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Abstract. Message authentication and key exchange are two of the most basic
tasks of cryptography and are often basic components in complex and security-
sensitive protocols. Thus composable security analysis of these primitives is
highly motivated. Still, the state of the art in composable security analysis of
these primitives is somewhat unsatisfactory in the prevalent case where solutions
are based on public-key infrastructure (PKI). Specifically, existing treatments
either (a) make the unrealistic assumption that the PKI is accessible only within
the confines of the protocol itself, thus failing to capture real-world PKI-based
authentication, or (b) impose often-unnecessary requirements—such as strong on-
line non-transferability—on candidate protocols, thus ruling out natural candidates.

We give a modular and universally composable analytical framework for PKI-
based message authentication and key exchange protocols. This framework guar-
antees security even when the PKI is pre-existing and globally available, without
being unnecessarily restrictive. Specifically, we model PKI as a global set-up func-
tionality within the Global UC security model [Canetti et al., TCC 2007] and relax
the ideal authentication and key exchange functionalities accordingly. We then
demonstrate the security of basic signature-based authentication and key exchange
protocols. Our modeling makes minimal security assumptions on the PKI in use;
in particular, “knowledge of the secret key” is not needed. Furthermore, there is
no requirement of uniquenss in this binding: an identity may be represented by
multiple strings of public keys.
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1 Introduction

Public-key-based authentication. Authentication may be done in many different
ways, such as biometric human identification, or via some pre-shared longer-term secret
(such as a pre-shared key or a password). In this work we concentrate on public-key
authentication, as put forth in the groundbreaking work of Diffie and Hellman [DH76]:
The parties have no à priori shared secret information or other physical means for
authentication. The only mechanism available for authenticating messages is a globally-
accessible public database that allows actors to record arbitrary information; each record
is made publicly available and linked to the public identity of the actor who created it.
We call this setting the global public-key infrastructure (PKI) setting.

A simple and frequently-used message authentication protocol in this setting proceeds
as follows. For Alice to send an authenticated message to Bob, Alice signs (using her
private key) the message, together with her and Bob’s identities and a session identifier
that’s unique to that message, and sends the message and the signature to Bob over an
unauthenticated channel. Bob authenticates the message by obtaining Alice’s public key
from the PKI and verifying the signature.

An almost equally simple authenticated key exchange protocol is the following:
Alice sends to Bob her Diffie-Hellman message ga, bob responds by sending his Diffie-
Hellman message gb, together with ga and a signature sB = SigBob(ga,gb,‘Alice’).
Alice responds by sA = SigAlice(ga,gb,‘Bob’). Both parties are assumed to have each
other’s verification key in advance, and verify the signatures to authenticate. (This is
essentially the ISO 9798-3 key exchange standard.) For sake of illustration, we keep
these two simple protocols, respectively denoted φauth and φke, as running examples
throughout this paper. Practical protocols that use φauth and φke (or close variants thereof)
to establish trust in the identity of an interlocutor or in data payloads are ubiquitous. For
instance, they include the TLS standard, chip-and-pin debit cards [EMV11], end-to-end
authentication of email contents [RFC 1847], and many others.

Since these protocols use signatures against a globally-available PKI, and send
them in the clear over world-readable channels, anyone in the system can verify Alice’s
and Bob’s signatures, even though they were intended only for each other. While we
recognize this as an inherent property of signatures (namely, they provide transferable
verifiability), in the context of authentication this is merely a side-effect which may or
may not be desirable.

We know that faithfully analyzing the security of public-key based authentication
and key exchange protocols turns out to be a difficult problem, mainly due to the intricate
interactions among the various components of the actual protocols, the public-key
infrastructure, and the systems they run in. So a natural question arises: Is φauth a good
authentication protocol? Is φke a good key exchange protocol? Should we keep using
them? Should we treat them as broken and use more sophisticated protocols instead?

Modular analysis. In light of the complexity and ubiquity of authentication protocols,
it would be desirable to be able to analyze them in a modular fashion: to abstract out an
ideal authentication service for higher-level protocols to use, such that the security of the
higher-level protocols would be independent of the details of its implementation. This
approach allows consumers of authentication to dynamically replace their authentication
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implementations—for example, to base authentication on a different setup service or
on a different hard problem—without affecting the security of the higher-level protocol.
Conversely, modularity also encourages reuse of an authentication module by multiple
higher-level protocols, discouraging local, ad hoc implementations.

Several efforts to model public-key based authentication within a composable security
framework appear in the literature. Canetti and Krawczyk [CK01] and Shoup [Sho99]
perhaps provide the first such guarantees in the context of authenticated key exchange,
but their modeling of the public key infrastructure is quite rudimentary and does not
allow analyzing the long-term signature and certification module separately from the
rest of the protocol.

Other attempts at composable analysis were made in [CK02] and later in [Can04]
within the Universally Composable (UC) security framework of [Can01]. (The second
work is more directly focused at analyzing the simple φauth.)

However, these works have the following significant drawback: They treat the public-
key infrastructure—namely, the public record with the public information provided by
each actor—as a construct that is local to each specific protocol instance and unavailable
for use outside that protocol instance. This modeling is inadequate for representing the
PKI model as envisioned by Diffie and Hellman and used in practice—where the public
information is globally available. Instead, this analysis guarantees security only when
each instance of the analyzed protocol uses its own independent instance of a PKI.

This is the case even if the PKI is modeled as joint to a number of instances of the
authentication protocol in question, and composition is argued via Universal Composition
with Joint State (JUC) [CR03]. Indeed, even there the PKI is modeled not as a global
entity but rather as an entity that is local to a specific collection of instances of some
specific protocol.

The works of [MTC13,KMO+14], which are set in the Abstract Cryptography
setting of [MR11], have a similar modeling shortcoming: the public key infrastructure is
modeled as local to the protocol instance. Furthermore, as argued below, this discrepancy
is not merely aesthetic; rather, it has real security implications.

Long-lived, global trusted information that is shared among all parties, protocols,
and protocol instances in the system are addressed in the Global UC (GUC) frame-
work [CDPW07]. That framework is similar to the (“basic”) UC framework, but directly
models trusted entities that are globally available throughout the system regardless of any
specific protocol to be analyzed. Authentication protocols with global PKI are analyzed
in [DKSW09,Wal08]. However, these works consider only authentication protocols that
provide additional properties on top of authenticity: only protocols that provide the
non-transferability (or, deniability) property are considered. This leaves us with the
following fundamental question:

How to formulate the basic composable security requirements from plain PKI-
based authentication and key exchange protocols? In particular, how to justify
signature-based protocols such as φauth and φke?

A litmus test: the transferability problem. The discrepancy between the security
modeling of [CK02,Can04,CR03,MTC13,KMO+14] and real implementations of PKI
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infrastructure is illustrated by the following issue: while real-life PKI-based authentica-
tion is transferable (i.e., non-deniable), ideal authentication is not.1

In detail, ideal authentication is defined as a deniable task that leaves “no trace”; it
passes a message from the sender to the receiver, but the receiver is unable to subsequently
prove to a third party that the authentication had in fact happened. In contrast, some
PKI-based authentication protocols (and, in particular, protocol φauth) allow the receiver
to obtain a transferable and non-repudiable proof of communication (e.g., a signature),
which can be verified by anyone against the global PKI. Hence, PKI-based authentica-
tion protocols are transferable (non-deniable) whenever the PKI is globally available.
Moreover, this transferability gap is independent of the security model in use. This was
formalized by [DKSW09], which proves that no protocol based on a plain PKI can
realize the ideal authentication functionality. Still, in [Can04,CR03,MTC13,KMO+14],
protocol φauth (or variants thereof) securely realize an ideal process that guarantees
non-transferable authentication. (Note that moving to a stronger modeling of PKI, where
registering parties are required to prove knowledge of a secret key associated with
the registered public value, does not solve the problem. Indeed, protocol φauth remains
transferable even with such stronger PKI.)

We stress that transferability, or lack thereof, is not the main concern of this work; it
only serves an example of the inadequacy of the current models of composable security
in capturing the security requirements of PKI-based authentication and key exchange.

What about game-based modeling? The above line of reasoning concentrates on
models that provide composable security, more specifically models that define security
by way of emulating an ideal process. Can we avoid the difficulties described above
by putting general composability aside and instead using game-based modeling of
authentication and key exchange? This is an interesting research direction. Indeed,
we are not aware of any game-based modeling of authentication and key exchange
that directly considers global PKI that can be used (and abused) by arbitrary other
applications.

1.1 Our results

We provide a framework for analyzing security of authentication and key exchange
protocols that use a globally-available PKI. Our framework adequately represents global
PKIs. Specifically, we concentrate on authentication and justifying the security of trans-
ferable protocols. To exemplify our framework, we analyze protocols φke and φauth,
which previously could not be justified in a realistic security model. In particular:

(a) We model global PKI as a globally-available bulletin-board that provides minimal
guarantees of binding between strings and identities, without requiring or promising
any knowledge or secrecy.

(b) We relax the UC authentication and key exchange functionalities of [CK02,Can04]
to be non-deniable. Our functionalities Fcert-auth and Fcert-ke allow the adversary
to obtain “global” certificates on messages that have the session id of Fcert-auth or

1 We use the terms “transferability” and “deniability” interchangeably, where they refer to
properties of message authentication.
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Fcert-ke as a prefix. (A global certificate is one that can be verified by any entity in the
system.) In particular, the adversary may obtain a global certificate on the message
to be authenticated. This coupling eliminates the authentication functionality’s
deniability, without affecting authenticity.
We remark that the underlying technical trick in Fcert-auth is reminiscent of the one in
the relaxed key exchange functionality of [DKSW09]. However, there, one needs a
PKI that is only partially-global and a very specific non-deniable protocol to realize
that functionality. In contrast, our goal in this work is to analyze basic protocols
with a completely-global PKI.

