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Abstract. The notion of extended nested dual system groups (ENDSG)
was recently proposed by Hofheinz et al. [PKC 2015] for construct-
ing almost-tight identity based encryptions (IBE) in the multi-instance,
multi-ciphertext (MIMC) setting. However only a composite-order in-
stantiation was proposed and more efficient prime-order instantiations
are absent. The paper fills the blank by presenting two constructions.

We revise the definition of ENDSG and realize it using prime-order
bilinear groups based on Chen and Wee’s prime-order instantiation of
nested dual system groups [CRYPTO 2013]. This yields the first almost-
tight IBE in the prime-order setting achieving weak adaptive security in
MIMC scenario under the d-linear (d-Lin) assumption. We further en-
hanced the revised ENDSG to capture stronger security notions for IBE,
including B-weak adaptive security and full adaptive security. We show
that our prime-order instantiation is readily B-weak adaptive secure and
full adaptive secure without introducing extra assumption.

We then try to find better solutions by fine-tuning ENDSG again
and realizing it using the technique of Chen, Gay, and Wee [EUROCRYPT
2015]. This leads to an almost-tight secure IBE in the same setting with
better performance than our first result, but the security relies on a non-
standard assumption, d-linear assumption with auxiliary input (d-LinAI)
for an even positive integer d. However we note that, the 2-LinAI assump-
tion is implied by the external decisional linear (XDLIN) assumption.
This concrete instantiation could also be realized using symmetric bilin-
ear groups under standard decisional linear assumption.
Keywords: Identity based encryptions, Dual system groups, Tight se-
curity, Security model, Prime-order bilinear groups
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1 Introduction

Dual System Encryption. Recently we have witnessed a breakthrough of
proof technique in the field of functional encryptions. In 2009, Waters [36] pro-
posed a new proof paradigm for identity based encryptions (IBE), called dual
system technique, and obtained the first adaptively secure IBE with short public
key in the standard model whose security relies on a static assumption and the
security loss is O(q) where q is the number of key extraction queries. From a
high-level view, the dual system technique works with two copies of some target
cryptographic primitive such as IBE. The first copy is put into the so-called
normal space and acts as the real system, while the second copy is put into
the so-called semi-functional space and only used in the proof. Furthermore, the
independence of the two spaces (say, orthogonality under pairing operations)
allows us to make some changes in the semi-functional space for proof but still
maintain the correctness in the normal space. It is worth noting that the new
technique permits the simulator to reply all queries made by the adversary and
avoids the security loss caused by the classical partitioning technique [12, 10, 35].

The revolution was then spreading across the field of functional encryptions.
In particular, the dual system technique has been applied for establishing adap-
tive security of various types of functional encryptions, ranging from simple
functionality, such as IBE [9, 16, 22, 15, 25, 14, 32] to expressive and complicated
functionality, like ABE and IPE [26, 27, 31, 5, 16, 37, 7, 13]. Some of them applied
the dual system technique in a modular and abstract fashion such as Wee’s
predicate encoding [37] and Attrapadung’s pairing encoding [5].

Almost-tight Reduction. The dual system technique also helped us to go
further. Chen and Wee [15] combined the dual system technique with the proof
idea underlying the Naor-Reingold pseudorandom function [28] and achieved the
first almost-tight IBE from a standard assumption in the standard model. The
security loss is O(n) where n is the length of identities, and unrelated to the
number of key extraction queries anymore. They established the real system
in the normal space and a mirror one in the semi-functional space for proof
as the original dual system technique [36]. However, instead of dealing with
key extraction queries (in the semi-functional space) separately as Waters [36],
they handled all (i.e., q) secret keys as a whole in the next step following the
proof strategy of Naor and Reingold [28]. In detail, we may imagine the master
secret key as a truly random function taking identities as input. Starting from
the original master secret key whose domain is just {ε}, the proof argues that
one can double the domain size until it reaches the size of the identity space
if identities are encoded in a bit-by-bit fashion [35]. For identity space {0, 1}n,
only n steps are required. Finally, the property of the random function allows
us to information-theoretically hide the challenge message.

Recent work by Hofheinz et al. [21] extended Chen and Wee’s result [15]
and achieved almost tightness in the multi-instance, multi-ciphertext (MIMC)
setting where the adversary simultaneously attacks multiple challenge identities
in multiple IBE instances. In Chen and Wee’s paradigm [15], the ith step that
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increases the domain size from 2i−1 to 2i can only handle the situation where all
challenge ciphertexts share the same ith bit, which no longer holds in the MIMC
setting. The proposed solution [21] is to further split the semi-functional space
into two independent (in some sense) subspaces, labelled by ∧ and ∼ respectively.
The ith step starts from ciphertexts with ∧-semi-functional component. They
then move the semi-functional components in all ciphertexts for identities whose
ith bit is 1 to the ∼-semi-functional space. At this moment, (1) in the ∧-semi-
functional space, all ciphertexts share the same ith bit 0; (2) in the ∼-semi-
functional space, all ciphertexts share the same ith bit 1, which means that one
can now applied Chen and Wee’s proof strategy [15] in both subspaces separately.

We emphasize that achieving tight reduction, especially in the MIMC set-
ting, is of practical importance. Consider a scenario involving λ instances and Q
ciphertexts per instance. A trivial but generic transformation arises multiplica-
tive O(λQ) security loss where both λ and Q may be quite huge quantities, say
230. Therefore a large group should be employed to compensate the loss. This
always leads to longer ciphertexts and lower encryption/decryption procedures.

Problem and Goal. Hofheinz et al. only provided an instantiation of the above
proof strategy using composite-order bilinear groups [21]. Our goal is to realize
a fully and almost-tightly secure IBE in the MIMC setting using prime-order
bilinear groups. We emphasize that it is not just a theoretical interest to pursue
such a solution. Most schemes (including [21]) using composite-order bilinear
groups base their security on the Subgroup Decision Assumption [8] which implies
the hardness of factoring the group order. This forces us to work with elliptic
curve groups with quite large, say 1024 bits, base field when implementing the
scheme. In contrast, for constructions in the prime-order setting, we could employ
smaller base field, say 160 bits, without sacrificing the security. Although the
construction now becomes complex in general, this still brings us a considerable
advantage in both computation and space efficiency.

1.1 Motivation and Observation

Hofheinz et al.’s work [21] roughly follows the style of [15]. In particular, they
first extended the notion of Nested Dual System Groups (NDSG) proposed by
Chen and Wee [15], then proposed a general IBE construction from the extended
NDSG (ENDSG) in the MIMC setting, and finally presented an instantiation of
ENDSG using composite-order bilinear groups. Therefore it is sufficient for our
purpose to realize ENDSG using prime-order bilinear groups and apply the gen-
eral transformation in [21]. However we observe that their definition of ENDSG
sets too strong requirements on algebraic structure of underlying groups, which
makes it hard to be instantiated using existing techniques for prime-order bilin-
ear groups.

An ENDSG describes a set of abstract groups with a bunch of structural
and computational requirements supporting Hofheinz et al.’s proof strategy. We
roughly recall5 that an ENDSG defined in [21] consists of five algorithms: SampP,

5 The notation is slightly different from [21].
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SampG, SampH, ŜampG, and S̃ampG. Informally, the first algorithm generates a
set of groups G,H,GT of order N (as well as other parameters) and the other
four algorithms are used to sample random elements from some subgroup of G
or H (which are associated with ciphertexts and secret keys, respectively, in the
context of IBE). We emphasize that they required that

– Groups G and H are generated by some g ∈ G and h ∈ H, respectively.
(From the specification of group generator G.)

– “ The outputs of SampG, ŜampG, and S̃ampG are distributed uniformly over
the generators of different nontrivial subgroups of Gn+1 of coprime order,
respectively. ” (From the G-subgroups.)

However, nearly all techniques realizing dual system technique in the prime-
order setting employs vector spaces over Fp (for a prime p) to simulate group
G and H [25, 27, 31, 15, 16, 13]. Meanwhile subgroups of G and H are naturally
simulated by its subspaces. Firstly, since a vector space is an additive group
but not cyclic in general, neither G nor H is cyclic. Secondly, any d-dimensional

subspace has pd vectors, thus the orders of the outputs of SampG, ŜampG, and

S̃ampG must share a common factor p. In a word, techniques based on vector
spaces by no means meets the requirements shown above.

Fortunately, we observe that both requirements are applied nowhere but
to provide random self-reducibility of computational requirements (including
LS1, LS2, NH) when they proved “ENDSG implies IBE”. For example, the Left
Subgroup Indistinguishability 1 (LS1) said that, for any (pp, sp)← SampP(k, n),
the following two distributions are computationally indistinguishable.

{g : g← SampG(pp)} and
{

g · ĝ : g← SampG(pp), ĝ← ŜampG(pp, sp)
}
.

Given T which is either g or g · ĝ, the simulator (in the proof) can sample
s ← Z∗N and generate another independent problem instance Ts following the
two requirements we have reviewed. We note that this property is crucial for
achieving almost-tight reduction in the MIMC setting where the adversary is
able to enquire more than one challenge ciphertext. This suggests that, if we
adapt the ENDSG to support such random self-reducibility explicitly, it will still
imply an IBE in MIMC setting and the limitations on underlying groups may be
removed. As this happens, many existing techniques in the prime-order setting
can now be applied to realize ENDSG and finally derive an almost-tight IBE in
the MIMC setting using prime-order bilinear groups.

