067. (pp. 2 and 10.)

[CDD+15] I. Cascudo, I. Damgård, B. David, I. Giacomelli, J. Nielsen, and R. Trifiletti.
Additively Homomorphic UC Commitments with Optimal Amortized
Overhead. In J. Katz, editor, Public-Key Cryptography – PKC 2015, vol.
9020 of LNCS, pages 495–515. Springer Berlin Heidelberg, 2015. (pp. 5
and 9.)

[CF01] R. Canetti and M. Fischlin. Universally Composable Commitments. In
J. Kilian, editor, CRYPTO 2001, vol. 2139 of LNCS, pages 19–40. Springer,
Berlin Heidelberg, 2001. Also at ia.cr/2001/055. (pp. 3, 6, 8, 9, and 10.)

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable
two-party and multi-party secure computation. In Proc. STOC 2002, pages
494–503. ACM, New York USA, 2002. Also at ia.cr/2002/140. (p. 8.)

[CR03] R. Canetti and T. Rabin. Universal Composition with Joint State. In
D. Boneh, editor, CRYPTO 2003, vol. 2729 of LNCS, pages 265–281.
Springer, Berlin Heidelberg, 2003. Also at ia.cr/2002/047. (pp. 2 and 8.)

[Cre03] G. D. Crescenzo. Equivocable and Extractable Commitment Schemes. In
S. Cimato, G. Persiano, and C. Galdi, editors, SCN 2002, vol. 2576 of
LNCS, pages 74–87. Springer, Berlin Heidelberg, 2003. (pp. 6 and 9.)

[Dam88] I. B. Damgård. Collision Free Hash Functions and Public Key Signature
Schemes. In D. Chaum and W. L. Price, editors, EUROCRYPT 1987, vol.
304 of LNCS, pages 203–216. Springer, Berlin Heidelberg, 1988. (p. 6.)

[DCIO98] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and Non-
malleable Commitment. In STOC 1998, pages 141–150. ACM, New York
USA, 1998. (p. 8.)

[DCKOS01] G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and
Non-interactive Non-malleable Commitment. In B. Pfitzmann, editor,
EUROCRYPT 2001, vol. 2045 of LNCS, pages 40–59. Springer, Berlin
Heidelberg, 2001. Also at ia.cr/2001/032. (p. 7.)

[DCO99] G. Di Crescenzo and R. Ostrovsky. On Concurrent Zero-Knowledge with
Pre-processing. In M. Wiener, editor, CRYPTO 1999, vol. 1666 of LNCS,
pages 485–502. Springer, Berlin Heidelberg, 1999. (p. 6.)

[DDGN14] I. Damgård, B. David, I. Giacomelli, and J. B. Nielsen. Compact VSS
and Efficient Homomorphic UC Commitments. In P. Sarkar and T. Iwata,

https://dx.doi.org/10.1145/237814.238014
https://dx.doi.org/10.1145/237814.238014
https://dx.doi.org/10.1145/1008908.1008911
https://dx.doi.org/10.1145/1008908.1008911
https://dx.doi.org/10.1007/978-3-642-42045-0_23
https://dx.doi.org/10.1007/978-3-642-42045-0_23
https://eprint.iacr.org/2013/577
https://dx.doi.org/10.1007/s001459910006
https://dx.doi.org/10.1007/s001459910006
https://eprint.iacr.org/1998/018
https://dx.doi.org/10.1109/SFCS.2001.959888
https://dx.doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2000/067
https://dx.doi.org/10.1007/978-3-662-46447-2_22
https://dx.doi.org/10.1007/978-3-662-46447-2_22
https://dx.doi.org/10.1007/3-540-44647-8_2
https://eprint.iacr.org/2001/055
https://dx.doi.org/10.1145/509907.509980
https://dx.doi.org/10.1145/509907.509980
https://eprint.iacr.org/2002/140
https://dx.doi.org/10.1007/978-3-540-45146-4_16
https://eprint.iacr.org/2002/047
http://dx.doi.org/10.1007/3-540-36413-7_6
https://dx.doi.org/10.1007/3-540-39118-5_19
https://dx.doi.org/10.1007/3-540-39118-5_19
https://dx.doi.org/10.1145/276698.276722
https://dx.doi.org/10.1145/276698.276722
https://dx.doi.org/10.1007/3-540-44987-6_4
https://dx.doi.org/10.1007/3-540-44987-6_4
https://eprint.iacr.org/2001/032
https://dx.doi.org/10.1007/3-540-48405-1_31
https://dx.doi.org/10.1007/3-540-48405-1_31
https://eprint.iacr.org/2014/370
https://eprint.iacr.org/2014/370

28 References

editors, ASIACRYPT 2014, vol. 8874 of LNCS, pages 213–232. Springer,
Berlin Heidelberg, 2014. Also at ia.cr/2014/370. (pp. 5 and 9.)