(c) We prove security of the natural public-key-based protocols φauth and φke. The
protocols require no setup beyond a bulletin-board and GUC-securely realize the
authentication and key exchange functionalities Fcert-auth and Fcert-ke, respectively.

To the best of our knowledge, this is the first treatment of authentication with a
realistic modeling of PKI as a global construct that can be used by arbitrary protocols.

While we concentrate on protocol φauth and φke for simplicity and clarity, our treat-
ment can be naturally extended to deal with other PKI-based authentication and key
exchange protocols.

Review of UC and GUC. We first briefly review the UC and GUC frameworks.
Informally, UC security is defined via a challenge to distinguish between actual attacks,
performed by an adversary A on protocol π and simulated attacks, performed by a
simulator S on protocol φ . The model allows the attacks to be orchestrated by an
environment Z that has an I/O interface to the parties running the challenge protocol (π
or φ ) and is allowed to freely communicate with the attacker (without knowing whether it
is A or S). However, the environment Z is constrained to execute only a single instance
of the challenge protocol. In this execution model, protocol π is said to UC-emulate
the protocol φ if for any adversary A attacking a protocol π there exists a simulator S
attacking protocol φ such that no environment can successfully distinguish these two
possible scenarios.

The GUC challenge experiment is similar to the basic UC experiment, only with
an unconstrained environment. In particular, now Z is allowed to invoke and interact
with arbitrary protocols, and even multiple sessions of the challenge protocol. The
protocols invoked by Z may share subroutines with challenge protocol instances. GUC
emulation is defined analogously to basic UC emulation. The UC and GUC frameworks
are presented more rigorously in Section 2.

Our methods. We develop a general framework for analyzing PKI-based authentica-
tion and key-exchange protocols. Our framework consists of an ideal message authen-
tication functionality (or ideal key-exchange functionality) coupled with a long-lived
certificates functionality.

For simplicity we concentrate on the authentication protocol. The treatment of the
key exchange protocol is analogous. We formulate an ideal authentication functionality
that does not impose unnecessary requirements (such as deniability) on the implementing
protocols. The functionality, denoted Fcert-auth, is a sender-receiver functionality that on
input m from the sender not only delivers m to the receiver but also allows the adversary
to see legitimate signatures on messages of its choice, which Fcert-auth obtains from
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the ideal certificates functionality Gcert. (This does not affect Fcert-auth’s authenticity
promises since Fcert-auth delivers the original m to the receiver.) This is done as follows:

The adversary determines the message to be signed and hands it to Fcert-auth; then,
Fcert-auth requests a signature (on behalf of the sender) on the message affixed with
the session identifier. The signature obtained by the adversary is thus tied to a specific
Fcert-auth session and cannot be used in other sessions. Since the signature seen by
the adversary is correctly generated and can be successfully verified by any entity in
the system, deniability (or, non-transferability) is no longer guaranteed. Nonetheless,
the essence of authentication—binding an action to some long-lived entity—remains
guaranteed. That is, Fcert-auth guarantees that if a recevier accepts a message from a given
sender, then that sender sent that message to the receiver. Therefore, any protocol that
GUC-reaizes Fcert-auth guarantees authenticated message transmission in the same way.

Observe that Fcert-auth allows the adversary to obtain, as a side-effect, the sender’s
signature on almost any message. This might seem weak, and almost contradictory to
authentication. We note however that (a) Fcert-auth still guarantees authenticity, as argued
above, and (b) other standard definitions of securiy for authentication protocols (e.g., the
definition of authentication based on a local PKI) also allow the same side effects. We
simply make this point explicit.

We note that a somewhat similar mechanism is used by [DKSW09] to augment the
key exchange functionality with the secret keys of the parties. However, there the secret
keys are made unavailable beyond the key exchange protocol, which is the opposite of
our purpose here. Indeed, the goal in [DKSW09] is close to diametrically opposite to
the goal of this work: Dodis et al. study deniable protocols, whereas we study real-life,
non-deniable protocols.

We also show that standard EU-CMA signatures together with a globally-available
PKI precisely capture the guarantees provided by Gcert, and can be used in its stead. That
is:

(a) We define a global ideal certificate functionality Gcert that is parametrized by a party
identity (PID). That is, Gcert is willing to provide certificates on chosen messages
to any session of that PID. The verification service is provided to any PID in the
system. The authentication functionality Fcert-auth will provide certificates generated
by Gcert to the adversary.

(b) To realize Gcert, we define a signing module GΣ , parametrized by a PID, that holds
the secret key (of some signature scheme) and similarly to Gcert is willing to provide
signing service to any session of that PID. Similarly to [CK01], our signing module
enables modeling “key knowledge” and “signing capabilities” separately. Separation
of long-term key handling and signing module from session module is an essential
part of security modeling of key-exchange and secure sessions: it preserves security
of sessions even when other sessions using the same public-key are compromised.
This was not done previously in any UC-based framework.

(c) We show a GUC-secure realization of ideal certificates Gcert from standard EU-CMA
signatures (where the secret key is kept in the signing module).

We exemplify the usability of our model by analyzing φauth and φke, the signed
key exchange protocol of Diffie-Hellman (ISO 9798-3), within it and showing they
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Fig. 1: A snapshot of an authentication in the system. The signing module together with Gbb is an
instantiation of Gcert. Each party participates in multiple executions of φauth, one per session. Each
session may involve a different interlocutor (not limited to pid1 and pid2). The bulletin-board Gbb
is shared with many other protocols executing in the system. The parties also obtain signatures
from their local signing module instances upon demand.

GUC-realize Fcert-auth and Fcert-ke, respectively. (The complete realization of Fcert-auth
within our framework is depicted in Figure 1).

To this end, we formalize new composition theorems that allow reduction between
global functionalities. The first theorem (in Section 3) shows that a secure realization of
functionality G is sufficient for replacing any use of G (as a global functionality) with
G’s implementation:

Theorem 1 (informal statement). Let π be a protocol with access to global functional-
ity G. If a functionality F GUC-realizes G, then π using global F GUC-realizes π using
global G.

Our second composition theorem presents the necessary conditions, required from a pair
of global functionalities, such that any secure protocol GUC-realizing some task using
globally one of the functionalities would remain equally secure using the other:

Theorem 2 (informal statement). Let π and φ be protocols with access to global
functionality G. If π GUC-realizes φ , the functionality F GUC-realizes G and G GUC-
realizes F , then π GUC-realizes φ with access to global functionality F .

Since the operation of replacing one global functionality by another was not consid-
ered before, we extend the definition of GUC-emulation. The extended definition admits
not only previous results, but also allows arguing these theorems formally. Although the
composition proof is simple, the terminology is vital for our analysis.

1.2 Related work

Due to the fundamentality of the problem, there has been a vast line of works on secure
authentication and its equivalent problem of key exchange. PKI-based authentication can
be examined from three different angles: the composability guarantees of the model, the
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modeling of the PKI, and the deniability guarantees of the ideal authentication. We con-
centrate on composable settings, where the authentication (or key exchange) maintains
its security guarantees when used as a component in building complex protocols.

UC-based models. Many works [CK02,FAK08,CG10,AF10] analyze key agreement
and key exchange protocols in the UC framework. However, like [Can04], they also
model the PKI as local to the protocol instance. Another line of works in UC prohibit hon-
est participants from engaging in multiple sessions concurrently [LBdM07,BLdMT09]
or assume password-based security and erasures [DF12]. Likewise, here the PKI model-
ing does not allow external protocols to access the PKI.

Dodis et al. [DKSW09,Wal08] study deniable authentication in a GUC setting.
They prove it impossible to securely realize standard message authentication in GUC
with merely a standard PKI. To overcome this impossibility result, they present a non-
transferable authentication protocol based on symmetric keys. The symmetric keys are
obtained from a non-standard PKI. However, their protocol has two drawbacks: Its
security proof requires a strong PKI (namely, key registration with proof of knowledge of
the secret key) and their protocol is somewhat less efficient than φauth. Most importantly,
that framework cannot be used to justify the security of φauth as a basic authentication
protocol.

The Abstract Cryptography (AC) model. Maurer et al. [MTC13] implement authen-
ticated channels in the Abstract Cryptography setting of [MR11]. Their construction
is composable, uses the canonical signature-based authentication protocol (φauth) and
assumes a standard PKI. Still, similarly to Canetti [Can04], these works treat the PKI as
a local functionality that services only a single instance of an authentication protocol.
Indeed, their abstraction of an authentication channel is deniable, while their protocol is
PKI-based.

Kohlweiss et al. [KMO+14] study the TLS protocol in the same setting and analyze
three key exchange modes of TLS. Of them, one uses symmetric keys and two use
a standard PKI. However, as with [Can04] and [MTC13], their PKI is private to the
protocol. Thus, their modeling does not adequately capture global PKIs.

Game-based models. The work of [CK01] develops a game-based framework for
analyzing the key exchange problem. Later, [BFS+13] proposed a framework with
stronger composability guarantees to enable analysis of the TLS protocol. However, both
frameworks allow only limited composition and model the PKI as a setup inaccessible
by other protocols.