1.2 Contributions and Techniques

In this paper, we revise the definition of ENDSG, and show that the revised
ENDSG not only almost-tightly implies an IBE in the MIMC setting but also can
be tightly instantiated using prime-order bilinear groups. Putting them together,
we obtain a fully and almost-tightly secure IBE in the same setting from prime-
order bilinear groups. In particular, we proposed two instantiations: the first one
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is proven secure under the d-linear assumption (d-Lin), while the second one is
proven secure under a stronger assumption, d-linear assumption with auxiliary
input, d-LinAI for short, but achieves shorter keys and ciphertexts.

Revisiting Extended Nested Dual System Groups. Our ENDSG is de-
fined mainly in the spirit of [21] but with the difference that we provide (in
requirements like LS1) enough independently-sampled subgroup elements di-
rectly instead of assuming some special algebraic structure. As an example, we
define LS1 as: for any (pp, sp) ← SampP(k, n), the following two distributions
are computationally indistinguishable.{

{gj}j∈[q] : gj ← SampG(pp)
}

and{
{gj · ĝj}j∈[q] : gj ← SampG(pp), ĝj ← ŜampG(pp, sp)

}
.

Here the parameter q depends on the number of challenge ciphertexts. This
makes the definition more general and allows us to realize the notion using
diverse algebra frameworks, especially prime-order bilinear groups. On the other
hand, it still almost-tightly implies a fully secure IBE in the MIMC setting. The
construction and the proof are nearly the same as [21].

To be fair, Hofheinz et al.’s definition is more convenient in the sense that
any instantiation of ENDSG immediately results in an almost-tight IBE in the
MIMC setting. In contrast, an instantiation of our definition with loose security
reduction (say, with security loss O(q)) clearly can not lead to tightly secure IBE.
Hence, when working with our definition, we should not jump to the conclusion
before checking the tightness. We also remark that we do not negate prime-order
instantiations of Hofheinz et al.’s ENDSG.

Instantiation from d-Linear Assumption. We realize our revised ENDSG
by extending the prime-order instantiation of NDSG by Chen and Wee [15]. The
security only relies on the d-Lin assumption and the security loss is O(d) and
independent of the number of samples, say q in the LS1 example, given to the
adversary. By the generic construction [21], we obtain the first almost-tight IBE
in the MIMC setting in the prime-order setting and fill the blank left in [21].

Technically, we extend the basis from 2d × 2d matrix used in [15] to 3d ×
3d matrix in order to accommodate the additional semi-functional space. In
detail, the first d-dimension subspace is the normal space, the next d-dimension
subspace is the ∧-semi-functional space, and the last d-dimension subspace is
the ∼-semi-functional space.

The main challenge is to realize the Left Subgroup Indistinguishability 2 (L-
S2) property (c.f. Section 3). Roughly, we must prove that g · ĝ (sampled from
the normal space and ∧-semi-functional space of G) and g · g̃ (sampled from the
normal space and ∼-semi-functional space of G) are computationally indistin-

guishable even when the adversary can access to ĥ∗ · h̃∗ ∈ H where ĥ∗ ∈ H is
orthogonal to the normal and ∼-semi-functional space of G and h̃∗ ∈ H to the
normal and ∧-semi-functional space of G. To simulate ĥ∗ · h̃∗, we further extend



6 J. Gong et al.

the subspace of ĥ∗ and h̃∗ from 1-dimension in [15] to d-dimension which al-
lows us to utilize the technique for proving right subgroup indistinguishability of
Chen-Wee’s prime-order instantiation of dual system groups [16]. So as to sup-
port this technical extension and conform to our revision, we model the process

of sampling ĥ∗ and h̃∗ as two algorithms ŜampH
∗

and S̃ampH
∗

respectively, and
give adversary adequate samples in related computational requirements. With
such high-dimension ĥ∗ and h̃∗, the proof of Nested-hiding Indistinguishability
(NH) (c.f. Section 3) will also be extended accordingly.

Achieving Stronger Security Guarantee. Hofheinz et al. [21] achieved weak
security from their ENDSG where the adversary is allowed to make single chal-
lenge query for each identity in each instance. They introduced a variant of
the BDDH assumption (s-BDDH) and proved the full security of their original
construction where the above restriction on the adversary is removed. This ad-
ditional computational requirement is realized under the dual system bilinear
DDH assumption (DS-BDDH).

The revisions we have made do not involve the s-BDDH assumption, and the
resulting ENDSG only leads to weak security. Motivated by and based on our
prime-order instantiation, we investigate two flavors of stronger security: B-weak
and full adaptive security. The former model allows adversary to make at most
B challenge queries for each identity in each instance where B is a prior bound,
while the latter one sets no limitation on the number of challenge queries on a
single identity, i.e., polynomially many queries are allowed.

For each of them, we follow Hofheinz et al.’s workflow. Concretely, to achieve
stronger security, we enhance the non-degeneracy property in our revised ENDS-
G and update the last step of Hofheinz et al.’s proof (decoupling challenge mes-
sages and ciphertexts) to make it sound in stronger models, where the non-
degeneracy property is applied. We then prove that our instantiation of ENDSG
under the d-Lin assumption (see Section 4) indeed satisfies the enhanced non-
degeneracy property. The two results together imply an IBE with stronger secu-
rity guarantee and almost-tight reduction in the MIMC setting. In particular,

1. We enhance the non-degenerate property to B-bounded version which states
that the non-degeneracy property holds even when a single ĥ∗ works with
B ĝ0’s where B is a prior bound. It is easy to show that our instantiation
under the d-Lin assumption is d-bounded non-degenerated unconditionally.

2. We enhance the non-degeneracy property to computational version which is
essentially similar to the s-BDDH assumption [21] and states that the non-

degeneracy property holds even when a single ĥ∗ works with polynomially
many ĝ0’s. Luckily, we can prove that our instantiation is computationally
non-degenerated under the d-Lin assumption, and no additional assumption
is required.

Towards More Efficient Instantiation. Having obtained the first construc-
tion, we continue to purse more efficient solutions. The main idea is to reduce
the dimensions of two semi-functional spaces. However this forces us to base the
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security on a non-standard assumption, d-LinAI assumption (c.f. Section 7) for
an even positive integer d. We argue that the concrete assumption with d = 2
is implied by the classical external decision linear assumption (XDLIN) [1]. We
give an overview of our method and the resulting IBE scheme in Section 7. All
details are given in the full version of the paper.

1.3 Comparison and Discussion

We make a comparison among existing almost-tightly secure IBE schemes in
the MIMC setting in terms of time and space efficiency. The details are shown in
Table 1. Our comparison involves the composite-order construction by Hofheinz
et al. [21], the prime-order construction in Section 5 based on the decisional
linear (DLIN, 2-Lin) and symmetric external Diffie-Hellman (SXDH, 1-Lin) as-
sumption, and the prime-order construction from Section 7 based on the XDLIN
(2-LinAI) assumption. As a base line, we also consider the efficiency of prime-
order construction by Chen and Wee [15] and Blazy et al. [9], which is not built
for the MIMC setting.

Scheme |G| Assum.
|mpk| |sk| |ct| TEnc TDec MIMC

G1/G GT G2/G G1/G GT E1/E ET P

[15] P
d-Lin 2d2(2n + 1) d 4d 4d 1 4d2 d 4d

%DLIN 16n + 8 2 8 8 1 16 2 8
SXDH 4n + 2 1 4 4 1 4 1 4

[9]
P

d-Lin (2n + 1)d2 + d d 2d + 1 2d + 1 1 2d2 + 1 d 2d + 1

%DLIN 8n + 6 2 5 5 1 9 2 5
SXDH 2n + 2 1 3 3 1 3 1 3

[21] C Static 2n + 1 1 2 2 1 2 1 2 "

Sec. 5 P
d-Lin 3d2(2n + 1) d 6d 6d 1 6d2 d 6d

"DLIN 24n + 12 2 12 12 1 24 2 12
SXDH 6n + 3 1 6 6 1 6 1 6

Sec. 7 P
d-LinAI 2d2(2n + 1) d 4d 4d 1 4d2 d 4d

"
XDLIN 16n + 8 2 8 8 1 16 2 8

Table 1. Comparing Efficiency among existing and proposed almost-tight IBE
schemes. n is the length of identities. Column |mpk|, |sk|, and |ct| show the size of
master public keys, user’s secret keys and ciphertexts, respectively. Each sub-column
contains the number of elements in G, G1, G2, and GT . Column TEnc and TDec show
encryption and decryption cost, respectively. Each sub-column E, E1, and ET shows
the number of exponentiations on group G, G1, and GT , respectively, and sub-column
P shows the number of pairings. Column “Assum.” shows the underlying assumption.
“Static” means static assumptions in the composite-order bilinear group. Column “|G|”
indicates the group order, “P” for prime and “C” for composite order, respectively.

Hofheinz et al.’s construction (see the third row) works with a symmetric
bilinear group whose order is the product of four distinct primes, the sizes of
group elements are much larger, and exponentiation and pairing operations are
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much more expensive. Therefore the overall efficiency is not acceptable even
though the numbers of group elements in msk, sk and ct are smaller and Enc
and Dec involve less exponentiation and pairing operations.