[DL09] I. Damgård and C. Lunemann. Quantum-Secure Coin-Flipping and Ap-
plications. In M. Matsui, editor, ASIACRYPT 2009, vol. 5912 of LNCS,
pages 52–69. Springer, Berlin Heidelberg, 2009. Also at arXiv:0903.3118.
(pp. 9 and 10.)

[DN02] I. Damgård and J. B. Nielsen. Perfect Hiding and Perfect Binding Univer-
sally Composable Commitment Schemes with Constant Expansion Factor.
In M. Yung, editor, CRYPTO 2002, vol. 2442 of LNCS, pages 581–596.
Springer, Berlin Heidelberg, 2002. Also at ia.cr/2001/091. (pp. 6, 8, 9,
and 10.)

[DNO10] I. Damgård, J. B. Nielsen, and C. Orlandi. On the Necessary and Sufficient
Assumptions for UC Computation. In D. Micciancio, editor, TCC 2010,
vol. 5978 of LNCS, pages 109–127. Springer, Berlin Heidelberg, 2010. (pp. 6
and 10.)

[DO10] I. Damgard and C. Orlandi. Multiparty Computation for Dishonest
Majority: From Passive to Active Security at Low Cost. In T. Rabin,
editor, CRYPTO 2010, vol. 6223 of LNCS, pages 558–576. SBH, 2010.
(p. 9.)

[ElG85] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In G. Blakley and D. Chaum, editors, Advances
in Cryptology, vol. 196 of LNCS, pages 10–18. Springer-Verlag, Berlin
Heidelberg, 1985. (p. 12.)

[FJNT16] T. Frederiksen, T. Jakobsen, J. Nielsen, and R. Trifiletti. On the Com-
plexity of Additively Homomorphic UC Commitments. In E. Kushilevitz
and T. Malkin, editors, Theory of Cryptography, vol. 9562 of LNCS, pages
542–565. Springer Berlin Heidelberg, 2016. Also at ia.cr/2015/694. (p. 9.)

[FLM11] M. Fischlin, B. Libert, and M. Manulis. Non-interactive and Re-usable
Universally Composable String Commitments with Adaptive Security. In
D. Lee and X. Wang, editors, ASIACRYPT 2011, vol. 7073 of LNCS, pages
468–485. Springer, Berlin Heidelberg, 2011. (p. 9.)

[FS90] U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two
Rounds. In G. Brassard, editor, CRYPTO 1989, vol. 435 of LNCS, pages
526–544. Springer New York, 1990. (p. 6.)

[GIKW14] J. A. Garay, Y. Ishai, R. Kumaresan, and H. Wee. On the Complexity of
UC Commitments. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT
2014, vol. 8441 of LNCS, pages 677–694. Springer, Berlin Heidelberg, 2014.
(pp. 5, 9, 10, 20, and 22.)

[GK96] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP. J. Cryptology, 9(3):167–189, 1996. (pp. 7
and 14.)

[GMS08] V. Goyal, P. Mohassel, and A. Smith. Efficient Two Party and Multi
Party Computation Against Covert Adversaries. In N. Smart, editor,
EUROCRYPT 2008, vol. 4965 of LNCS, pages 289–306. Springer-Verlag,
Berlin Heidelberg, 2008. (p. 13.)