Other models. Kidron and Lindell [KL07] study impossibility results in a number of
public-key models. However, none of the considered public-key models are in a global
setting, and thus do not address the issue at hand. Barak et al. [BCL+05] study what
notion of security is achievable in a PKI-less setting. Their work does not address the
setting of global PKI.

Invisible adaptive attacks. Nielsen and Strefler [NS14] point out a weakness in defi-
nitions of security in the GUC model, called invisible adaptive attacks and propose a
general way to fix the weakness. We demonstrate in Section 6 that our protocols satisfy
not only the [NS14] definition even a stronger (and simpler) definition proposed in this
work.
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2 Overview of Generalized UC Security

To provide the proper setting for the authentication, we now review the original UC
[Can01,Can00] (referred to as basic UC) and Generalized UC [CDPW07] frameworks.2

We will focus on the notion of protocol emulation, wherein the objective of a protocol
π is to imitate another protocol φ . In this work, the entities and protocols we consider
are polynomial-time bounded Interactive Turing Machines (ITMs), in the sense detailed
in [Can01].

Systems of ITMs. To capture the mechanics of computation and communication
among entities, the UC framework employs an extension of the ITM model [GMR89].
A computer program (such as run by a participant in a protocol, or by an adversary)
is modeled in the form of an ITM. An execution experiment consists of a system of
ITMs which are instantiated and executed, with multiple instances possibly sharing the
same ITM code. A particular executing ITM instance running in the network is referred
to as an ITI. Individual ITIs are parameterized by the program code of the ITM they
instantiate, a party ID (pid) and a session ID (sid). We require that each ITI can be
uniquely identified by the identity pair id = (pid,sid), irrespective of the code it may be
running. All ITIs running with the same code and session ID are said to be a part of the
same protocol session, and the party IDs are used to distinguish among the various ITIs
participating in a particular protocol session.

The Basic UC Framework. At a very high level, the intuition behind security in the
basic UC framework is that any adversaryA attacking a protocol π should learn no more
information than could have been obtained via the use of a simulator S attacking protocol
φ . Furthermore, we would like this guarantee to hold even if φ were to be used as a
subroutine in arbitrary other protocols that may be running concurrently in the networked
environment and after we substitute π for φ in all the instances where it is invoked.
This requirement is captured by a challenge to distinguish between actual attacks on
protocol φ and simulated attacks on protocol π . In the model, attacks are executed by
an environment Z that also controls the inputs and outputs to the parties running the
challenge protocol. The environment Z is constrained to execute only a single instance
of the challenge protocol. In addition, the environment Z is allowed to interact freely
with the attacker (without knowing whether it is A or S). At the end of the experiment,
the environment Z is tasked with distinguishing between adversarial attacks perpetrated
by A on the challenge protocol π , and attack simulations conducted by S with protocol
φ acting as the challenge protocol instead. If no environment can successfully distinguish
these two possible scenarios, then protocol π is said to UC-emulate the protocol φ .

Balanced environments. In order to keep the notion of protocol emulation from being
unnecessarily restrictive, we consider only environments where the amount of resources
given to the adversary (namely, the length of the adversary’s input) is at least some fixed
polynomial fraction of the amount of resources given to all protocols in the system. From
now on, we only consider environments that are balanced.

2 We relate to the 2013 version of [Can00] and explicitly mention in the text the relevant
differences from previous versions.
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Definition 1 (UC-emulation). Let π and φ be multi-party protocols. We say that π

UC-emulates φ if for any adversary A there exists an adversary S such that for any
(constrained) environment Z , we have:

EXECπ,A,Z ≈ EXECφ ,S,Z

Defining protocol execution this way is sufficient to capture the entire range of
network activity that is observable by the challenge protocol but may be under adversarial
control. Therefore, the UC framework admits a very strong composition theorem, which
guarantees that arbitrary instances of φ that may be running in the network can be safely
substituted with any protocol π that UC-emulates it. More formally,

Definition 2 (Subroutine-respecting protocols; [Can00]). We say that a protocol π is
subroutine-respecting if the following properties hold with respect to every instance of π

in any execution of any protocol ρ that makes subroutine calls to π:

(a) No ITI which is a subsidiary of this instance passes inputs or outputs to an ITI which
is not a party or subsidiary of this instance.

(b) At first activation, each ITI that is currently a subsidiary of this instance, or will ever
become one, sends a special message to the adversary, notifying it of its own code
and identity, as well as the code π and SID of this instance. We call this requirement
subroutine publicness.3

Theorem 3 (UC-Composition). Let ρ ,π and φ be protocols such that ρ makes subrou-
tine calls to φ . If π UC-emulates φ and both π and φ are subroutine-respecting, then
protocol ρπ/φ UC-emulates protocol ρ .

The Generalized UC Framework. As mentioned above, the environment Z in the
basic UC experiment is unable to invoke protocols that share state in any way with the
challenge protocol. In many scenarios, the challenge protocol produces information
that is shared by other network protocol sessions. For example, protocols may share
information via a global setup such as a public Common Reference String (CRS) or a
standard Public Key Infrastructure (PKI). The basic UC framework discussed above
does not address this kind of shared state; moreover, the UC composition theorem
does not hold for non-subroutine-respecting protocols (i.e., protocols that share state
information with other protocol sessions). Still, we would like to analyze such protocols
in a modular way. To overcome this limitation, [CDPW07] propose the Generalized UC
(GUC) framework. The GUC challenge experiment is similar to the basic UC experiment,
only with an unconstrained environment. In particular, now Z is allowed to invoke and
interact with arbitrary protocols, and even multiple sessions of the challenge protocol.
Some of the protocol sessions invoked by Z may even share state information with
challenge protocol sessions, and indeed, those protocol sessions might provide Z with
information related to the challenge protocol instances that it would have been unable
to obtain otherwise. To distinguish this from the basic UC experiment, we denote the
output of an unconstrained environment Z , running with an adversaryA and a challenge

3 While natural, these properties are necessary for Theorem 4 and the composition to go through.
The reader is referred to [Can00] for further details.
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protocol π in the GUC protocol execution experiment, by GEXECπ,A,Z . GUC emulation
is defined analogously to the definition of basic UC emulation outlined above:

Definition 3 (GUC-emulation). Let π and φ be multi-party protocols. We say that π

GUC-emulates φ if for any adversary A there exists an adversary S such that for any
(unconstrained) environment Z , we have:

GEXECπ,A,Z ≈ GEXECφ ,S,Z .

The External-subroutine UC Framework. The great generality provided by the
GUC framework also raises difficulties in proving security of protocols in it. Observing
real scenarios, it turns out to be sufficient to model shared state information via the use
of “shared functionalities”, which are simply functionalities that may interact with more
than one protocol session (such as the PKI functionality). For clarity, we distinguish the
notation for shared functionalities by adding a bar. We call a protocol π that only shares
state information via a single global functionality Ḡ a Ḡ-subroutine respecting protocol
(Definition 2 is extended to allow communication with Ḡ). Moreover, a Ḡ-externally
constrained environment is subject to the same constraints as the environment in the
basic UC framework, only it is additionally allowed to invoke a single ITI that runs the
code of Ḡ. Thus, any state information that will be shared by the challenge protocol must
be shared via calls to Ḡ (i.e., challenge protocols are Ḡ-subroutine respecting), and the
environment is specifically allowed to access Ḡ. Although Z is once again constrained to
invoking a single instance of the challenge protocol, it is now possible for Z to internally
mimic the behavior of multiple sessions of the challenge protocol, or other arbitrary
network protocols, by making use of calls to Ḡ wherever shared state information is
required. We allow the environment direct access to shared state information. This
security notion is called External-subroutine UC (EUC) security. The EUC-security
notion collapses to UC-security for subroutine-respecting protocols (Definition 2).

Given a Ḡ-subroutine respecting protocol π , we denote the output of the environ-
ment in the EUC protocol experiment by EXECπ,Ḡ,D,Z . The EUC-emulation definition
presented here is an extension of the emulation definition appearing in [CDPW07]. The
new definition allows a protocol π to emulate φ using a different shared functionality
than φ uses. More formally,

Definition 4 (EUC-emulation). Let π and φ be multi-party protocols, where π is F̄-
subroutine respecting and φ is Ḡ-subroutine respecting. We say that π EUC-emulates φ if
for any adversaryA there exists a adversary S such that for any F̄ -externally constrained
environment Z , we have:

EXECπ,F̄ ,D,Z ≈ EXECφ ,Ḡ,S,Z .

Note that a F̄ -subroutine respecting π communicates with the global functionality F̄
(similarly, φ with Ḡ). We remark that, in the underlying model, the substitution of Ḡ
for F̄ is done by changing the control function (so that messages addressed to F̄ are
implicitly delivered to Ḡ instead), in a similar manner to the changes effected thereto
when substituting φ for π in UC or GUC.
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Ideal protocols ([Can01,Can00]). Let F be an ideal functionality and sid be its
session ID. The ideal protocol IDEALF for F is defined as follows: Whenever a dummy
party is activated with input v, it writes v onto the input tape of the ideal functionality
F(sid,⊥) (recall that this message includes the extended identity of the calling ITI).
Messages delivered by the adversaries, including corruption messages, are ignored.
Whenever a dummy party receives a value v from F on its subroutine output tape, it
writes this value on the subroutine output tape of an ITI instructed by F . Specifying the
output destination enables an ideal functionality F to communicate with another (shared)
ideal functionality Q̄ via the dummy party. Such functionality F is called Q̄-subroutine
respecting functionality. We say that a functionality F EUC-realizes an functionality G
if IDEALF EUC-emulates IDEALG . GUC-realization is defined analogously.