When instantiating our first proposal (see the fourth row) under the DLIN
assumption, each group element in G and H is a 6-dimension vector over G1 and
G2, respectively, where G1 and G2 are source groups of a prime-order bilinear
group. When instantiating under the SXDH assumption, each group element in
G and H is a 3-dimension vector over G1 and G2, respectively. Compared with
Blazy et al.’s construction [9], both size of mpk, sk and ct and cost of Enc and
Dec are (at least) doubled in our construction. On the other hand, in our second
instantiation based on the XDLIN assumption (see the last row), each group
element in G and H is a vector of 4-dimension over G. Although the resulting
IBE is still less efficient than Blazy et al.’s construction [9] under the DLIN
assumption, the stronger computational assumption (i.e., XDLIN) helps us to
narrow the gap. We may view this as a tradeoff between strength of security and
efficiency without changing the security model. We leave it as an open problem
to find more efficient fully secure IBE with tight reduction in the MIMC setting,
especially from standard d-Lin assumption.

1.4 Related Work

Dual System Groups and Its Variants. Chen and Wee proposed the notion
of dual system groups [16], which captures key algebraic structure supporting
the dual system technique. They used this abstract primitive to obtain an HIBE
scheme with constant-size ciphertexts using prime-order bilinear groups. The
nested dual system group, an variant of dual system groups, was proposed by
Chen and Wee [15] to reach almost-tight adaptively secure IBE in the standard
model. Recently, the dual system group had been combined with the predi-
cate/pairing encoding [13, 2] and led to a lot of functional encryptions in the
prime-order setting. Very recent work by Gong et al. [20] extended the con-
cept of dual system groups to build an unbounded HIBE [24, 25] with shorter
ciphertexts in the prime-order setting.

Identity Based Encryption. The notion of identity based encryptions was
introduced by Shamir [33] in 1984. The first practical realization was proposed
by Boneh and Franklin [12] using bilinear groups and Cocks [17] using quadratic
residue. Both of them rely on the heuristic random oracle model. Before Waters
proposed his seminal work, there were several classical and practical solutions
in the standard model, including Boneh-Boyen’s IBE [11, 10], Waters’ IBE [35],
and Gentry’s IBE [18]. IBE can also be realized using algebra frameworks other
than bilinear groups, such as lattices [19, 3, 4].

1.5 Independent Work

The independent work by Attrapadung, Hanaoka, and Yamada [6] also in-
volves several constructions of almost-tight IBE in the MIMC setting. They
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developed an elegant framework for building almost-tight IBE in the MIMC
setting from the so-called broadcast encoding, which is a special form of Attra-
padung’s pairing encoding [5], and obtained a series of concrete schemes with
various properties (including sub-linear size master public key and anonymous
version) using both composite-order and prime-order bilinear groups. Their re-
sults and ours partially overlap. Their scheme with constant-size ciphertext in
prime-order group (i.e., Φprime

cc ) is similar to our second construction based on the
XDLIN assumption shown in Section 7. In fact, they share the same performance
in terms of the size of ciphertexts and secret keys and running time of Enc and
Dec. However we note that we also provide an generalization of this construction
but proven secure under the non-standard d-LinAI assumption. Furthermore, our
first construction in Section 5 is full-adaptively secure under the standard d-Lin
assumption, and derives a SXDH-based concrete scheme, which has the best
(space and time) performance among all proposed solutions so far.

Outline. Section 2 presents necessary background. Section 3 gives our revised
definition of ENDSG. We realize our revised ENDSG in the prime-order setting
in Section 4 and investigate how to update our ENDSG and its prime-order
instantiation to achieve higher security level in Section 6. At last, Section 7 is
an overview of obtaining a more efficient solution.

2 Preliminaries

2.1 Notations

For a finite set S, we use s← S to denote the process of picking s from S at
random. For any n ∈ Z+, we take [n] as the brief representation of set {1, . . . , n}.
For a probabilistic algorithm Alg and an fixed input x, we use [Alg(x)] to indicate
the set of all possible outputs of algorithm Alg on input x. “p.p.t.” stands for
“probabilistic polynomial time”. We let ei denote the vector with 1 on the ith
position and 0 elsewhere. For a groupG and g ∈ G, let hei be a vector overG with
h on the ith position and 1 elsewhere. For two vectors g := (g1, . . . , gn) ∈ Gn and
g′ := (g′1, . . . , g

′
n) ∈ Gn, we define g ·g′ = (g1 · g′1, . . . , gn · g′n) ∈ Gn where “·” on

the right-hand side is the group operation of G. For any vector x = (x1, . . . , xn)
and i ∈ [n], we define x−i as a vector (x1, . . . , xi−1,⊥, xi+1, . . . , xn) whose ith
position is unknown (we take ⊥ as a placeholder).

2.2 Identity Based Encryptions

Algorithms. An IBE scheme in the multi-instance setting consists of five
p.p.t. algorithms defined as follows6. (1) The parameter generation algorithm
Param(1k, sys) takes as input a security parameter k ∈ Z+ in its unary form
and a system-level parameter sys, and outputs a global parameter gp. (2) The

6 The definition shown here is slightly different from that in [21]. The adaptation is
purely conceptual and made for clarity. The security model is tuned accordingly.
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setup algorithm Setup(gp) takes as input a global parameter gp, and outputs
a master public/secret key pair (mpk,msk). (3) The key generation algorithm
KeyGen(mpk,msk,y) takes as input a master public key mpk, a master secret
key msk and an identity y, and outputs a secret key sky for the identity. (4) The
encryption algorithm Enc(mpk,x,m) takes as input a master public key mpk, an
identity x and a message m, outputs a ciphertext ctx for the message under the
identity. (5) The decryption algorithm Dec(mpk, sk,ct) takes as input a master
public key mpk, a secret key sk and a ciphertext ct, outputs a message m or a
failure symbol ⊥.

The so-called “multi-instance setting” indicates that we are considering a
collection of IBE instances established under the same global parameter gp. We
leave the system-level parameter sys undefined for generality. It may depend on
concrete constructions or application scenarios.

Correctness. For any parameter k ∈ Z+, any sys, any gp ∈ [Param(1k, sys)],
any (mpk,msk) ∈ [Setup(gp)], any identity x, and any message m, it holds that

Pr [Dec(mpk,KeyGen(mpk,msk,x),Enc(mpk,x,m)) = m] > 1− 2−Ω(k).

The probability space is defined by the random coins consumed by algorithm
KeyGen and Enc.

Adaptive Security in the Multi-instance, Multi-ciphertext Setting.
Roughly, the adaptive security in the multi-instance, multi-ciphertext setting
extends the traditional adaptive security model for IBE [12] in the sense that
the adversary can access to multiple IBE instances (obtaining master public
key and users’ keys) and attack multiple ciphertexts (i.e., challenge ciphertexts),
which is formalized by Hofheinz et al. [21]. Ideally, the adversary is free to choose
the challenge instance, the challenge identity and the challenge message pair.
Hofheinz et al. [21] also identified a weaker variant in which only one challenge
ciphertext is allowed for each challenge identity in each challenge instance, and
called the ideal one full security.

We review the experiment ExpIBE
A (k, λ, qK , qC , qR) between a challenger C

and an adversary A [21], which captures both the weaker and full security notion.

Setup. C gets gp← Param(1k, sys) and creates (mpkι,mskι)← Setup(gp) for
ι ∈ [λ]. All master public keys {mpkι}ι∈[λ] are sent to A. C also chooses a

secret random bit β ∈ {0, 1} and initializes QK and QC as empty sets.
Query. A is allowed to make two types of queries: key extraction queries and

challenge queries. C answers every queries as follows: (1) For each key ex-
traction query (ι,y), C returns sk ← KeyGen(mpkι,mskι,y) and updates
QK := QK ∪{(ι,y)}. (2) For each challenge query (ι∗,x∗,m∗0,m

∗
1), C returns

ct∗ ← Enc(mpkι∗ ,x
∗,m∗β) and updates QC := QC ∪ {(ι∗,x∗)}.

Guess. A outputs its guess β′ ∈ {0, 1}.

We say an adversary A wins experiment ExpIBE
A (k, λ, qK , qC , qR), denoted by

ExpIBE
A (k, λ, qK , qC , qR) = 1, if and only if (1) β = β′, (2) QK ∩ QC = ∅, (3)
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A made at most qK key extraction queries, (4) there are at most qC challenge
identities, and (5) for each of them, there exist at most qR challenge ciphertexts.
We define the advantage of A as

AdvIBE
A (k, λ, qK , qC , qR) =

∣∣∣Pr[ExpIBE
A (k, λ, qK , qC , qR) = 1]− 1/2

∣∣∣ .
The probability space is defined by random coins consumed by both C and A. An
IBE is (λ, qK , qC , qR)-adaptively-secure if, for any p.p.t. adversary A the advan-
tage AdvIBE

A (k, λ, qK , qC , qK) is bounded by 2−Ω(k). Clearly, the (λ, qk, qC , qR)-
adaptive security with unbounded qR is consistent with the full security, while
the (λ, qk, qC , 1)-adaptive security is exactly the weak security. Furthermore, we
define B-weak adaptive security, an intermediate security notion between them,
as (λ, qK , qC , B)-adaptive security for a priori bound B > 1.

3 Revisiting Extended Nested Dual System Groups

This section revises the ENDSG proposed by Hofheinz et al. [21]. Following
the intuitive discussion in Section 1, the key points are: we (1) remove special
group requirements, (2) explicitly provide samples in each computational as-

sumption, (3) generalize subgroup of ĥ∗ and h̃∗. We show our definition followed
by a series of remarks clarifying motivations behind several technical decisions.

Syntax. Our revised ENDSG consists of eight p.p.t. algorithms as follows:

– SampP(1k, n): Output: (1) pp containing (a) group description (G,H,GT )
and an admissible bilinear map e : G × H → GT ; (b) an efficient linear
map µ defined on H; (c) an efficient sampler for H and Zord(H), respective-
ly; (d) public parameters for SampG and SampH. (2) sp containing secret

parameters for ŜampG, S̃ampG, ŜampH
∗

and S̃ampH
∗
.