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004. ISBN: 0521830842.
(p. 2.)

https://eprint.iacr.org/2014/370
https://dx.doi.org/10.1007/978-3-642-10366-7_4
https://dx.doi.org/10.1007/978-3-642-10366-7_4
https://arxiv.org/abs/0903.3118
https://dx.doi.org/10.1007/3-540-45708-9_37
https://dx.doi.org/10.1007/3-540-45708-9_37
https://eprint.iacr.org/2001/091
https://dx.doi.org/10.1007/978-3-642-11799-2_8
https://dx.doi.org/10.1007/978-3-642-11799-2_8
https://dx.doi.org/10.1007/978-3-642-14623-7_30
https://dx.doi.org/10.1007/978-3-642-14623-7_30
https://dx.doi.org/10.1007/3-540-39568-7_2
https://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/978-3-662-49096-9_23
http://dx.doi.org/10.1007/978-3-662-49096-9_23
https://eprint.iacr.org/2015/694
https://dx.doi.org/10.1007/978-3-642-25385-0_25
https://dx.doi.org/10.1007/978-3-642-25385-0_25
https://dx.doi.org/10.1007/0-387-34805-0_46
https://dx.doi.org/10.1007/0-387-34805-0_46
https://dx.doi.org/10.1007/978-3-642-55220-5_37
https://dx.doi.org/10.1007/978-3-642-55220-5_37
https://dx.doi.org/10.1007/BF00208001
https://dx.doi.org/10.1007/BF00208001
https://dx.doi.org/10.1007/978-3-540-78967-3_17
https://dx.doi.org/10.1007/978-3-540-78967-3_17
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html

References 29

[HILL99] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A Pseudorandom
Generator from any One-way Function. SIAM Journal on Computing,
28(4):1364–1396, 1999. (p. 6.)

[HKE13] Y. Huang, J. Katz, and D. Evans. Efficient Secure Two-Party Computation
Using Symmetric Cut-and-Choose. In R. Canetti and J. Garay, editors,
CRYPTO 2013, vol. 8043 of LNCS, pages 18–35. Springer-Verlag, Berlin
Heidelberg, 2013. Also at ia.cr/2013/081. (p. 17.)

[HMQU06] D. Hofheinz, J. Müller-Quade, and D. Unruh. On the (Im-)Possibility of
Extending Coin Toss. In S. Vaudenay, editor, EUROCRYPT 2006, vol.
4004 of lncs, pages 504–521. Springer, Berlin Heidelberg, 2006. Also at
ia.cr/2006/177. (p. 6.)

[Kra94] H. Krawczyk. Secret Sharing Made Short. In D. Stinson, editor, CRYPTO
1993, vol. 773 of LNCS, pages 136–146. Springer, Berlin Heidelberg, 1994.
(p. 18.)

[KS08] V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR
Gates and Applications. In L. Aceto, I. Damgård, L. A. Goldberg, M. M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata, Lan-
guages and Programming, vol. 5126 of LNCS, pages 486–498. Springer
Berlin Heidelberg, 2008. (p. 6.)

[Lin03] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party
Computation. J. Cryptology, 16(3):143–184, 2003. Also at ia.cr/2001/107.
(pp. 3, 4, 6, 7, 8, 10, and 13.)

[Lin11] Y. Lindell. Highly-Efficient Universally-Composable Commitments Based
on the DDH Assumption. In K. Paterson, editor, EUROCRYPT 2011, vol.
6632 of LNCS, pages 446–466. Springer, Berlin Heidelberg, 2011. Also at
ia.cr/2011/180. (p. 9.)

[Lin13] Y. Lindell. Fast Cut-and-Choose Based Protocols for Malicious and Covert
Adversaries. In R. Canetti and J. Garay, editors, CRYPTO 2013, vol. 8043
of LNCS, pages 1–17. Springer-Verlag, Berlin Heidelberg, 2013. Also at
ia.cr/2013/079. (p. 17.)

[Lin15] Y. Lindell. An Efficient Transform from Sigma Protocols to NIZK with a
CRS and Non-programmable Random Oracle. In Y. Dodis and J. Nielsen,
editors, Theory of Cryptography, vol. 9014 of LNCS, pages 93–109. Springer
Berlin Heidelberg, 2015. (p. 23.)

[LN11] C. Lunemann and J. B. Nielsen. Fully Simulatable Quantum-Secure
Coin-Flipping and Applications. In A. Nitaj and D. Pointcheval, editors,
AFRICACRYPT 2011, vol. 6737 of LNCS, pages 21–40. Springer, Berlin
Heidelberg, 2011. Also at ia.cr/2011/065. (pp. 6 and 9.)

[LPS08] Y. Lindell, B. Pinkas, and N. Smart. Implementing Two-Party Computa-
tion Efficiently with Security Against Malicious Adversaries. In R. Ostro-
vsky, R. De Prisco, and I. Visconti, editors, SCN ’08, vol. 5229 of LNCS,
pages 2–20. Springer-Verlag, Berlin Heidelberg, 2008. (p. 12.)