Since the class of Ḡ-subroutine respecting protocols captures a broad range of real-
life protocols, we focus our attention on those. For this class of protocols, [CDPW07]
shows that GUC-emulation is equivalent to EUC-emulation.

Theorem 4 ([CDPW07]). Let G be some ideal functionality and let π and φ be Ḡ-
subroutine respecting protocols. Then π GUC-emulates φ , if and only if π EUC-emulates
φ .

Although it is not stated in [CDPW07], subroutine publicness of φ , as described in
Definition 2, is necessary for the equivalence to hold.

As a special case, if the challenge protocol does not share any state information (i.e.,
it is subroutine-respecting according to [Can01]), then Theorem 4 states that GUC- and
UC-security are equivalent.

3 The Global Functionality Composition Theorem

Suppose a protocol ρ uses another protocol φ as a subroutine. Global UC [CDPW07]
shows that we can replace the use of φ with any protocol π that GUC-emulates it. This
replacement maintains the security of the composed protocol, even if both the calling
protocol ρ and the subroutine protocol (φ or π) have access to the same instance of a
global ideal functionality. However, it is unknown whether it is safe to replace the global
functionality with something “equivalent”. Such a replacement would be useful, for
example, for designing protocols using an efficient signatures scheme (with keys that
can be used concurrently by any other protocols) and analyzing their security using an
ideal signatures functionality.

In this section we provide a new composition theorem that handles security of global
functionality replacement. Informally, the theorem states that a protocol that shares
state via a global functionality Ḡ remains secure if we replace this functionality with
a different (presumably weaker) global functionality F̄ , provided that F is a secure
implementation of G. The theorem holds even if the global functionalities share state
via a third global functionality. (In Section 4, this theorem is used to substitute an ideal
certification functionality, which shares state via a global PKI functionality, by EU-CMA
signatures.)
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Theorem 5 (Generalized Functionality Composition). Let G,F be Q̄-subroutine re-
specting functionalities, for some ideal functionality Q. Let π be a Ḡ-subroutine respect-
ing protocol. If F EUC-realizes G, then πF̄/Ḡ GUC-emulates π .

Proof. We denote by π and π ′ the protocols π Ḡ and πF̄/Ḡ respectively. We first prove
that π ′ EUC-emulates π and then show that GUC-emulation follows. We make use of an
equivalent formulation of emulation with respect to dummy adversaries. Thus, denoting
the dummy adversary by D, we wish to construct an adversary S such that:

EXECπ ′,F̄ ,D,Z ≈ EXECπ,Ḡ,S,Z

for any (F̄ ,Q̄)-constrained environmentZ . SinceF EUC-realizes G there is an adversary
SF such that

EXECF ,Q̄,D,ZF ≈ EXECG,Q̄,SF ,ZF (1)

for any Q̄-constrained environment ZF . That is, SF expects to interact with G and
Q̄, and translates it to mimic the action of the corresponding execution of F and Q̄
from the viewpoint of any environment ZF . We present and analyze S. (We note that
the construction of S and the proof of its validity are reminiscent of the treatment
in [CDPW07]. Still, the context is quite different.) The construction idea is to internally
run a single copy SF to mimic all the calls to F and route all relevant messages through
this adversary. In addition, the adversary S behaves as follows:

(a) forwarding all messages intended for F̄ sent by the environment Z to its internal
simulation of SF , as well as forwarding any messages from SF back to Z as
appropriate.

(b) forwarding all other messages sent by the environment Z to the external participants
of π or to Q̄, as well as forwarding any incoming messages from π and Q̄ (and other
protocols in the system) back to Z as appropriate.

(c) forwarding all messages of SF to the functionality Ḡ and back, as appropriate. This
is done using the subroutine publicness property, as explained in Definition 2).

A graphical description of S can be found in Figure 2(a).
In order to prove that S satisfies the required, we perform a standard proof by

contradiction. Assume there exists an environment Z capable of distinguishing the
interaction with S and π from the interaction with D and π ′. We show how to construct
an environment Ẑ such that

EXECπ,Ḡ,S,Z = EXECG,Q̄,SF ,Ẑ

and
EXECπ ′,F̄ ,D,Z = EXECF ,Q̄,D,Ẑ .

The environment Ẑ will internally run Z and behave as follows: Any message from
Z to F is forwarded to the external adversary. Any output from the external adversary
is forwarded back to Z . Any other message from Z is internally simulated. That is, Ẑ
internally executes the dummy adversary D and honestly simulates any uncorrupted
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action with the global functionality,
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Fig. 2: The simulator S and the distinguishing environment Ẑ constructed in the proof.

entity in the execution (i.e., parties of π and parties of other protocols). Whenever
an internally simulated honest party provides an input to F or Q̄, the environment Ẑ
forwards it externally and the response is forwarded back to the internal honest party.
Eventually, the environment Ẑ outputs whatever Z outputs. The environment Ẑ is
depicted in Figure 2(b).

It follows from the construction that if the external adversary is D then Z interacts
with the dummy adversary D, the protocol π ′ and functionality F . If the external
adversary is SF then Z interacts with D where all of its accesses to F are replaced with
accesses to G via SF . This is exactly the execution of Z with the adversary S and the
protocol π with access to G. Hence, existence of such distinguishing environment Z
contradicts Equation (1) as desired.

Note that the components of S (i.e., the dummy adversary D and simulator SF )
can handle multiple instances of π and therefore S can simulate π ′ with unconstrained
environment as well. In other words,

GEXECπ ′,D,Z ≈ GEXECπ,S,Z .

for any unconstrained environment Z .

Informally, secure realization allows replacing any use of an idealized task by an
implementation of the task, in a localized manner (that is, without having to consider the
rest of the system). In particular, if a protocol π securely implements another protocol φ ,
where Ḡ exists in the system, then we intuitively expect π to continue to securely
implement φ after we replace Ḡ with some F̄ that securely implements Ḡ. However,
this intuition is misleading. Consider, for example, some functionality F and let G be
as F but with extra capabilities granted to the adversary. The functionality F (trivially)
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securely implements G, since it is a restriction of G. However, the simulation of π might
be such that it uses the extra adversarial capabilities given him by Ḡ. Thus, once we
replace Ḡ with F̄ the simulation becomes invalid, and moreover, the extra capabilities
might be essential to the simulation ability. This hints that in order for the intuition to
hold, it must be the case that F̄ and Ḡ must have “similar” adversarial interfaces. This is
formally captured as follows:

Theorem 6. Let G, F be Q̄-subroutine respecting functionalities, for some ideal func-
tionality Q. Let π , φ be Ḡ-subroutine respecting protocols. If the following holds:

(a) π GUC-emulates φ .
(b) F EUC-realizes G and vice versa.

Then πF̄/Ḡ GUC-emulates φ F̄/Ḡ .

Proof. The theorem fully follows from Theorem 5. We denote by π and φ the protocols
π Ḡ and φ Ḡ respectively. More formally, by Theorem 5 and Item (2) we obtain that πF̄/Ḡ

GUC-emulates π . Combining this with Item (1) we obtain that πF̄/Ḡ GUC-emulates φ .
Next, using again Theorem 5 with Item (2) we infer that φ GUC-emulates φ F̄/Ḡ and
conclude that πF̄/Ḡ GUC-emulates φ F̄/Ḡ as desired.

Such composition enables the GUC-framework to offer full modularity in analyzing
protocols.

4 Secure Authentication using Signatures

As discussed in the introduction, the standard authentication functionality Fcert-auth
is unimplementable in a GUC setting with fully global PKI since it requires non-
transferability (deniability). However, this de jure impossibility does not prevent people
from using digital signatures in day-to-day communications to achieve an authentication
guarantee.

In this section, we bridge the gap between practical and provably secure authenti-
cation. We show that the classic, signature-based authentication protocol implements
(transferable) authentication using standard public key infrastructure (PKI). That is, we
formalize the “Authentication via signatures” paradigm in a GUC setting and present a
functionality which encapsulates it.

This has two benefits: it allows for analyzing in the modular setting of GUC real-life
protocols that use digital signatures as a building block, and it increases the trust in
the signature-based authentication protocol by proving it secure under GUC’s strong
composition operation.

The proof details are similar to [Can04]; however, the formulation and analysis are
done in the GUC framework. Section 4.1 presents a formulation of ideal certificate and
ideal signature functionalities (Ḡcert and Ḡcwk), and shows their equivalence. Section 4.2
shows that EU-CMA signatures provide the same security guarantees as the ideal
signature functionality Ḡcwk. Section 4.3 presents and implements the relaxed, non-
deniable message authentication functionality Fcert-auth.
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4.1 Signatures and certificates

We formulate a global ideal functionality, Ḡcert, that provides ideal binding of messages
to party identities. The key difference in our setting is that Ḡcert is accessible at any time,
by any party, no matter which protocols it participates in. Another important difference
from previous formulations is that the public key lives in a global bulletin-board, to
capture the fact that a principal has a single keypair (“secret”) which she uses in multiple
protocols. Then, we formulate a global signature functionality Ḡcwk that realizes Ḡcert
given a public bulletin-board Ḡbb.