– SampGT: Im(µ)→ GT .
– SampG(pp): Output g = (g0, g1, . . . , gn) ∈ Gn+1.
– SampH(pp): Output h = (h0, h1, . . . , hn) ∈ Hn+1.

– ŜampG(pp, sp): Output ĝ = (ĝ0, ĝ1, . . . , ĝn) ∈ Gn+1.

– S̃ampG(pp, sp): Output g̃ = (g̃0, g̃1, . . . , g̃n) ∈ Gn+1.

– ŜampH
∗
(pp, sp): Output ĥ∗ ∈ H.

– S̃ampH
∗
(pp, sp): Output h̃∗ ∈ H.

The first four algorithms are used in the real system, while the remaining ones
are defined for the proof. We let SampG0 refer to the first element in the output

of SampG, i.e., g0. The notation also applies to SampH, ŜampG, and S̃ampG.

Correctness. For all k, n ∈ Z+ and all (pp, sp) ∈ [SampP(1k, n)], we require

(Projective.) For all h ∈ H and all possible random coins s, SampGT(µ(h); s) =
e(SampG0(pp; s), h).

(Associative.) For all (g0, g1, . . . , gn) ∈ [SampG(pp)] and all (h0, h1, . . . , hn) ∈
[SampH(pp)], e(g0, hi) = e(gi, h0) for i ∈ [n].
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Security. For all k, n ∈ Z+ and all (pp, sp) ∈ [SampP(1k, n)], we require

(Orthogonality.) For all ĥ∗ ∈ [ŜampH
∗
(pp, sp)] and all h̃∗ ∈ [S̃ampH

∗
(pp, sp)],

1. µ(ĥ∗) = µ(h̃∗) = 1;

2. e(ĝ0, h̃
∗) = 1 for all ĝ0 ∈ [ŜampG0(pp, sp)];

3. e(g̃0, ĥ
∗) = 1 for all g̃0 ∈ [S̃ampG0(pp, sp)];

The first requirement implies that e(g0, h̃
∗) = e(g0, ĥ

∗) = 1 for all g0 ∈
[SampG0(pp)] by the projective property (c.f. Section 3.2 in [15]).

(Non-degeneracy.) Over the probability space defined by ĝ0 ← ŜampG0(pp, sp),

with overwhelming probability 1− 2−Ω(k), e(ĝ0, ĥ
∗) is distributed uniformly

over GT when sampling ĥ∗ ← ŜampH
∗
(pp, sp).

(H-subgroup.) The output of SampH(pp) is distributed uniformly over some

subgroup of Hn+1, while those of ŜampH
∗
(pp, sp) and S̃ampH

∗
(pp, sp) are

distributed uniformly over some subgroup of H, respectively.
(Left subgroup indistinguishability 1 (LS1).) For any p.p.t. adversary A,

the following advantage function is negligible in k,

AdvLS1
A (k, q) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where
D := (pp) , T0 := {gj}j∈[q] , T1 :=

{
gj · ĝj

}
j∈[q]

and gj ← SampG(pp) and ĝj ← ŜampG(pp, sp).
(Left subgroup indistinguishability 2 (LS2).) For any p.p.t. adversary A,

the following advantage function is negligible in k,

AdvLS2
A (k, q, q′) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where

D :=

(
pp,
{
ĥ∗j · h̃∗j

}
j∈[q+q′]

,
{
g′j · ĝ′j

}
j∈[q]

)
,

T0 := {gj · ĝj}j∈[q] , T1 :=
{

gj · g̃j

}
j∈[q]

and ĥ∗j ← ŜampH
∗
(pp, sp), h̃∗j ← S̃ampH

∗
(pp, sp), g′j ← SampG(pp), ĝ′j ←

ŜampG(pp, sp), gj ← SampG(pp), ĝj ← ŜampG(pp, sp), g̃j ← S̃ampG(pp, sp).
(Nested-hiding indistinguishability (NH).) For any η ∈ [bn/2c] and any

p.p.t. adversary A, the following advantage function is negligible in k,

Adv
NH(η)
A (k, q, q′) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where

D :=

(
pp,
{
ĥ∗j

}
j∈[q+q′]

,
{
h̃∗j

}
j∈[q+q′]

,
{

(ĝj)−(2η−1)

}
j∈[q]

, {(g̃j)−2η}j∈[q]

)
,
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T0 := {hj}j∈[q′] , T1 :=

{
hj · (ĥ∗∗j )e2η−1 · (h̃∗∗j )e2η

}
j∈[q′]

and ĥ∗j ← ŜampH
∗
(pp, sp), h̃∗j ← S̃ampH

∗
(pp, sp), ĝj ← ŜampG(pp, sp),

g̃j ← S̃ampG(pp, sp), hj ← SampH(pp), ĥ∗∗j ← ŜampH
∗
(pp, sp), h̃∗∗j ←

S̃ampH
∗
(pp, sp). We let AdvNH

A (k, q, q′) := maxη∈[bn/2c]

{
Adv

NH(η)
A (k, q, q′)

}
.

Remark 1 (notations). ENDSG is mainly defined for building IBE. We remark
that, in the description of LS1, LS2, and NH, the parameter q and q′ roughly
correspond to the maximum number of challenge queries and key extraction
queries, respectively.

Remark 2 (sampling ĥ∗ and h̃∗, and H-subgroup). We model the process of sam-

pling over subgroup generated by ĥ∗ and h̃∗ (in [21]) as algorithm ŜampH
∗

and

S̃ampH
∗
, respectively. This allows us to employ more complex algebraic struc-

ture (say, subspaces of higher dimensions), which is crucial for our prime-order
instantiation in Section 4. Accordingly, we extend H-subgroup property to take

ŜampH
∗

and S̃ampH
∗

into account.

Remark 3 (G-subgroup and H-subgroup). Since we provide adequate samples of
Gn+1 directly in the last three computational security requirements and further
re-randomization is not necessary in the proof, the G-subgroup in the original
definition could be safely removed. However this won’t let the revised ENDSG
free from H-subgroup property. The simulator still need the property to re-
randomize T0 or T1 in NH(η) using SampH(pp) to maintain the consistency of
truly random functions on two identities sharing the same η-bit prefix.

On one hand, our revised definition for ENDSG is essentially consistent with
Hofheinz et al.’s definition [21]. In particular, it is not hard to see that one
may use Hofheinz et al.’s ENDSG [21] to realize this revised version. Therefore
their instantiation using composite-order bilinear groups can also be taken as
an instantiation of the revised version above. On the other hand, our revised
definition still almost-tightly implies an IBE in the MIMC setting. In fact, the
construction, the security result and its proof are nearly the same as those pre-
sented in [21]. One may consider them as rewriting Hofheinz et al.’s results [21]
in the language of our revised ENDSG. We present the construction and sketch
of the proof in the full version of the paper. It is worth noting that the con-
struction only achieves weak adaptive security. We will show how to enhance
non-degeneracy to reach full adaptive security in Section 6.

4 Instantiating ENDSG from d-Linear Assumption

This section gives an instantiation of our revised ENDSG (defined in Sec-
tion 3) using prime-order bilinear groups. See Section 1 for more motivation.
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4.1 Prime-order Bilinear Groups and Computational Assumptions

A prime-order bilinear group generator GrpGen(1k) takes security parameter
1k as input and outputs G := (p,G1, G2, GT , e), where G1, G2 and GT are finite
cyclic groups of prime order p, and e : G1 × G2 → GT is a non-degenerated
and efficiently computable bilinear map. We let g1, g2 and gT := e(g1, g2) be
a generator of G1, G2 and GT , respectively. We state the (standard) d-linear
assumption (d-Lin) in G1 (see Assumption 1), the analogous assumption in G2

can be defined by exchanging the role of G1 and G2.

Assumption 1 (d-Linear Assumption in G1). For any p.p.t. adversary A,
the following advantage function is negligible in k,

Advd-Lin
A (k) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where
D :=

(
G, g1, g2, g

a1
1 , . . . , gad1 , g

ad+1

1 , ga1s11 , . . . , gadsd1

)
,

T0 := g
ad+1(s1+···+sd)
1 , T1 := g

ad+1(s1+···+sd)+ sd+1

1

and G ← GrpGen(1k), a1, . . . , ad, ad+1, sd+1 ← Z∗p and s1, . . . , sd ← Zp.

“Matrix-in-the-exponent” Notation. For an m× n matrix X = (xi,j) over
Zp and a group element g of G, we define gX := (gxi,j ), an m × n matrix over
G. We extend pairing e as: given two matrices A ∈ Zt×mp and B ∈ Zt×np , we

define e(gA1 , g
B
2 ) := e(g1, g2)A

>B ∈ Gm×nT . For vectors x and y over Zp of the

same length, we have e(gx1 , g
y
2 ) := e(g1, g2)x

>y ∈ GT , the standard inner product
〈x,y〉 in the exponent. We will use 0 to denote both vectors and matrices with
only zero entries, and give out its dimension or size in the subscript if necessary.