[Lub02] M. Luby. LT codes. In Proc. 43rd annual IEEE symposium on FOCS
2002, pages 271–280, 2002. (p. 18.)

[Nao91] M. Naor. Bit commitment using pseudorandomness. J. Cryptology,
4(2):151–158, 1991. (p. 6.)

[Nat14a] National Institute of Standards and Technology. FIPS 202 – DRAFT SHA-
3 Standard: Permutation-Based Hash and Extendable-Output Functions.
U.S. Department of Commerce, NIST-ITL-CSD, May 2014. (p. 3.)

https://dx.doi.org/10.1137/S0097539793244708
https://dx.doi.org/10.1137/S0097539793244708
https://dx.doi.org/10.1007/978-3-642-40084-1_2
https://dx.doi.org/10.1007/978-3-642-40084-1_2
https://eprint.iacr.org/2013/081
https://dx.doi.org/10.1007/11761679_30
https://dx.doi.org/10.1007/11761679_30
https://eprint.iacr.org/2006/177
https://dx.doi.org/10.1007/3-540-48329-2_12
https://dx.doi.org/10.1007/978-3-540-70583-3_40
https://dx.doi.org/10.1007/978-3-540-70583-3_40
https://dx.doi.org/10.1007/s00145-002-0143-7
https://dx.doi.org/10.1007/s00145-002-0143-7
https://eprint.iacr.org/2001/107
https://dx.doi.org/10.1007/978-3-642-20465-4_25
https://dx.doi.org/10.1007/978-3-642-20465-4_25
https://eprint.iacr.org/2011/180
https://dx.doi.org/10.1007/978-3-642-40084-1_1
https://dx.doi.org/10.1007/978-3-642-40084-1_1
https://eprint.iacr.org/2013/079
https://dx.doi.org/10.1007/978-3-662-46494-6_5
https://dx.doi.org/10.1007/978-3-662-46494-6_5
https://dx.doi.org/10.1007/978-3-642-21969-6_2
https://dx.doi.org/10.1007/978-3-642-21969-6_2
https://eprint.iacr.org/2011/065
https://dx.doi.org/10.1007/978-3-540-85855-3_2
https://dx.doi.org/10.1007/978-3-540-85855-3_2
https://dx.doi.org/10.1109/SFCS.2002.1181950
https://dx.doi.org/10.1007/BF00196774
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html

30 References

[Nat14b] National Institute of Standards and Technology. SP800-90 A Rev. 1 –
DRAFT Recommendation for Random Number Generation Using De-
terministic Random Bit Generators. U.S. Department of Commerce,
NIST-ITL-CSD, April 2014. (p. 3.)

[NY89] M. Naor and M. Yung. Universal One-way Hash Functions and Their
Cryptographic Applications. In STOC 1989, pages 33–43. ACM, New
York USA, 1989. (p. 6.)

[Ped92] T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifi-
able Secret Sharing. In J. Feigenbaum, editor, CRYPTO 1991, vol. 576 of
LNCS, pages 129–140. Springer-Verlag, Berlin Heidelberg, 1992. (p. 12.)

[PW09] R. Pass and H. Wee. Black-Box Constructions of Two-Party Protocols
from One-Way Functions. In O. Reingold, editor, TCC 2009, vol. 5444 of
LNCS, pages 403–418. Springer-Verlag, Berlin Heidelberg, 2009. Also at
IACR Online Proceedings for TCC 2009. (pp. 3, 4, 6, 7, 8, and 13.)

[Rab89] M. O. Rabin. Efficient Dispersal of Information for Security, Load Balanc-
ing, and Fault Tolerance. J. ACM, 36(2):335–348, 1989. (p. 17.)

[Rom90] J. Rompel. One-way Functions Are Necessary and Sufficient for Secure
Signatures. In Proc. STOC 1990, pages 387–394. ACM, New York USA,
1990. (p. 6.)

[Ros04] A. Rosen. A Note on Constant-Round Zero-Knowledge Proofs for NP.
In M. Naor, editor, Theory of Cryptography, vol. 2951 of LNCS, pages
191–202. Springer, Berlin Heidelberg, 2004. (p. 8.)

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the SIAM, 8(2):300–304, 1960. (p. 18.)