Global Functionality Ḡbb

Report: Upon receiving a message (Register,v) from party P, send (Registered,P,v) to
the adversary; upon receiving OK from the adversary, and if this is the first request
from P, then record the pair (P,v). Otherwise, ignore the new message.

Retrieve: Upon receiving a message (Retrieve,Pi) from some party Pj (or the adversary S),
generate a public delayed output (Retrieve,Pi,v) to Pj , where v =⊥ if no record (Pi,v)
exists.

Fig. 3: The bulletin-board certificate authority (CA) functionality. Any ITI can register a single
key that would be associated with its identity. Any ITI in the system can request the key of any
other ITI.

The bulletin board functionality. The global bulletin board functionality, Ḡbb, is
presented in Figure 3. The bulletin board accepts only the first registered value, and
does not allow to modify or delete it.4 The bulletin board is authenticated in a sense that
it records the value along with the identity of the publisher, but does not perform any
checks on the registered value; it simply publicly records the value. Nonetheless, as we
will show later, the present minimal formulation suffices for authentication.

The certification functionality. The ideal certification functionality, Ḡcert, is presented
in Figure 4. The session ID names a distinguished principal, the ‘signer’. The functional-
ity provides direct binding between a message and the identity of the signer. (In contrast,
Fsig , which appears in Figure 5, binds a message only to a verification key.) Using
common terminology, this corresponds to providing signatures accompanied by “cer-
tificates” that bind the verification process to the signer’s identity. The functionality
generates a key for each new signer; however, the key is used only to register in the
bulletin-board. That is, neither signing nor verification is done with respect to this key.
Verification (and signing) requests are processed only if the signer is registered in the
bulletin-board, however, they are indifferent to the registered value. Lastly, corrupted
signers are allowed to dictate the verification result. We note that Ḡcert is a Ḡbb-subroutine
respecting functionality as defined in Section 2.

4 The modeling of PKI that allows a single public key per identity has been chosen for simplicity
of the modeling and presentation. It can be extended in a natural way to handle the case where
an entity may register and be authenticated via multiple public keys.
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Global Functionality Ḡpid
cert

Parameterized by a party identity pid, global functionality Ḡpid
cert proceeds as follows:

Signature Generation: Upon receiving a value (Sign,sid,m) from Ppid do:
(a) Verify that sid = (pid,sid′) for some sid′. If not, then ignore the request.
(b) If this is the first request then do:

(i) If Ppid is honest then generate a verification key (i.e., run the Key Generation
procedure described in Figure 5). Upon receiving (Verification Key,sid,v)
from the adversary, send (Register,pid,v) to Ḡbb (done via an output to Ppid).

(ii) Else, check that Ppid is registered in the Ḡbb (i.e., send (Retrieve,pid) and
verifying that v 6=⊥). If not, then ignore the request.

(c) Send (Sign,sid,m) to the adversary. Upon receiving (Signature,sid,m,σ) from
the adversary, verify that no entry (m,σ ,0) is recorded. If it is, then output an error
message to Ppid . Else, output (Signature,sid,m,σ) to Ppid, and record the entry
(m,σ ,1).

Signature Verification: Upon receiving a value (Verify,sid,m,σ) from some party P,
where sid = (pid,sid′) for some sid′, check whether a pair (pid,v) is recorded. If
not, send (Retrieve,pid) to Ḡbb, and obtain a response (Retrieve,pid,v). If v =⊥ then
output (Verified,sid,m,0). Else, record (pid,v) and hand (Verify,sid,m,σ) to the adver-
sary. Upon receiving (Verified,sid,m,φ) from the adversary do:
(a) If (m,σ ,b′) is recorded then set f = b′.
(b) Else, if the signer is not corrupted, and no entry (m,σ ′,1) for any σ ′ is recorded,

then set f = 0 and record the entry (m,σ ,0).
(c) Else, set f = φ , and record the entry (m,σ ,φ).
Output (Verified,sid,m, f ) to P.

Corruption: Upon receiving a value (Corrupt,sid) from the adversary, if sid = (pid,sid′)
mark the party Ppid as corrupt.

Fig. 4: The certification functionality. The certification functionality is parametrized by a party
identity, referred to as the owner, and allows only that party to sign messages. The functionality
generates a key for the owner when the first signing request arrives. This is done to advertise that
party’s existence; neither signature nor verification is done with respect to that key.

We model the certificate authority in a simplistic way, by associating each Ḡcert
with an owner PID, and providing certificates to any session of the owner. A more
sophisticated modeling could have the certificate authority provide certificates according
to some policy provided by the owner. For example, policies that allow sessions of other
PIDs to generate certificates would capture a more refined notion of trust (“delegated
signers”).

The certification with keys functionality. The functionality Ḡcwk is a GUC adapta-
tion of the ideal signature functionality Fsig of [Can04] (formal description of Fsig can
be found in Figure 5); it is used to realize the certification functionality. For an un-
corrupted party it offers the capabilities of signing a message (reserved for the owner
PID) and verifying a signature. It also captures the ways in which a corrupted party
may deviate: as a signer, a corrupted party may refrain from registering the generated
key in the bulletin-board, and as a verifier it may request verification of messages with
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Functionality Fpid
sig

Parameterized by a party identity pid, functionality Fpid
sig proceeds as follows:

Key Generation: Upon receiving a value (KeyGen,sid) from some party Ppid verify that
this is the first request and sid = (pid,sid′) for some sid′. If not, then ignore the request.
Else, hand (KeyGen,sid) to the adversary. Upon receiving (Verification Key,sid,v) from
the adversary, output (Verification Key,sid,v) to Ppid .

Signature Generation: Upon receiving a value (Sign,sid,m) from Ppid , verify that sid =
(pid,sid′) for some sid′. If not, then ignore the request. Else, send (Sign,sid,m) to
the adversary. Upon receiving (Signature,sid,m,σ) from the adversary, verify that no
entry (m,σ ,v,0) is recorded. If it is, then output an error message to Ppid and halt. Else,
output (Signature,sid,m,σ) to Ppid , and record the entry (m,σ ,v,1).

Signature Verification: Upon receiving a value (Verify,sid,m,σ ,v′) from party P, where
sid = (pid,sid′) for some sid′ verify that a pair (pid,v) is recorded. If not, output
(Verified,sid,m,0) to P. Else, hand (Verify,sid,m,σ ,v′) to the adversary. Upon receiv-
ing (Verified,sid,m,φ) from the adversary do:
(a) If v′ = v and the entry (m,σ ,v,1) is recorded, then set f = 1. (This condition

guarantees completeness: If the verification key v’ is the registered one and σ is a
legitimately generated signature for m, then the verification succeeds.)

(b) Else, if v′ = v, the signer is not corrupted, and no entry (m,σ ′,v,1) for any σ ′ is
recorded, then set f = 0 and record the entry (m,σ ,v,0). (This condition guarantees
unforgeability: If v′ is the registered one, the signer is not corrupted, and never
signed m, then the verification fails.)

(c) Else, if there is an entry (m,σ ,v′, f ′) recorded, then let f = f ′. (This condition
guarantees consistency: All verification requests with identical parameters will
result in the same answer.)

(d) Else, let f = φ and record the entry (m,σ ,v′,φ)
Output (Verified,sid,m, f ) to P.

Corruption: Upon receiving a value (Corrupt,sid) from the adversary, if sid = (pid,sid′)
then mark the party Ppid as corrupt.

Fig. 5: The basic signature functionality [Can04]. The signature functionality is parametrized by
a party identity and allows only this party to generate a key and sign messages. The owner can
generate only a single key and sign only with respect to this key. Verifying a signature is done
with respect to the signing key generated by the signature functionality. The functionality accepts
verification requests from any ITI in the system. The signature functionality lets the adversary
determine the signing key, the legitimate signatures, and the results of verifications that use an
incorrect key or a different signature. When the signer is corrupted, the functionality allows the
verification process to succeed, even if the message was never signed.
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Global functionality Ḡpid
cwk for realizing Ḡcert

The functionality Ḡpid
cwk internally runs the code of Fsig and proceeds as follows:

Signature Generation: Upon receiving a value (Sign,sid,m) from Ppid , do:
(a) Verify that sid = (pid,sid′) for some sid′. If not, then ignore the request. (That is,

verify that it is the legitimate signer for this sid.)
(b) If this is the first request then do:

(i) If Ppid is corrupted, then verify that Ppid is registered in Ḡbb (otherwise, then
ignore the request).

(ii) Generate a verification key, i.e., send (KeyGen,sid) to Fsig . Upon receiving
(Verification Key,sid,v), send (Register,pid,v) to Ḡbb (done via an output
to Ppid).

(c) Send (Sign,sid,m) to Fsig . Upon receiving (Signature,sid,m,σ) from Fsig , out-
put (Signature,sid,m,σ) to Ppid .

Signature Verification: Upon receiving a value (Verify,sid,m,σ), where sid = (pid,sid′)
for some sid′, check whether a pair (pid,v) is recorded. If not, send (Retrieve,pid) to
Ḡbb, and obtain a response (Retrieve,pid,v). If v =⊥ then output (Verified,sid,m,0).
Else record (pid,v). Next, send (Verify,sid,m,σ ,v) to Fsig , and output the response
(Verified,sid,m, f ).

Corrupted Signature Verification: Upon receiving a value (Verify,sid,m,σ ,v′) from the
adversary, where sid = (pid,sid′) for some sid′, send (Verify,sid,m,σ ,v′) to Fsig , and
output the response (Verified,sid,m, f ).