An extended version of d-Lifted Linear Assumption. We describe an
extension of the d-Lifted Linear (d-LLin) assumption [23] for improving the
readability of our proofs, which is called (d, `, q)-Lifted Linear ((d, `, q)-LLin)
Assumption. We present the assumption in G1 and the counterpart in G2 is
readily derived. We then give Lemma 1 showing that the (d, `, q)-LLin assump-
tion is tightly implied by the d-Lin assumption following [23, 15]. The proof could
be found in the full version of the paper. We remark that, since ` corresponds
to a relatively small parameter, say 2, in our construction and q corresponds to
the amount of adversary’s queries which may be 230, we prove the Lemma under
the assumption that ` < q for simplicity.

Assumption 2 ((d, `, q)-Lifted Linear Assumption in G1). For any p.p.t.
adversary A, the following advantage function is negligible in k,

Adv
(d,`,q)-LLin
A (k) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where

D :=

(
G, g1, g2, g

a1
1 , . . . , gad1 ,

{
g
bi,j
1

}
i∈[`],j∈[d]

,
{
g
a1s1,j
1 , . . . , g

adsd,j
1

}
j∈[q]

)
,



Extended Nested Dual System Groups, Revisited 15

T0 :=
{
g
bi,1s1,j+···+bi,dsd,j
1

}
i∈[`],j∈[q]

, T1 :=

{
g
bi,1s1,j+···+bi,dsd,j+ sd+i,j

1

}
i∈[`],j∈[q]

and G ← GrpGen(1k), a1, . . . , ad, bi,j , sd+i,j ← Z∗p, s1,j , . . . , sd,j ← Zp.

Lemma 1 (d-Lin ⇒ (d, `, q)-LLin). For any p.p.t. adversary A, there exists
an adversary B such that

Adv
(d,`,q)-LLin
A (k) 6 ` · Advd-Lin

B (k) + 1/(p− 1),

and Time(B) ≈ Time(A)+`2d ·poly(k) where poly(k) is independent of Time(A).

4.2 Construction

We let πL(·), πM(·), and πR(·) be functions mapping from a 3d × 3d matrix
to its left-most d columns, its middle d columns, and its right-most d columns,
respectively. Algorithms of our revised ENDSG are shown as follows.

– SampP(1k, n): Run (p,G1, G2, GT , e)← GrpGen(1k) and set (G,H,GT , e) :=
(G3d

1 , G
3d
2 , GT , e). Sample B,R← GL3d(Zp) and A1, . . . ,An ← Z3d×3d

p . Set

B∗ := (B−1)>. Define

D := πL(B), Di = πL(BAi); E := πM(B), Ei = πM(BAi);
D∗ := B∗R, D∗i = B∗A>i R; F := πR(B), Fi = πR(BAi);

for i ∈ [n]. Define µ(gk2 ) := e(gD1 , g
k
2 ) = e(g1, g2)D

>k for all k ∈ Z3d
p . Output

pp :=

(
gD1 , g

D1
1 , . . . , gDn

1

gD
∗

2 , g
D∗1
2 , . . . , g

D∗n
2

)
and sp :=

(
g
πM(B∗)
2 , gE1 , g

E1
1 , . . . , gEn1

g
πR(B∗)
2 , gF1 , g

F1
1 , . . . , gFn1

)
.

We assume pp always contains G,H,GT , e, µ and group order p.

– SampGT(gpT ): Sample s← Zdp and output gs
>p
T ∈ GT .

– SampG(pp): Sample s← Zdp and output
(
gDs

1 , gD1s
1 , . . . , gDns

1

)
∈ (G3d

1 )n+1.

– SampH(pp): Sample r← Z3d
p and output

(
gD
∗r

2 , g
D∗1r
2 , . . . , g

D∗nr
2

)
∈ (G3d

2 )n+1.

– ŜampG(pp, sp): Sample ŝ← Zdp and output
(
gEŝ

1 , gE1ŝ
1 , . . . , gEnŝ1

)
∈ (G3d

1 )n+1.

– S̃ampG(pp, sp): Sample s̃← Zdp and output
(
gFs̃

1 , gF1s̃
1 , . . . , gFns̃1

)
∈ (G3d

1 )n+1.

– ŜampH
∗
(pp, sp): Sample r̂← Zdp and output g

πM(B∗)r̂
2 ∈ G3d

2 .

– S̃ampH
∗
(pp, sp): Sample r̃← Zdp and output g

πR(B∗)r̃
2 ∈ G3d

2 .

4.3 Security Analysis

One can easily check the projective, associative, orthogonality, non-degeneracy,
H-subgroup, and LS1 properties following [15]. Due to lack of space, we just give
the proof of left subgroup indistinguishability 2 (LS2) and sketch the proof of
nested-hiding indistinguishability (NH), and leave detailed proofs in the full ver-
sion of the paper. We emphasize that all three computational properties are
tightly reduced to the d-Lin assumption.
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Left subgroup indistinguishability 2. We first rewrite entries involved in the
LS2 advantage function AdvLS2

A (k, q, q′) in terms of B,B∗,Ai,R as follows

pp :=

(
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BAn)
1

gB
∗R

2 , g
B∗A>1 R
2 , . . . , g

B∗A>nR
2

)
;

ĥ∗j · h̃∗j := g

B∗

( 0d
r̂j
r̃j

)
2 ;

g′j · ĝ′j :=
(
g

B

 s′j
ŝ′j
0d


1 , g

BA1

 s′j
ŝ′j
0d


1 , . . . , g

BAn

 s′j
ŝ′j
0d


1

)
;

gj · ĝj :=
(
g
B

( sj
ŝj
0d

)
1 , g

BA1

( sj
ŝj
0d

)
1 , . . . , g

BAn

( sj
ŝj
0d

)
1

)
;

gj · g̃j :=
(
g
B

( sj
0d
s̃j

)
1 , g

BA1

( sj
0d
s̃j

)
1 , . . . , g

BAn

( sj
0d
s̃j

)
1

)
;

where r̂j , r̃j , s
′
j , ŝ
′
j , sj , ŝj , s̃j ← Zdp. Then we prove the following lemma.

Lemma 2 ((d, d, q)-LLin ⇒ LS2). For any p.p.t. adversary A, there exists an
adversary B such that

AdvLS2
A (k, q, q′) 6 2 · Adv(d,d,q)-LLin

B (k),

and Time(B) ≈ Time(A)+(q+q′)d2 ·poly(k, n). (poly(k, n) is independent of A)

Overview of Proof. We will prove Lemma 2 in two steps with the help of a
transitional distribution T1/2 = {gj · ĝj · g̃j}j∈[q] where

gj · ĝj · g̃j := (g

B

( sj
ŝj
s̃j

)
1 , g

BA1

( sj
ŝj
s̃j

)
1 , . . . , g

BAn

( sj
ŝj
s̃j

)
1 ).

In particular, we prove that, given D, distribution T0 and T1/2 are computational
indistinguishable under the (d, d, q)-LLin assumption (see Lemma 3), and so do
T1/2 and T1 (see Lemma 4). These immediately prove Lemma 2.

Lemma 3 (from T0 to T1/2). For any p.p.t. adversary A, there exists an
adversary B such that∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1/2) = 1]

∣∣ 6 Adv
(d,d,q)-LLin
B (k),

and Time(B) ≈ Time(A)+(q+q′)d2 ·poly(k, n). (poly(k, n) is independent of A)

Proof. Given an instance of (d, d, q)-LLin problem (i.e., set ` = d)g1, g2, g
a1
1 , . . . , gad1 ,

{
g
bi,j
1

}
i,j∈[d]

,
{
g
a1s1,j
1 , . . . , g

adsd,j
1

}
j∈[q]

,{
g
bi,1s1,j+···+bi,dsd,j+sd+i,j
1

}
i∈[d],j∈[q]


as input where either sd+i,j = 0 or sd+i,j ← Z∗p, adversary B works as follows:
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Programming ŝj and s̃j for j ∈ [q]. Adversary B implicitly sets

ŝj := (s1,j , . . . , sd,j)
> and s̃j := (sd+1,j , . . . , s2d,j)

>.

Programming B,B∗,A1, . . . ,An,R. We define W as

W :=



1
. . .

1
a1

. . .

ad
b1,1 · · · b1,d 1

...
...

. . .

bd,1 · · · bd,d 1


∈ Z3d×3d

p

and set W∗ := (W−1)>. Sample7 B̄, R̄← GL3d(Zp) and set B̄∗ := (B̄−1)>.
Also sample Ā1, . . . , Ān ← Z3d×3d

p , and implicitly set

(B,B∗) := (B̄W, B̄∗W∗), R := W>R̄, Ai := W−1ĀiW, (1)

for i ∈ [n]. Observe that B,B∗,R and all Ai are distributed properly, and

BAi = B̄ĀiW, B∗R = B̄∗R̄, B∗A>i R = B̄∗Ā>i R̄. (2)

Simulating pp. B can simulate

g
πL(B)
1 = g

πL(B̄W)
1 = g

B̄πL(W)
1 and g

πL(BAi)
1 = g

πL(B̄ĀiW)
1 = g

B̄ĀiπL(W)
1 ,

gB
∗R

2 = gB̄
∗R̄

2 and g
B∗A>i R
2 = g

B̄∗Ā>i R̄
2 ,

for i ∈ [n] using the knowledge of πL(W) and B̄, B̄∗, Ā1, . . . , Ān, R̄.

Simulating ĥ∗j · h̃∗j for j ∈ [q + q′]. It is not hard to compute W∗ ∈ Z3d×3d
p as

W∗ :=



1
. . .

1

a−1
1 −a−1

1 b1,1 · · · −a−1
1 bd,1

. . .
...

...
a−1
d −a

−1
d b1,d · · · −a−1

d bd,d
1

. . .

1


.