[Rus95] A. Russell. Necessary and sufficient conditions for collision-free hashing.
J. Cryptology, 8(2):87–99, 1995. (p. 6.)

[Sch91] C. Schnorr. Efficient signature generation by smart cards. J. Cryptology,
4(3):161–174, 1991. See also extended abstract at EUROCRYPT 1989.
(p. 12.)

[SCP00] A. Santis, G. Crescenzo, and G. Persiano. Necessary and Sufficient As-
sumptions for Non-interactive Zero-Knowledge Proofs of Knowledge for All
NP Relations. In U. Montanari, J. Rolim, and E. Welzl, editors, ICALP
2000, vol. 1853 of LNCS, pages 451–462. Springer, Berlin Heidelberg, 2000.
(pp. 2 and 10.)

[Sha79] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.
(p. 18.)

[Sho06] A. Shokrollahi. Raptor Codes. IEEE/ACM Trans. Netw., 14(SI):2551–2567,
2006. (p. 18.)

[Sim98] D. R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In K. Nyberg, editor, EU-
ROCRYPT 1998, vol. 1403 of LNCS, pages 334–345. Springer, Berlin
Heidelberg, 1998. (p. 6.)

[SS11] A. Shelat and C.-h. Shen. Two-Output Secure Computation with Malicious
Adversaries. In K. Paterson, editor, EUROCRYPT 2011, vol. 6632 of
LNCS, pages 386–405. Springer-Verlag, Berlin Heidelberg, 2011. Also at
ia.cr/2011/533. (p. 16.)

[VZ12] S. Vadhan and C. J. Zheng. Characterizing Pseudoentropy and Simplifying
Pseudorandom Generator Constructions. In STOC 2012, pages 817–836,
New York, NY, USA, 2012. ACM. (p. 6.)

http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
https://dx.doi.org/10.1145/73007.73011
https://dx.doi.org/10.1145/73007.73011
https://dx.doi.org/10.1007/3-540-46766-1_9
https://dx.doi.org/10.1007/3-540-46766-1_9
https://dx.doi.org/10.1007/978-3-642-00457-5_24
https://dx.doi.org/10.1007/978-3-642-00457-5_24
https://www.iacr.org/archive/
https://dx.doi.org/10.1145/62044.62050
https://dx.doi.org/10.1145/62044.62050
https://dx.doi.org/10.1145/100216.100269
https://dx.doi.org/10.1145/100216.100269
https://dx.doi.org/10.1007/978-3-540-24638-1_11
http://dx.doi.org/10.1137/0108018
https://dx.doi.org/10.1007/BF00190757
https://dx.doi.org/10.1007/BF00196725
https://dx.doi.org/10.1007/3-540-46885-4_68
https://dx.doi.org/10.1007/3-540-45022-X_38
https://dx.doi.org/10.1007/3-540-45022-X_38
https://dx.doi.org/10.1007/3-540-45022-X_38
https://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/TIT.2006.874390
https://dx.doi.org/10.1007/BFb0054137
https://dx.doi.org/10.1007/BFb0054137
https://dx.doi.org/10.1007/978-3-642-20465-4_22
https://dx.doi.org/10.1007/978-3-642-20465-4_22
https://eprint.iacr.org/2011/533
https://dx.doi.org/10.1145/2213977.2214051
https://dx.doi.org/10.1145/2213977.2214051

	Very-efficient simulatable flipping of many coins into a well
	Abstract
	1 Introduction
	1.1 Coin-flipping and primitives
	1.2 Intuition and overview of Protocol #1
	1.3 Intuition and overview of Protocol #2
	1.4 Roadmap

	2 Related work
	2.1 Basic primitives
	2.2 Parallel coin-flipping simulatable-with-rewinding
	2.3 UC commitment schemes

	3 Background notions
	4 A new coin-flipping protocol simulatable-with-rewinding
	4.1 Description of protocol #1
	4.2 Concrete instantiations in the plain model
	4.3 Security analysis

	5 A new UC commitment scheme
	5.1 More intuition
	5.1.1 Cut-and-choose warmup
	5.1.2 Authenticator aid
	5.1.3 IDA support

	5.2 Description of protocol #2
	5.2.1 X-commit phase
	5.2.2 Q-open phase

	5.3 Concrete configurations
	5.4 Security analysis
	5.4.1 Extractability
	5.4.2 Equivocability

	Acknowledgments
	References