Corruption: Upon receiving a value (Corrupt,sid) from the adversary, forward it to Fsig .

Fig. 6: The certification with keys functionality. The functionality Ḡcwk is parametrized by a party
identity and internally executes the code of the basic signature functionality Fsig . The functionality
does not allow generating a key without signing a message. Key generation is done internally by
the functionality. Note that keys of corrupted parties registered with Ḡbb do not have to match the
keys generated by Fsig .

respect to keys of its choice (instead of the key registered in the bulletin-board). The only
difference between the two formulations is the inability of a corrupted signer to generate
a signing key without providing a message to be signed. Nonetheless, the capabilities of
the attacker with respect to the formulations are equivalent. A formal description appears
in Figure 6. We note that Ḡcwk is a Ḡbb-subroutine respecting functionality, as defined in
Section 2.

Lemma 1. The functionality Gcwk EUC-realizes functionality Gcert and vice versa, with
respect to adaptive corruptions.

Proof. First we observe that as long as verification requests are done with the actual
verification key, the functionalities are equivalent. To handle the other scenarios, we
use the simulator’s ability to postpone signature requests of corrupted signers up to the
verification moment.

We begin by showing that Gcwk GUC-realizes functionality Gcert. The simulation
here is even simpler than in [Can04] due to the existence of Ḡbb also in the ideal
execution. We make use of an equivalent formulation of GUC-emulation with respect to
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dummy adversaries. Thus, denoting the dummy adversary by D, we wish to construct an
adversary S such that:

GEXECGcwk,D,Z ≈ GEXECGcert,S,Z (2)

The adversary S is specified as follows. For signature generation, if the signer is honest
then behave as the dummy adversary D. That is, any output of Gcert and Ḡbb is forwarded
to Z and any input of Z is forwarded to Gcert or Ḡbb, in an appropriate manner. It also
records the generated key v. If the signer is corrupted, S behaves as follows: for the
first sign request it verifies that the signer is registered in Ḡbb (if not it ignores the sign
request) and simulates the key generation procedure. After recording the generated key v
it simulates the signature generation process, without involving Gcert, and records the
tuple (m,σ ,v,1) where σ is the signature chosen by Z (except when a record (m,σ ,v,0)
exists, in which case it outputs an error message). Note that Gcert does not receive any
sign requests from a corrupted signer during the simulation of signature generation.
Signing using Gcert is postponed, and executed only if a verification request is received
for this record.

For signature verification, we simulate differently depending on the integrity of the
signer and the key used by the verifier. If the signer is honest and some uncorrupted
party makes a verification request (or a corrupted party that is using the key registered in
Ḡbb) then do the following:

(a) behave as a dummy adversary D in the retrieve process (if executed).
(b) Once (Verify,sid,m,σ) received, append the verification key, which is recorded in
Ḡbb, and forward it to to the environment Z . The response of Z is forwarded back
to Gcert. If in the output f = 0 then record (m,σ ,v′,0).

For corrupted signer, upon receiving a verification request from a honest verifier (or a
corrupted verifier that is using the key registered in Ḡbb) do the following:

(a) behave as a dummy adversary D in the retrieve process (if executed).
(b) if a record (m,σ ,v′,1) exists, where v′ is the key registered in Ḡbb, forward a sign

request on m to Gcert, pick σ to be the signature and delete the record.
(c) behave exactly as in the honest signer honest verifier scenario to emulate the com-

munication with Z . That is, append the verification key, which is recorded in Ḡbb,
and forward it to to the environment Z . The response of Z is forwarded back to
Gcert.

In case a verification request is made with a key that does not match the key registered
in Ḡbb, independently of the signer’s integrity, then simulate the verification process
by giving Z the appropriate (Verify,sid,m,σ ,v′′) and obtaining its response φ . Next,
if the tuple (m,σ ,v′′,b′) is recorded, set φ = b′, else record (m,σ ,v′′,φ). In any case,
output (Verified,sid,m,φ). It is important to note that verification requests with v′′ 6= v
are simulated without involving Gcert.

Since the simulator does nor perform any cheating, the simulation is perfect. That is,
the environment Z’s view of an interaction with S and Gcert is distributed identically to
its view of an interaction with parties running protocol Gcwk in the Ḡbb-hybrid model,
even if Z is computationally unbounded.
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Now we show the other direction: Gcert GUC-realizes functionality Gcwk. Signature
generation for a honest signer is simulated by behaving as a dummy adversary D.
If the signer is corrupted, we forward the signing request to Gcwk and pick the key
for Fsig to be the key registered in Ḡbb. In the verification process, as before, retrieve
is simulated by behaving as a dummy adversary. Upon receiving (Verify,sid,m,σ ,v)
from Gcwk, the simulator drops v and forwards the modified message to Z . The response
(Verified,sid,m,φ) of Z is forwarded to Gcwk. Note that the simulator ensures that the
key in Ḡbb is the same as the key registered in Fsig . Therefore, all simulated verification
requests are made with respect to the correct key, and hence answered exactly as in the
real execution. This follows from the functionalities being identical when the verification
is done with the key recorded in Fsig .

4.2 Using EU-CMA signatures for certification

[Can04] shows that realizing Fsig is equivalent to being EU-CMA secure (existential
unforgeability against chosen message attacks; [GMR88]). However, his theorem does
not apply to a setting where the keys are reused by arbitrary protocols. This section
extends the connection between ideal signatures and EU-CMA security to the GUC
setting. Specifically, we show its equivalence to Ḡcwk.

Unforgeable signatures. A signature scheme is a triple of PPT algorithms Σ =
(gen,sig,ver), where sig may maintain local state between activations.

Definition 5 ([GMR88]). A signature scheme Σ = (gen,sig,ver) is called EU-CMA if
the following properties hold for any negligible function ν and all large enough values
of the security parameter κ .
Completeness: For any message m, Pr

[
(s,v)← gen(1κ);σ ← sig(s,m);

0← ver(m,σ ,v)
]
< ν(κ).

Consistency: For any m, the probability that gen(1κ) generates (s,v) and ver(m,σ ,v)
generates two different outputs in two independent invocations is smaller than ν(κ).
Unforgeability: For any PPT forger F, Pr[(s,v)← gen(1κ);(m,σ)← Fsig(s,·)(v);
1← ver(m,σ ,v) and F never asked sig to sign m]< ν(κ).

Signing module. To capture re-usability of keys within different protocols, we describe
a signing module that accepts sign requests from its owner PID. This module can
be thought of as a local service process, physically running on some local machine,
providing signing service to all authorized processes on this machine. This is formally
described as an ideal functionality, denoted Ḡpid

Σ
, parametrized by a signature scheme

Σ = (gen,sig,ver) and some party ID. The keys’ re-usability is modeled by having the
functionality be shared among different SIDs, as long as they are owned by the same PID.
That is, the functionality Ḡpid

Σ
is a “local” subroutine of this PID and is not accessible by

anyone else.
The signing module separates the signing capability from secret key knowledge, and

hence allows greater flexibility in terms of corruptions. Corrupting the module captures
the scenario of complete privacy loss; corrupting a principal in a single session that
uses the module captures a weaker privacy loss, allowing the adversary to sign some
messages but not arbitrary messages. In particular, corrupting a session that uses the
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module does not provide the adversary with the secret key or with the ability to sign
messages of other SIDs. The signing module could be generalized to be selective about
which sign requests it honors (for example, as a function of the session id and message
contents). For our purpose, it suffices to consider the basic module. Formal description
of Ḡpid

Σ
appears in Figure 7.

Functionality Ḡpid
Σ

Parameterized by a security parameter κ , a key generation and sign functions gen and sign

respectively, global functionality Ḡpid
Σ

proceeds thusly when running with party Ppid:
Signature Generation: Upon receiving a value (Sign,sid,m) from Ppid , do:

(a) Verify that sid = (pid,sid′) for some sid′. If not, then ignore the request.
(b) If this is the first request run (s,v)← gen(1κ ), record (s,v).

In any case, output (Signature,sid,m,sig(s,m),v).
Corruption-module: Upon receiving a value Corrupt-module from the adversary, output s

if recorded, otherwise ignore.

Fig. 7: The signing module. The functionality Ḡpid
Σ

is parametrized by a party identity and some
signature scheme. The functionality generates a signing and verification keypair. The signing
key is kept inside ḠΣ and used to handle signing requests. The verification key is given outside,
similarly to Ḡcwk.

To our knowledge, this is the first modeling of authentication in a composable setting
to feature SID-wise corruption; prior works used PID-wise corruptions exclusively.

The equivalence. A signature scheme Σ = (gen,sig,ver) may be translated into a per-
PID protocol π

pid
Σ

that “locally” uses Gpid
Σ

. This protocol localizes the signing/verification
process and reduces trust in the setup. That is, it is no longer required to trust a global,
accessible by many parties, signing functionality; instead, each party can trust merely
his local signing module, which is running on his computer.

The protocol π
pid
Σ

proceeds as follows:

(a) When party P receives an input (Sign,sid,m), it verifies that sid = (P,sid′) for some
sid′. If not, it ignores the input. Next, it forwards (Sign,sid,m) to Gpid

Σ
. It obtains

a verification key v and a signature σ on message m. If no key is registered, then
forward v to Gbb and outputs (Signature,sid,m,σ).