7 In our symbol system, a variable with a bar on the top, say B̄, is sampled by the
simulator (i.e., B) and is completely known to it.
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For all j ∈ [q + q′], we sample r̄j ← Z2d
p and implicitly set0d

r̂j
r̃j

 = (W∗)−1

(
0d
r̄j

)
= W>

(
0d
r̄j

)
.

Since the right-bottom 2d × 2d sub-matrix of W∗ is full-rank with over-
whelming probability, r̂j and r̃j are distributed properly and B can simulate

ĥ∗j · h̃∗j = g

B∗

( 0d
r̂j
r̃j

)
2 = g

B̄∗W∗

( 0d
r̂j
r̃j

)
2 = g

B̄∗
(
0d
r̄j

)
2

using the knowledge of B̄∗ and r̄j .
Simulating g′j · ĝ′j for j ∈ [q]. B can sample s′j , ŝ

′
j ← Zdp and simulate

g

B

 s′j
ŝ′j
0d


1 = g

B̄W

 s′j
ŝ′j
0d


1 and g

BAi

 s′j
ŝ′j
0d


1 = g

B̄ĀiW

 s′j
ŝ′j
0d


1

for i ∈ [n] and using the knowledge of gW1 and B̄, Ā1, . . . , Ān.
Simulating the challenge. Algorithm B can sample sj ← Zdp and simulate

g

B

( sj
ŝj
s̃j

)
1 = g

B̄W

( sj
ŝj
s̃j

)
1 and g

BAi

( sj
ŝj
s̃j

)
1 = g

B̄ĀiW

( sj
ŝj
s̃j

)
1

for i ∈ [n] and j ∈ [q] using the knowledge of B̄, Ā1, . . . , Ān and

g

W

( sj
ŝj
s̃j

)
1 = g



sj
a1s1,j

...
adsd,j

b1,1s1,j+···+b1,dsd,j+sd+1,j

...
bd,1s1,j+···+bd,dsd,j+s2d,j


1 .

Analysis. Observe that if all sd+i,j = 0, then all s̃j = 0 and the output challenge
is distributed as {gj · ĝj}j∈[q]; otherwise, if all sd+i,j ← Z∗p, then all s̃j ← (Z∗p)d

and the output challenge is distributed as {gj · ĝj · g̃j}j∈[q]. Therefore we may

conclude that
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1/2) = 1]

∣∣ 6 Adv
(d,d,q)-LLin
B (k). ut

Lemma 4 (from T1/2 to T1). For any p.p.t. adversary A, there exists an
adversary B such that∣∣Pr[A(D,T1/2) = 1]− Pr[A(D,T1) = 1]

∣∣ 6 Adv
(d,d,q)-LLin
B (k),

and Time(B) ≈ Time(A)+(q+q′)d2 ·poly(k, n). (poly(k, n) is independent of A)
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Proof. Given an instance of (d, d, q)-LLin problem, adversary B behaves in a
similar manner to B in the proof of Lemma 3 with the differences that:

Programming ŝj and s̃j for j ∈ [q]. Adversary B implicitly sets

ŝj = (s2d,j , . . . , sd+1,j)
> and s̃j = (sd,j , . . . , s1,j)

>.

Defining W. Adversary B defines W as

W :=



1
. . .

1
1 bd,d · · · bd,1

. . .
...

...
1 b1,d · · · b1,1

ad
. . .

a1


∈ Z3d×3d

p .

In fact, B,B∗,Ai,R are programmed as Eq. (1). All entries in pp and {g′j · ĝ′j}
can be simulated exactly as in the proof of Lemma 3. The strategy for creating
{ĥ∗j · h̃∗j} and the challenge there also works well. ut

Combining Lemma 1 and Lemma 2, we have Corollary 1 showing that our
instantiation satisfies left subgroup indistinguishability 2 requirement with tight
reduction, i.e., with security loss 2d, to the d-Lin assumption.

Corollary 1 (d-Lin ⇒ LS2). For any p.p.t. adversary A, there exists an ad-
versary B such that

AdvLS2
A (k, q, q′) 6 2d · Advd-Lin

B (k) + 2/(p− 1),

and Time(B) ≈ Time(A)+(q+q′)d2 ·poly(k, n). (poly(k, n) is independent of A)

Nested-hiding indistinguishability. Since ĥ∗∗j and h̃∗∗j are respective random

vectors in d-dimensional subspace g
πM(B∗)
2 and g

πR(B∗)
2 now, we must “create”

more entropy from hj than Chen and Wee did in [15]. To do so, we establish a
generalized version of many-tuple lemma (see Lemma 5) in [15], which takes the
(d, d, d)-LLin assumption as starting point instead of the d-Lin assumption.

Lemma 5 (Generalized Many-Tuple Lemma). There exists an efficient
algorithm that on input q ∈ Z+, a finite cyclic group G generated by g ∈ G and(

g, ga1 , . . . , gad ,
{
gbi,j

}
i,j∈[d]

, {ga1r1,j , . . . , gadrd,j}j∈[d] ,{
gbi,1r1,j+···+bi,drd,j+rd+i,j

}
i,j∈[d]

)
,

outputs
(
gVZ, gZ

)
for some matrix V ∈ Zd×dp along with

{(
gtj , gVtj+τ j

)}
j∈[q]

,

where tj ← Zdp, all τ j are either 0d or uniformly distributed over Zdp. And Z is

an invertible diagonal matrix.
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Then the proof for the NH property can be obtained by properly embedding
matrix V into A2η−1 and A2η and matrix Z into R, and naturally extending
Chen and Wee’s simulation strategy [15].

5 Concrete IBE from d-Linear Assumption

This section describes the concrete IBE scheme derived from our prime-order
instantiation in Section 4 following Hofheinz et al.’s framework [21]. Let GrpGen
be the bilinear group generator described in Section 4.1 and πL(·) be the function
mapping from a 3d× 3d matrix to its left-most d columns.

– Param(1k, n): Run (p,G1, G2, GT , e)← GrpGen(1k). Sample B,R← GL3d(Zp)
and A1, . . . ,A2n ← Z3d×3d

p , and set B∗ := (B−1)>. Output

gp :=

(
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BA2n)
1

gB
∗R

2 , g
B∗A>1 R
2 , . . . , g

B∗A>2nR
2

)
.

– Setup(gp): Sample k← Z3d
p and output

mpk :=
(
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BA2n)
1 ; e(g1, g2)πL(B)>k

)
∈ (G3d×d

1 )2n+1 ×GdT ;

msk :=
(
gB
∗R

2 , g
B∗A>1 R
2 , . . . , g

B∗A>2nR
2 ; gk2

)
∈ (G3d×3d

2 )2n+1 ×G3d
2 .

– KeyGen(mpk,msk,y): Let y = (y1, . . . , yn) ∈ {0, 1}n. Sample r ← Z3d
p and

output

sky :=
(
gB
∗Rr

2 , g
k+B∗(A2−y1+···+A2n−yn )>Rr
2

)
∈ G3d

2 ×G3d
2 .

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈ {0, 1}n and m ∈ GT . Sample s← Zdp
and output

ctx :=
(
g
πL(B)s
1 , g

πL(B(A2−x1+···+A2n−xn ))s
1 , e(g1, g2)s

>πL(B)>k ·m
)

∈ G3d
1 ×G3d

1 ×GT .

– Dec(mpk, sk,ct): Let sk = (K0,K1) and ct = (C0, C1, C2). Output

m := C2 · e(C1,K0)/e(C0,K1).

Note that we only put necessary entries for Enc into mpk, while entries from gp
(or pp) for running KeyGen are put into msk. We describe the following theorem.

Theorem 1. For any p.p.t. adversary A making at most qK key extraction
queries and at most qC challenge queries for pairwise distinct challenge iden-
tity against at most λ instances, there exists adversary B such that

AdvIBE
A (k, λ, qK , qC , 1) 6 d · (5n+ 1) · Advd-Lin

B (k) + 2−Ω(k),

where Time(B) ≈ Time(A) + (λ + qC + qK) · d2 · poly(k, n) and poly(k, n) is
independent of Time(A).
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6 Achieving Stronger Security Guarantee

This section will investigate two flavors of stronger adaptive security: B-
weak and full adaptive security (see Section 2) by enhancing the non-degeneracy
property and updating the proof of “ENDSG implies IBE”.

6.1 Warmup: Achieving B-weak Adaptive Security

Recall that the original non-degeneracy property said that:

(Non-degeneracy (Recalled).) Over the probability space defined by ĝ0 ←
ŜampG0(pp, sp), with overwhelming probability 1− 2−Ω(k), e(ĝ0, ĥ

∗) is dis-

tributed uniformly over GT when sampling ĥ∗ ← ŜampH
∗
(pp, sp).

We observe that ĥ∗ in our prime-order instantiation (see Section 4) actually
contains higher entropy than those in Hofheinz et al.’s composite-order instanti-
ation [21]. In particular, ĥ∗ is uniformly distributed over a d-dimension subspace

of G3d
2 containing pd elements (vectors), while e(ĝ0, ĥ

∗) is an element in GT
containing just p elements. This suggests that, given e(ĝ0, ĥ

∗), there may be

leftover entropy in ĥ∗, and our prime-order instantiation may achieve stronger
non-degeneracy even relying on no computational assumption.

To formally investigate the above idea, we describe the notion of B-bounded
non-degeneracy which roughly ensures the non-degeneracy when a single ĥ∗ is
paired with at most B ĝ0’s.

(B-bounded non-degeneracy.) Over the probability space defined by sam-

pling (ĝ0,1, . . . , ĝ0,B)← ŜampG
B

0 (pp, sp), with overwhelming probability 1−
2−Ω(k), (e(ĝ0,1, ĥ

∗), . . . , e(ĝ0,B , ĥ
∗)) is distributed uniformly over GBT when

sampling ĥ∗ ← ŜampH
∗
(pp, sp).

It is obvious that the ENDSG with B-bounded non-degeneracy almost-tightly
implies a B-weak adaptively secure IBE in the MIMC setting. We now prove that
our prime-order instantiation in Section 4 indeed reaches this stronger version
of non-degeneracy.

Lemma 6. Our prime-order instantiation of ENDSG in Section 4 based on the
d-Lin assumption is d-bounded non-degenerated.

Proof. The proof is just a simple statistical argument extended from the proof
for the original non-degeneracy. For ŝ1, . . . , ŝd ← Zdp and r̂← Zdp, we have that


e(gEŝ1

1 , g
πM(B∗)r̂
2 )
...

e(gEŝd
1 , g

πM(B∗)r̂
2 )

 =

e(g1, g2)ŝ
>
1 r̂

...

e(g1, g2)ŝ
>
d r̂

 = e(g1, g2)


ŝ>1
...
ŝ>d

r̂

.

With probability at least 1− 1
p−1 , the matrix (ŝ1, . . . , ŝd)

> is full-rank, in which

case (ŝ1, . . . , ŝd)
>r̂ is distributed uniformly over Zdp when picking r̂← Zdp. ut
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Therefore, when we build our instantiation with parameter d > 1, we actu-
ally obtain an IBE with strictly stronger security guarantee which ensures the
confidentiality of at most d ciphertexts for each identity. As a special case, if we
set d = 1 (i.e., the SXDH assumption), the resulting IBE is still weak secure.

6.2 Computational Non-degeneracy and Full Adaptive Security

The attempt in the previous subsection more or less suggests that it is prob-
ably inevitable to introduce additional computational arguments in order to
achieve fully adaptive security where a single ĥ∗ can be paired with polynomi-
ally many ĝ0’s without violating the non-degeneracy property.

As a first step, we describe a computational version of non-degeneracy which
is essentially similar to the s-BDDH assumption [21]. Our presentation follows
the style of our revised ENDSG (in Section 3) in order to keep generality.

(Computational non-degeneracy (ND).) For any p.p.t. adversary A, the
following advantage function is negligible in k,

AdvND
A (k, q, q′, q′′) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ,

where

D :=

(
pp,
{
ĥ∗j · h̃∗j

}
j∈[q′]

, {ĝj,j′}j∈[q],j′∈[q′′]

)
,

T0 :=
{
e(ĝ0,j,j′ , ĥ

∗∗
j )
}
j∈[q],j′∈[q′′]

, T1 := {Rj,j′}j∈[q],j′∈[q′′]

and ĥ∗j ← ŜampH
∗
(pp, sp), h̃∗j ← S̃ampH

∗
(pp, sp), ĥ∗∗j ← ŜampH

∗
(pp, sp),

ĝj,j′ = (ĝ0,j,j′ , ĝ1,j,j′ , . . . , ĝn,j,j′)← ŜampG(pp, sp) and Rj,j′ ← GT .

It is not hard to see that an ENDSG with computational non-degeneracy
property almost-tightly implies a fully adaptively secure IBE in MIMC setting,
where we ensure the confidentiality of polynomial-many ciphertexts for each
identity. The detailed proof can be found in the full version of the paper.

6.3 Computational Non-degeneracy from d-Linear Assumption

We now prove that the prime-order instantiation proposed in Section 4 has
realized the computational non-degeneracy. And this immediately implies that
the concrete IBE scheme shown in Section 5 is fully adaptively secure in MIMC
setting with almost-tight reduction.
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As before, we first rewrite all entries involved in the ND advantage function
AdvND

A (k, q, q′, q′′) in terms of B,B∗,Ai,R as follows

pp :=

(
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BAn)
1

gB
∗R

2 , g
B∗A>1 R
2 , . . . , g

B∗A>nR
2

)
;

ĥ∗j · h̃∗j := g

B∗

 0d
r̂′j
r̃′j


2 ;

ĝj,j′ :=
(
g
πM(B)̂sj,j′
1 , g

πM(BA1 )̂sj,j′
1 , . . . , g

πM(BAn )̂sj,j′
1

)
;

e(ĝ0,j,j′ , ĥ
∗∗
j ) := e(g

πM(B)̂sj,j′
1 , g

πM(B∗)r̂j
2 ) = e(g1, g2)ŝ

>
j,j′ r̂j ;

Rj,j′ := e(ĝ0,j,j′ , ĥ
∗∗
j ) · e(g1, g2)γ̂j,j′ = e(g1, g2)ŝ

>
j,j′ r̂j · e(g1, g2)γ̂j,j′ ;

where r̂′j , r̃
′
j , r̂j , ŝj,j′ ← Zdp and γ̂j,j′ ← Zp. Then we prove the following lemma.

Lemma 7 ((d, 1, qq′′)-LLin ⇒ ND). For any p.p.t. adversary A, there exists
an adversary B such that

AdvND
A (k, q, q′, q′′) 6 Adv

(d,1,qq′′)-LLin
B (k),

and Time(B) ≈ Time(A)+(qq′′+q′)d2·poly(k, n). (poly(k, n) is independent of A)

Overview of Proof. From the observation that all ĥ∗∗j = g
πM(B∗)r̂j
2 are inde-

pendently distributed and will never be given to A individually, we essentially
prove a stronger result:

“ Given D, g
ŝ>
j,j′ r̂j

1 are computationally indistinguishable from g
ŝ>
j,j′ r̂j+γ̂j,j′

1 . ”

It is direct to based the pseudo-randomness of the challenge terms on the (d, q, q′′)-
LLin assumption. However the assumption is reduced to d-Lin assumption with
reduction loss O(q). In order to obtain a tight reduction, we further rewrite the
challenge term as

g
ŝ>
j,j′ r̂j

1 = g
ŝ>
j,j′V

>r̄j
1 = g

r̄>j Vŝj,j′
1

where V is a (d + 1) × d matrix over Zp of rank d and r̄j ← Zd+1
p . Clearly, we

implicitly define r̂j := V>r̄j . Since the matrix V is shared by all r̂j ’s in challenge
terms, we could now deal with polynomially many distinct r̂j ’s uniformly which
results in a proof with constant security loss.

Proof. Given an instance of (d, 1, qq′′)-LLin problem (i.e., set ` = 1 and q = qq′′)g1, g2, g
a1
1 , . . . , gad1 ,

{
gbi1

}
i∈[d]

,
{
g
a1s1,j,j′
1 , . . . , g

adsd,j,j′
1

}
j∈[q],j′∈[q′′]

,{
g
b1s1,j,j′+···+bdsd,j,j′+sd+1,j,j′

1

}
j∈[q],j′∈[q′′]


as input where either sd+1,j,j′ = 0 or sd+1,j,j′ ← Z∗p, B works as follows:
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Programming ŝj,j′ for j ∈ [q], j′ ∈ [q′]. Adversary B implicitly sets

ŝj,j′ := (s1,j,j′ , . . . , sd,j,j′)
>.

Programming B,B∗,A1, . . . ,An,R. Define W as

W :=



1
. . .

1
a1

. . .

ad
1

. . .

1


∈ Z3d×3d

p

and set W∗ := (W−1)>. Sample B̄, R̄← GL3d(Zp) and set B̄∗ := (B̄−1)>.
Sample Ā1, . . . , Ān ← Z3d×3d

p , and implicitly set B, B∗, R, and all Ai as
Eq. (1). Of course, we also have the same relation as Eq. (2).

Simulating pp. Algorithm B can simulate

g
πL(B)
1 = g

πL(B̄W)
1 = g

B̄πL(W)
1 and g

πL(BAi)
1 = g

πL(B̄ĀiW)
1 = g

B̄ĀiπL(W)
1 ,

gB
∗R

2 = gB̄
∗R̄

2 and g
B∗A>1 R
2 = g

B̄∗Ā>i R̄
2 ,

for i ∈ [n] using the knowledge of πL(W) and B̄, B̄∗, Ā1, . . . , Ān, R̄.

Simulating ĥ∗j · h̃∗j for j ∈ [q′]. It is not hard to compute W∗ ∈ Z3d×3d
p as

W∗ :=



1
. . .

1

a−1
1

. . .

a−1
d

1
. . .

1


.

Observe that the right-bottom 2d × 2d sub-matrix of W∗ is full-rank with
overwhelming probability, adversary B can simulate all ĥ∗j · h̃∗j as in the proof
of Lemma 3 for the same reason.

Simulating ĝj,j′ for j ∈ [q], j′ ∈ [q′]. Algorithm B can simulate

g

B

(
0d
ŝj,j′
0d

)
1 = g

B̄W

(
0d
ŝj,j′
0d

)
1 and g

BAi

(
0d
ŝj,j′
0d

)
1 = g

B̄ĀiW

(
0d
ŝj,j′
0d

)
1
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for i ∈ [n] using the knowledge of B̄, Ā1, . . . , Ān and

g

W

(
0d
ŝj,j′
0d

)
1 = g


0d

a1s1,j,j′

...
adsd,j,j′

0d


1 .

Simulating the challenge. Define matrix V ∈ Z(d+1)×d
p of rank d as

V :=


a1

. . .

ad
b1 · · · bd

 .