(b) When party P receives an input (Verify, ŝid,m,σ), where ŝid = (p̂id,sid′), it checks
whether a pair (p̂id,v) is recorded. If not, send (Retrieve, p̂id) to Gbb and obtain
a response (Retrieve, p̂id,v). If v = ⊥ then output (Verified, ŝid,m,0). Else record
(p̂id,v). Next output

(
Verified, ŝid,m,ver(m,σ ,v)

)
.

Lemma 2. Let Σ = (gen,sig,ver) be a signature scheme. If Σ is EU-CMA, then π
pid
Σ

EUC-realizes Gpid
cwk with respect to adaptive corruptions.
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4.3 Defining and realizing non-deniable message authentication

This section shows that the most basic PKI, i.e., bulletin-board, suffices for secure
authentication, even if the keys are reused in other arbitrary protocols. This is similar
to the last step of [Can04]’s construction, except that we use a weaker authentication
functionality—one that lets the adversary obtain a signature of the ‘authentication
transaction’—to capture non-deniability. (The signature serves as a transferable ‘proof
of transaction’.)

We first formulate a non-deniable ideal authentication functionality Fcert-auth. The
non-deniability property is obtained via the usage of ideal certificates. Then, we show
that the classic signature-based authentication protocol (presented in Figure 9) GUC-
securely realizes this relaxed authentication functionality. Finally, using the composition
theorem and the results of Sections 4.1 and 4.2, we obtain an authentication protocol
using merely existentially-unforgeable signatures and a global bulletin-board.

Functionality Fcert-auth

(a) Upon receiving an input (Send,S,R,sid,m) from ITI S, output (Sent,S,R,sid,m) to
the adversary, and, after a delay, provide the same output to R and halt.

(b) Upon receiving a value (Corrupt,S,sid) from the adversary, mark S as corrupted.
(c) Upon receiving a value (Corrupt-send,S,R,sid,m′) from the adversary, if S is marked

as corrupted and an output was not yet delivered to R, then output (Sent,S,R,sid,m′)
to R and halt.

(d) Upon receiving (External-info,S,R,sid,m′) from the adversary, if an output was not yet
delivered to R, then output

(
Sign,(S,(R,sid)),(m′,sid,R)

)
to ḠS

cert (on behalf of S) and
forward the response to the adversary.

(e) Upon receiving (Corrupt-sign,S,R,sid,m′) from the adversary, if S is marked as cor-
rupted then output

(
Sign,(S,R,sid),(m′,sid,R)

)
to Ḡcert and forward the response to

the adversary.

Fig. 8: The non-deniable authentication functionality. The adversarial ability to obtain legitimate
signatures on messages of its choice makes the authentication non-deniable. Signatures are
obtained by instructing the dummy party S to communicate with Ḡcert.

On capturing transferability. Since the essence of transferability is that “anyone”
may become convinced of the message that was authenticated, one might attempt to
capture transferability by having Fauth disclose to any principal in the system, upon
request, that an authentication took place; the identities of the originator and recipient;
and the contents of the authenticated message. This modeling allows any principal in
the system to become convinced in the contents of the authenticated message and the
identities of its originator and recipient. However, this modeling of authentication poses
unnecessary requirements on the implementing protocol, such as supporting inquiries by
third parties in an authenticated manner.

The non-deniable authentication functionality. The functionality Fcert-auth, pre-
sented in Figure 8, is a non-deniable version of the authentication functionality of
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[Can04]. The non-deniability of the functionality is captured by allowing the adversary
to request signatures on messages affixed with Fcert-auth’s session id (SID). Including the
SID in the signed message binds the signature to the execution at hand, and prevents
the adversary from reusing the signatures in other sessions. Later, any entity can verify
this signature and be convinced that this message was indeed sent from S to R. Our
Fcert-auth is a Ḡcert-subroutine-respecting functionality. We highlight that the signature
provided during the authentication process includes the identity of the intended recip-
ient and the session identifier. This has two consequences: it does not guarantee the
receiver deniability since it allows to publicly verify not only that a specific message
was sent by some ITI, but also the intended recipient’s identity; and it also prevents
the adversary from relaying signatures between different sessions. The authentication
functionality enables a corrupted sender to produce many signature on messages of its
choice. This enables corrupting parties without corrupting their signing module. One
could define, and realize by a similar protocol, a receiver-deniable version of Fcert-auth.
However, receiver-deniable authentication enables the adversary to reroute messages to
a destination of its choice.

Protocol φauth for realizing Fcert-auth

(a) Upon receiving an input (Send,A,B,sid,m), party A sets sid′ = (A,B,sid), sets m′ =
(m,sid,B), sends (Sign,sid′,m′) to Ḡcert, obtains the response (Signature,sid′,m′,σ),
and sends (sid,A,m,σ) to B.

(b) Upon receiving (sid,A,m,σ), party B sets sid′ = (A,B,sid), sets m′ = (m,sid,B), sends
(Verify,sid′,m′,σ) to Ḡcert, and obtains a response (Verified,sid′,m′, f ). If f = 1 then
B outputs (Sent,A,B,sid,m) and halts. Else B halts with no output.

Fig. 9: The signature-based authentication protocol.

Lemma 3. The protocol φauth GUC-emulates functionality Fcert-auth with respect to
adaptive corruptions.

Proof. The proof here is simpler than the proof of [Can04] due to having the certificate
functionality in both the ideal and real executions.
LetD be the dummy adversary that interacts with parties running φauth in the Ḡcert-hybrid
model. We construct an ideal-process adversary (simulator) S such that the view of any
environment Z from an interaction with D and φauth is distributed identically to its view
of an interaction with S in the ideal process for Fcert-auth. The simulator S proceeds as
follows.

Simulating the sender. When an uncorrupted party A is activated with input
(Send,sid,B), S obtains this value from Fcert-auth. Then, S replies with (External-info,
A,B,sid,m) and behaves as D in the interaction with Ḡcert. That is, S forwards to Z the
message

(
Sign,(A,B,sid),(m,sid,B)

)
from Ḡcert, and forwards back to Ḡcert the obtained

signature σ . Next, S hands Z the message (sid,A,m,s) sent from A to B. If the sender is
corrupted, then all that S has to do is to behave as the dummy party D in the interaction
with Ḡcert.
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Simulating the verifier. When Z instructs to deliver a message (sid,A, m̄,σ) to
an uncorrupted party B, S first sends

(
Verify,(A,B,sid),(m̄,sid,B),σ

)
to Ḡcert. If Ḡcert

outputs
(
Verified,(A,B,sid),(m̄,sid,B),σ , f = 1

)
then do the following: if the sender is

honest, then allow Fcert-auth to deliver the message which was sent in the ideal process
to B. If the sender is corrupted, then forward (Corrupt-send,sid, m̄) to Fcert-auth. In case
f = 0 do nothing.

It is readily seen that the combined view of Z and D in an execution of φauth
is distributed identically to the combined view of Z and S in the ideal process. In-
deed, the only case where the two views may potentially differ is if the receiver ob-
tains (Verified,sid′,m′,σ , f = 1) from Fcert-auth for an incoming message (sid,A,m,σ),
while A is honest and never sent this message. However, if A never sent (sid,A,m,σ),
then the message m′ = (m,sid,B) was never signed by Ḡcert with session id (A,B,sid);
thus, according to the logic of Ḡcert, B would always obtain (Verified,sid′,m′,σ , f = 0)
from Ḡcert.

Now we are ready to fully instantiate the ideal functionalities used for authentication.
The resulting authentication protocol is the signature protocol used in practice, which is
depicted in Figure 1 along with the minimal PKI required for this task.

Corollary 1. If EU-CMA signatures exist then protocol φ
π̄Σ /Ḡcert
auth GUC-realizes function-

ality Fcert-auth with respect to adaptive corruptions.

Proof. By combining Lemma 1 with Theorem 2 we manage to reduce the security
of Gcert to the security of πΣ . This allows us to combine Lemma 3 with Theorem 5 and
conclude that φauth GUC-realizes Fcert-auth, where φauth uses π̄Σ with ḠΣ instead of Ḡcert.

5 Non-deniable Key Exchange

We present a non-deniable key exchange functionality Fcert-ke and show that the classic
signed-Diffie-Hellman protocol φke (see ISO 9798-3, [CK01]), realizes it. The proto-
col φke is presented in Figure 10.

The non-deniable key exchange functionality. The functionality, presented in Fig-
ure 11, is a key exchange functionality coupled with Ḡcert, similarly to Fcert-auth. The
main difference between our functionality and [DKSW09] is that we do not guarantee
mutual authentication. That is, Fcert-ke allows a party to have a key also if the other party
aborted before establishing a shared key.

Lemma 4. Under the Decisional Diffie-Hellman (DDH) assumption, the protocol φke
GUC-emulates functionality Fcert-ke with respect to adaptive corruptions.

Proof. Let p, q, g be as in φke and let D = {gz}z∈Z?
q . We construct a simulator S that

simulates the execution of the protocol with the dummy adversary D and environment Z .
The simulation of uncorrupted parties is done by honestly executing the protocol. That
is, the simulator honestly generates the share of the secret key, and obtains the necessary
certificates via Ḡcert of the appropriate party. Once the simulation reaches the output step
of party A, the simulator provides Fcert-ke with (setkey,sid,S,R,k′) where k′ is set to be
the simulated key. More formally,
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Protocol φke

Parametrized by primes p and q such that q | p− 1, and an element g of order q in Z∗p,
protocol φke proceeds as follows:

(a) Upon receiving an input (keyexchange,sid,A,B), party A samples x $← Zq, and sends
(sid,A,α = gx) to B.