For all j ∈ [q], algorithm B samples r̄j ← Zd+1
p and implicitly set r̂>j := r̄>j V.

Algorithm B computes

g
r̂>j ŝj,j′+γ̂j,j′
1 = g

r̄>j


a1s1,j,j′

...
adsd,j,j′

b1s1,j,j′+···+bdsd,j,j′+sd+1,j,j′


1

and outputs e(g
r̂>j ŝj,j′+γ̂j,j′
1 , g2) as challenges.

Analysis. Observe that, if sd+1,j,j′ = 0, the output challenge is distributed as

e(g
r̄>j (Vŝj,j′ )

1 , g2) = e(g1, g2)ŝ
>
j,j′ r̂j

which is identical to T0 where γ̂j,j′ = 0; if sd+1,j,j′ ← Z∗p, the output challenge
is distributed as

e(g
r̄>j (Vŝj,j′+ed+1sd+1,j,j′ )

1 , g2) = e(g1, g2)ŝ
>
j,j′ r̂j · e(g1, g2)sd+1,j,j′e

>
d+1r̄j

which is identical to T1 where γ̂j,j′ := sd+1,j,j′e
>
d+1r̄j (in the box) is uniform-

ly distributed over Zp. Therefore we may conclude that AdvND
A (k, q, q′, q′′) 6

Adv
(d,1,qq′′)-LLin
B (k). ut

Applying Lemma 1, we obtain the following corollary.

Corollary 2 (d-Lin ⇒ ND). For any p.p.t. adversary A, there exists an ad-
versary B such that

AdvND
A (k, q, q′, q′′) 6 Advd-Lin

B (k) + 1/(p− 1),

and Time(B) ≈ Time(A)+(qq′′+q′)d2·poly(k, n). (poly(k, n) is independent of A)
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7 Towards More Efficient Solution: An Overview

7.1 Motivation and Technique

To obtain more efficient solutions, a promising idea is to reduce the dimen-
sion of two semi-functional spaces. Because we hope to continue to base our
construction on the standard d-Lin assumption, we found the attempt gives rise
to two technical problems due to the lack of dimensions.

– We can not prove Left Subgroup Indistinguishability 2 (LS2) property using
the technique provided by Chen and Wee in [16]. In particular, the simulator

will need some elements in another source group (i.e., G2) to simulate ĥ∗ · h̃∗
which is not given in the standard d-Lin assumption.

– We can not prove Computational Non-degeneracy (ND) property as before

since neither ĝ0 nor ĥ∗ has enough dimensions to program the d-Lin problem
during the simulation.

The second issue is easy to solve by the observation that there are two semi-
functional spaces and we only use one of them so far. We first define a variant of
computational non-degeneracy property taking the ∼-semi-functional space into
account. As long as two semi-functional spaces together has at least d dimensions,
this computational non-degeneracy property should be proved as before. On
the other hand, from the view of IBE, we could use the pseudo-randomness
of e(ĝ0 · g̃0, ĥ

∗ · h̃∗) to prove the security (decoupling challenge messages and

ciphertexts) instead of just e(ĝ0, ĥ
∗). To make the intuition explicit and general,

we define three Left-subgroup indistinguishability (LS) requirements as: (1) LS1:
g ≈ g · ĝ · g̃; (2) LS2: g · ĝ · g̃ ≈ g · g̃; (3) LS3: g · ĝ · g̃ ≈ g · ĝ, where ≈ stands
for “computationally indistinguishable”.

In contrast, the first issue is seemingly hard to circumvent. Therefore, we
decide to prove the LS2 property under an enhanced d-Lin assumption where we
give adversary more elements on another source group G2 for simulating ĥ∗ · h̃∗,
which is called d-linear assumption with auxiliary input (d-LinAI) for an even
positive integer d. Even though this assumption is non-standard in general, we
point out that the concrete assumption with d = 2 is implied by the external
decision linear assumption (XDLIN) [1] (see below), which has been formally
introduced and used to build other cryptographic primitives.

We further fine-tune the ENDSG by hiding public parameters for SampH
from the adversary when defining computational requirements, including LS1,
LS2, LS3, NH, and ND. We argue that the absence of this part of public pa-
rameters will not arise difficulty in building IBE since they always correspond
to the master secret key which is not necessary to be public according to the
security model. Instead, we give the adversary enough samples from Hn+1 which
is sufficient for answering key extraction queries in the proof of “ENDSG implies
IBE”. We hope it will bring us a simple, clean and efficient solution.

In summary, we have fine-tuned the ENDSG in three aspects: (1) update
non-degeneracy requirement; (2) re-define LS requirements; (3) hide parameters
for SampH. Due to the lack of space, the fine-tuned ENDSG is given in the full
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version of the paper and we also verify there that these modifications won’t pre-
vent ENDSG from almost-tightly deriving a fully secure IBE in MIMC setting.

The starting point of instantiating the fine-tuned ENDSG is the prime-order
instantiation of dual system groups recently proposed by Chen et al. [13], which is
quite simple due to a new basis randomizing technique. We technically work with
2d×2d matrix (for even positive integer d) and generate the basis using the dual
pairing vector space method [29, 30, 26]. The first d-dimension subspace is nor-
mal space, the remaining two d/2-dimension subspaces act as ∧-semi-functional
subspace and ∼-semi-functional subspace, respectively. Note that the latter two
are now smaller but enough for our proof (the entire semi-functional space has d
dimensions). Finally, the basis is then randomized following [13]. Its security is
tightly based on the d-LinAI assumption, which leads to an almost-tightly secure
IBE in the MIMC setting with full security and higher efficiency. We describe,
in the next subsection, the d-LinAI assumption and the resulting IBE scheme.
More details could be found in the full version of the paper.

7.2 Concrete IBE from d-Linear Assumption with Auxiliary Input

Assume a prime-order bilinear group generator GrpGen(1k) as defined in Sec-
tion 4. The d-linear assumption in G1 with auxiliary input in G2 (d-LinAI) is
defined as follows, the analogous assumption in G2 can be defined by exchang-
ing the role of G1 and G2. We prove that the assumption holds in the generic
model [34] in the full version of the paper. Note that we always let d be an even
positive integer.

Assumption 3 (d-Linear Assumption in G1 with Auxiliary Input). For
any p.p.t. adversary A, the following advantage function is negligible in k,

Advd-LinAI
A (k) := |Pr[A(D,Aux, T0) = 1]− Pr[A(D,Aux, T1) = 1]| ,

where

D :=
(
G, g1, g2, g

a1
1 , . . . , gad1 , g

ad+1

1 , ga1s11 , . . . , gadsd1

)
Aux :=

(
g
aa−1

1 ad+1

2 , . . . , g
aa−1
d/2

ad+1

2 , ga2

)
T0 := g

ad+1(s1+···+sd)
1 , T1 := g

ad+1(s1+···+sd)+ sd+1

1

and G ← GrpGen(1k), a1, . . . , ad+1, sd+1 ← Z∗p, a := a1 · · · ad/2, s1, . . . , sd ← Zp.
Let πL(·) be the function mapping from a 2d × 2d matrix to its left-most d

columns. Given an bilinear group generator GrpGen such that d-LinAI assump-
tion holds, the resulting IBE scheme built according to the main idea shown in
the previous subsection is defined as follows.

– Param(1k, n): Run (p,G1, G2, GT , e)← GrpGen(1k). Sample D← GL2d(Zp)
and W1, . . . ,W2n ← Z2d×2d

p , and set D∗ := (D−1)>. Output

gp :=

(
g
πL(D)
1 , g

W>
1 πL(D)

1 , . . . , g
W>

2nπL(D)
1

g
πL(D∗)
2 , g

W1πL(D∗)
2 , . . . , g

W2nπL(D∗)
2

)
.
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– Setup(gp): Sample k← Z2d
p and output

mpk :=
(
g
πL(D)
1 , g

W>
1 πL(D)

1 , . . . , g
W>

2nπL(D)
1 ; e(g1, g2)πL(D)>k

)
∈ (G2d×d

1 )2n+1 ×GdT ;

msk :=
(
g
πL(D∗)
2 , g

W1πL(D∗)
2 , . . . , g

W2nπL(D∗)
2 ; gk2

)
∈ (G2d×d

2 )2n+1 ×G2d
2 .

– KeyGen(mpk,msk,y): Let y = (y1, . . . , yn) ∈ {0, 1}n. Sample r ← Zdp and
output

sky :=
(
g
πL(D∗)r
2 , g

k+(W2−y1+···+W2n−yn )πL(D∗)r
2

)
∈ G2d

2 ×G2d
2 .

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈ {0, 1}n and m ∈ GT . Sample s← Zdp
and output

ctx :=
(
g
πL(D)s
1 , g

(W2−x1+···+W2n−xn )>πL(D)s
1 , e(g1, g2)s

>πL(D)>k ·m
)

∈ G2d
1 ×G2d

1 ×GT .

– Dec(mpk, sk,ct). Let sk = (K0,K1) and ct = (C0, C1, C2). Output

m := C2 · e(C1,K0)/e(C0,K1).

One may argue that the d-LinAI assumption is not standard and complex. We
show that, by setting d = 2, we derive the DLIN assumption with auxiliary input
Aux := (ga32 , ga12 ). It is easy to verify that this special instantiation is implied
by the External Decision Linear Assumption [1]. Motivated by this observation,
we remark that we may build the above IBE system using symmetric bilinear
pairings and base the security on the well-known and standard Decisional Linear
Assumption, where G1 = G2 and Aux in G2 is automatically revealed.
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