(b) Upon receiving (sid,A,α), party B samples y $← Zq, sets sid′ = (A,(B,sid)), sets
m′ = (α,β = gy,sid,A,B), and sends (Sign,sid′,m′) to ḠB

cert, obtains the response
(Signature,sid′,m′,σB), sends (sid,B,β ,σB) to A; computes the key k = αy; and
erases y.

(c) Upon receiving (sid,B,β ,σB), party A sets sid′ = (A,(B,sid)), sets m′ = (α,β ,
sid,A,B), and sends (Verify,sid′,m′,σB) to ḠB

cert, obtains the response (Verified,
sid′,m′, f ). If f = 1 then A sends (Sign,sid′,m′) to ḠA

cert, obtains the response
(Signature,sid′,m′,σA), sends (sid,A,σA) to B; computes the key k = β x; erases x;
and outputs (setkey,sid,A,B,k) and halts. Else A halts with no output.

(d) Upon receiving (sid,A,σA), party B sends (Verify,sid′,m′,σA) to ḠA
cert, obtains the

response (Verified,sid′,m′, f ). If f = 1 then B outputs (setkey,sid,A,B,k) and halts.
Else B halts with no output.

Fig. 10: The non-deniable-authentication-based key exchange protocol.

(a) The simulator samples x $← Zq and outputs (sid,A,α = gx) to Z as if it was sent
by A.

(b) Upon receiving (sid,A,α ′) from Z as a message to be delivered to {0,1} (recall
that the channels are unauthenticated and hence Z can instruct D to deliver a
different message instead). S samples y $← Zq, sets sid′ =

(
A,(B,sid)

)
, sets m′ =

(α ′,β = gy,sid,A,B), and sends (External-info,B,sid′,m′) to Fcert-ke, obtains the
response (Signature,sid′,m′,σB), sends (sid,B,β ,σB) to Z as if this message was
sent by B.

(c) Upon receiving (sid,B,β ′,σ ′B) from Z , the simulator verifies the signature on m′ =
(α,β ′,sid,A,B) by sending an appropriate input to ḠB

cert, If the signature is not
verified, the simulation of A stops. Otherwise, it sends (External-info,B,sid′,m′)
to Fcert-ke, obtains the response (Signature,sid′,m′,σA), and outputs (sid,A,σA)
to Z . It also computes the key k′ = (β ′)x, gives input (setkey,sid,A,B,k′) to Fcert-ke,
and instructs Fcert-ke to give output to A.

(d) Upon receiving (sid,A,σ ′A) the simulator verifies the signature on m′ = (α ′,β ,sid,
A,B) by sending an appropriate input to ḠA

cert. If the signature is not verified, the
simulator halts. Otherwise, it instructs Fcert-ke to give output to B.

Upon corruption, the simulator reveals the secret information (if any) associated with
the simulated transcript of the newly corrupted party. More concretely, if the environment
requests to corrupt party A or party B before A outputs the key, then S reveals the share x
or the simulated key k′ respectively; in any other case, it reveals the secret key k provided
to it by Fcert-ke.

The analysis of S considers three possible scenarios:
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(a) No corruption case: correctness can be violated by Z only with negligible probabil-
ity. That is, the only way to have parties in the real execution output different keys is
by forging a signature, which can happen negligibly often. In the ideal execution,
correctness always holds and thence indistinguishability follows. Conditioned on Z
not forging any signature, the view of Z in the real execution consists of {gx,gy,gxy}
while in the simulated execution the view is {gx,gy,gr} for random r. If Z can
distinguish the two executions with non-negligible advantage, then we can construct
an adversary A that internally runs Z and breaks the DDH assumption.

(b) Corruption after A produced an output: this is similar to the no corruption case.
After party A produced an output, there is no secret information available (it is erased
beforehand) and hence indistinguishability follows as in the no corruption case.

(c) Corruption before A produced an output: in both executions the outputted key is
distributed identically, since in the ideal execution the uncorrupted party is honestly
simulated and the output is set to be the simulated key. Moreover, the secret share x
of A (revealed in case Z requests to corrupt party A after the first message is sent) is
distributed identically in both executions. ut

Functionality Fcert-ke

The functionality Fcert-ke parametrized by a domain D proceeds as follows:
(a) Upon receiving message of the form (keyexchange,sid,S,R) from some ITI S, if this is

the first activation, set k =⊥ and send (keyexchange,sid,S,R) to S . (Otherwise, ignore
the message).

(b) Upon receiving a value (Corrupt,sid,P) from S, mark P ∈ {S,R} as corrupted and
output k to S.

(c) Upon receiving a message of the form (setkey,sid,S,R,k′) from the adversary, if either

S or R is corrupt, then set key k = k′, else set k $← D. Output a delayed message
(setkey,sid,S,R,k) to S and R and halt.

(d) Upon receiving (External-info,P,sid,m′) from the adversary, where P ∈ {S,R}, if k 6=
⊥ and an output was not yet delivered to either party, output

(
Sign,(P,(P′,sid)),

(m′,sid,P)
)

to ḠP
cert (where P′ is the other party), and forward the response to the

adversary.
(e) Upon receiving (Corrupt-sign,sid,P,m′) from the adversary, where P ∈ {S,R}, if P is

marked as corrupted then output
(
Sign,(P,(P′,sid)),(m′,sid,P)

)
to ḠP

cert and forward
the response to the adversary.

Fig. 11: The non-deniable key exchange functionality Fcert-ke. The functionality allows the adver-
sary to request signatures on messages of its choice, together with the session and parties id. This
behavior is allowed as long as the key it not outputted, to prevent the functionality from being
used beyond the lifetime of the protocol.
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6 Capturing Invisible Adaptive Attacks

Recently, Nielsen and Strefler [NS14] introduced a concept called Invisible Adaptive
Attacks (IAA), which the GUC framework fails to capture, and showed how to immune
the GUC model from such attacks, for CRS-style setup assumptions. An IAA is an
attack wherein a protocol behave insecurely with respect to some specific values of the
global setup, but continues to behave securely under other values of the setup. Since the
setup is long-lived and fixed for the lifetime of the system, such protocols should be
rejected by the security definition. However, at present, the security definition accepts
such protocols, since it examines candidate protocols’ behavior only with respect to the
average case of the setup-generating algorithm.

The approach of [NS14] for capturing such attacks is to consider worst-case security,
i.e., guarantee security with respect to any setup. This is incorporated in the GUC model
by letting the environment pick the random coins the setup (e.g. a CRS) uses. For our
protocols, IAA security boils down to letting the environment determine the random
coins of Ḡpid

Σ
. This additional power does not influence the security and the analysis

of φauth and φke, since the only possible way to distinguish ideal from real is to forge
a signature. However, since the environment is oblivious to the secret keys, its forging
ability remains negligible and security continues to hold.

An alternative defnition. We also propose an alternative approach for defining se-
curity in a way that captures such “invisible attacks”. Rather than defining security of
a protocol against a worst-case choice of the set-up, we define security of a protocol
relative to a specific CRS, or more generally relative to a specific random input for the
set-up functionality. This way, it is possible o capture a setting where the same protocol
is considered (or, believed to be) secure with resepect to some setup values, and insecure
with respect to others. The approach is similar to the definition of security of a fixed hash
function by Rogaway [Rog06]. That is, security is captured by a reduction from knowing
a distinguishing environment (with respect to a specific setup value) to breaking a hard
problem. This implies that the designer of a protocol is in charge of specifying the hard
problem P for the security reduction. The meaning of such reduction is that, as long as
solving P is believed to be hard, coming up with a distinguishing environment must be
hard as well. It is stressed that here the existence of a reduction is part of the definition
of seccurity rather than part of the security argument. Furthermore, P can relate either
to properties of the set-up itself, or alternatively to other constructs. More formally, let
P be some problem; denote by G(P) the game corresponding to P; and let B(P) be the
probability bound on winning in G(P). For a shared setup Ḡ we denote by str = (s,v) a
value of Ḡ with s and v being the secret and public parts respectively.

Definition 6 (Reduction-UC). Let π and φ be Ḡ-subroutine respecting multi-party
protocols. We say that π RUC-emulates φ with respect to a value str = (s,v) of G
and a problem P if there exist an adversary S and a reduction f such that for any
environment Z such that if

EXEC ¯str
π,D,Z 6≈ EXEC ¯str

φ ,S,Z

we have that Pr[ f (Z,v) wins in G(P)]> B(P).
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An important observation is that RUC-security implies GUC-security, and the composi-
tion theorem easily holds for RUC-security. More formally, the simulator is the same
as in the composition theorem proof, the hard problem is the problem the subroutine
is defined with respect to, and the reduction is done by running the composition proof
to obtain a distinguishing environment for the subroutine protocol and applying to that
environment the reduction guaranteed for the subroutine by the RUC security definition.
Another important benefit of this definition is that it easily induces a standard GUC-
security definition: all we need to do is consider a setup-generating algorithm instead of a
specific fixed string. For example, for ACRS this would be the key-generation algorithm.
It should be noted that all GUC secure protocols (that we are aware of) are already
proven secure by the way of reduction to some hard problem, and therefore RUC-secure.
For example, the proof of our authentication and key-exchange protocols is done by a
reduction to EU-CMA signatures and the DDH assumption respectively.
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